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Abstract

Multimodal large language models (MLLMs) have achieved remarkable progress1

in vision–language tasks, but they continue to struggle with spatial understanding.2

Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific3

modifications, and remain constrained by large-scale datasets and sparse supervi-4

sion. To address these limitations, we introduce SPATIALTHINKER, a 3D-aware5

MLLM trained with RL to integrate structured spatial grounding with multi-step6

reasoning. The model simulates human-like spatial perception by constructing7

a scene graph that captures task-relevant objects and spatial relations, and then8

reasons via dense spatial reward supervision. SPATIALTHINKER builds on two key9

innovations: (1) a data synthesis pipeline that generates STVQA-7K, a high-quality10

spatial VQA dataset, and (2) online RL with a multi-objective dense spatial re-11

ward enforcing spatial grounding. SPATIALTHINKER-7B outperforms supervised12

fine-tuning and the sparse RL baseline across six spatial understanding bench-13

marks, nearly doubling the base-model gain compared to sparse RL (+6.5% vs.14

+3.6%), and matches or surpasses GPT-4o. These results showcase the effective-15

ness of combining spatial supervision with reward-aligned reasoning in enabling16

robust 3D spatial understanding with limited data and advancing MLLMs towards17

human-level visual reasoning.18

1 Introduction19

Spatial reasoning is central to human intelligence, enabling us to perceive, localize, and manipulate20

objects in complex environments. This ability is critical for embodied AI tasks such as robotic21

manipulation [35, 23, 56], navigation [31], and augmented reality [38], where spatial awareness22

underpins real-world decision-making [19, 66]. While multimodal large language models (MLLMs)23

excel at general vision–language tasks [34, 45, 17, 5, 20, 47, 25], they continue to struggle with24

3D spatial understanding [8, 68, 36, 80, 67, 51], which requires capturing geometry, structure, and25

relations beyond 2D projections.26

Existing approaches remain data-hungry or architecturally specialized. They rely on massive synthetic27

datasets derived from 3D scene graphs (e.g., SpatialVLM was trained on 2B Spatial VQA samples,28

SpatialRGPT on 700k) [8, 15, 13], architectural changes [30], explicit 3D inputs such as point clouds29

[29, 13, 6], or reinforcement learning (RL) with sparse rewards [53, 70, 77, 78, 63, 88].30

We present SPATIALTHINKER, a 3D-aware MLLM that integrates scene graph grounding with31

multi-step reasoning through online policy RL. The model builds question-focused scene subgraphs32

consisting of objects, their relations, and localized coordinates, and reasons over them under a33

lexicographically-ordered multi-objective reward: format rewards enforce structured reasoning,34

count penalties regulate regional focus, accuracy rewards prioritize correctness, and CIoU-based35
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spatial rewards encourage precise localization. This design promotes human-like reasoning: observe,36

localize, think, answer.37

Despite training on only 7K samples with our synthesized STVQA-7K dataset, SPATIALTHINKER-7B38

outperforms supervised fine-tuning (+7.2%) and sparse RL baseline (+2.9%) across six benchmarks,39

and matches or surpasses GPT-4o (+1.7%) [34], with a +12.1% gain on 3DSRBench [51]. While40

sparse RL improves the base model by 3.6%, our dense spatial reward design yields 6.5%, nearly41

doubling the benefit. These results show that models can learn effective spatial reasoning by focusing42

on relevant regions, constructing internal scene representations, and accurately localizing objects43

through dense, visually grounded rewards, without relying on large-scale data alone [8, 50].44

Our contributions are:45

• SPATIALTHINKER, a Spatial MLLM that integrates scene graph-based grounding with46

online RL for spatial reasoning, achieving strong results with only 7K samples.47

• STVQA-7K, a high-quality spatial VQA dataset grounded in scene graphs.48

• A dense, lexicographically gated multi-objective reward that guides regionally focused49

spatial reasoning, achieving superior generalization across six spatial benchmarks.50

2 SpatialThinker: Spatially-Aware Reasoning MLLMs51

2.1 Multi-Objective Reward Design52

SPATIALTHINKER is trained with a fine-grained, multi-objective reward that guides visually grounded53

reasoning. Unlike prior RLVR methods relying on sparse correctness signals [58, 88, 64], we combine54

four complementary components, including: format, accuracy, count, and spatial rewards, which is55

aligned with the reasoning stages: observe, localize, think, answer.56

Format Reward. Responses must follow a structured template with <observe>, <scene>, <think>,57

and <answer> tags. The scene JSON must be parseable, with valid object fields (ID, bbox) and58

triplet relations. The format reward Rf ∈ {0, 1} (weight wformat = 0.1) enforces this structure.59

Accuracy Reward. To prioritize task performance, we assign Ra = 1 if the predicted answer exactly60

matches the ground truth, else 0. This component receives the highest weight (waccuracy = 0.5) to61

prioritize task performance while the other rewards guide how the model arrives at correct answers.62

Count Reward. The count reward encourages the model to predict the appropriate number of63

objects and relations relevant to the spatial query. It penalizes both under- and over-generation,64

using a weighted error term based on the deviation between predicted and ground-truth counts:65

Rc = wcount · (0.7 · obj-score + 0.3 · rel-score), where wcount = 0.2. This guides the model to66

stay focused on question-relevant regions. Without it, models tend to game the spatial reward by67

generating excessive objects and relations to boost match likelihood.68

Spatial Reward. To supervise object localization, we compute the spatial reward only when the final69

answer is correct. Predicted and ground-truth objects are matched using the Hungarian algorithm70

with a cost function that combines Complete IoU (CIoU) and semantic similarity: C(opred
i , ogt

j ) =71

λspatial(1− IoU(bi, bj)) + λsemantic(1− sim(li, lj)), where b and l denote bounding boxes and labels,72

respectively. The reward is then computed as the average CIoU across matched pairs: Rspatial =73

1
|M|

∑
(i,j)∈M CIoU(bpred

i , bgt
j );wspatial = 0.2. CIoU offers dense supervision over IoU, even for74

non-overlapping boxes by incorporating distance and aspect ratio terms [86].75

Lexicographic Gating. To avoid reward gaming across objectives, we apply lexicographic ordering76

with conditional gating [65], prioritizing format ≻ {count, accuracy} ≻ spatial. The model must first77

satisfy formatting, then jointly optimize count and accuracy, and receives spatial reward only when78

the answer is correct. This ensures spatial grounding reinforces valid reasoning. Without accuracy79

gating, we observe that models overfit to spatial localization while sacrificing task correctness. The80

final reward is computed as the following with I[·] as the indicator function:81

Rtotal = I[Rformat > 0] · (wfRf + wcRc + waRa + I[Raccuracy > 0] · wsRs)
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2.2 Online RL Policy Optimization82

To train SPATIALTHINKER with dense, lexicographically gated rewards, we adopt Group-Relative83

Policy Optimization (GRPO) [16, 62], an online RL method that avoids critic networks by esti-84

mating advantages through intra-group comparisons. Given an input x, we sample G trajectories85

{y(1), . . . , y(G)} from the current policy πθold . Each is scored via the reward function (Section 2.1),86

and advantages are computed using group-normalized scores: A(i) = r(i)−µ
σ+ε , where µ and σ are the87

group mean and standard deviation, and ε = 10−6. We then update the policy using a PPO-style88

clipped loss with KL regularization:89

LRL(θ) = − 1

G

G∑
i=1

1

|y(i)|

|y(i)|∑
t=1

[
min

(
ri,tA(i), clip(ri,t, 1− ϵl, 1 + ϵh)A

(i)
)
− β Di,t

KL

]
,

where ri,t =
πθ(y

(i)
t |x,y(i)

<t)

πθold (y
(i)
t |x,y(i)

<t)
is the importance ratio between new and old policies, and Di,t

KL is the90

token-level KL divergence against a reference model. We set ϵl = 0.2, ϵh = 0.3, and β = 10−2.91

This loss encourages learning from dense supervision while controlling policy drift for stability and92

generalization.93

2.3 STVQA-7K: Dataset Construction94

To facilitate reward-aligned spatial reasoning, we construct STVQA-7K, a synthetic visual question95

answering (VQA) dataset built from human-annotated scene graphs in Visual Genome [39]. STVQA-96

7K comprises 7,587 spatially grounded multiple-choice VQA pairs spanning both 2D and 3D97

spatial understanding. We augment the original VG150 predicate set with 34 additional spatial98

relations—covering distance (e.g., near, far), size (e.g., bigger, taller), orientation (e.g., facing away),99

and containment (e.g., inside, beneath)—to enrich the relational vocabulary beyond the standard 50100

predicates. Each QA pair is generated from a scene graph using Claude Sonnet 4 [4], then verified101

for semantic correctness using GPT-4o [34] through a consistency-based filtering pipeline. From an102

initial pool of 56,224 questions, we retain the top 7.5K high-quality samples after automated rating,103

difficulty estimation, and validation. Finally, we align each question with a subgraph of relevant104

objects and relations, enabling localized scene graph supervision during training. This results in105

a richly annotated, task-aligned dataset for developing and evaluating grounded spatial reasoning106

models. Complete data construction details are provided in Appendix C.107

3 Experiments108

Implementation Details. We build SPATIALTHINKER upon two strong open-source multimodal109

base models: Qwen2.5-VL-3B and Qwen2.5-VL-7B [5]. No supervised fine-tuning is performed110

prior to RL training on our STVQA-7K dataset (Section C). We employ GRPO [62] as the advantage111

estimator as described in Section 2.2, using a rollout size of 8 samples per query and a sampling112

temperature of 1.0. The models are trained with a maximum context length of 16,384 tokens. The113

rollout batch size is set to 512, and the global batch size is 128. We train for 75 training steps i.e., 5114

training episodes) on 4 × NVIDIA H100 80GB GPUs. Training time totals around 13 hours for the115

3B model and 15 hours for the 7B model. The models are trained on high-resolution image inputs116

ranging from 512 × 512 to 2048 × 2048 pixels, to preserve fine-grained spatial information. All117

model parameters, including the vision encoder, are updated during training. We use the AdamW118

optimizer with bf16 precision, a learning rate of 1× 10−6, and a weight decay of 1× 10−2. The KL119

penalty coefficient is set to 10−2. STVQA-7K is partitioned with a 90/10 train–validation split.120

Experimental Setup. We evaluate SPATIALTHINKER on six spatial reasoning benchmarks span-121

ning 2D and 3D understanding: CV-Bench [67], BLINK [21], 3DSRBench [51], MMVP [68],122

SpatialBench [6], and RealWorldQA [76]. Comparisons include both proprietary (GPT-4o [34])123

and open-source models—Qwen2.5-VL [5], Cambrian-1 [67], LLaVA-Next [41], VLAA-Thinker124

[10]—as well as spatially-specialized models such as SpatialRGPT [13], SpatialBot [6], SpaceLLaVA125

[8], SpaceThinker [1], and RoboPoint [83]. We also evaluate training variants including supervised126

fine-tuning (SFT) and vanilla GRPO (using only format and accuracy rewards) to isolate the contri-127

bution of dense spatial rewards. Detailed experimental setup, evaluation settings, and prompts are128

shared in Appendix D129
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Model 3DSRBench [51] CV-Bench [67] Avg. BLINK [21] Avg.

2D 3D
Spatial

Relation
Relative
Depth

Proprietary Models
GPT-4o [34] 44.3 75.8 83.0 79.4 82.5 78.2 80.4

Open-Source General MLLMs
Qwen2.5-VL-3B [5] 44.0 59.9 60.2 60.1 66.4 54.0 60.2
Qwen2.5-VL-7B [5] 48.4 69.1 68.0 68.6 84.0 52.4 68.2
VLAA-Thinker-7B [10] 52.2 60.8 60.3 60.6 81.2 71.0 76.1
LLaVA-NeXT-8B [41] 48.4 62.2 65.3 63.8 - - -
Cambrian-1-8B [67] 42.2 72.3 72 72.2 - - -

Open-Source Spatial MLLMs
RoboPoint-13B [83] - - 61.2 - 60.8 61.3 61.1
SpaceThinker-Qwen2.5-VL-3B [1] 51.1 65.1 65.9 65.5 73.4 59.9 66.7
SpaceLLaVA-13B [8] 42.0 - 68.5 - 72.7 62.9 67.8
SpatialBot-3B [6] 41.1 - 69.1 - 67.8 67.7 67.8
Spatial-RGPT-7B w/ depth [13] 48.4 - 60.7 - 65.7 82.3 74.0

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 50.8 53.9 68.4 61.2 65.0 66.9 66.0
Qwen2.5-VL-3B + Vanilla GRPO 50.1 70.6 66.6 68.6 73.4 55.6 64.5
SpatialThinker-3B (Ours) 52.9 71.0 76.3 73.7 81.8 66.9 74.4
Qwen2.5-VL-7B + SFT 53.6 56.1 71.3 63.7 75.5 64.5 70.0
Qwen2.5-VL-7B + Vanilla GRPO 54.7 68.9 76.5 72.7 80.4 75.0 77.7
SpatialThinker-7B (Ours) 56.4 77.7 78.7 78.2 86.0 72.6 79.3

Table 1: Performance over 2D & 3D Spatial Understanding Benchmarks across different model types.

3.1 Results130

Performance across spatial benchmarks. As shown in Tables 1 2, SPATIALTHINKER-7B achieves131

strong performance across all benchmarks: 78.2% on CV-Bench (vs. GPT-4o’s 79.4%), 79.3% on132

BLINK tasks (vs. GPT-4o’s 80.4%), and 78.0% on MMVP (vs. GPT-4o’s 70.7%). On 3DSRBench, it133

scores 56.4%, outperforming GPT-4o by 12.1%, and achieves 66.4% on SpatialBench (vs. GPT-4o’s134

67.0%). On RealWorldQA, it reaches 69.2%, demonstrating strong transfer to real-world spatial135

reasoning. Despite using only RGB inputs and 7K training samples, SPATIALTHINKER-7B matches136

or surpasses larger proprietary and spatially-specialized open-source models.137

Comparison with training baselines. Compared to SFT and vanilla GRPO, SPATIALTHINKER-7B138

achieves +7.2% and +2.9% higher average accuracy, respectively. Similarly, the 3B variant shows139

+6.0% and +4.2% average gains over its SFT and GRPO baselines. Notably, vanilla GRPO improves140

+3.6% over the base model, while SPATIALTHINKER-7B trained with spatial rewards achieves141

+6.5%, nearly doubling the benefit. For the 3B model, vanilla GRPO yields a +5.6% average gain142

over the base, whereas SPATIALTHINKER-3B achieves +9.7%. This multiplicative effect with ×2143

improvement over the sparse RL baseline affirms that dense spatial rewards offer complementary144

learning signals that amplify reinforcement learning efficacy.145

4 Conclusion146

Model MMVP [68] SpatialBench [6] RealWorldQA [76]

Proprietary and Open-Source MLLMs
GPT-4o [34] 70.7 67.0 75.4
Claude 3.5 Sonnet [3] 71.3 - 60.1
Qwen2.5-VL-3B [5] 67.0 49.9 58.2
Qwen2.5-VL-7B [5] 72.3 62.5 68.4
SpaceThinker-Qwen2.5-VL-3B [1] 63.0 57.9 61.6
VLAA-Thinker-7B [10] 75.3 66.2 66.4

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 62.7 56.3 64.8
Qwen2.5-VL-3B + Vanilla GRPO 68.3 56.9 64.4
SpatialThinker-3B (Ours) 69.0 61.5 66.3
Qwen2.5-VL-7B + SFT 68.3 63.5 65.4
Qwen2.5-VL-7B + Vanilla GRPO 74.3 64.2 66.6
SpatialThinker-7B (Ours) 78.0 66.4 69.2

Table 2: Results on additional spatial understanding & real-
world tasks.

We introduced SPATIALTHINKER, a147

3D-aware MLLM that achieves strong148

spatial reasoning by combining scene149

graph grounding with dense spatial re-150

wards. Trained on just 7K samples, it151

matches or surpasses GPT-4o on spa-152

tial benchmarks while outperforming153

models trained on larger datasets and154

specialised spatial MLLMs. Dense155

spatial rewards nearly double the156

gains of standard RL, underscoring157

the value of rich supervision signals.158

While our approach relies on explicit159

scene graphs, future work could ex-160

plore implicit spatial reasoning with161

latent tokens, and design unified multi-162

objective policies covering diverse visual tasks.163
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Appendix354

A Related Work355

3D Spatial Reasoning in Multimodal Language Models. While multimodal large language mod-356

els have achieved notable success in fundamental visual tasks [34, 45, 17, 46], their ability to perform357

complex spatial reasoning remains limited. Multiple evaluations have highlighted persistent shortcom-358

ings in this domain [55, 68, 36, 79, 40, 80, 51], which can be partially attributed to the predominance359

of datasets centered around visual perception rather than explicit spatial or relational grounding [33].360

In response, considerable research has focused on incorporating 3D spatial information into MLLMs.361

Early approaches embed explicit representations such as point clouds or multi-view reconstructions362

[29, 28], while others generate structured spatial states or world models guided by physical priors [72,363

73]. More recent systems have trained large-scale models with 3D-enhanced VQA datasets, such as364

SpatialVLM with 2B samples [8], and extensions like SpatialPIN [50] or SpatialBot [6], which inject365

3D priors or auxiliary depth signals. SpatialRGPT [13] builds 3D scene graphs from RGB-depth data366

to produce a large 700k-sample spatial QA dataset for training, improving performance but requiring367

extensive pre-processing and data. Similarly, MM-Spatial [15], SpatialLLM [52], and SpaRE [57]368

address spatial reasoning with hundreds of thousands to millions of synthetic or reconstructed samples.369

Despite this progress, existing methods are either data-heavy, reliant on specialized 3D inputs, or370

restricted in modeling structured relational understanding. In contrast, SPATIALTHINKER achieves371

robust 3D spatial reasoning including object localization, and relational and regional understanding,372

using only 7K high-quality structured QA samples combined with reinforcement learning over dense373

spatial rewards.374

Structured Visual Grounding in MLLMs. Scene graphs provide a structured representation of375

objects and their relations and have been widely explored for visual reasoning [27, 69, 26]. Classical376

scene graph generation builds on detection-relation pipelines [7, 14], but often struggles with multi-377

role or open-vocabulary reasoning. With the advent of LLMs, text-augmented approaches such as378

LLM4SGG and GPT4SGG convert captions into structured graphs [37, 12], while more advanced379

open-vocabulary SGG methods leverage VLMs or MLLMs to generalize beyond fixed ontologies380

[9, 43]. Recent RL-driven frameworks, such as R1-SGG and Relation-R1, train models to construct381

scene graphs directly with dense structural or cognitive rewards [11, 42], highlighting the utility of382

structured supervision. In parallel, region-aware MLLMs like KOSMOS-2 [59], Ferret [82], and383

GLaMM [61] improve spatial grounding by integrating region information through bounding boxes384

and textual region descriptions, enabling more precise localization within images.SPATIALTHINKER385

builds on these advances by explicitly grounding reasoning on scene subgraphs focused on the386

question-specific region of interest, combining structured scene understanding with interpretable,387

reward-guided spatial reasoning.388

Multimodal Reinforcement Learning. Reinforcement learning (RL) has been widely adopted to389

enhance reasoning in MLLMs, extending chain-of-thought prompting [75] and fine-grained verifiable390

rewards to multimodal reasoning tasks. Recent works have applied RL for math reasoning [81,391

54], classification and grounding [49], semantic segmentation [48], structured reasoning pipelines392

[63] or referring expressions comprehension and open vocabulary detection [64, 60, 49]. Spatial393

RL strategies have emerged as well: SVQA-R1 incorporates view-consistency rewards [70], while394

SpatialReasoner adds coordinate-aware supervision in reasoning [64, 53]. Despite these efforts, most395

existing methods rely on relatively simple or sparse reward signals, such as final answer accuracy396

or coarse coordinate supervision, which provide limited guidance for detailed spatial relational397

reasoning. SPATIALTHINKER advances this space with a fine-grained multi-objective reward design398

covering regional subgraph construction, comprising object localisation and relational grounding,399

and final correctness. The model predicts these structured representations first, then reasons over400

them for detailed and interpretable spatial inference.401

B Preliminaries402

Scene Graph Generation. A scene graph provides a structured representation of an image I as a403

directed graph G = (V,E). Each node vi ∈ V denotes an object with a category label ci and a 2D404

bounding box bi = (xi, yi, wi, hi); each edge eij ∈ E is a relationship triplet ⟨vi, rij , vj⟩ capturing405
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spatial or interactive relations (e.g., left of, on, under) [27, 69]. Classical SGG decomposes prediction406

into object detection and relation recognition [7, 14], while open-vocabulary methods leverage407

language/vision priors to generalize beyond fixed ontologies [9, 43]. We refer to question-focused408

scene subgraphs as Gq = (Vq, Eq) ⊆ G that retain only objects and relations relevant to a given409

query q.410

Reasoning in Multimodal Large Language Models. Multimodal large language models (MLLMs)411

define autoregressive policies πθ over sequences of interleaved visual and textual tokens. Given an412

image ximg and a spatial question xtext, the model generates a reasoning trace y = (a1, . . . , aT ),413

where each at represents a token from intermediate reasoning steps or the final answer. This policy is414

factorized as:415

πθ(y | ximg,xtext) =

T∏
t=1

πθ(at | ximg,xtext, a<t) (1)

While supervised fine-tuning enables models to imitate reasoning traces observed during training,416

reinforcement learning offers a principled way to optimize generation using explicit reward signals,417

often resulting in better generalization to out-of-distribution inputs and improved adherence to task-418

specific structure [22, 16, 32]. The reinforcement learning objective seeks to maximize expected419

reward over trajectories:420

max
θ

EQ∼D,y∼πθ(·|Q) [R(Q,y)] (2)

where Q = {ximg,xtext} is the input query, D is the dataset distribution, and R is a verifiable reward421

function evaluating task correctness, formatting, and spatial grounding.422

Task Formulation We cast spatial reasoning in MLLMs as the task of producing a visually423

grounded response y to a query Q = ximg,xtext. Unlike generic reasoning, our formulation explicitly424

requires constructing question-focused scene subgraphs Gq and reasoning over objects, bounding425

boxes, and relations. The policy πθ is trained on spatially grounded VQA samples from STVQA-7K426

C using our multi-objective spatial reward R (Section 2.1), which enforces structural validity, count427

fidelity, answer accuracy, and precise spatial grounding.428

C STVQA-7K: Dataset Construction429

High-quality spatial VQA datasets remain scarce, as most existing benchmarks either lack grounded430

scene-graph annotations (i.e., explicit spatial coordinates for objects and relations) or fail to compre-431

hensively cover both 2D and 3D spatial reasoning categories. Visual Genome [39] provides dense,432

human-annotated scene graphs that support strict grounding of both question generation and answer433

verification within a unified representational framework. Using Visual Genome, we synthetically434

constructed a spatial visual question answering dataset called SPATIALTHINKER Visual Question435

Answering dataset i.e., STVQA-7K comprising 7,587 samples, fully grounded in human-annotated436

scene graphs [39], which we employed for post-training the SPATIALTHINKER models.437

The original VG150 predicate set is limited to 50 relations, missing several important categories438

such as positional relations (e.g., left, right, beside), distance-based relations (e.g., near, far, next439

to), comparative size (e.g., smaller, taller, bigger), orientation (e.g., facing towards/away), and440

containment (e.g., inside, beneath). To address this gap, we extended the scene graph relation space441

with an additional 34 predicates, ensuring richer spatial coverage in both 2D and 3D reasoning.442

Bounding box coordinates are retained in absolute pixel space, rather than normalized values, to443

preserve real-world scale and spatial alignment, to enable both improved spatial reasoning and444

effective use of CIoU-based supervision during reward optimization. The dataset construction445

pipeline proceeds in three stages: (1) synthetic question generation from ground-truth scene graphs,446

(2) automated quality filtering with external verification, and (3) scene graph adaptation for regional447

alignment with individual questions.448

Synthetic Question Generation. Visual Genome scene graphs serve as our foundational ground449

truth, providing object categories, bounding boxes, and relational triplets for over 150,000 images.450

We synthetically generate question-answer pairs for a given scene graph data using Claude Sonnet451

4 [4], synthesizing multiple-choice questions based on the salient objects and meaningful spatial452

relations explicitly present in each graph. Each question-answer pair is accompanied with a rating453
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generated out of 10 and the difficulty level. Our question generation encompasses nine distinct spatial454

reasoning categories: spatial relations (above, behind, near, etc.), physical reach and interaction455

(holding, touching), comparative size, orientation from specific viewpoints, instance location within456

image frames, depth ordering relative to the camera, distance comparisons to reference objects, object457

counting, and existence verification. This comprehensive taxonomy spans both 2D and 3D spatial458

understanding, providing a broad coverage of visual-spatial reasoning capabilities. To promote robust459

perception, we also include questions involving objects that are partially visible or occluded in the460

scene, encouraging the model to reason about spatial arrangements and fine-grained details. For each461

question, we generate a rating out of 10.462

Figure 1: Distribution of QA types in STVQA-7K. The
dataset spans a diverse range of spatial reasoning skills,
with an emphasis on spatial relations while also balanc-
ing other categories such as localization, depth, distance,
size, and orientation.

Quality Filtering and Validation. To en-463

sure semantic correctness at scale, we im-464

plement a consistency-based verification465

procedure using GPT-4o [34] as an exter-466

nal validation model. For each generated467

question-answer pair, we assess agreement468

between the external model and our syn-469

thetic ground truth label using a pass@2470

criterion. Questions that fail this initial471

consistency check undergo additional eval-472

uation with two supplementary model re-473

sponses. Items for which all four collected474

responses disagree with the generated la-475

bel are discarded as potentially incorrect476

or ambiguous. This filtering process be-477

gins with 56,224 initially generated ques-478

tions by Claude Sonnet 4 [4]. We select the479

10,000 highest-rated samples based on the480

questions complexity and rating towards its481

contribution to enhance spatial intelligence482

as judged by Claude Sonnet 4. Follow-483

ing consistency filtering, we retain 6,895484

training samples and 692 validation sam-485

ples ( 75%), indicating high label reliability.486

The final set consists of 50% samples from the relation category, and the remaining 50% distributed487

across the eight other categories. To prevent positional bias, answers are uniformly distributed across488

options A, B, C, and D. Figure 1 illustrates the distribution of QA types in STVQA-7K, highlighting489

the emphasis on spatial relations while maintaining balanced coverage across the remaining reason-490

ing categories. Representative examples of generated QA pairs across the nine spatial reasoning491

categories are shown in Figure 2, illustrating the diversity of question types in STVQA-7K.492

Scene Graph Adaptation. Since each question focuses on specific objects and relationships within493

the broader scene, we derive question-aligned scene subgraphs that capture only the relevant spatial494

context. For each question, we extract content words through tokenization and lemmatization to495

obtain both singular and plural word forms. We then filter the original scene graph to retain only object496

nodes whose labels appear in the extracted question vocabulary. Relational triplets are preserved497

when both the subject and object entities are retained and the predicate appears in the question498

context. The resulting focused scene graph representations enable training the model to generate499

question-aligned region-of-interest subgraphs, encouraging it to localize attention, ground reasoning500

in relevant entities and relations, and ultimately learn where to focus within complex visual scenes.501

D Experimental Setup Details502

This section presents comprehensive evaluations of SPATIALTHINKER across multiple spatial rea-503

soning benchmarks, demonstrating the effectiveness of our multi-objective dense reward design and504

data-efficient training approach.505
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Figure 2: Examples of generated QA pairs across the nine spatial reasoning categories in STVQA-7K.
Each category highlights distinct reasoning skills, ranging from relative spatial relations and depth
ordering to distance, size, orientation, reach, location, count and existence.
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D.1 Implementation Details506

We build SPATIALTHINKER upon two strong open-source multimodal base models: Qwen2.5-VL-507

3B and Qwen2.5-VL-7B [5], using them as backbones for policy optimization with reinforcement508

learning. No supervised fine-tuning is performed prior to RL training on our STVQA-7K dataset509

(Section C). We employ GRPO [62] as the advantage estimator as described in Section 2.2, using a510

rollout size of 8 samples per query and a sampling temperature of 1.0. The models are trained with a511

maximum context length of 16,384 tokens. The rollout batch size is set to 512, and the global batch512

size is 128. We train for 75 training steps i.e., 5 training episodes) on 4 × NVIDIA H100 80GB513

GPUs. Training time totals around 13 hours for the 3B model and 15 hours for the 7B model.514

The models are trained on high-resolution image inputs ranging from 512×512 to 2048×2048 pixels,515

to preserve fine-grained spatial information. All model parameters, including the vision encoder,516

are updated during training. We use the AdamW optimizer with bf16 precision, a learning rate of517

1× 10−6, and a weight decay of 1× 10−2. The KL penalty coefficient is set to 10−2. STVQA-7K is518

partitioned with a 90/10 train–validation split.519

D.2 Experimental Setup520

We evaluate SPATIALTHINKER across diverse spatial understanding benchmarks, covering both 2D521

and 3D understanding aspects to assess fine-grained spatial reasoning capabilities and real-world522

generalization. We compare against both proprietary and open-source baselines, including models523

specifically trained for spatial reasoning tasks. Our experiments address two key questions: (Q1) Does524

our spatial VQA data generation pipeline combined with dense reward RL improve MLLMs’ general525

spatial reasoning capabilities? (Q2) How effectively can MLLMs learn spatial understanding from just526

7K synthetic training samples, and how does this compare to models trained on orders-of-magnitude527

larger datasets?528

Benchmarks. We evaluate models across a diverse suite of six spatial reasoning benchmarks that529

collectively probe both two-dimensional and three-dimensional understanding in MLLMs. CV-Bench530

[67] measures 2D spatial relations, object counting, depth ordering, and distance reasoning. BLINK’s531

Spatial Relations and Relative Depth tasks [21] test directional and positional understanding, and532

fine-grained point-level depth perception—particularly challenging as SPATIALTHINKER receives no533

explicit point-level supervision during training. 3DSRBench [51] assesses egocentric 3D spatial rea-534

soning via relational and multi-object comparisons. MMVP [68] examines visual pattern recognition535

across attributes such as orientation, positional relations, existence, viewpoint, and size. Spatial-536

Bench [6] assesses general spatial comprehension across counting, existence, positional relationships,537

physical interactions such as reach, and size comparisons. Finally, RealWorldQA [76] serves as an538

out-of-distribution evaluation, testing real-world visual reasoning that requires integrating visual539

information with commonsense knowledge, multi-step reasoning, and practical scene understanding540

over natural scenes. Together, these benchmarks provide comprehensive, multi-granular evaluation541

of spatial cognition in multimodal models.542

Closed-Source MLLM Baselines. We compare against widely used closed-source multimodal543

models including: GPT-4o [34], Claude 3.5 Sonnet [4], and Gemini 2.0 Flash (both standard and544

“thinking” variants) [25], representing state-of-the-art commercial MLLMs. These models serve as545

upper reference points for spatial reasoning performance under proprietary settings.546

Open-Source MLLM Baselines. We compare against generalist open-source MLLMs including547

Qwen2.5-VL 3B and 7B models [5], LLaVA-NeXT [41], Cambrian-1 [67], and VLAA-Thinker [10].548

These models represent state-of-the-art vision-language architectures, offering strong general visual549

reasoning but without specific spatial tuning.550

Open-Source Spatial MLLM Baselines. We benchmark against specialized open-source models551

designed for spatial reasoning: SpaceLLaVA-13B (a public reimplementation of SpatialVLM [8]),552

SpatialLLM-8B [52] (multi-stage 3D-informed tuning of LLaVA), SpatialRGPT-7B [13] (with depth553

inputs and region-level spatial enhancements), and RoboPoint-13B [83], which instruction-tunes an554

MLLM to predict image key-point affordances for robotics and spatial affordance tasks.555
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In addition to the above, we compare against our training variants including supervised fine-tuning556

(SFT) baselines and vanilla GRPO trained with sparse rewards (accuracy and format only) to isolate557

the contribution of our dense spatial reward framework.558

Evaluation Setting. We report accuracy as the primary evaluation metric across all tasks. For559

model outputs, we use greedy decoding (temperature = 0.0, max_new_tokens = 2048) to ensure560

deterministic generation. Our evaluation infrastructure builds upon OpenVLThinker’s evaluation561

pipeline [18], adapted to support our new benchmark and dataset formats. For proprietary models,562

open-source models, and spatial baselines, we conduct zero-shot evaluations on all benchmarks. For563

SpatialRGPT-7B, we include depth inputs in line with its original training setup. For all other models,564

only RGB images are used.565

D.3 SpatialThinker Prompt Format566

We use a structured prompt to guide the model through a four-stage reasoning process, explicitly567

separated using the tags <observe>, <scene>, <think>, and <answer>. This format is enforced568

during training via a binary format reward Rf ∈ {0, 1}, with weight wformat = 0.1, which verifies569

the presence, ordering, and validity of all required tags. The <scene> section must contain a JSON-570

encoded subgraph with object IDs, bounding boxes, and relational triplets, while the final answer571

must be clearly placed within the <answer> tags.572

Each prompt also includes the input image dimensions in the form Image size: {Width} ×573

{Height}, which are dynamically replaced with actual values. Including this information helps the574

model constrain predicted bounding box coordinates within image bounds, enabling better spatial575

localization. These coordinates are directly evaluated using IoU-based spatial rewards such as576

Complete IoU (CIoU), making dimension-aware prediction essential for optimizing structured spatial577

grounding.578

SpatialThinker Prompt

You FIRST observe the image in <observe> </observe> tags, then visualise the relevant scene
graph in <scene> </scene> tags, followed by thinking about the reasoning process as an internal
monologue within <think> </think> tags and then provide the final answer. The final answer
MUST BE put within <answer> </answer> tags, and only return the final choice including the
correct option and answer within the answer tags, e.g., <answer> (C) The red cube is left of the
green sphere </answer>.
Image size: {Width} × {Height}

579

D.4 Details on SFT Training580

To establish a comprehensive baseline for comparison with our reinforcement learning approach, we581

conduct supervised fine-tuning (SFT) experiments using the same base models (Qwen2.5-VL-3B582

and Qwen2.5-VL-7B) and training dataset (STVQA-7K). The SFT implementation utilizes LLaMA-583

Factory framework [85] with Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning.584

The training configuration employs LoRA with rank 8 applied to all available modules within the585

model architecture, enabling comprehensive adaptation while maintaining computational efficiency.586

Models are trained for 3 epochs totaling 645 training steps, using a context window length of 2048587

tokens. We adopt BF16 mixed precision training with a learning rate of 1× 10−4, following a cosine588

learning rate schedule with a warmup ratio of 0.1.589

For the SFT experiments, we train models directly on question-answer pairs without intermediate590

reasoning traces or chain-of-thought prompting. This design choice reflects the practical constraint591

that generating ground-truth reasoning traces would require substantial additional dataset processing592

and annotation. In contrast, reinforcement learning approaches with verifiable rewards (RLVR)593

naturally enables training with answer supervision alone, as the model learns to generate its own594

reasoning strategies through environmental feedback rather than imitating pre-specified reasoning595

patterns.596
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The SFT baseline serves a critical role in our experimental evaluation, providing direct evidence of597

the generalization advantages offered by reinforcement learning with dense spatial rewards compared598

to traditional supervised learning on the same dataset.599

D.5 Details on RL Training600

We implement reinforcement learning training using the EasyR1 framework [84], building upon601

Qwen2.5-VL-3B and Qwen2.5-VL-7B as base models without any prior supervised fine-tuning. This602

direct application of RL to the base models enables us to isolate the effects of reward-driven learning603

from potential confounding factors introduced by intermediate training stages.604

The training employs Group Relative Policy Optimization (GRPO) [62] as the advantage estimation605

method, configured with a rollout size of 8 samples per query at a sampling temperature of 1.0. This606

configuration balances exploration diversity with computational efficiency, allowing the model to607

discover multiple reasoning strategies while maintaining stable convergence. The training process608

utilizes a rollout batch size of 512 and a global batch size of 128, processing data through 75 training609

steps (approximately 5 training episodes) to achieve convergence. The entire training pipeline runs610

on 4 × NVIDIA H100 80GB GPUs, requiring approximately 13 hours for the 3B model and 15611

hours for the 7B variant.612

To preserve fine-grained spatial information critical for accurate object localization and spatial613

reasoning, models process high-resolution image inputs ranging from 512 × 512 to 2048 × 2048614

pixels. The training configuration updates all model parameters including the vision encoder, enabling615

comprehensive adaptation to spatial reasoning tasks. Optimization employs AdamW with BF16616

mixed precision, a conservative learning rate of 1× 10−6, and weight decay of 1× 10−2. The KL617

penalty coefficient is set to 10−2 to prevent excessive divergence from the base model distribution618

while allowing sufficient exploration for spatial reasoning strategies. The training utilizes a 90/10619

train-validation split of the STVQA-7K dataset, with a maximum context length of 16,384 tokens to620

accommodate detailed scene descriptions and reasoning traces.621

For baseline comparisons, we train vanilla GRPO models (Qwen2.5-VL-3B + Vanilla GRPO and622

Qwen2.5-VL-7B) using a simplified reward structure consisting solely of accuracy (wacc = 0.5)623

and format rewards (wformat = 0.5), without the spatial grounding and count penalty components.624

This configuration represents standard RLVR approaches that rely on sparse final-answer supervision625

[16, 64, 10]. The full multi-objective reward design employed for SPATIALTHINKER training,626

incorporating format, count, accuracy, and spatial rewards with lexicographic gating, is detailed in627

Section 2.1. The substantial performance improvements of SPATIALTHINKER over vanilla GRPO628

baselines demonstrate the critical importance of dense spatial supervision in teaching models to629

perform visually-grounded reasoning.630

D.5.1 SpatialThinker RL Training Curves631

Throughout reinforcement learning, all four reward components: format, accuracy, count, and632

spatial; demonstrate consistent and interpretable improvement, reflecting stable learning under our633

lexicographically gated, multi-objective reward structure. The format reward quickly converges early634

in training, indicating the model learns to produce structurally valid outputs that adhere to the required635

scene-grounded reasoning format. Accuracy steadily improves across steps, highlighting the model’s636

increasing ability to provide correct answers. Count reward rises consistently, showing that the model637

learns to focus on predicting only question-relevant objects and relations, rather than describing the638

entire scene. The spatial reward also improves gradually, indicating better object localization and639

grounding, as the model increasingly aligns predicted bounding boxes with ground truth annotations.640

Together, these trends reflect how each reward component scaffolds a different stage of the reasoning641

process, enforcing structure, correctness, focus, and grounding in tandem.642

Response length initially declines, then rises again as it begins producing more deliberate, structured643

reasoning, signaling an “aha moment” where the model starts to produce more deliberate reasoning644

traces [16, 87]. This emergent behavior suggests the development of internal problem-solving645

strategies, as the model learns to spend more “thinking time” before answering, consistent with the646

emergence of self-reflection and structured planning in its spatial reasoning process.647
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(a) Format Reward (b) Count Reward (c) Accuracy Reward

(d) Spatial Reward (e) Response Length

Figure 3: RL training dynamics of SPATIALTHINKER. All reward components (a–d) improve
consistently, reflecting stable optimization. Response length (e) shows a non-monotonic trend,
indicating emergent reasoning strategies.

E Reward Design Rationale648

Our reward design emerged from iterative refinement to address systematic reward hacking behaviors649

observed during training. Early experiments revealed that models readily exploit loopholes in reward650

functions—particularly when spatial localization rewards were provided without proper constraints.651

This section details our approach to designing a robust reward system that guides models toward652

genuine spatial reasoning while preventing degenerate solutions.653

Preventing Spatial Reward Hacking. Our initial reward formulation, which directly rewarded654

spatial localization quality, led to unexpected model behavior. Without constraints on generation655

quantity, models discovered they could maximize spatial rewards by generating numerous bounding656

boxes with varying coordinates. Through Hungarian matching that selects the best-matching boxes,657

even random predictions would occasionally yield high Complete IoU (CIoU) scores. This reward658

hacking manifested as models producing excessive, hallucinated objects while achieving poor task659

accuracy—the spatial reward was inflated despite the clutter of irrelevant predictions degrading actual660

performance. To address this exploitation, we introduced the Count Reward that penalizes deviations661

from expected object and relation counts. This reward serves dual purposes: (1) preventing reward662

hacking by constraining the generation space, and (2) encouraging models to focus on question-663

relevant scene elements rather than exhaustively describing the entire image. The count reward664

formulation provides a linear penalty proportional to relative deviations from ground truth counts,665

normalized to prevent domination by scenes with many objects.666

Scene Graph Filtering. Another form of overfitting emerged when training with complete Visual667

Genome scene graphs. Models would memorize exhaustive scene descriptions, including irrelevant668

background objects, leading to poor generalization. We addressed this by filtering ground truth scene669

graphs to retain only objects and relations relevant to the given question, focusing supervision on670

task-critical information.671

CIoU over IoU for Spatial Reward. For spatial localization, we adopt Complete IoU (CIoU)672

instead of standard IoU to compute the spatial reward. Unlike IoU, which returns zero when predicted673

and ground-truth boxes do not overlap, CIoU provides meaningful gradients by incorporating center674

distance, aspect ratio, and overlap [86]. This makes CIoU a denser and more robust supervisory675

signal during training.676
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Balancing Supervision and Exploration. Our experiments reveal a crucial insight: models learn677

simple reward functions significantly faster than complex ones. Tasks with straightforward rewards678

(e.g., format compliance) show rapid improvements, while multi-component rewards require careful679

balancing. However, counterintuitively, highly detailed reward functions that attempt to supervise680

every aspect often degrade performance. Models overfit to maximize minute reward components,681

converging to template-style answers that score well on individual metrics while losing flexibility.682

We observed accuracy drops mid-training when rewards became too prescriptive, as models focused683

on reward optimization rather than genuine task understanding. Effective reinforcement learning684

requires providing guidance while preserving exploration space. Our final design addresses this by685

providing soft signals through format checks, count constraints, and accuracy rewards, with spatial686

localization rewards activated only for correct answers. This maintains the delicate balance between687

guidance and exploration necessary for robust learning.688

Sequential Optimization via Lexicographic Gating. To prevent models from gaming individual689

reward components at the expense of task accuracy, we implement lexicographic gating [65]. Rewards690

are applied in a strict hierarchy: format ≻ {count, accuracy} ≻ spatial. This forces models to691

first master output formatting, then simultaneously learn to control generation scope and achieve692

correctness, before optimizing spatial grounding:693

Rtotal = I[Rformat > 0] · (wfRf + wcRc + waRa + I[Raccuracy > 0] · wsRs) (3)

where I[·] is the indicator function, with weights wformat = 0.1, wcount = 0.2, waccuracy = 0.5,694

wspatial = 0.2. This gated design ensures spatial rewards are only applied when the final answer is695

correct, aligning grounding quality with task success and preventing scenarios where models achieve696

high spatial scores through precise but irrelevant localizations.697
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F Detailed Results: CV-Bench698

Model CV-Bench Tasks [67] CV-Bench Avg.Count Relation Depth Distance 2D 3D

Proprietary Models
GPT-4o [34] 65.9 85.7 87.8 78.2 75.8 83.0 79.4
Gemini-1.5-Pro [24] 70.4 85.2 82.4 72.8 77.8 77.6 77.7
Claude 3.7 Sonnet [2] - 74.2 85.8 84.2 - 85.0 -

Open-Source General MLLMs
Qwen2-VL-2B [71] 54.7 22.6 16.7 31.7 38.7 24.2 31.5
Qwen2.5-VL-3B [5] 61.5 58.3 67.3 53.0 59.9 60.2 60.1
Qwen2.5-VL-7B [5] 55.9 82.2 70.0 66.0 69.1 68.0 68.6
VLAA-Thinker-3B [10] 61.6 83.5 53.0 46.8 72.6 49.9 61.3
VLAA-Thinker-7B [10] 47.0 74.6 61.3 59.2 60.8 60.3 60.6
LLaVA-NeXT-34B [41] - - - - 73.0 74.8 73.9
Mini-Gemini-HD-34B [44] - - - - 71.5 79.2 75.4
Cambrian-1-34B [67] - - - - 74.0 79.7 76.9

Open-Source Spatial MLLMs
Spatial-LLaVA-7B [74] - - 57.3 52.2 - 54.8 -
VisualThinker-R1-2B [87] 59.6 66.8 54.2 56.7 63.2 55.45 59.3
Spatial-RGPT-7B w/ depth [13] - - 62.3 59.0 - 60.7 -
RoboPoint-13B [83] - 75.6 77.8 44.5 - 61.15 -
SpaceThinker-Qwen2.5-VL-3B [1] 61.0 69.2 70.5 61.3 65.1 65.9 65.5
SpaceLLaVA-13B [8] - 63.7 66.8 70.2 - 68.5 -
SpatialBot-3B [6] - 69.4 77.3 60.8 - 69.05 -

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 30.2 77.5 61.2 75.5 53.9 68.4 61.2
Qwen2.5-VL-3B + Vanilla GRPO 67.5 73.7 64.0 69.2 70.6 66.6 68.6
SpatialThinker-3B 68.5 73.5 79.7 72.8 71.0 76.3 73.7
Qwen2.5-VL-7B + SFT 33.3 78.9 64.8 77.7 56.1 71.3 63.7
Qwen2.5-VL-7B + Vanilla GRPO 58.9 78.8 79.3 73.7 68.9 76.5 72.7
SpatialThinker-7B 68.7 86.7 81.2 76.2 77.7 78.7 78.2

Table 3: Detailed breakdown of CV-Bench [67] results across Count, Relation, Depth, and Distance
subtasks.
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G Detailed Results: 3DSRBench699

Model 3DSRBench Tasks [51] Avg.Height Location Orientation Multi-Object

Proprietary Models
GPT-4o [34] 53.2 59.6 21.6 39.0 44.3
Claude 3.5 Sonnet [3] 53.5 63.1 31.4 41.3 48.2
Gemini 2.0 Flash [25] 49.7 68.9 32.2 41.5 49.9
Gemini 2.0 Flash (thinking) [25] 53.0 67.1 35.8 43.6 51.1

Open-Source MLLMs
Qwen2.5-VL-3B [5] 45.2 56.8 35.7 35.7 44.0
Qwen2.5-VL-7B [5] 44.1 62.7 40.6 40.5 48.4
Qwen2.5-VL-72B [5] 53.3 71.0 43.1 46.6 54.9
Cambrian-1-8B [67] 23.2 53.9 35.9 41.9 42.2
LLaVA-NeXT-8B [41] 50.6 59.9 36.1 43.4 48.4
VLAA-Thinker-7B [10] 54.0 60.2 42.9 49.1 52.2

Open-Source Spatial MLLMs
SpatialBot-3B [6] 40.4 54.4 31.9 33.5 41.1
SpaceLLaVA-13B [74] 49.3 54.4 27.6 35.4 42.0
SpatialLLM-8B [52] 45.8 61.6 30.0 36.7 44.9
SpatialRGPT-7B w/ depth [13] 55.9 60.0 34.2 42.3 48.4
SpaceThinker-Qwen2.5-VL-3B [1] 53.1 57.3 41.9 49.6 51.1

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 51.1 58.3 42.7 48.1 50.8
Qwen2.5-VL-3B + Vanilla GRPO 48.9 57.9 42.5 47.2 50.1
SpatialThinker-3B 52.6 61.8 43.4 49.8 52.9
Qwen2.5-VL-7B + SFT 50.6 66.3 43.8 47.9 53.6
Qwen2.5-VL-7B + Vanilla GRPO 54.3 64.7 45.5 50.4 54.7
SpatialThinker-7B 52.0 70.3 45.5 50.9 56.4

Table 4: Detailed Breakdown of 3DSRBench [51] Height, Location, Orientation, and Multi-Object
tasks.
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