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Abstract
Diffusion models are a promising approach to
generate molecules in 3D. However, challenges
remain in generating realistic 3D molecules with
refined geometry that respect the quantum phys-
ical laws governing the atom configurations. In
this work, we generalized the neural predictor
used in diffusion guidance to a non-differentiable
expert oracle, GFN2-xTB, a semi-empirical quan-
tum mechanical method for accurate and efficient
quantum chemistry calculations. With an off-the-
shelf diffusion model, we guide it to generate
molecules that are valid and more stable with
less net force. By prompting atoms to move to
lower molecular energy with the estimated gradi-
ent from GFN2-xTB, we show that our method
generates molecules that are more stable and fa-
vored in energy with better-optimized geometries
than existing literature.

1. Introduction
Applications of generative models in feature-rich geome-
tries have the potential to accelerate scientific discoveries
in chemistry, biology, and materials science. For example,
the in silico generation of 3D geometries for molecules
and proteins can help screen novel drug candidates and
model the protein-molecule interaction to accelerate drug
discovery (Corso et al., 2022; Jumper et al., 2021; Xu et al.,
2023; Hoogeboom et al., 2022). Particularly, molecules can
be modeled with a graph, where each node of the graph
represents an atom and contains feature information such
as 3D coordinates and atom types. The geometries of the
generation results have domain-specific implications – a
molecule’s stability and properties depend significantly on
its preferred quantum geometric states, i.e., atomic and

*Equal contribution 1Language Technologies Institute,
Carnegie Mellon University 2Machine Learning Department,
Carnegie Mellon University 3Department of Chemistry, Carnegie
Mellon University 4Department of Biomedical Engineering,
Carnegie Mellon University. Correspondence to: Barnabás Póczos
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molecular geometries. For example, polarity is closely re-
lated to molecular geometry. A water molecule H2O has a
stable V-shaped H-O-H geometry of 104.5 degrees and is
thus polar. A generated H2O molecule with a linear H-O-H
geometry would instead be nonpolar but unstable. There-
fore, when we discuss molecules and their properties, it
is essential to start from their preferred stable geometries.
In this paper, we propose to improve generated molecular
geometries by incorporating a non-differentiable oracle in
the diffusion sampling process.

Many diffusion model approaches have been applied to 3D
molecular structures (Hoogeboom et al., 2022; Xu et al.,
2023; Bao et al., 2022; Vignac et al., 2022). The gener-
ated molecules are evaluated on general stability and valid-
ity as well as on the performance of property-conditioned
generation, all of which depend on the geometry of the re-
sulting molecules. To better control the generation results,
Hoogeboom et al. (2022); Xu et al. (2023) have proposed
to train conditional generative models, where they input
the property values as conditions into the model during
training and sampling to obtain novel molecules fulfilling
the requirement. Inspired by guidance algorithms that im-
prove image conditional generation quality (Bansal et al.,
2023; Dhariwal & Nichol, 2021), Han et al. (2023) applied
the training-free regressor guidance on the sampling pro-
cess of an unconditional diffusion model, and have seen
remarkable improvements for molecule conditional genera-
tion. Compared with training a conditional diffusion model
from scratch, the guidance method achieves conditional gen-
eration by steering an unconditional model with a neural
classifier or regressor, which requires fewer computation
resources to train. However, it requires computing the gra-
dient through the differentiable neural predictor to perform
”correction” during the sampling process, which hinders its
broader applications as neural networks tend to suffer from
extrapolation, and many chemical properties are calculated
by non-differentiable oracles that can’t be backpropagated.

To address the above issues, we propose to generalize the
use of a neural predictor in diffusion guidance to a non-
differentiable expert oracle which we can query from. To
improve the generated molecules’ geometries, we use an
external quantum chemistry package xTB with the GFN2-
xTB method (Bannwarth et al., 2019) that conducts accurate
and efficient quantum chemistry calculation for atom forces,
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Figure 1. 3D visualization of molecules before (top row) and after (bottom row) geometry optimization using unconditional GeoLDM
with non-differentiable xTB guidance. The numbers represent the L-1 norm of the atom forces calculated by xTB, where lower forces
indicate a more stable structure. Note that the pre-optimized molecule at rightmost is broken into two parts, but our optimization method
removes the disconnection and lowers the forces from 0.33 to 0.19.

and we use a two-point method (Nesterov & Spokoiny,
2017) to estimate the gradient of the generated molecule
in the chemical property value landscape. By guiding the
sampling process towards an output that minimizes forces
on each atom, we naturally achieve geometry refinement as
a result. Directly incorporating an expert oracle removes the
estimation error of a predictor, because even in the unlikely
event that the predictor achieves perfect accuracy on the
test set, it is not guaranteed to achieve good accuracy on an
unseen dataset with a different distribution. For example,
the molecules from QM9 (Ramakrishnan et al.) are stable
molecules with optimal energies and minimized force on
each atom, which is usually not the truth for the molecules
generated during the denoising process of a diffusion model;
thus, a zero-error predictor on QM9 will not necessarily
yield accurate predictions for the denoising molecules.

In this paper, we develop a non-differentiable diffusion guid-
ance method and apply it to molecule generation for ge-
ometry optimization. To evaluate the effectiveness of our
proposed approach, we show that our non-differentiable
oracle guidance can improve validity and stability among
the generated molecules in comparison with unconditional
diffusion models. We present some sampled molecules with
optimized geometry in Figure 1.

2. Related Work
This paper lies in the intersection of predictor-guided diffu-
sion generation and molecule generation for drug discovery.
Various types of generative models have been proposed
to model molecular data, including VAE (Jin et al., 2018;
2019; Kusner et al., 2017; Maziarz et al., 2021) and GAN
(Prykhodko et al., 2019; De Cao & Kipf, 2018). However,
these models focus on generating molecules as 2D graphs
without 3D coordinate information. The autoregressive

model is one approach to generate 3D molecules includ-
ing G-Schnet (Gebauer et al., 2019) and G-SphereNet (Luo
& Ji, 2022), however, they are less effective and powerful
compared to diffusion models (Hoogeboom et al., 2022).
The equivariant diffusion model EDM for 3D molecule
generation was first proposed by Hoogeboom et al. (2022),
which utilizes an equivariant graph neural network to model
the molecules as graphs with coordinates and atom types as
node features. GeoLDM (Xu et al., 2023) further extends
EDM to a latent diffusion architecture and has shown im-
provements in stability and validity. However, to achieve
conditional generation, both EDM and GeoLDM need to be
re-trained, where the target property value is appended to
the feature space to generate molecules that fulfill certain
property requirements.

Guided diffusion generation has shown promising results
in the domain of image (Dhariwal & Nichol, 2021; Bansal
et al., 2023; Zhang et al., 2023; Rombach et al., 2022),
where its generation can be conditioned on texts (Rombach
et al., 2022), poses and edges (Zhang et al., 2023), and clas-
sifiers (Dhariwal & Nichol, 2021). A similar approach is
adopted for property-guided molecule generation (Vignac
et al., 2022; Bao et al., 2022; Han et al., 2023). With-
out re-training a conditional model from scratch, Vignac
et al. (2022); Han et al. (2023) trained additional differen-
tiable neural regressors of properties, and use the gradients
as guidance during the sampling process of an uncondi-
tional diffusion model. Bao et al. (2022) proposed to train
time-dependent regressors of properties as guidance during
sampling. Our paper differs from the previous work by
introducing an approach to directly estimate the guidance
signal (e.g., the gradient) from a non-differentiable expert
oracle without training additional neural predictors.
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3. Preliminary
In this section, we will introduce the diffusion model, the
architecture we use and how it achieves equivariance, and
the semi-empirical quantum mechanic method GFN2-xTB
used as guidance in our paper.

Diffusion Models In general, a diffusion model (Ho et al.,
2020; Song et al., 2020; Dhariwal & Nichol, 2021; Sohl-
Dickstein et al., 2015) consists of a forward diffusion pro-
cess and a reverse denoising process. The diffusion pro-
cess is a Markov chain that gradually adds Gaussian noises
with a variance schedule β1:T from timestep 1 to T to the
original datapoint x0. The schedule is chosen such that
xT ∼ N (0, I). The forward diffusion process q is usually
defined as a fixed schedule by the following:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1)

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where β1:T is pre-defined and fixed. The reverse denoising
process starts with xT and recovers the original datapoint
x0 by predicting the mean of the distribution of xt−1 given
xt, denoted as µθ(xt, t) where θ is the parameter. We can
model the reverse process as:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt)

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

In practice, Σθ is set to be σ2
t I for all t for simplicity,

where σt =
√
1− α2

t and αt =
√∏t

i=1(1− βi). Ho
et al. (2020) further simplified the objective from pre-
dicting mean µθ(xt, t) to predict the noise at each step,
which is denoted by ϵθ(xt, t), as xt = αtx0 + σtϵ,
and ϵ ∼ N (0, I). The training objective is minimize
Ex0,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(xt, t)∥2

]
, and µθ(xt, t) can be pa-

rameterized as 1
1−βt

(xt − βt√
1−α2

t

ϵθ(xt, t)). Consequently,

we have

xt−1 ∼ N (
1

1− βt
(xt −

βt√
1− α2

t

ϵθ(xt, t)), σ
2
t I) (3)

Latent Diffusion Architecture for 3D Molecule Genera-
tion An N -atom molecule can be represented as a point
cloud G = [x,h] ∈ RN×(3+d), with x ∈ RN×3 being the
N atom’s 3D coordinates and h ∈ RN×d as the atom fea-
tures such as atoms types and charges. A latent diffusion
architecture (Rombach et al., 2022; Xu et al., 2023) consists
of a VAE and a diffusion model, and are trained consec-
utively. Particularly, the geometric latent diffusion model
(GeoLDM) (Xu et al., 2023) uses the encoder of the VAE

to project discrete molecules to a continuous latent space,
on which the diffusion model is then trained. Denote the en-
coder as E and the latent variable by z ∈ RN×(3+dz), then
[zx,0, zh,0] = E([x,h]), with zh,0 ∈ RN×dz and dz < d.
Let zt = [zx,t, zh,t], the latent forward diffusion process
and reverse denoising process are defined as:

q(zt | zt−1) = N (zt;
√
1− βtzt−1, βtI) (4)

pθ(zt−1 | zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)) (5)

We denote the decoder of the VAE asD, which maps z0 back
to the original molecular space, such that D([zx,0, zh,0]) =
[x,h] ∈ RN×(3+d).

The encoder E and the decoder D are parameterized with an
equivariant graph neural network (EGNN) (Satorras et al.,
2021) to translate between discrete molecular data and latent
variables, such that the atom types are invariant and the
positions are equivariant to transformations as follows:

Rzx,t + T, zh,t = E(Rxt + T,ht)

Rxt + T,ht = D(Rzx,t + T, zh,t) (6)

for any rotation matrix R and translation matrix T , where
zx,t ∈ RN×3 are required to satisfy zero center gravity and
have zero-mean over N atoms for each position. In addition,
the latent diffusion model is also parameterized by EGNN
such that transitions between each timestep in the denoising
process also respect the same characteristics.

GFN2-xTB Method According to the laws of physics
and thermodynamics, matter such as electrons, atoms, and
molecules, interacts with matter inherently to reach configu-
rations with lower potential energies for better stability. To
formulate this as a molecular geometry optimization prob-
lem, let h1, · · · , hN be the N atoms in a given molecule
and x1, · · · ,xN ∈ R3 be their corresponding coordinates
in the 3D space, then each atom hi is subject to a force

fi(G) =
∂Ep (x1, · · · ,xN | h1, · · · , hN )

∂xi
, ∀i ∈ [N ] (7)

where Ep represents the potential energy of the conforma-
tion. The force here manifests valid physical interpretations:
an atom is pushed accordingly by the exerted force until the
force reduces to zero and an equilibrium is achieved. One
necessary (but not sufficient) condition for a stable molecu-
lar geometry is that all forces on the atoms should be (close
to) zero, i.e., ∀i ∈ [N ], fi(G) = 0.

However, the exact mathematical potential energy evalua-
tion, i.e., the solution to the Schrödinger equation, is still a
black box to us (Cao et al.). Over the years, different levels
of theories and methods have been developed to evaluate
the potential energy, such as force field (FF), semi-empirical
methods (e.g., xTB), and density functional theory (DFT)
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methods (e.g., B3LYP/6-31G(2df,p)). The methods are
listed in order of increased accuracy and cost. After trading-
off between accuracy and efficiency within a feasible com-
putation cost, we selected GFN2-xTB, a more recent and
advanced semi-empirical method (Bannwarth et al., 2019),
to calculate the forces of the generated molecular geometry
in the diffusion process. More details about the GFN2-xTB
method can be found in Appendix B.

4. Methodology
Recall that molecular data is represented in the form of a
point cloud G = [x,h] ∈ RN×(3+d), we denote the gener-
ated molecule by the diffusion model as G0. We introduce
a training-free guided denoising process by incorporating
the GFN2-xTB method at inference time to minimize the
net force acting on each atom and optimize the molecular
geometry towards a more stable atom configuration. We
denote the molecule generated by our method as G′0 and we
aim to achieve 1

N

∑N
i fi(G′0) < 1

N

∑N
i fi(G0) for i ∈ [N ],

with fi(G) defined in Eq. 7.

Up next, we will first describe how to obtain guidance from
a differentiable neural network (NN) (Vignac et al., 2022;
Han et al., 2023; Bao et al., 2022), then introduce how to
use a non-differentiable oracle in place of a differentiable
NN to obtain the gradient for diffusion guidance.

4.1. Guidance for Diffusion Models

The goal of neural guidance is to direct the denoising pro-
cess towards a target property value y. Dhariwal & Nichol
(2021) proposed a method to modify the denoising process
to achieve conditional generation with an unconditional
diffusion model, with a scalar s controlling the guidance
strength:

xt−1 ∼ N (
1

1− βt
(xt −

βt√
1− α2

t

ϵθ(xt, t))

+ sσ2
t∇xt

log pϕ(y|xt), σ
2
t I) (8)

In their case, pϕ(y|xt) is parameterized by a classifier
and y is a categorical label, where the additional term
sσ2

t∇xt
log pϕ(y|xt) shifts the mean of the sampling distri-

bution to provide guidance. However, we are interested in
the case of y ∈ R, which is continuous. Let fη : G → R
be a NN that predicts the property score, where we follow
Vignac et al. (2022) and assume p(y|xt) ∼ N (fη(xt), σ

2
ηI)

and σ2
η = 1 for simplicity, we can estimate that:

∇xt
log pϕ(y | xt) ∝ −∇xt

∥y − fη(xt)∥22
= −∇xt

L(y, fη(xt)) (9)

where L(y, fη(xt)) is the MSE between the target and pre-
dicted value by fη(·).

However, in the early stage of the denoising process, xt =
αtx0 + σtϵ might not be informative enough to predict y
as it consists mostly of Gaussian noise. For more effective
prediction during the denoising process, we can estimate the
denoised version of xt as (Kawar et al., 2022; Song et al.,
2020):

x̂0 =
xt −

√
1− αtϵθ(xt, t)√

αt
(10)

And x̂0 can be used in place of xt in Eq (9) when
calculating the guidance, such that ∇xt

log pϕ(y|xt) ≈
∇xt log pϕ(y|x̂0).

4.2. Guidance From a Non-Differentiable Oracle

In this section, we aim to tackle a more challenging problem
where the guidance is specified by a non-differentiable ora-
cle. Since we adopted the latent diffusion architecture such
that the diffusion model is trained on the continuous latent
space encoded by VAE, we change our notation xt for each
state in the diffusion model in Section 4.1 to zt as in Section
3. To precisely formulate our problem, which aims to refine
the geometry of the generated molecules by minimizing
the net force acting on each atom, our non-differentiable
function f for guidance can be defined as the following:

f(G) = 1

N

N∑
i

fi(G) (11)

where the molecular graph G is obtained by decoding the
continuous latent variable through the decoder G = D(ẑ0),
ẑ0 is estimated by Eq. 10 and fi is our non-differentiable
oracle defined in Eq. 7 that yields the net force on each atom
i, and our target value y in this case is 0.

When f is non-differentiable, we can no longer plug it into
Eq. 9 to obtain the gradient as guidance. Instead, we can
compute the gradient analytically. For ease of discussion,
we define the one-step estimation of the original datapoint
z0, introduced in Eq 10, as the function t0(·):

ẑ0 = t0(zt) =
zt −

√
1− αtϵθ(zt, t)√

αt
(12)

Recall that L(y, f(G)) is the MSE loss function, f : G → R
is the non-differentiable oracle, and D is the decoder. We
denote F as the composition f ◦ D ◦ t0, the gradient is
measured analytically by

∇̂zt log pϕ(y|zt) ∝ −∇F(zt)L(y,F(zt))∇ztF(zt)
≈ −∇F(zt)L(y,F(zt))

· lim
ζ→0

F(zx,t⊕̂ζ)−F(zx,t⊕̂(−ζ))
2ζ

(13)
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where we define zt⊕̂ζ := [zx,t + ζIN×3, zh,t]. This ap-
proximation is possible because zt is continuous after the
projection of the VAE encoder. The formulation allows for
guidance from a non-differentiable oracle such as quantum
chemical method GFN2-xTB (Bannwarth et al., 2019). Esti-
mating the gradient directly from an expert oracle eliminates
the need to train additional neural regressors for properties
such as the force on each atom, which comes with approx-
imation error (Gasteiger et al., 2020). In addition, these
regressors are often trained on stable molecules from QM9
instead of the potentially unstable molecules as byproducts
of the denoising process, making them dubious options for
property guidance.

However, directly adding ±ζ1N×3 to zx,t would break the
equivariance requirement in Eq. 6 on the latent variables, as
it shifts the mean of the coordinates by ζ. To maintain zero
center gravity of input to the F(·), we construct a perturba-
tion matrix U ∈ RN×3 where each element is sampled from
N (0, 1), and apply Simultaneous Perturbation Stochastic
Approximation (SPSA) (Spall, 1992; Nesterov & Spokoiny,
2017; Malladi et al., 2023) to estimate the gradient; thus,
Eq. 13 becomes

∇̂zt log pϕ(y|zt) ∝ −∇F(zt)L(y,F(zt))

· F(zt⊕̇ζU)−F(zt⊕̇(−ζU))

2ζ
U (14)

where ζ is a small perturbation scale (e.g., 10−6) and simi-
larly we define zt⊕̇ζU := [zx,t + ζU, zh,t] as an abuse of
notation. The perturbed representations [zx,t± ζU, zh,t] do
not violate zero center gravity required by t0, as E[ζU] = 0.
Note that, unlike NN guidance, we only add guidance to the
positions, i.e., zx,t and apply no gradient to the atom types,
i.e., zh,t. This is because the force definition (Eq. 7) is only
physically grounded when the set of atoms stays constant,
i.e., no matter/mass is created from or reduced to void. Ac-
cording to Einstein’s mass-energy equivalence (E = mc2),
any change in atom type would change the mass and create
a tremendous potential energy change, which is not within
the topics of this work. We present the overall procedure of
our non-differentiable oracle guidance in Algorithm 1.

5. Experiments
5.1. Experiment Setting

Dataset The models in our experiment are trained on
the QM9 dataset (Ramakrishnan et al.) and the GEOM
dataset (Axelrod & Gómez-Bombarelli). The QM9 dataset
(Ramakrishnan et al.) is a catalog with 133,885 small
drug-like molecules consisting of up to nine heavy (non-
hydrogen) atoms. The Geometric Ensemble Of Molecules
(GEOM) dataset (Axelrod & Gómez-Bombarelli) includes
450K molecules with up to 91 heavy atoms (on average,

Algorithm 1 Guided diffusion with non-differentiable ora-
cle
input a latent diffusion model ϵθ, a VAE decoder D, a

composition functionF , target property score y, guidance
scale s, SPSA perturbation ζ
zT ← N (0, I)
for all t from T to 1 do

µt−1,Σt−1 ← 1
1−βt

(zt − βt√
1−α2

t

ϵθ(zt, t)), σ
2
t I

U← N (0, I)
gt−1 ∝
−∇F(zt)∥y−F(zt)∥2 ·

(
F(zt⊕̇ζU)−F(zt⊕̇(−ζU))

2ζ U
)

(Eq. 14)
zt−1 ← N (µt−1, sΣt−1gt−1,Σt−1) (Eq. 8)

end for
[x,h]← D(z0)

output [x,h] //geometry optimized molecules

24.9), where 37 million molecular conformations are gen-
erated and reported with their geometries, energies, and
statistical weight.
Baseline We apply our method on GeoLDM (Xu et al.,
2023), which shows improved performance compared with
EDM (Hoogeboom et al., 2022). We compare our method
to (unconditional) EDM and GeoLDM, as there are no avail-
able ground-truth forces to train their conditional versions.
Evaluation Metric For non-differentiable guidance on
forces, We report the Root Mean Square (RMS) and L-
1 norm of the forces calculated using xTB as the evaluation
metric. We also report results computed using DFT at the
B3LYP/6-31G(2df,p) level of theory for some results, a
method that is more accurate but exponentially more de-
manding in computation than GFN2-xTB.
Computation & Implementation We provide computation
and implementation details of our method in Appendix A.

5.2. Result

We represent our results in Figure 2, where step N stands
for adding guidance in the last N denoising steps. It is
observed that over different guidance steps and scales, our
non-differentiable oracle guidance can achieve lower forces
while generating more valid molecules. Specifically, when
the guidance steps begin from the last 400 steps, our method
performs the best in terms of lower RMS and L-1 norm
net forces (7.22%-9.19% improvement) and higher validity
rate (5.0%-10.0% improvement). We provide full numer-
ical results of performance over different guidance steps
and scales in Appendix C. To gain further insights, we also
report the results on 400 guidance steps computed using
DFT in Table 1, a more accurate however expensive cal-
culation. It can be seen that using a less accurate oracle
(i.e., xTB) for guidance, we can outperform competitive

5



Non-Differentiable Diffusion Guidance for Improved Molecular Geometry

Figure 2. L-1 norm (left) and average RMS (middle) of forces and validity (right) of 300 generated molecules on QM9 with an unconditional
GeoLDM guided by xTB, across different guidance steps and scales.

baselines evaluated more precisely (i.e., using DFT), which
demonstrates the effectiveness of our method. A similar
trend can observed on the GEOM dataset in Table 2, where
our best result obtains 6.79% and 6.0% improvements in
forces RMS and validity than the best baseline.

Guidance Scale 0.0001 0.001 0.01 0.1 1.0
Force RMS 0.0051∗ 0.0052 0.0054 0.0052 0.0061

Validity 96.33% 96.67%∗ 96.33% 96.0% 94.0%
EDM Force RMS 0.0051 / Validity 89.33%

GeoLDM Force RMS 0.0061 / Validity 93.67%

Table 1. Force RMS and validity of 300 generated molecules on
QM9 using DFT calculation. ∗ and bold denote the overall best
and the best within different scales, respectively.

Guidance Scale 0.0001 0.001 0.01 0.1 1.0
Force RMS 0.0398∗ 0.0432 0.0451 0.0417 0.0477

Validity 47.0% 48.0% 51.0% 56.0%∗ 48.0%
EDM Force RMS 0.0787 / Validity 45.0%

GeoLDM Force RMS 0.0427 / Validity 50.0%

Table 2. Force RMS and validity of 100 generated molecules on
GEOM using xTB calculation. ∗ and bold denote the overall best
and the best within different scales, respectively.

5.3. Further Discussion

Since xTB runs on CPU and is time costly, we provide
further discussion on the effect of the skip-step acceleration
method on the xTB guidance in Appendix D.

6. Conclusion & Limitation
In this work, we study conditional generation for 3D dif-
fusion models on molecules, where we steer the genera-
tion process of a diffusion model trained unconditionally
with an external chemistry oracle, which is usually non-
differentiable. By estimating the guidance gradient with
an analytic solution, meanwhile, respecting the equivalent
and invariant requirements for 3D diffusion models, we
can generate molecules with both low net force and high
validity. However, since the xTB runs on CPU which is
the major bottleneck for inference speed, our method can

be time-consuming when the computational resources are
insufficient, and future works can explore the possibility
of speeding up the guidance steps while reducing computa-
tional costs and maintaining good performance.

Impact Statement
To our best knowledge, this work is the first to use a non-
differentiable oracle in molecule generation. Our research
pioneers a novel approach for incorporating chemistry soft-
ware into neural networks for a more chemistry-informed
and promising generation process and resulting molecules.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.
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J., Bjerrum, E. J., Engkvist, O., and Chen, H. A de novo
molecular generation method using latent vector based
generative adversarial network. Journal of Cheminfor-
matics, 11(1):1–13, 2019.

Ramakrishnan, R., Dral, P. O., Rupp, M., and von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. 1(1):140022. ISSN 2052-4463. doi:
10.1038/sdata.2014.22. URL https://www.nature.
com/articles/sdata201422.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Satorras, V. G., Hoogeboom, E., Fuchs, F. B., Posner, I., and
Welling, M. E (n) equivariant normalizing flows. arXiv
preprint arXiv:2105.09016, 2021.

7

https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00803
https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00803
https://api.semanticscholar.org/CorpusID:258959274
https://api.semanticscholar.org/CorpusID:258959274
https://www.nature.com/articles/sdata201422
https://www.nature.com/articles/sdata201422


Non-Differentiable Diffusion Guidance for Improved Molecular Geometry

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502, 2020.

Spall, J. C. Multivariate stochastic approximation us-
ing a simultaneous perturbation gradient approximation.
IEEE Transactions on Automatic Control, 37:332–341,
1992. URL https://api.semanticscholar.
org/CorpusID:122365276.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Xu, M., Powers, A. S., Dror, R. O., Ermon, S., and Leskovec,
J. Geometric latent diffusion models for 3d molecule gen-
eration. In International Conference on Machine Learn-
ing, pp. 38592–38610. PMLR, 2023.

Zhang, L., Rao, A., and Agrawala, M. Adding conditional
control to text-to-image diffusion models. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 3836–3847, 2023.

8

https://api.semanticscholar.org/CorpusID:122365276
https://api.semanticscholar.org/CorpusID:122365276


Non-Differentiable Diffusion Guidance for Improved Molecular Geometry

A. Computations and Implementations

B. GFN2-xTB
GFN stands for, respectively, geometry optimization, vibrational frequencies, and non-covalent interactions. xTB refers
to extended tight binding, and 2 refers to the version. In the GFN2-xTB method, the total energy expression is given by
(Bannwarth et al.; 2019)

EGFN2-xTB = Erep + Edisp + EEHT + EIES+IXC

+ EAES + EAXC +GFermi

, where Erep is the repulsive energy contribution from short-range interactions, Edisp is the dispersion energy contribution
from long-range interactions, EEHT is the energy contribution from the extended Hückel theory (EHT), EIES+IXC is the
isotropic electrostatic (IES) energy contribution and the isotropic exchange-correlation (IXC) energy contribution, EAES
is the anisotropic electrostatic (AES) energy contribution, EAXC is the anisotropic exchange-correlation (AXC) energy
contribution, and GFermi is the entropic contribution of an electronic free energy at finite electronic temperature Tel due to
Fermi smearing.

Its accuracy and efficiency come strictly from the element-specific and global parameters for all elements up to radon (Z
= 86) (Bannwarth et al., 2019), hence the semi-empiricism. The pre-computed tight-binding parameters and empirical
corrections are utilized to approximate the electronic structure and calculate energy contributions efficiently.

C. Full Numerical Results
We provide the full numerical results of xTB guided molecule generation in Table 3, where we use guidance steps = [200,
400, 600] and scales = [1e-4, 1e-3, 1e-2, 1e-1, 1.0]. 400 guidance steps and smaller guidance scales give the best results.
Note that when guidance step=400 and guidance scale=0.0001, our method outperforms EDM and GeoLDM in the L-1
norm of the forces by 7.23% and 9.22% respectively. The table gives sound evidence that our method generates more stable
and valid molecules than the baselines.

Guidance Scale Guidance Step L1 Force Norm Force RMS Validity

0.0001
200 0.2312 0.0110 89.33%
400 0.2195∗ 0.0104∗ 91.0%
600 0.2477 0.0128 92.0%∗

0.001
200 0.2311 0.0110 89.33%
400 0.2224 0.0105 91.33%
600 0.2426 0.0122 91.67%

0.01
200 0.2425 0.0119 89.67%
400 0.2241 0.0108 90.67%
600 0.2402 0.0118 92.0%∗

0.1
200 0.2273 0.0108 90.0%
400 0.2222 0.0105 89.67%
600 0.2341 0.0114 91.67%

1.0
200 0.2633 0.0132 90.67%
400 0.2480 0.0117 88.33%
600 0.2481 0.0117 89.33%

EDM Baseline 0.2366 0.0115 85.33%
GeoLDM Baseline 0.2418 0.0121 88.67%

Table 3. L-1 norm of force, avg. force RMS, and validity from 300 generated molecules sampled from the QM9 dataset using GeoLDM
with xTB guidance with different guidance steps and scales using xTB calculation. ∗ and bold denote the overall best and the best within
different scales, respectively.
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D. Acceleration Methods For xTB Guidede Optimization
GPUs can significantly accelerate computation for neural network inference and training, but xTB operates on CPU, which
lowers the inference speed. Hence, we propose a skip-step acceleration method for xTB guided optimization. Specifically,
suppose we set skip-step to be k, then we only calculate gradients from xTB every k steps and use historical gradients for
the rest k − 1 steps. The results are shown in Table 4. For each skip-step schedule, we try the combinations of guidance
steps = [200, 4000, 600] and scales = [1e-4, 1e-3]. We can observe that the skip-step method can improve the performance
in L-1 norm, RMS of force, and validity, and it is competitive with our previous method without skip-step. Surprisingly, the
validity is even higher than our previous method, which we suspect is because our estimation of gradient (Eq. 14) could be
noisy and stochastic, so using skip-step method and historical gradients stabilizes the guidance.

Skip Step Guidance Step Guidance Scale L1 Force Norm Force RMS Validity

2

200 0.0001 0.2374 0.0114 90.33%
0.001 0.2306 0.0108 90.0%

400 0.0001 0.2283 0.0110 94.0%∗

0.001 0.2273∗ 0.0109 93.33%

600 0.0001 0.2347 0.0113 92.67%
0.001 0.2426 0.0119 93.67%

3

200 0.0001 0.2274 0.0107∗ 88.67%
0.001 0.2273∗ 0.0107∗ 88.67%

400 0.0001 0.2293 0.0109 91.33%
0.001 0.2297 0.0110 91.33%

600 0.0001 0.2401 0.0119 92.0%
0.001 0.2379 0.0116 92.33%

EDM Baseline 0.2366 0.0115 85.33%
GeoLDM Baseline 0.2418 0.0121 88.67%

Table 4. L-1 norm of force, avg. force RMS, and validity from 300 generated molecules sampled from the QM9 dataset using GeoLDM
with xTB guidance and various skip-step acceleration schedules using xTB calculation. ∗ and bold denote the overall best and the best
within different scales, respectively.
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