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ABSTRACT

Large Language Models (LLMs) have demonstrated strong capabilities in open-
domain question answering, but often struggle with factual accuracy and multi-
hop reasoning due to the incompleteness of the training corpora. A promising
solution is Knowledge Graph Retrieval-Augmented Generation (KG-RAG), which
supplements LLMs with structured knowledge retrieved from external knowledge
graphs (KGs). However, existing KG-RAG methods either rely on large-scale
language models (e.g., ChatGPT) to guide the retrieval process, which leads to
high computational costs, or suffer from limited retrieval quality when using
lightweight language models, particularly under multi-hop scenarios. We propose
MoRA (Mixture-of-Experts for Retrieval-Augmented Generation over Knowledge
Graphs), a novel KG-RAG framework that enhances hop-wise KG knowledge
retrieval through a Mixture-of-Experts (MoE) framework. Each expert is guided by
a combination of two types of soft prompts: expert-specific soft prompt encourages
specialization in different reasoning perspectives across experts, and contextual
soft prompt evolves with each reasoning hop by encoding the query and previously
explored KG triplets, enabling the model to preserve consistency and relevance
across multi-hop retrieval. This design allows MoRA to perform accurate and
robust retrieval using lightweight language models. MoRA achieves superior
performance across multiple KG-based Question Answering benchmarks compared
to existing retrieval systems, including those that rely on much larger language
models, demonstrating its effectiveness under limited computational budgets.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Touvron et al., 2023a) have demonstrated
impressive capabilities across a wide range of natural language processing tasks, including text
comprehension (Lewis et al., 2020a), open-domain question answering (Wei et al., 2022b), and
natural language generation (Cheng et al., 2023). Despite these advances, LLMs remain limited due
to the incompleteness of knowledge encoded during pretraining, which restricts their ability to provide
factually accurate and up-to-date answers (Zheng et al., 2023; Wang et al., 2024). This limitation is
particularly pronounced in knowledge-intensive scenarios that demand factual precision, reasoning
over complex multi-hop relations, and adaptation to continually evolving information (Zheng et al.,
2023; Wang et al., 2024). Consequently, LLMs often generate responses that contain hallucinated
content, outdated facts, or unverifiable claims, undermining their reliability in real-world applications.

To mitigate these issues, Retrieval-Augmented Generation (RAG) (Gao et al., 2023b) has been
proposed to enhance LLM reliability by incorporating external knowledge during inference. RAG
allows models to access up-to-date and factual information beyond what was memorized during
pretraining. While early RAG systems primarily relied on unstructured text corpora, recent efforts
have explored structured sources of knowledge for more precise and interpretable reasoning. Among
these, Knowledge Graphs (KGs) offer a highly structured and semantically rich format, representing
facts as triplets in the format of (subject, relation, object). This format supports explicit relation
modeling and multi-hop relational reasoning, making KGs especially suitable for question answering
tasks that require factual consistency and transparency (Sun et al., 2024; Jiang et al., 2025). In the
KG-RAG paradigm (Sanmartin, 2024), models typically follow a two-step process: (1) knowledge
retrieval, where a subgraph containing query-relevant triplets is constructed by expanding from
entities appearing in the query; and (2) prompt integration, where triplets in the retrieved subgraph
are presented as input to the LLM as evidence for answer generation. The performance of KG-RAG
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methods largely relies on the ability to retrieve and rank relevant triplets effectively, especially under
multi-hop settings where irrelevant information can accumulate and mislead reasoning.

Despite recent progress, current KG-RAG approaches still face limitations that hinder their effective-
ness. First, most methods assess candidate triplet relevance through a single lens, such as semantic
similarity or prompt-based scoring (Shi et al., 2024; Sun et al., 2024). This rigid design fails to
accommodate the diverse reasoning demands across different semantic types of triplets, lacking the
flexibility to account for diverse relational semantics (Saxena et al., 2020). A unified reasoning
strategy cannot effectively handle the diversity, leading to suboptimal triplet selection. Second,
many candidate triplets may appear irrelevant when judged in isolation, especially those involving
underspecified relations, but actually play a critical role in connecting earlier reasoning steps to
the final answer. Existing methods typically treat each KG triplet independently and fail to model
such multi-hop dependencies (Feng et al., 2020; Zhang et al., 2022). As a result, they struggle to
maintain contextual continuity, often discarding useful evidence prematurely. Third, while most
recent systems attempt to address these issues by leveraging large-scale language models such as
ChatGPT to guide retrieval, which are computationally expensive and impractical for scalable or
real-time applications (Min et al., 2019). Examples of the first two limitations are shown in Figure 1.
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Figure 1: Illustration of two key challenges in
KG-RAG. In Challenge 1, candidate triplets from
the same entity span different semantic directions:
factual, temporal, or logical, requiring expert spe-
cialization for effective scoring. In Challenge 2,
a relation like related to may appear irrele-
vant when judged in isolation, but becomes crucial
when combined with prior steps.

To address these challenges, we propose MoRA,
a lightweight but effective KG-RAG framework
that enables lightweight language models to per-
form accurate and multi-hop retrieval. MoRA
contains a Mixture-of-Experts (MoE) scoring
module, which scores candidate KG triplets
based on the query and previously explored
knowledge. Each expert in the MoE is con-
trolled by a learnable expert-specific soft prompt,
encouraging specialization in reasoning styles
such as temporal reasoning or compositional
logic. In addition, MoRA incorporates a con-
textual soft prompt that is dynamically con-
structed from the triplets in previous reasoning
steps. This prompt provides evolving contextual
signals that help the scoring of new candidate
triplets using earlier reasoning steps, allowing
the model to assess each candidate not in isola-
tion, but in light of the evidence already accu-
mulated, addressing the limitation of prior work.
By combining the semantic diversity of multiple
experts with contextual adaptation, our model
robustly filters irrelevant or noisy triplets. No-
tably, this framework is fully compatible with
lightweight models, avoiding the reliance on ex-
pensive LLMs such as ChatGPT for retrieval, thereby offering both efficiency and strong performance.
Our main contributions are listed as follows:
• We propose MoRA, a KG-RAG framework based on Mixture-of-Experts that enables lightweight

language models to conduct accurate multi-hop KG retrieval, reducing the cost of retrieval.
• We design two types of soft prompts to support our reasoning: (1) expert-specific soft prompt, which

allows different experts to focus on distinct aspects of reasoning, and (2) contextual soft prompt
that incorporates evidence from the prior hop to support contextual retrieval. This combination
brings both specialization and adaptivity into the retrieval process.

• We conduct extensive experiments on four KG-based QA benchmark datasets. MoRA consistently
outperforms existing KG-RAG baselines across all settings. Remarkably, it even surpasses ToG
(ChatGPT-3.5) despite using only lightweight language models for retrieval, achieving better
accuracy and lower inference cost.

2 PROBLEM FORMULATION

We study the task of Knowledge Graph Retrieval-Augmented Generation (KG-RAG), where struc-
tured knowledge from a knowledge graph is selectively retrieved to assist a language model in
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answering natural language questions. Formally, a knowledge graph is represented as G = (E ,R, T ),
where E denotes the set of entities, R is the set of relations, and T = {(h, r, t) | h, t ∈ E , r ∈ R}
is the set of directed triplets. Each triplet (h, r, t) encodes the fact that head entity h is connected
to tail entity t via relation r. Given a language model and a question q, the objective is to identify
a subset of triplets from T that are relevant to answering q, and use them as evidence to enhance
the generation of LLM. Formally, if T ∗

q ⊆ T denotes the selected triplet set, the final answer aq is
generated as:

aq = LLM
(
[q; T ∗

q ]
)
. (1)

Here T ∗
q contains the most relevant information for question answering.

3 MORA

We propose MoRA, a compact and adaptive framework for Knowledge Graph Retrieval-Augmented
Generation (KG-RAG), designed to enhance multi-hop reasoning and knowledge retrieval using
lightweight language models. MoRA operates in a multi-hop retrieval setting, where relevant triplets
from the knowledge graph are selected iteratively based on both the input query q and the reasoning
context of explored knowledge. As shown in Figure 2, the framework introduces two key components:
(1) a Mixture-of-Experts (MoE) scoring module, where multiple experts guided by distinct expert-
specific soft prompts specialize in different semantic perspectives; and (2) contextual soft prompts that
are dynamically constructed from the query and previously explored knowledge, enabling hop-aware
retrieval and maintaining coherence across multi-hop reasoning steps. These components work
together to provide a diverse and context-sensitive evaluation of candidate triplets, allowing MoRA
to robustly retrieve useful knowledge even without relying on LLMs with enormous scales.

3.1 MULTI-HOP RETRIEVAL FRAMEWORK

Given a knowledge graph G and a natural language question q, our objective is to retrieve a set of
triplets T ∗

q from G that provide faithful evidence for answering q. To achieve this, we design an
iterative retrieval framework that incrementally explores the KG in a step-wise manner.

Step 1: Candidate Construction. To initiate retrieval, we first identify a set of query entities Eq
mentioned in the question q, and initialize the first-hop frontier as E(0) = Eq. At the t-th retrieval
hop, we construct a set of candidate triplets C(t) by expanding outward from the current frontier
E(t−1). Specifically, we include all outgoing triplets (e, r, e′) for e ∈ E(t−1), as well as reversed
triplets (e, r−1, e′) whenever (e′, r, e) appears in the KG:

C(t) = {(e, r, e′) | e ∈ E(t−1)} ∪ {(e, r−1, e′) | (e′, r, e) ∈ G, e ∈ E(t−1)}. (2)

This candidate construction step ensures broad coverage of possible evidence paths, supporting both
forward and backward reasoning chains. The resulting set C(t) serves as the input to the scoring
module of hop t described in the next step.

Step 2: Mixture-of-Experts Scoring and Triplet Selection. Each candidate triplet x ∈ C(t)
is evaluated for its relevance to the question q and the context knowledge explored before. To
model different reasoning patterns and maintain contextual consistency across hops, we employ a
modular scoring mechanism based on a Mixture-of-Experts architecture with soft prompts (detailed
in subsection 3.2). This module outputs a contextualized score S(q, x, t) for each candidate. We
retain the top-M triplets by S(q, x, t) for further exploration:

T (t)
sel = Top-M{S(q, x, t) | x ∈ C(t)}. (3)

This step prioritizes the relevant triplets while controlling the expansion size and noise accumulation.
We maintain a visited set V(t) to track explored entities. At the beginning, we initialize T ∗

q = ∅ and

V(0) = E(0). At each hop t, the selected triplets T (t)
sel are added to the evidence set, and the set of new

tail entities is set as the frontier for the next hop:

T ∗
q ← T ∗

q ∪ T
(t)

sel , (4)

E(t) = {e′ | (h, r, e′) ∈ T (t)
sel } \ V

(t−1), (5)

V(t) = V(t−1) ∪ E(t). (6)

3
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Figure 2: Overview of MoRA framework for KG-RAG. The framework consists of: (1) Candidate
Construction: From the frontier entities E(t−1), initially the entities in question q, the framework
iteratively expands the candidate triplet set C(t) from the KG. (2) Mixture-of-Experts Scoring:
Candidate triplets are evaluated by a lightweight language model (LM) with two types of soft prompts
(SP): Expert-specific soft prompt specializes in different experts on distinct semantic perspectives.
Contextual soft prompt is updated across hops to propagate reasoning history and maintain coherence
during multi-hop inference. Expert predictions are combined into a final score for each candidate.
Top-scoring triplets are selected at each hop and accumulated into the evidence set. (3) Answer
Generation: The collected evidence is provided to a large generator for answer generation.

By keeping track of visited nodes, we avoid redundancy and loops.

Iterative Retrieval. The above process is repeated for a fixed number of hops H , progressively
building an evidence graph rooted in the query. The final triplet set T ∗

q contains the most relevant
multi-hop facts and is passed to the downstream answer generator.

Unlike methods that rely on large-scale language models to implicitly model reasoning chains, our
framework performs retrieval in an explicit and structured way using only lightweight language
models for triplet scoring. This enables efficient and scalable multi-hop retrieval with better inter-
pretability and lower cost. The design of our scoring module is key to enabling such structured
reasoning and will be detailed in the next subsection.

3.2 MIXTURE-OF-EXPERTS SCORING

To robustly evaluate candidate triplets in multi-hop retrieval, we design a compact neural scoring
module based on a Mixture-of-Experts (MoE) architecture with contextualized soft prompts. A soft
prompt refers to a learnable continuous embedding prepended to the input of a language model,
allowing efficient task adaptation without fine-tuning the model parameters. This module addresses
two key challenges in KG-RAG by applying different soft prompts: (1) capturing diverse semantic
reasoning patterns, and (2) maintaining contextual coherence across hops. To this end, each expert is
equipped with two types of trainable soft prompts: an expert-specific soft prompt that encodes the
expert’s semantic bias, and a contextual soft prompt that evolves over retrieval steps by summarizing
the expert’s prior output representations. These components allow the model to specialize across
different reasoning types while remaining sensitive to context evolution across hops.

Each expert operates as an independent scorer built on a shared, lightweight language model. Given a
question q and a candidate triplet x at hop t, the k-th of K experts constructs its input by concatenating
the expert-specific soft prompt pexp

k , the contextual soft prompt pcxt
k (t), the question q, and a natural

language serialization of the candidate triplet x to obtain a new output embedding:
zk(q, x, t) = LM

(
[pcxt

k (t); pexp
k ; q; x]

)
, (7)

where LM denotes the lightweight language model shared across all experts. pexp
k is a learnable

embedding sequence that is unique to expert k and pcxt
k (t) encodes knowledge from last hop. zk(q, x, t)

encodes relevance under the expert’s specialization and the current reasoning state.

4
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To maintain temporal continuity, the contextual soft prompt is updated after each hop by aggregating
expert outputs from the previous step:

pcxt
k (t) = g

 1

|C(t−1)|
∑

x∈C(t−1)

zk(q, x, t−1)

 , (8)

where g(·) is a learned projection MLP layer. For the first hop (t = 1), this prompt is omitted in
the input of LM. This update allows each expert to track their own reasoning path across multiple
retrieval steps. The k-th expert transforms its embedding into a scalar score sk(q, x, t) ∈ (0, 1) with
a learnable linear layer wk and a sigmoid layer σ:

sk(q, x, t) = σ(w⊤
k zk(q, x, t)), (9)

and a soft routing network assigns mixture weights to each expert. Specifically, the lightweight
language model encoder produces a representation of the question and candidate as f(q, x), and a
trainable router matrix Wr maps this to a weight distribution on K experts for triplet x:

α(q, x, t) = softmax(Wr · f(q, x)). (10)

The final score for candidate x is the weighted sum over experts:

S(q, x, t) =

K∑
k=1

α(q, x, t)[k] · sk(q, x, t). (11)

This scoring architecture directly addresses the key challenges in multi-hop KG retrieval. The
expert-specific soft prompts enable each expert to specialize in different semantic patterns, such as
type constraints or temporal dependencies, ensuring flexible matching of different query intents and
knowledge types in tasks. The contextual soft prompts preserve reasoning continuity across hops by
incorporating step-wise retrieval history into scoring. Together, these components allow the retriever
to adapt its behavior based on both the question semantics and the evolving context. Importantly,
the entire module operates over lightweight language models with soft prompt tuning, offering an
efficient and scalable alternative to LLM-based retrievers.

3.3 ANSWER GENERATION

After the multi-hop selection process, we obtain the final evidence triplet set T ∗
q that aggregates

promising triplets across hops. To generate the final answer, we leverage a powerful large-scale
language model, such as ChatGPT, which excels at reasoning over textualized knowledge. Each
triplet x is first serialized into a natural language sentence. The evidence set is then concatenated into
a textual context. The LLM receives the question q and the retrieved evidence T ∗

q as input:

aq = LLM
(
[q; T ∗

q ]
)
, (12)

where aq denotes the generated answer. Since the LLM is conditioned on the selected evidence, it
grounds its reasoning on relevant multi-hop chains rather than the entire KG.

While this generation step can leverage powerful LLMs, our framework is designed to minimize
reliance on them. Due to the MoRA retriever’s MoE scoring mechanism built from compact language
models and soft prompts, the system can already filter highly relevant and coherent evidence chains.
This allows downstream generation to focus on language fluency, rather than compensating for
missing knowledge or incorrect reasoning paths.

By explicitly addressing key challenges in KG-RAG, such as semantic diversity (via expert-specific
soft prompts), cross-hop consistency (via contextual soft prompts), and LLM scale dependency
(via lightweight model retrieval), our approach provides a scalable and interpretable solution. The
triplet evidence offers transparent reasoning traces, while the generation stage remains modular and
adaptable to different deployment needs.

3.4 TRAINING OBJECTIVE

Our learnable components in MoRA are trained by a contrastive learning process. Importantly, the
underlying pretrained language models (both the lightweight language model and the large answer

5
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generator) remain frozen throughout training. This ensures that learning focuses on adapting the
lightweight modules for effective scoring and information summarization.

Supervision is provided by question–answer pairs together with ground-truth subgraphs. For a given
question q, in the hop t, let T +

q,t ∈ C(t) denote the set of gold triplets that lie on reasoning paths
leading a query entity in Eq to any answer entity within a predefined path length, and let T −

q,t ∈ C(t)
denote triplets sampled from the candidates that are not part of any gold path. The objective is to
assign higher scores to T +

q,t while suppressing T −
q,t.

We adopt a cross-entropy loss over candidate triplets at hop t:

L = − 1

|T +
q,t|

∑
x∈T +

q,t

log(S(q, x, t))− 1

|T −
q,t|

∑
x∈T −

q,t

log(1− S(q, x, t)), (13)

All trainable parameters are optimized jointly by backpropagation. Through this objective, the scorer
learns to emphasize relevant triplets and suppress distractors, providing reliable multi-hop evidence
for the downstream answer generator.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed approach across multiple QA benchmark
datasets. We compare our method against several baselines to assess its ability to retrieve and utilize
knowledge during KG-RAG for improving LLM-based question answering.

4.1 DATASETS

We evaluate our method on four Question Answering datasets: WebQuestionsSP (WebQSP) (Yih
et al., 2016), WikiMovies (Miller et al., 2016), and the datasets of MetaQA (Zhang et al., 2018) in
both 1-hop and 2-hop settings. WebQSP contains 4,737 natural language questions annotated with
corresponding SPARQL queries over Freebase (Bollacker et al., 2008), a broad-coverage knowledge
graph. This dataset requires both single- and multi-hop structured reasoning and is commonly used
to evaluate complex KG-based QA. WikiMovies is a domain-specific dataset focused on the movie
domain, constructed from WikiData and Wikipedia, with around 100k question-answer pairs over
75,000 movie-related entities targeting factual reasoning over a curated movie KG. MetaQA builds
upon WikiMovies by introducing paraphrased and more compositional questions. In the 1-hop setting,
each question is grounded on a single KG fact, while the 2-hop version requires multi-hop inference
to connect two supporting facts. Compared to WikiMovies, MetaQA includes more natural language
variation and higher reasoning complexity, making it suitable for evaluating generalization under
compositionality. Together, these datasets span both broad-domain and specialized-domain KGs, and
cover reasoning from simple fact retrieval to multi-hop compositional queries.

4.2 BASELINES

We evaluate our method against several widely-used and representative baselines. IO-prompt (Brown
et al., 2020) uses ChatGPT-3.5 to directly generate answers without the assistance of any external
evidence, often resulting in hallucinations or factual errors due to limited LLM internal knowledge.
CoT-prompt (Wei et al., 2022b) improves upon this by encouraging the model to generate inter-
mediate reasoning steps, but its performance is still bounded by the LLM’s pretraining knowledge.
Self-Consistency (Wang et al., 2022) further extends CoT by sampling multiple reasoning paths and
selecting the most frequent answer, improving robustness but still lacking access to external facts.
Sim-Retrieve (Baek et al., 2023) retrieves KG triplets by computing embedding similarity between
questions and candidate triplets using LLaMA2-7B or Flan-T5-3B. While simple and efficient, it
often retrieves noisy or irrelevant facts, especially under multi-hop queries. GNN-Scoring introduces
a graph neural network (GNN) to score and filter triplets with a lightweight language model encoding
the query within the input of the GNN, but it still struggles with long-range dependencies and lacks
semantic adaptability. Think-on-Graph (ToG) (Sun et al., 2024) improves retrieval reasoning by
iteratively selecting and scoring subgraphs using LLaMA2-7B, Flan-T5-3B, or ChatGPT-3.5, and
generating answers with ChatGPT-3.5. While effective, it incurs a higher computational cost and
still depends heavily on the size of LLMs. In contrast, our method uses lightweight models to guide
scoring and retrieval, achieving accurate reasoning without relying on expensive models.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Experimental results (accuracy in %) with standard deviation of MoRA and baselines on QA
datasets. We group methods into: retrieval-free prompting, ChatGPT retrieval, and lightweight LM
retrieval using LLaMA2-7B or Flan-T5-3B. The best within each lightweight LM group are shown in
bold, respectively. The best result of all the compared baselines is shown in underlined.

Category Method WebQSP WikiMovies MetaQA-1hop MetaQA-2hop

Retrieval-free
IO-prompt 62.32 ± 0.41 69.24 ± 0.35 60.02 ± 0.60 23.01 ± 0.79

CoT-prompt 62.74 ± 0.46 72.45 ± 0.42 64.98 ± 0.52 26.71 ± 0.88

Self-Consistency 61.11 ± 0.53 73.64 ± 0.37 71.38 ± 0.39 30.52 ± 1.01

ChatGPT retrieval ToG 74.24 ± 0.91 95.77 ± 0.63 96.33 ± 0.77 94.43 ± 0.89

LLaMA2 retrieval

Sim-Retrieve 46.98 ± 1.44 50.09 ± 1.11 47.44 ± 0.92 21.02 ± 1.67

GNN-Scoring 63.86 ± 0.73 78.32 ± 0.48 83.82 ± 0.52 71.63 ± 0.91

ToG 66.70 ± 0.85 86.62 ± 0.59 88.63 ± 0.67 78.01 ± 0.93

MoRA 75.02 ± 0.88 98.29 ± 0.76 97.25 ± 0.99 94.91 ± 0.72

Flan-T5 retrieval

Sim-Retrieve 44.78 ± 1.35 52.39 ± 0.99 47.93 ± 0.85 20.17 ± 1.72

GNN-Scoring 64.56 ± 0.65 79.10 ± 0.44 84.69 ± 0.49 73.68 ± 0.86

ToG 72.25 ± 0.77 94.80 ± 0.78 90.67 ± 0.66 89.60 ± 0.98

MoRA 88.59 ± 0.83 98.22 ± 0.74 96.84 ± 0.87 94.95 ± 0.95

4.3 EXPERIMENTAL SETUP

To evaluate the effectiveness of our proposed framework, we conduct experiments using ChatGPT-
3.5 (OpenAI, 2022), LLaMA2-7B (Touvron et al., 2023b), and Flan-T5-3B (Wei et al., 2022a)
as backbone language models for retrieval and answering. In our framework, LLaMA2-7B and
Flan-T5-3B are used as retriever models for scoring and selecting KG triplets, while ChatGPT-3.5 is
used only during the final answer generation stage for some baselines.

For triplet selection, the Mixture-of-Experts (MoE) module is configured with K = 3 experts by
default. The multi-hop expansion process is controlled by a hop budget H = 1 for MetaQA-1hop
and H = 2 for other datasets, balancing retrieval depth and noise. We cap the number of retrieved
triplets to 20 per query to maintain prompt length constraints. Expert-specific and contextual soft
prompts are jointly used to condition expert scoring and improve relevance under multi-hop contexts.

All experiments are conducted with 5 random runs, and we report the average accuracy across runs to
mitigate variance. More implementation details can be found in Appendix B. We release our code at
https://anonymous.4open.science/r/MoRA.

4.4 RESULTS AND ANALYSIS

Table 1 shows that MoRA consistently achieves the highest accuracy across all datasets and model
backbones, significantly outperforming both retrieval-free prompting methods and alternative retriev-
ers. Retrieval-free baselines such as IO-prompt and CoT-prompt fall short due to their lack of access
to structured evidence. While embedding similarity-based retrievers often fail to model multi-hop
dependencies, GNN-based retrievers cannot capture semantic alignment. Despite modeling relation-
ships of question and knowledge, they provide limited flexibility in matching complex, compositional
semantics. In contrast, MoRA demonstrates strong performance even under lightweight language
models, outperforming ToG even when ToG uses ChatGPT as its retriever. This highlights the
effectiveness of MoRA: the expert-specific soft prompts allow the model to capture diverse matching
semantics, while the hop-aware contextual soft prompts maintain coherence across reasoning steps.
Interestingly, Flan-T5-3B achieves substantially higher accuracy on WebQSP, suggesting that the
encoder architecture like Flan-T5 is particularly well-suited for latent triplet scoring and multi-hop
relevance estimation in the open domain. Importantly, MoRA requires no LLM finetuning or large-
scale language model inference during retrieval, showing that compact models, when equipped with
the right inductive biases, can also support accurate and robust multi-hop KG reasoning.

4.5 PARAMETER STUDY

We further study the impact of the number of experts K in the Mixture-of-Experts module, focusing
on WebQSP and WikiMovies with both LLaMA2-7B and Flan-T5-3B as the LLMs for retrieval. The
results in Figure 3 show a clear upward trend when increasing K from 1 to 3: the models consistently
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Figure 3: QA accuracy with varying number of experts K in the MoRA retriever. We report results
on WebQSP and WikiMovies using both LLaMA2-7B and Flan-T5-3B. Increasing K from 1 to 3
improves performance across all settings, as more experts contribute diverse scoring perspectives.
Performance saturates or slightly drops at K = 4, indicating that a small number of experts is
sufficient for capturing the key semantic variations without unnecessary redundancy.

achieve better QA accuracy as more experts contribute complementary semantic views. However, the
benefit quickly saturates beyond this point. In fact, while K = 4 performs slightly better than K = 3
on WikiMovies, the improvement is marginal, and on WebQSP with LLaMA2-7B the accuracy at
K = 4 even drops compared to K = 3.

This observation suggests that having a moderate number of experts is sufficient to capture the main
semantic diversity needed for effective scoring. Using too many experts introduces redundancy and
increases training as well as inference cost, without yielding consistent performance gains. For this
reason, we set K = 3 as the default configuration in our method, which achieves nearly the same
accuracy as K = 4 while being more cost-effective and requiring lower computing cost.

4.6 ABLATION STUDY

We examine the impact of removing two key components: the expert-specific soft prompts and the
contextual soft prompts. Results in Table 2 show that across all datasets and LLM settings, removing
either consistently degrades performance. Without expert-specific prompts, the model lacks diversity
for reasoning, leading to weaker discrimination especially on multi-hop datasets such as WebQSP
and MetaQA-2hop where multiple relational patterns must be captured. Without contextual prompts,
the model loses continuity across hops and struggles to select the right chain of evidence. This
becomes severe in multi-hop reasoning QA settings. Notably, removing either type of prompt leads
to consistent performance drops across both models. Removing expert-specific soft prompts results
in a larger degradation on both models, particularly on complex reasoning settings like WebQSP,
indicating its stronger reliance on specialized expert modeling. In contrast, the removal of contextual
soft prompts hurts both models on multi-hop datasets, highlighting the importance of preserving
inter-hop coherence for complex reasoning. Both components play complementary and indispensable
roles in enabling robust multi-hop reasoning.

5 RELATED WORKS

5.1 RETRIEVAL-AUGMENTED GENERATION

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020b) combines the parametric knowledge of
pre-trained language models with external non-parametric memory to address knowledge staleness
and hallucination issues. The framework retrieves relevant passages from external corpora and
conditions generation on both the input query and retrieved context, achieving significant improve-
ments on knowledge-intensive tasks. Early variants explored different conditioning strategies, with
subsequent improvements including end-to-end training approaches (Izacard et al., 2023), dense
passage retrieval optimization (Karpukhin et al., 2020), and fusion-in-decoder architectures (Izacard
& Grave, 2021). Recent advances have addressed key limitations through sophisticated retrieval
strategies: Self-RAG (Asai et al., 2024) enables adaptive retrieval decisions through reflection to-
kens, RAPTOR (Sarthi et al., 2024) constructs hierarchical tree structures via recursive clustering,
Anthropic’s Contextual Retrieval (Anthropic, 2024) reduces retrieval failures by up to 67% through
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Table 2: Ablation results (accuracy in %) comparing the full MoRA model with variants that remove
the expert-specific and/or contextual soft prompts, across two LLM models: LLaMA2-7B and Flan-
T5-3B. We report accuracy on four datasets: WebQSP, WikiMovies, MetaQA-1hop (MQ-1hop), and
MetaQA-2hop (MQ-2hop). The best results are shown in bold.

Method
LLaMA2-7B Flan-T5-3B

WebQSP WikiMovies MQ-1hop MQ-2hop WebQSP WikiMovies MQ-1hop MQ-2hop

Full Model 75.02 98.29 97.25 94.91 88.59 98.22 96.84 94.95
w/o Expert-Specific 67.83 94.27 88.14 84.63 83.74 95.08 90.82 88.94

w/o Contextual 70.01 95.46 N/A 90.91 86.23 97.31 N/A 91.18

w/o Both 63.98 86.01 N/A 77.86 71.65 93.88 N/A 86.97

contextual chunk embedding, GraphRAG (Edge et al., 2024) leverages knowledge graphs for global
reasoning, and CRAG (Yan et al., 2024) introduces retrieval quality assessment mechanisms. Other
notable developments include HyDE for hypothetical document generation (Gao et al., 2023a),
ColBERT-based late interaction models (Khattab & Zaharia, 2020; Jha et al., 2024), and agentic
systems that embed autonomous agents for dynamic strategy management (Singh et al., 2025; Dong
et al., 2025). However, most RAG frameworks are text-centric and do not fully leverage structured
knowledge graphs, limiting their reasoning transparency and multi-hop capability.

5.2 MIXTURE OF EXPERTS

Mixture of Experts (MoE) has emerged as a powerful architecture for scaling model capacity while
maintaining computational efficiency through conditional computation (Fedus et al., 2022; Cai
et al., 2025). Originally proposed to divide problem spaces into homogeneous regions handled by
specialized sub-networks (Jacobs et al., 1991), MoE has been successfully adapted to large language
models where different experts specialize in distinct aspects of knowledge and reasoning. Recent
advances in MoE architectures include Mixtral 8x7B (Jiang et al., 2024), which demonstrated that
sparse MoE models can outperform dense counterparts on knowledge-intensive tasks, and Switch
Transformer (Fedus et al., 2022), which scales to trillion-parameter models by routing tokens to
specialized experts based on learned gating functions. However, MoE models excel at memorization-
intensive tasks but struggle with complex reasoning compared to dense models (Jelassi et al., 2025),
highlighting the need for more sophisticated expert specialization strategies. In knowledge graph
reasoning specifically, MoMoK (Zhang et al., 2025) introduces relation-guided modality knowledge
experts for multi-modal knowledge graph completion, demonstrating how expert specialization can
be tailored to handle different relational contexts and modality-specific reasoning patterns. These
works suggest that MoE can provide complementary strengths for KG-based reasoning, though
effective specialization mechanisms remain an open challenge. Our work captures diverse semantic
perspectives by experts, offering an effective way for KG-RAG.

6 CONCLUSION

In this work, we proposed a novel knowledge graph–augmented retrieval framework for LLM-based
question answering called MoRA. Our approach introduces a Mixture-of-Experts scoring module
that leverages both expert-specific and contextual soft prompts to evaluate candidate triplets, enabling
robust multi-hop reasoning across knowledge graphs. Through the designed hop-aware retrieval and
selection process, our method ensures contextual and adaptive evidence exploration while maintaining
efficiency. Importantly, the design does not require fine-tuning large backbone language models;
instead, it relies on a compact scoring architecture while still fully exploiting the capabilities of
LLMs for final answer generation. Extensive experiments on the benchmark datasets demonstrate the
effectiveness of our approach. It consistently outperforms strong retrieval-based baselines, including
Think-on-Graph, even when the latter is powered by larger models such as ChatGPT. Our ablation
studies further confirm the critical roles of expert-specific and contextual prompts in achieving
state-of-the-art performance. Overall, our retrieval and scoring mechanisms can substantially enhance
the reasoning ability of LLMs without relying on large backbone models. We believe that our MoRA
framework provides a general and cost-effective paradigm for future research in knowledge-enhanced
LLM reasoning.
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A LIMITATIONS

Although MoRA achieves strong retrieval and QA performance using lightweight language models,
there remain some limitations. The use of a Mixture-of-Experts (MoE) architecture introduces
a computational cost that scales with the number of experts K. As K increases, each candidate
triplet must be scored multiple times by experts, resulting in higher inference latency and memory
consumption. The cost-effectiveness of MoRA depends on careful tuning of K, especially for
real-time or resource-constrained applications. Additionally, while our framework supports multi-
hop reasoning through iterative expansion and contextual prompt propagation, its design assumes
that useful evidence can be recovered through hop-wise traversal of the KG. In cases where the
answer requires long or indirect relational paths, the fixed hop limit and local expansion strategy
may miss relevant information. Finally, our current setup is tailored to well-structured, clean KGs;
extending MoRA to operate robustly under incomplete, noisy, or large-scale heterogeneous graphs is
a promising but non-trivial direction for future work.

B EXPERIMENTAL SETTING

B.1 BACKBONE MODELS

Our retrieval module operates on top of lightweight pre-trained language models, enabling effi-
cient and scalable scoring without relying on large generative models. We experiment with two
representative models: LLaMA2-7B and Flan-T5-3B.

LLaMA2-7B. LLaMA2 (Touvron et al., 2023b) is a family of decoder-only transformer models pre-
trained on a mixture of publicly available corpora. We adopt the 7B chat variant without instruction
tuning, as provided by the HuggingFace Transformers library. Despite its relatively small size,
LLaMA2-7B offers strong general-purpose language understanding and is suitable for plug-in scoring
tasks. In our setup, we use LLaMA2-7B as a feature extractor: only the soft prompts, connecting
layers and lightweight expert routing modules are trained, while all LLM parameters remain frozen.
As a decoder-only model, while encoding texts into embeddings, we use the latent output of the first
token of LLaMA2.

Flan-T5-3B. Flan-T5 (Wei et al., 2022a) is an instruction-tuned extension of the T5 encoder-
decoder architecture. The Flan variant is trained on a large collection of prompting tasks, making it
particularly effective under few-shot and instruction-based settings. We use the 3B variant (Flan-T5-
3B) in encoder-only mode to encode the concatenated prompt and triplet input. Like LLaMA2, the
LLM model is frozen throughout training, with only the soft prompts, connecting layers and the MoE
scoring components updated.

Soft Prompt Integration. For both models, we prepend soft prompts as continuous embedding
vectors at the input layer. No modifications are made to the model architecture or tokenizer. During
training, gradients are propagated through the soft prompts and the mixture-of-experts scorer, ensuring
high efficiency and compatibility with existing pre-trained weights.

B.2 TRAINING DETAILS

We train all models using the Adam optimizer with learning rate 1× 10−4, batch size 20, and linear
learning rate decay over 5 epochs. Prompt parameters are initialized randomly and trained from
scratch. Each expert uses two separate prompt embeddings: one expert-specific and one contextual.
We train all experiments on 4 A100 GPUs (80GB) with mixed-precision training enabled via PyTorch.
During inference, retrieval is performed up to H = 1 hop for the MetaQA1-hop dataset and H = 2
for others, with M = 20 triplets selected per hop. We set the number of experts K = 3. The
dimension of the latent embeddings in our method is set to the same dimension as the retrieval
LLM (2,048 for Flan-T5-3B and 4,096 for LLaMA2-7B). All KG triplets are preprocessed into a
bidirectional index, which maps each entity to its outgoing and incoming relations. This index is
loaded into memory as a dictionary for efficient candidate expansion at each hop.
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B.3 EVALUATION PROTOCOL

We follow standard entity-level accuracy for all datasets, considering a prediction correct if it matches
any of the gold answers. Each model is evaluated with 5 different random seeds, and we report the
average accuracy and standard deviation across runs. For fair comparison, all baseline methods use
the same KG and entity linker. The knowledge graph used for WikiMovies and WebQSP is provided
by (Sun et al., 2018), while for MetaQA we use the set from (Kim et al., 2023). ToG baselines are
re-implemented with the same number of hops and selection budget as MoRA.

B.4 IMPLEMENTATION INFRASTRUCTURE

Our implementation is based on PyTorch and Python 3.11.7, and all experiments are conducted on
NVIDIA A100 GPUs with 80GB memory.

We release our code at https://anonymous.4open.science/r/MoRA.

C DATASETS

We evaluate our method on widely-used knowledge-based QA benchmarks, covering both one-hop
and multi-hop reasoning settings.

C.1 WEBQSP

WebQSP (Yih et al., 2016) is a widely used benchmark for multi-hop question answering over
knowledge graphs, featuring natural language questions that often require compositional and multi-
step reasoning. The underlying knowledge base is Freebase (Bollacker et al., 2008), from which we
extract a task-specific subgraph. This yields a manageable KG suitable for retrieval-based methods
while preserving sufficient coverage for answering the queries. Since WebQSP provides only the
final answer entities without annotated reasoning paths, it poses a latent multi-hop retrieval challenge.
For all experiments, we identify seed entities in each question to find the gold paths from a query
entity to an answer entity.

C.2 WIKIMOVIES

WikiMovies (Miller et al., 2016) is a question answering dataset grounded in a movie-related
knowledge graph, featuring factual questions about entities such as films, actors, directors, and genres.
Some questions can be resolved via single-hop reasoning (e.g., “Who directed The Matrix?”), though
some involve mild compositionality. We use the version of the dataset that provides gold topic entities
during training and inference. This setting enables a focused evaluation of the scoring mechanism’s
ability to retrieve precise evidence in relatively simple KG contexts, serving as a diagnostic case for
our retriever.

C.3 METAQA-1HOP AND METAQA-2HOP

MetaQA (Zhang et al., 2018) is a large-scale synthetic QA dataset grounded in the same movie
knowledge graph as WikiMovies. It introduces significant linguistic variability through paraphrased
and template-generated questions. MetaQA-1hop consists of questions that require single-hop
reasoning (e.g., “Who starred in Titanic?”), while MetaQA-2hop involves two-step reasoning chains
(e.g., “Which movies feature actors who worked with Quentin Tarantino?”). Compared to WebQSP,
the underlying KG is more controlled and noise-free, but the dataset poses unique challenges related to
relation composition and generalization across templated question forms. We use the “vanilla” version
of the dataset with gold entity annotations, applying exact string matching for answer supervision
and evaluation.

D PROMPT DESIGN

Our method incorporates both standard instruction-style prompts and soft prompt tuning to guide the
retrieval process. Below we detail the design choices for each component.
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D.1 BASE PROMPT FORMAT

To evaluate the relevance of a candidate triplet with respect to a question, we adopt a minimal and
general natural language template:

Please evaluate if the triplet is relevant to the
given question.
Question: {question}
Triplet: ({head}, {relation}, {tail})

This simple instruction provides consistent guidance to the language model across datasets without
requiring task-specific templates. The prompt is used as the base for each expert in the scoring
module.

D.2 SOFT PROMPT INTEGRATION

We prepend two types of soft prompts to the input of each expert before passing it to the lightweight
language model:

• Expert-Specific Soft Prompt: Each expert k is assigned a unique learnable embedding of 5
tokens, denoted as pexp

k , which captures its inductive bias and enables specialization across diverse
reasoning types.

• Contextual Soft Prompt: At each hop t, every expert also receives a 1-token contextual prompt
pcxt
k (t), dynamically updated based on its scoring output at the previous hop. This allows the model

to retain and propagate reasoning context across steps.

These soft prompts are trained jointly with the expert scorers, and allow flexible control over retrieval
behavior without modifying the base language model weights. In our implementation, soft prompts
are treated as continuous embeddings and optimized via backpropagation.

D.3 PROMPT-MODEL INTERFACE

All inputs including soft prompts, question text, and candidate triplets are concatenated into a single
sequence and encoded by the underlying language model. We use either LLaMA2-7B or Flan-T5-3B
as the backbone encoder, with soft prompt tuning applied via prepended embeddings. The model is
trained using a cross-entropy objective over a binary relevance label for each triplet.

D.4 ANSWER GENERATION PROMPT

For the final answer generation stage, we employ a simple instruction-style prompt to guide the LLM
in producing entity-level answers from the retrieved evidence.

You are a knowledgeable assistant helping to answer
questions based on evidence.
Given the following context:
{evidence}
Answer the question below as accurately as possible.
If the answer is not in the context, make your best
guess. Please return all the possible answers as a
list. Given the reason of your thought.
Question: {question}
Answer:

Here, {evidence} is replaced with the retrieved triplets and intermediate reasoning results, and
{question} is the input query. This design ensures that the model grounds its output in retrieved
KG evidence while still allowing limited generalization when the evidence is incomplete.
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E ALGORITHM

Algorithm 1 MoRA Retrieval (per question q; inference-time scoring with learned prompts)

Input: KG G, query q, hops H , top-M , experts K
Input: Frozen LM encoder; learned parameters Θ = { {pexpk }Kk=1, g, {wk}Kk=1, Wr }

1: // Notes: pexpk ∈ RLexp×d (e.g., Lexp=5 tokens), pcxt
init ∈ RLcxt×d (e.g., Lcxt=1 token), f is the

encoding of LM encoder.
2: E(0) ← LinkEntities(q), V(0) ← E(0), T ∗

q ← ∅, pcxt
init ← ∅

3: for k = 1 to K do
4: pcxt

k (1)← pcxt
init

5: end for
6: for t = 1 to H do
7: C(t) ← ExpandCandidates(G, E(t−1))
8: for all x ∈ C(t) do
9: for k = 1 to K do

10: zk(q, x, t)← LM
(
[ pcxt

k (t); pexpk ; q; x ]
)

11: sk(q, x, t)← σ(w⊤
k zk(q, x, t))

12: end for
13: α(q, x, t)← softmax

(
Wr f(q, x)

)
14: S(q, x, t)←

∑K
k=1 α(q, x, t)[k] · sk(q, x, t)

15: end for
16: T (t)

sel ← Top-M candidates in C(t) by S(q, ·, t)
17: T ∗

q ← T ∗
q ∪ T

(t)
sel

18: E(t) ← {e′|(h, r, e′) ∈ T (t)
sel } \ V(t−1)

19: V(t) ← V(t−1) ∪ E(t)
20: if t < H then
21: for k = 1 to K do
22: z̄k(t)←

1

|C(t)|
∑

x∈C(t)

zk(q, x, t)

23: pcxt
k (t+1)← g

(
z̄k(t)

)
24: end for
25: end if
26: end for
Output: T ∗

q

F REPRODUCIBILITY STATEMENT

We have taken several steps to make our work easy to reproduce. The full retrieval pipeline and scripts
for experiments are released at our anonymous repository: https://anonymous.4open.
science/r/MoRA (see Appendix B). The main paper specifies the task setup and model compo-
nents (subsection 3.2), while pseudocode for candidate expansion, MoE scoring, contextual prompt
updates, and the training loop is provided in the Appendix E. Exact hyperparameters, optimizer
settings, expert counts, hop budgets, evidence budgets, and seed handling are reported in Appendix B
(Backbone Models, Training Details, Evaluation Protocol). We document dataset sources and
preprocessing for WebQSP, WikiMovies, and MetaQA in the Appendix C, and include the prompts
used for retrieval scoring and answer generation in the Appendix D. To aid verification, we provide
ablation studies and parameter studies (Tables/Figures in the main text). The repository contains
environments, data loaders, and evaluation scripts.

G THE USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR policy on the use of large language models (LLMs), we explicitly state
how LLMs were used in this work. Our research itself is centered on LLMs. We design methods
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for LLM-based reasoning, run experiments with LLMs, and evaluate their behavior across multiple
datasets. All scientific ideas, methodological contributions, theoretical analyses, and experimental
designs in this paper were conceived, implemented, and validated entirely by the authors.

LLMs were employed solely as auxiliary tools for polishing the presentation of the paper. Specifically,
they were used for minor improvements in grammar, phrasing, and readability during the manuscript
preparation process. Importantly, LLMs were not used to generate novel ideas, design experiments,
derive proofs, or conduct any analysis central to the research contributions. The intellectual content
of this work remains the sole responsibility of the authors.

H ETHICS STATEMENT

This research does not involve the collection or use of personal, sensitive, or identifiable data. All
experiments are conducted on publicly available benchmark datasets (e.g., WebQSP, WikiMovies,
MetaQA), which are commonly used in the QA and knowledge graph communities. The language
models used in our framework are open-source and have been widely adopted in academic settings. We
have taken care to ensure that our methodology does not propagate harmful biases or misinformation.
Nonetheless, we acknowledge that any deployment of automated QA systems should consider
potential risks such as factual inaccuracies and unintended misuse of the method.
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