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ABSTRACT

We study the application of variance reduction (VR) techniques to general non-
convex stochastic optimization problems. In this setting, the recent work STORM
(Cutkosky & Orabona, 2019) overcomes the drawback of having to compute gra-
dients of “mega-batches” that earlier VR methods rely on. There, STORM utilizes
recursive momentum to achieve the VR effect and is then later made fully adaptive
in STORM+ (Levy et al., 2021), where full-adaptivity removes the requirement for
obtaining certain problem-specific parameters such as the smoothness of the ob-
jective and bounds on the variance and norm of the stochastic gradients in order
to set the step size. However, STORM+ crucially relies on the assumption that the
function values are bounded, excluding a large class of useful functions. In this
work, we propose META-STORM, a generalized framework of STORM+ that re-
moves this bounded function values assumption while still attaining the optimal
convergence rate for non-convex optimization. META-STORM not only main-
tains full-adaptivity, removing the need to obtain problem specific parameters, but
also improves the convergence rate’s dependency on the problem parameters. Fur-
thermore, META-STORM can utilize a large range of parameter settings that sub-
sumes previous methods allowing for more flexibility in a wider range of settings.
Finally, we demonstrate the effectiveness of META-STORM through experiments
across common deep learning tasks. Our algorithm improves upon the previous
work STORM+ and is competitive with widely used algorithms after the addition
of per-coordinate update and exponential moving average heuristics.

1 INTRODUCTION

In this paper, we consider the stochastic optimization problem in the form

min
x∈Rd

F (x) := Eξ∼D [f(x, ξ)] , (1)

where F : Rd → R is possibly non-convex. We assume only access to a first-order stochastic oracle
via sample functions f(x, ξ), where ξ comes from a distribution D representing the randomness in
the sampling process. Optimization problems of this form are ubiquitous in machine learning and
deep learning. Empirical risk minimization (ERM) is one instance, where F (x) is the loss function
that can be evaluated by a sample or a minibatch represented by ξ.

An important advance in solving Problem (1) is the recent development of variance reduction (VR)
techniques that improve the convergence rate to critical points of vanilla SGD from O(1/T 1/4)
to O(1/T 1/3) (Fang et al., 2018; Li et al., 2021) for the class of mean-squared smooth functions
(Arjevani et al., 2019). In contrast to earlier VR algorithms which often require the computation of
the gradients over large batches, recent methods such as Cutkosky & Orabona (2019); Levy et al.
(2021); Huang et al. (2021) avoid this drawback by using a weighted average of past gradients, often
known as momentum. When the weights are selected appropriately, momentum reduces the error in
the gradient estimates which improves the convergence rate.

A different line of work on adaptive methods (Duchi et al., 2011; Kingma & Ba, 2014), some of
which incorporate momentum techniques, have shown tremendous success in practice. These adap-
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Table 1: Comparison of the convergence rate after T iterations under constant success probability. The as-
sumptions and definitions of the parameters referenced can be found in Section 1.2. Assumptions 1 and 2 are
used in all algorithms, thus we leave them out from the table.

Methods Adaptive? Convergence rate Assumptions

STORM
(Cutkosky &
Orabona, 2019)

× O
(
κ1/2+κ3/4Ĝ−1/2+σ+Ĝ log3/4 T

T1/2 + σ1/3

T1/3

)
3’, 4

κ = O (β (F (x1)− F ∗))

Super-ADAM
(Huang et al.,
2021)

×
O
((
κ1/2 + σ log T

)(
1

T1/2 + 1

T1/3

))
3’

κ = O (β (F (x1)− F ∗))

Does not adapt to σ

STORM+ (Levy
et al., 2021)

X
O
(

κ1

T1/2 + κ2σ
1/3

T1/3

)
3’, 4, 6

κ1 = O
(
β9/4 + Ĝ5 + β3/2Ĝ6 +B9/8

)
κ2 = O

(
β3/2 +B3/4

)
META-STORM-SG,
p = 1

2
(Ours)1 X

O
((
κ1 + κ2 log

(
1 + σ2T

)) (
1

T1/2 + σ1/3

T1/3

))
3, 4

κ1 = O
(
F (x1)− F ∗ + σ2 + Ĝ2 + κ2 log κ2

)
κ2 = O((1 + Ĝ2)β)

META-STORM,
p = 1

2
(Ours)

X
O
((
κ1 + κ2 log

(
1 + σ2T

)) (
1

T1/2 + σ1/3

T1/3

))
3, 5

κ1 = O
(
F (x1)− F ∗ + σ̂σ + σ2 + σ̂3 + κ2 log κ2

)
κ2 = O((1 + σ̂3)β)

tive methods remove the burden of obtaining certain problem-specific parameters, such as smooth-
ness, in order to set the right step size to guarantee convergence. STORM+ (Levy et al., 2021) is the
first algorithm to bridge the gap between fully-adaptive algorithms and VR methods, achieving the
variance-reduced convergence rate of O(1/T 1/3) while not requiring knowledge of any problem-
specific parameter. This is also the first work to demonstrate the interplay between adaptive momen-
tum and step sizes to adapt to the problem’s structure, while still achieving the VR rate. However,
STORM+ relies on a strong assumption that the function values are bounded, which generally does
not hold in practice. Moreover, the convergence rate of STORM+ has high polynomial dependencies
on the problem parameters, compared to what can be achieved by appropriately configuring the step
sizes and momentum parameters given knowledge of the problem parameters (see Section 3.1).

Our contributions: In this work, we propose META-STORM-SG and META-STORM, two flexible
algorithmic frameworks that attain the optimal variance-reduced convergence rate for general non-
convex objectives. Both of them generalize STORM+ by allowing a wider range of parameter selec-
tion and removing the restrictive bounded function value assumption while maintaining its desirable
fully-adaptive property – eliminating the need to obtain any problem-specific parameter. These have
been enabled via our novel analysis framework that also establishes a convergence rate with much
better dependency on the problem parameters. We present a comparison of META-STORM and
its sibling META-STORM-SG against recent VR methods in Table 1. In the appendix, we pro-
pose another algorithm, META-STORM-NA, with even less restrictive assumptions; however, with
a tradeoff of losing the adaptivity to the variance parameter.

We complement our theoretical results with experiments across three common tasks: image classi-
fication, masked language modeling, and sentiment analysis. Our algorithms improve upon the pre-
vious work, STORM+. Furthermore, the addition of heuristics such as exponential moving average
and per-coordinate updates improves our algorithms’ generalization performance. These versions of
our algorithms are shown to be competitive with widely used algorithms such as Adam and AdamW.
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1.1 RELATED WORK

Variance reduction methods for stochastic non-convex optimization: Variance reduction is in-
troduced for non-convex optimization by Allen-Zhu & Hazan (2016); Reddi et al. (2016) in the con-
text of finite sum optimization, achieving faster convergence over the full gradient descent method.
These methods are first improved by Lei et al. (2017) and later by Fang et al. (2018); Li et al. (2021)
both of which achieve an O(1/T 1/3) convergence rate, matching the lower bounds in Arjevani et al.
(2019). However, these earlier methods periodically need to compute the full gradient (in the finite-
sum case) or a giant batch at a check point, which can be quite costly. Shortly after, Cutkosky &
Orabona (2019) and Tran-Dinh et al. (2019) introduce a different approach that utilizes stochastic
gradients from previous time steps instead of computing the full gradient at a checkpoints. These
methods are framed as momentum-based methods as they are similar to using a weighted average
of the gradient estimates to achieve the variance reduction. Recently, SUPER-ADAM (Huang et al.,
2021) integrates STORM in a larger framework of adaptive algorithms, but loses adaptivity to the
variance parameter σ. At the same time, STORM+ (Levy et al., 2021) proposes a fully adaptive
version of STORM, which our work builds upon.

Adaptive methods for stochastic non-convex optimization: Classical methods, like SGD
(Ghadimi & Lan, 2013), typically require the knowledge of problem parameters, such as the smooth-
ness and the variance of the stochastic gradients, to set the step sizes. In contrast, adaptive methods
(Duchi et al., 2011; Tieleman et al., 2012; Kingma & Ba, 2014) forgo this requirement: their step
sizes only rely on the stochastic gradients obtained by the algorithms. Although these adaptive
methods are originally designed for convex optimization, they enjoy great successes and popular-
ity in highly non-convex practical applications such as training deep neural networks, often making
them the method of choice in practice. As a result, theoretical understanding of adaptive methods
for non-convex problems has received significant attention in recent years. The works by Ward et al.
(2019); Kavis et al. (2021) propose a convergence analysis of AdaGrad under various assumptions.
Among VR methods, STORM+ is the only fully adaptive algorithm that does not require knowledge
of any problem parameter. Our work builds on and generalizes STORM+, removing the bounded
function value assumption while obtaining much better dependencies on the problem parameters.

1.2 PROBLEM DEFINITION AND ASSUMPTIONS

We study stochastic non-convex optimization problems for which the objective function F : Rd →
R that has form F (x) := Eξ∼D [f(x, ξ)] and f(·, ξ) is a sampling function depending on a ran-
dom variable ξ drawn from a distribution D. We will omit the writing of D in Eξ∼D [f(x, ξ)] for
simplicity in the remaining paper. ‖ · ‖ represents ‖ · ‖2 for brevity. [T ] is defined as {1, 2, · · · , T}.
The analysis of our algorithms relies on the following assumptions 1–5:

1. Lower bounded function value: F ∗ := infx∈Rd F (x) > −∞.

2. Unbiased estimator with bounded variance: We assume to have access to ∇f(x, ξ) satisfying
Eξ [∇f(x, ξ)] = ∇F (x), Eξ

[
‖∇f(x, ξ)−∇F (x)‖2

]
≤ σ2 for some σ ≥ 0.

3. Averaged β-smoothness: Eξ
[
‖∇f(x, ξ)−∇f(y, ξ)‖2

]
≤ β2‖x− y‖2,∀x, y ∈ Rd.

4. Bounded stochastic gradients: ‖∇f(x, ξ)‖ ≤ Ĝ,∀x ∈ Rd, ξ ∈ support(D) for some Ĝ ≥ 0.

5. Bounded stochastic gradient differences: ‖∇f(x, ξ) − ∇f(x, ξ′)‖ ≤ 2σ̂,∀x ∈ Rd, ξ, ξ′ ∈
support(D) for some σ̂ ≥ 0.

Assumptions 1, 2 and 3 are standard in the VR setting (Arjevani et al., 2019). Assumption 5 is
weaker than the assumptions made in the prior works based on the STORM framework (Cutkosky
& Orabona, 2019; Levy et al., 2021). These works assume that the stochastic gradients are bounded,
i.e., Assumption 4. We note that assumption 4 implies that assumption 5 holds by replacing σ̂ by
Ĝ, thus we only have to consider σ̂ = O(Ĝ). To better understand assumption 5, we fix ξ ∈
support(D) and consider another ξ′ ∼ D, then due to the convexity of ‖·‖, ‖∇f(x, ξ)−∇F (x)‖ =
‖∇f(x, ξ) − Eξ′ [∇f(x, ξ′)] ‖ ≤ Eξ′ [‖∇f(x, ξ)−∇f(x, ξ)′‖] ≤ 2σ̂. This means assumption 5
implies a stronger version of assumption 2. For this reason, we can consider σ = O(σ̂).

1This bound holds when σ2 > 0 and T is large enough.

3



Under review as a conference paper at ICLR 2023

Algorithm 1 META-STORM-SG
Input: Initial point x1 ∈ Rd

Parameters: a0, b0, η, p ∈ [ 14 ,
1
2 ], p+ 2q = 1

Sample ξ1 ∼ D, d1 = ∇f(x1, ξ1)
for t = 1, · · · , T do:

at+1 =
(

1 +
∑t
i=1

‖∇f(xi,ξi)‖2
a20

)− 2
3

bt = (b
1/p
0 +

∑t
i=1 ‖di‖2)p/aqt+1

xt+1 = xt − η
bt
dt

Sample ξt+1 ∼ D
dt+1 = ∇f(xt+1, ξt+1) + (1 − at+1)(dt −

∇f(xt, ξt+1))
end for
Output xout = xt where t ∼ Uniform ([T ]).

Algorithm 2 META-STORM
Input: Initial point x1 ∈ Rd

Parameters: a0, b0, η, p ∈ [ 3−
√
7

2 , 12 ], p+ 2q = 1
Sample ξ1 ∼ D, d1 = ∇f(x1, ξ1), a1 = 1
for t = 1, · · · , T do:
bt = (b

1/p
0 +

∑t
i=1 ‖di‖2)p/aqt

xt+1 = xt − η
bt
dt

Sample ξt+1 ∼ D

at+1 =
(

1 +
∑t
i=1

‖∇f(xi,ξi)−∇f(xi,ξi+1)‖2
a20

)− 2
3

dt+1 = ∇f(xt+1, ξt+1) + (1 − at+1)(dt −
∇f(xt, ξt+1))
end for
Output xout = xt where t ∼ Uniform ([T ]).

Additional assumptions made in the prior works (Cutkosky & Orabona, 2019; Levy et al., 2021;
Huang et al., 2021) include the following:

3’. Almost surely β-smooth: ‖∇f(x, ξ)−∇f(y, ξ)‖ ≤ β‖x− y‖,∀x, y ∈ Rd, ξ ∈ support(D).

6. Bounded function values: There exists B ≥ 0 such that |F (x)− F (y)| ≤ B for all x, y ∈ Rd.

We remark that 3’ is strictly stronger than 3 and it is NOT a standard assumption in Arjevani et al.
(2019). Moreover, assumption 6, which plays a critical role in the analysis of Levy et al. (2021),
is relatively strong and cannot be always satisfied in non-convex optimization. Our work removes
these two restrictive assumptions and also improves the dependency on the problem parameters.

2 OUR ALGORITHMS

In this section, we introduce our two main algorithms, META-STORM-SG and META-STORM,
shown in Algorithm 1 and Algorithm 2 respectively. Our algorithms follow the generic framework
of momentum-based variance-reduced SGD put forward by STORM (Cutkosky & Orabona, 2019).
The STORM template incorporates momentum and variance reduction as follows:

dt = at∇f(xt, ξt) + (1− at) dt−1︸ ︷︷ ︸
momentum

+ (1− at) (∇f(xt, ξt)−∇f(xt−1, ξt))︸ ︷︷ ︸
variance reduction

(2)

xt+1 = xt −
η

bt
dt. (3)

The first variant, META-STORM-SG, similar to prior works, uses the gradient norms when setting
at and similarly, requires the strong assumption on the boundedness of the stochastic gradients.
The major difference lies in the structure of the momentum parameters and the step sizes and their
relationship, which is further developed in the second algorithm META-STORM so that assumption
4 can be relaxed to assumption 5. We now highlight our key algorithmic contributions and how they
depart from prior works.

A first point of departure is our use of stochastic gradient differences when setting the momen-
tum parameter at in META-STORM: prior works set at based on the stochastic gradients, while
META-STORM sets at based on the difference of two gradient estimators taken at two different
time step ξt−1 and ξt at the same point xt−1. The gradient difference can be viewed as a proxy
for the variance σ2, which allows us to require the mild assumption 5 in the analysis. With this
choice, our algorithm obtains the best dependency on the problem parameters. On the other hand,
the coefficient 1− at+1 in the update for dt+1 now depends on ξt+1, and addressing this correlation
requires a more careful analysis. The second point of departure is the setting of the step sizes bt and
their relationship to the momentum parameters at in both META-STORM-SG and META-STORM.
We propose a general update rule bt = (b

1/p
0 +

∑t
i=1 ‖di‖2)p/aqt that allows for a broad range of

choices for p and q that subsume prior works. In practice, different problem domains may ben-
efit from different choices of p and q. Our framework allows us to capture prior works such as
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the STORM+ update bt = (
∑t
i=1 ‖di‖2/ai+1)1/3 using a different but related choice of momen-

tum parameters and a simpler update that uses only the current momentum value at instead of all
the previous momentum values ai+1 with i ≤ t. We further motivate and provide intuition for
our algorithmic choices in Section 3. We note that our algorithm uses only the stochastic gradient
information received, and it does not require any knowledge of the problem parameters.

We provide an overview and intuition for our algorithm in Section 3, and give the complete anal-
ysis in the appendix. Our analysis departs significantly from prior works such as STORM+, and it
allows us to forgo the bounded function value assumption and improve the convergence rate’s de-
pendency on the problem parameters. It remains an interesting open question to determine the best
convergence rate that can be achieved when the function values are bounded.

We can further alleviate assumption 5 in another new algorithm, META-STORM-NA (Algorithm
5), provided in Section H in the appendix. To the best of our knowledge, META-STORM-NA is
the only adaptive algorithm that enjoys the convergence rate Õ(1/T 1/3) under only the weakest
assumptions 1-3. It also allows a wide range of choices for p ∈

(
0, 12
]
. However, the tradeoff is that

the algorithm does not adapt to the variance parameter σ. For the detailed analysis, we refer readers
to Section H.

Finally, we show the convergence rate obtained by Algorithms 1 and 2 in the following theorems.
The convergence rates for general p are given in the appendix.
Theorem 2.1. Under the assumptions 1-4 in Section 1.2, with the choice p = 1

2 and setting a0 =
b0 = η = 1 to simplify the final bound, META-STORM-SG ensures that

E
[
‖∇F (xout)‖

2
3

]
= O

(W11
[
(σ2T )1/3 ≤W1

]
T 1/3

+
(
W2 +W3 log

2
3
(
1 + σ2T

))( 1

T 1/3
+
σ2/9

T 2/9

))
whereW1 = O

(
F (x1)−F ∗+σ2 +Ĝ2 +β

(
1+Ĝ2

)
log
(
β+Ĝ2β

))
, W2 = O

(
(F (x1)−F ∗)2/3 +

σ4/3 + Ĝ4/3 + (1 + Ĝ4/3)β2/3 log2/3
(
β + Ĝ2β

))
and W3 = O

(
(1 + Ĝ4/3)β2/3

)
.

We note that when σ2 > 0 and T is large enough, the effect of W1 can be eliminated. Combining
Theorem 2.1 and Markov’s inequality, we immediately have the following corollary.
Corollary 2.2. Under the same setting in Theorem 2.1, additionally we assume σ2 > 0 and T is
large enough, then for any 0 < δ < 1, with probability 1− δ

‖∇F (xout)‖ ≤ O
(κ1 + κ2 log

(
1 + σ2T

)
δ3/2

( 1

T 1/2
+
σ1/3

T 1/3

))
where κ1 = O

(
F (x1)− F ∗ + σ2 + Ĝ2 + κ2 log κ2

)
and κ2 = O

((
1 + Ĝ2

)
β
)
.

Theorem 2.3. Under the assumptions 1–3 and 5 in Section 1.2, with the choice p = 1
2 and setting

a0 = b0 = η = 1 to simplify the final bound, META-STORM ensures that

E
[
‖∇F (xout)‖

6
7

]
= O

((
Q1 +Q2 log

6
7
(
1 + σ2T

))( 1

T 3/7
+
σ2/7

T 2/7

))
where Q1 = O

((
F (x1)−F ∗

)6/7
+
(
σ̂σ
)6/7

+σ12/7 + σ̂18/7 +
(
1 + σ̂18/7

)
β6/7 log6/7

(
β+ σ̂3β

)
and Q2 = O

((
1 + σ̂18/7

)
β6/7

)
.

Combining Theorem 2.3 and Markov’s inequality, we also have the following corollary.
Corollary 2.4. Under the same setting in Theorem 2.3, then, for any 0 < δ < 1, with probability
1− δ

‖∇F (xout)‖ ≤ O
(κ1 + κ2 log

(
1 + σ2T

)
δ7/6

( 1

T 1/2
+
σ1/3

T 1/3

))
where κ1 = O

(
F (x1)− F ∗ + σ̂σ + σ2 + σ̂3 + κ2 log κ2

)
and κ2 = O

((
1 + σ̂3

)
β
)
.

We emphasize that the aim of our analysis is to provide a convergence in expectation or with constant
probability. In particular, we state Corollaries 2.2 and 2.4 only to give a more intuitive way to
see the dependency on the problem parameters. To boost the success probability and achieve a
log 1

δ dependency on the probability margin, a common approach is to perform log 1
δ independent

repetitions of the algorithms.
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We briefly discuss the difference between the convergence rate of the two algorithms. We note
that these two rates cannot be compared directly since assumption 4 is stronger than assumption 5.
Additionally, as pointed out in Section 1.2, we have σ̂ = O(Ĝ) and thus the termO(σ̂3) in Corollary
2.4 is O(Ĝ3), whereas Corollary 2.2 has a O(Ĝ2) term. To give an intuition why an extra higher
order term W1 appears in Theorem 2.1 when σ = 0 compared with Theorem 2.3, we note that when
σ = 0, dt in both algorithms degenerates to ∇F (xt). However, the coefficient at+1 becomes 1 in
META-STORM but does not in META-STORM-SG. This discrepancy leads to bt being larger in
META-STORM-SG than in META-STORM, and moreover the META-STORM bt becomes exactly
the same as the stepsize used in AdaGrad. Due to the larger bt when σ = 0, it is reasonable to expect
a slower convergence rate for META-STORM-SG. The appearance of the term W1 reflects that.

3 OVERVIEW OF MAIN IDEAS AND ANALYSIS

In this section, we an overview of our novel analysis framework. We first give a basic non-adaptive
algorithm and its analysis to motivate the algorithmic choices made by our adaptive algorithms. We
then discuss how to turn the non-adaptive algorithm into an adaptive one. Section D in the appendix
gives a proof sketch for Theorem 2.3 for the special case p = 1

2 that illustrates the main ideas used
in the analyses of all of our algorithms. We give the complete analyses in the appendix.

3.1 NON-ADAPTIVE ALGORITHM

As a warm-up towards our fully adaptive algorithms and their analysis, we start with a basic non-
adaptive algorithm and analysis that will guide our algorithmic choices and provide intuition for our
analysis. The algorithm instantiates the STORM template using fixed choices at = a and bt/η = b
for the momentum and step size. In the following, we outline an analysis for the algorithm and
derive appropriate choices for the values a and b.

Algorithm: As noted above, the algorithm performs the following updates:

xt+1 = xt −
1

b
dt; dt+1 = ∇f(xt+1, ξt+1) + (1− a)(dt −∇f(xt, ξt+1)).

To make it simpler, we assume d1 = ∇F (x1). Alternatively, one can use a standard mini-batch
setting to set d1 = 1

m

∑m
i=1∇f(x1; ξi) with a proper m leading to small variance as in previous

non-adaptive analysis (Fang et al., 2018; Zhou et al., 2018; Tran-Dinh et al., 2019).

Key idea: We start by introducing some convenient notation. Let εt = dt−∇F (xt) be the stochastic
error (in particular, ε1 = 0) and

Ht :=

t∑
i=1

‖∇F (xi)‖2 Dt :=

t∑
i=1

‖di‖2 Et :=

t∑
i=1

‖εi‖2.

First, to bound E [‖∇F (xout)‖] where xout is an iterate chosen uniformly at random, it suffices to up-
per bound E[HT ]. Then, we can translate this term to a convergence guarantee for E [‖∇F (xout)‖].
An important intuition from STORM/STORM+ is the incorporation of VR in (2), leading to a de-
crease over time of the error term εt. Thus, we can view dt as a proxy for∇F (xt). It is then natural
to decompose HT in terms of DT and ET . By the definition of εt, we can write HT ≤ 2DT +2ET .
Therefore, to upper bound E[HT ], it suffices to upper bound E[DT ] and E[ET ], which will be the
essential steps in the analysis framework. A key insight is that E[DT ] and E[ET ] can be upper
bounded in terms of each other, as we now show.

Bounding DT : Starting from the function value analysis, using smoothness, the update rule xt+1 =
xt − 1

bdt, the definition of εt = dt −∇F (xt), and Cauchy-Schwarz, we obtain

F (xt+1)− F (xt) ≤ 〈∇F (xt), xt+1 − xt〉+
β

2
‖xt+1 − xt‖2 = −1

b
〈∇F (xt), dt〉+

β

2b2
‖dt‖2

= −1

b
‖dt‖2 +

1

b
〈εt, dt〉+

β

2b2
‖dt‖2 ≤ −

1

2b
‖dt‖2 +

1

2b
‖εt‖2 +

β

2b2
‖dt‖2.

Suppose that we choose b so that b ≥ 2β, which ensures that β
2b2 ≤

1
4b . By rearranging the previous

inequality, summing up over all iterations, and taking expectation, we obtain
E [DT ] ≤ 4bE (F (x1)− F (xT+1)) + 2E [ET ] ≤ 4b (F (x1)− F ∗) + 2E [ET ] . (4)
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Bounding ET : By the standard calculation for the stochastic error εt used in STORM, we have

E
[
‖εt+1‖2

]
≤ (1− a)2E

[
‖εt‖2

]
+ 2(1− a)2

β2

b2
E
[
‖dt‖2

]
+ 2a2σ2.

Summing up over all iterations, rearranging, and using that a ∈ [0, 1] and ε1 = 0, we obtain

E [ET ] ≤ 1

1− (1− a)2
(
2(1− a)2

β2

b2
E [DT ] + 2a2σ2T

)
≤ 2β2

ab2
E [DT ] + 2aσ2T. (5)

By combining inequalities (4) and (5), we obtain

E [DT ] ≤ 4b (F (x1)− F ∗) +
4β2

ab2
E [DT ] + 4aσ2T ; (6)

E [ET ] ≤ 8β2

ab
(F (x1)− F ∗) +

4β2

ab2
E [ET ] + 2aσ2T. (7)

Ideal non-adaptive choices for a, b: Here, we set a and b to optimize the overall bound, and
obtain choices that depend on the problem parameters. In the next section, we build upon these
choices to obtain adaptive algorithms that use only the stochastic gradient information received by
the algorithm.

We observe that (6) and (7) bound E[DT ] and E[ET ] in terms of themselves, and the coefficient on
the right-hand side is 4β2

ab2 . Suppose that we set a so that this coefficient is 1
2 , i.e., we set a = 8β2

b2 ,

so that 4β2

ab2 = 1
2 (note that this requires setting b ≥ 2

√
2β, so that a ≤ 1). By plugging this choice

into (6) and (7), we obtain

E [DT ] ,E [ET ] ≤ O
(
b (F (x1)− F ∗) +

β2σ2T

b2

)
.

The best choice for b is the one that balances the two terms above: b = Θ
(

β2σ2T
F (x1)−F∗

)1/3
. Since we

also need b ≥ Ω(β), we can set b to the sum of the two. Hence, we obtain

a = Θ
(β2

b2

)
= Θ

( 1

1 + (β (F (x1)− F ∗))−2/3 (σ2T )
2/3

)
; (8)

b = Θ
(
β + β2/3

(
F (x1)− F ∗

)−1/3(
σ2T

)1/3)
; (9)

E [DT ] ,E [ET ] ,E [HT ] ≤ O
(
β
(
F (x1)− F ∗

)
+
(
β
(
F (x1)− F ∗

))2/3(
σ2T

)1/3)
. (10)

3.2 ADAPTIVE ALGORITHM

In this section, we build on the non-adaptive algorithm and its analysis from the previous section.
We first motivate the algorithmic choices made by our algorithm via a thought experiment where we
pretend that HT ,DT ,ET are deterministic quantities.

Towards adaptive algorithms: To develop an adaptive algorithm, we would like to pick a, bwithout
an explicit dependence on the problem parameters by using quantities that the algorithm can track.
We break this down by first considering choices that do not depend on β, but on σ, and then removing
the dependency on σ. As a thought experiment, let us pretend that HT ,DT ,ET are deterministic
quantities. A natural choice for a that mirrors the non-adaptive choice (8) is a = (1 + σ2T )−2/3.
Since we are pretending that DT is a deterministic quantity, we can set b by inspecting (5):

ET
(5)
≤ 2β2

ab2
DT + 2aσ2T

If we set b = D
1/2
T /a1/4, we ensure that DT cancels and we obtain the desired upper bound on ET .

More precisely, by plugging in a = (1 + σ2T )−2/3 and b = D
1/2
T /a1/4 into (5), we obtain

ET
(5)
≤ 2β2

a1/2DT
DT + 2aσ2T ≤ O

(
β2
(
1 + σ2T

)1/3
+
(
1 + σ2T

)1/3 )
7
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We now consider two cases for DT . If DT ≤ 16β2(1 + σ2T )1/3, the above inequality together
with HT ≤ 2DT + 2ET imply that HT ≤ O((1 + β2)(1 + σ2T )1/3). Otherwise, we have DT ≥
16β2(1 + σ2T )1/3 and thus ab2 ≥ 16β2. Plugging into (6), we obtain

DT

(6)
≤ O

(√
DT

(
1 + σ2T

)1/6
(F (x1)− F (x∗)) +

(
1 + σ2T

)1/3 )
which solves to DT ≤ O((1 + σ2T )1/3(F (x1) − F ∗)2). We can again bound HT using HT ≤
2DT + 2ET . In both cases, we have the bound

HT ≤ O
((

1 + β2 + (F (x1)− F ∗)2
) (

1 + σ2T
)1/3 )

We now turn to removing the dependency on σ2T in a. The algorithm can also track H̃T :=∑T
t=1 ‖∇f(xt; ξt)−∇f(xt; ξt+1)‖2, which can be viewed as a proxy for σ2T . Replacing σ2T by

this proxy and making a and b be time dependent give the update rules employed by our algorithm
in the special case p = 1

2 . Our update rule for general p follows from a similar thought experiment.

Analysis: Using a similar approach as in the non-adaptive analysis, we can turn the above argument
into a rigorous analysis. In the appendix, we give the complete analysis as well as a proof sketch in
Section D that gives an overview of our main analysis techniques.

4 EXPERIMENTS

We examine the empirical performance of our methods against the previous work STORM+ (Levy
et al., 2021) and popular algorithms (Adam, AdamW, AdaGrad, and SGD) on three tasks: (1) Image
classification with the CIFAR10 dataset (Krizhevsky et al., 2009) using ResNet18 (Ren et al., 2016)
models; (2) Masked language modeling via the BERT pretraining loss (Devlin et al., 2018) with
the IMDB dataset (Maas et al., 2011) using distill-BERT models (Sanh et al., 2019), where we
employ the standard cross entropy loss for MLM fine tuning (with whole word masking and fixed
test masks) with maximum length 128; and (3) Sentiment analysis with the SST2 dataset (Socher
et al., 2013) via finetuning BERT models (Devlin et al., 2018). We use the standard train/validation
split and run all algorithms for 4 epochs.

We use the default implementation of AdaGrad, Adam, AdamW, and SGD from Pytorch. For
STORM+, we follow the authors’ original implementation.2 We give the complete implementation
details and tables of hyperparameters for all algorithms in Section B.1 of the Appendix.

Heuristics. For our algorithms and STORM+, we further examine whether heuristics like exponen-
tial moving average (EMA) of the gradient sums (or often called online moment estimation) and
per-coordinate update would be beneficial. The versions with heuristics is denoted (H) in the results
below. This is discussed in full details in Section B.1.1 of the Appendix.

Results. We perform our experiments on the standard train/test splits of each dataset. We tune
for the best learning rate across a fixed grid for all algorithms and perform each run 5 times. For
readability, we omit error bars in the plot. Full plots with error bars and tabular results with standard
deviation as well as further discussions are presented in Section B.2 of the Appendix.3

1. CIFAR10 (Figure 1). Overall, META-STORM-SG achieves the lowest training loss with META-
STORM and STORM+ coming in close. META-STORM with heuristics attains the best test accu-
racy, with Adam coming in close.

2. IMDB (Figure 2). AdamW attains the best training loss. However, META-STORM with heuris-
tics achieve the best test loss (with AdamW coming in close). META-STORM-SG and the heuristic
algorithms outperform STORM+ in both minimizing training loss and test loss.

3. SST2 (Figure 3). META-STORM with heuristics attain the best training loss and accuracy,
above Adam and AdamW. It also achieves the best validation accuracy out of all the algorithms.
Furthermore, non-heuristic META-STORM and META-STORM-SG outperform STORM+. We

2Link to the code of STORM+: https://github.com/LIONS-EPFL/storm-plus-code.
3The reader should keep in mind that variance-reduced algorithms like META-STORM require twice the

amount of gradient queries, so the improvement in performance that our algorithms exhibit does not come
without a cost. Additional plots and further discussions are available in Section B.
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remark that STORM+ appears to be rather unstable for this task as some of the random runs do not
converge to good stationary points.
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Figure 1: Training loss and test accuracy on CIFAR10. (H) denotes the addition of heuristics.
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Figure 2: Training loss and test loss on IMDB. (H) denotes the addition of heuristics.
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Figure 3: Training loss and validation accuracy on SST2. (H) denotes the addition of heuristics.

5 CONCLUSION

In this paper, we propose META-STORM-SG and META-STORM, two fully-adaptive momentum-
based variance-reduced SGD frameworks that generalize upon STORM+ and remove STORM+’s
restrictive bounded function values assumption. META-STORM and its sibling META-STORM-SG
attain the optimal convergence rate with better dependency on the problem parameters than previous
methods and allow for a wider range of configurations. Experiments demonstrate our algorithms’
effectiveness across common deep learning tasks against the previous work STORM+, and when
heuristics are further added, achieve competitive performance against state-of-the-art algorithms.
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Reproducibility Statement. We include the full proofs of all theorems in the Appendix. For our
experiments, full implementation details including hyperparameter selection and algorithm devel-
opment are included in Section B of the Appendix. We also make our source code available.
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A APPENDIX OUTLINE

The appendix is organized as follows.

• Section B presents the full implementation details for our algorithms and hyperparameters
used. This section also includes additional ablation studies and experiments.

• Section C introduces the notations used in the analysis of our algorithms.

• Section D presents the proof sketch of Theorem 2.3.

• Section E establishes some basic results that are used in our full analysis.

• Section F gives the analysis of META-STORM for general p.

• Section G gives the analysis of META-STORM-SG for general p.

• Section H introduces META-STORM-NA and gives the analysis for general p.

• Section I gives several basic inequalities that are used in our analysis.

B EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we present the complete implementation details along with the full experimental
setup. All of our experiments were conducted on two NVIDIA RTX3090.

B.1 IMPLEMENTATION DETAILS AND HYPERPARAMETER TUNING

In this section, we present the full implementation details of the heuristics version, parameter selec-
tion, and hyperparameter tuning for all 3 datasets.

B.1.1 HEURISTICS VERSIONS OF META-STORM AND META-STORM-SG

Algorithm 3 Heuristic update of META-STORM and META-STORM-SG.

Gt =

{
αGt−1 + (1− α) (∇f(xt, ξt)−∇f(xt, ξt+1))

2 for META-STORM (H)
αGt−1 + (1− α) (∇f(xt, ξt))

2 for META-STORM-SG (H)

at+1 =
(
1 +Gt/a

2
0

)−2/3
Dt = αDt−1 + (1− α)d2t

bt =


(
b
1/p
0 +Dt

)p
/aqt for META-STORM (H)(

b
1/p
0 +Dt

)p
/aqt+1 for META-STORM-SG (H)

xt+1 = xt −
η

bt
dt

dt+1 = ∇f(xt+1, ξt+1) + (1− at+1)(dt −∇f(xt, ξt+1))

12
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Algorithm 4 Heuristic update of STORM+

Gt = αGt−1 + (1− α) (∇f(xt, ξt))
2

at+1 = (1 +Gt/a0)−2/3

Dt = αDt−1 + (1− α)
d2t
at+1

bt = (b0 +Dt)
−1/3

xt+1 = xt −
η

bt
dt

dt+1 = ∇f(xt+1, ξt+1) + (1− at+1)(dt −∇f(xt, ξt+1))

For our algorithms, we employ the common heuristic of using an exponential moving average
(EMA) scheme in the momentum and the step size. We also perform a per-coordinate update instead
of simply using the norm. With this, our update rules for xt+1 = xt − ηdt/bt becomes coordinate-
wise division with the update rules as in Algorithm 3, where all the operations between vectors
here are coordinate-wise multiplication, exponentiation, and division. In our experiments, we set
α = 0.99, a0 = 1, b0 = 10−8 as selected by the criterion detailed next. Similarly, we also examine
the same heuristics on STORM+ via an analogous implementation in Algorithm 4.

B.1.2 ALGORITHM DEVELOPMENT AND DEFAULT PARAMETERS SELECTION

We develop our algorithm on MNIST and tune for p, a0, and b0. For a0, we tune on MNIST across a
range of values from 1 to 108 and found that larger values of a0 are helpful. For b0, we simply need
a small number for numerical stability so we pick 10−8. For the heuristic versions of our algorithms,
a0 = 1 gives the best results. This might be due to the effects of per-coordinate operations removing
the need to scale down the gradient-accumulated step-size.

Effects of varying p. In Figures 4 and 5, we show the training loss and test accuracy of different
values of p of our algorithms on MNIST (with a0 = 108 and b0 = 10−8). For each configuration,
we tune the base learning rate η across

{
10−3, 10−2, 10−1, 1, 10

}
.The results suggest that the lower

values of p tend to perform better. While p = 1/3 has comparable performance to the lowest setting
of p, this choice is somewhat analogous to STORM+. Hence, we select the lowest possible value p
for our algorithms in the subsequent experiments (with p = 0.20 for META-STORM and p = 0.25
for META-STORM-SG).
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Figure 4: Training loss and test accuracy for META-STORM on MNIST for different p values.For the heuristics versions of our algorithms, we perform the same experiments and show the results
in Figures 6 and 7. Since p = 0.50 attains the lowest training loss for both heuristics versions of our
algorithms, we select such value for all our experiments.

Default parameters.
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Figure 5: Training loss and test accuracy for META-STORM-SG on MNIST for different p values.
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Figure 6: Training loss and test accuracy for META-STORM (H) on MNIST for different p values.

Table 2: Default parameters for META-STORM algorithms and STORM+. The version with heuris-
tics is denoted with an additional (H).

Algorithm p a0 b0

META-STORM 0.20 a20 =108 b
1/p
0 =10−8

META-STORM-SG 0.25 a20 =108 b
1/p
0 =10−8

META-STORM (H) 0.50 a20 =1 b
1/p
0 =10−8

META-STORM-SG (H) 0.50 a20 =1 b
1/p
0 =10−8

STORM+ N/A a0 =# of parameters b0 = 1
STORM+ (H) N/A a0 = 1 b0 = 10−8

The discussion above leads to the choice of a0 = 108 and b0 = 10−8 by default for our algorithms
with p = 0.20 for META-STORM and p = 0.25 for META-STORM-SG on the benchmarks present
in this section. For the heuristic versions of META-STORM, we use p = 0.50, a0 = 1, and b0 =
10−8 for our algorithm with heuristics. This version with heuristics is further denoted (H) in our
results below. For STORM+, we use the original authors’ implementation of setting a0 to the number
of parameters of the model (which is roughly 108 for ResNet18 for example) and b0 = 1. For other
baseline algorithms, we use the default parameters from Pytorch implementation.

Hyperparameter tuning. For all algorithms, we tune only the learning rate while using the default
values for the other parameters for all algorithms.
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Figure 7: Training loss and test accuracy for META-STORM-SG (H) on MNIST for different p
values.

For learning rate tuning, we perform a grid search across values
{

10−5, 10−4, 10−3, 10−2, 10−1, 1
}

for CIFAR10 and IMDB and across values
{

10−5, 2× 10−5, 10−4, 10−3, 10−2, 10−1, 1
}

for SST2
(due to 2× 10−5 being the default learning rate for AdamW on SST2 and also more practical due to
SST2 being a smaller dataset). For Adam on IMDB, the learning rate in our grid search is not small
enough to converge, requiring additional tuning for decreasing training loss.

Table 3 includes the selected learning rate we used for each algorithm across the datasets. After
obtaining the best learning rate, we additionally run each algorithm across 5 different seeds to obtain
error bars.

Table 3: Table of Hyperparameters.

Algorithm CIFAR10 IMDB SST2
META-STORM 1 10−2 10−2

META-STORM-SG 1 10−1 10−2

META-STORM (H) 10−3 10−4 2 · 10−5

META-STORM-SG (H) 10−3 10−4 2 · 10−5

STORM+ 0.1 10−2 10−2

STORM+ (H) 10−2 10−3 10−4

Adam 10−3 10−6 10−5

AdamW N/A 10−4 10−5

Adagrad 10−3 10−3 10−4

SGD 10−3 10−2 10−3

B.2 FULL RESULTS FOR EXPERIMENTS IN SECTION 4 AND ADDITIONAL EXPERIMENTS

In this section, we show complete plots and tabular results along with more detailed discussions
for our experiments. The reader should note that STORM-based methods require twice the amount
of oracle access over the baselines. The plots show average across 5 seeds along with min/max
bars. The tables show the average across 5 seeds across a range of selected epochs and one standard
deviation is included at the last epoch. In the plots and tables below: (H) denotes the version of the
algorithm with the heuristics (EMA and per-coordinate update) employed.

B.2.1 CIFAR10: RESULTS AND DISCUSSIONS

Figure 8 shows all 4 plots of the main experiments in Section 4 in Figure 8.
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Figure 8: Losses and accuracies on CIFAR10.

Tables. Tables 4 and 5 show the training loss and accuracy for CIFAR10. Tables 6 and 7 show
the test loss and accuracy for CIFAR10.

Table 4: CIFAR10 average training loss across 5 seeds for selected epochs. Lowest loss is bolded
per selected epoch.

Algorithm 1 10 20 40 60 70 80 90 100

MS-SG (H) 1.611 0.328 0.154 0.052 0.029 0.023 0.018 0.015 0.014±0.004
MS (H) 1.618 0.329 0.153 0.051 0.028 0.023 0.018 0.016 0.014±0.003
MS-SG 1.899 0.421 0.194 0.053 0.023 0.016 0.014 0.011 0.008±0.001
MS 1.941 0.441 0.204 0.056 0.023 0.017 0.013 0.010 0.009±0.001
STORM+ (H) 1.727 0.358 0.167 0.089 0.053 0.037 0.027 0.022 0.018±0.006
STORM+ 1.604 0.349 0.177 0.059 0.026 0.019 0.017 0.011 0.009±0.002
Adam 1.452 0.327 0.153 0.052 0.030 0.024 0.021 0.019 0.016±0.003
Adagrad 1.359 0.456 0.305 0.164 0.096 0.076 0.059 0.048 0.040±0.002
SGD 1.561 0.441 0.253 0.097 0.044 0.031 0.024 0.019 0.014±0.001
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Table 5: CIFAR10 average training accuracy across 5 seeds for selected epochs. Highest accuracy
is bolded per selected epoch.

Algorithm 1 10 20 40 60 70 80 90 100

MS-SG (H) 0.405 0.886 0.946 0.982 0.990 0.992 0.994 0.995 0.995±0.000
MS (H) 0.403 0.886 0.946 0.982 0.990 0.992 0.994 0.995 0.995±0.000
MS-SG 0.317 0.854 0.932 0.981 0.992 0.995 0.995 0.996 0.997±0.001
MS 0.306 0.846 0.928 0.980 0.992 0.994 0.996 0.997 0.997±0.000
STORM+ (H) 0.365 0.876 0.941 0.968 0.981 0.987 0.990 0.992 0.994±0.001
STORM+ 0.413 0.879 0.938 0.979 0.991 0.993 0.994 0.996 0.997±0.000
Adam 0.468 0.887 0.946 0.982 0.989 0.992 0.993 0.994 0.995±0.000
Adagrad 0.504 0.840 0.894 0.945 0.969 0.976 0.983 0.986 0.988±0.001
SGD 0.423 0.847 0.912 0.966 0.985 0.989 0.992 0.994 0.995±0.000

Table 6: CIFAR10 average test loss across 5 seeds for selected epochs. Lowest loss is bolded per
selected epoch.

Algorithm 1 10 20 40 60 70 80 90 100

MS-SG (H) 1.272 0.405 0.343 0.386 0.423 0.423 0.456 0.487 0.481±0.039
MS (H) 1.250 0.390 0.337 0.390 0.431 0.441 0.444 0.446 0.460±0.021
MS-SG 1.553 0.472 0.373 0.437 0.473 0.484 0.501 0.498 0.522±0.034
MS 1.577 0.498 0.379 0.425 0.463 0.490 0.488 0.496 0.506±0.016
STORM+ (H) 1.429 0.417 0.342 0.346 0.400 0.405 0.433 0.455 0.451±0.022
STORM+ 1.321 0.457 0.355 0.385 0.404 0.423 0.443 0.457 0.470±0.025
Adam 1.222 0.412 0.335 0.384 0.401 0.432 0.434 0.441 0.446±0.025
Adagrad 1.104 0.541 0.468 0.447 0.468 0.476 0.488 0.499 0.502±0.013
SGD 1.315 0.525 0.446 0.425 0.450 0.447 0.471 0.460 0.487±0.017

Table 7: CIFAR10 average test accuracy across 5 seeds for selected epochs. Highest accuracy is
bolded per selected epoch.

Algorithm 1 10 20 40 60 70 80 90 100

MS-SG (H) 0.539 0.867 0.901 0.916 0.923 0.922 0.924 0.924 0.922±0.005
MS (H) 0.546 0.871 0.901 0.914 0.918 0.922 0.924 0.925 0.927±0.001
MS-SG 0.427 0.843 0.886 0.902 0.909 0.914 0.913 0.914 0.915±0.004
MS 0.418 0.834 0.883 0.902 0.910 0.913 0.915 0.917 0.918±0.004
STORM+ (H) 0.482 0.861 0.898 0.909 0.911 0.920 0.919 0.919 0.921±0.002
STORM+ 0.529 0.852 0.892 0.911 0.918 0.920 0.921 0.922 0.923±0.003
Adam 0.574 0.866 0.902 0.913 0.921 0.920 0.923 0.923 0.925±0.002
Adagrad 0.601 0.816 0.845 0.862 0.866 0.869 0.868 0.870 0.872±0.003
SGD 0.522 0.825 0.860 0.888 0.897 0.904 0.905 0.909 0.907±0.003

Discussion. META-STORM-SG achieves the lowest training loss and best training accuracy (with
META-STORM and STORM+ coming in close). META-STORM-SG maintains the best training
loss and accuracy for longest before the final epoch. For test loss and test accuracy, META-STORM
(H) attains the best test accuracy (with Adam coming in close) while Adam attains the best test
loss. While META-STORM-SG and META-STORM achieve low training loss, their generalization
performance seems worse than their heuristic counterparts.
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To further study this generalization gap among different algorithms, Table 8 shows the generaliza-
tion gap of different algorithms. META-STORM with heuristics and Adam achieve the smallest gap
among all the algorithms. For our algorithms, the version with heuristics exhibit a smaller gener-
alization gap than the version without the heuristics while STORM+ lies in between. Interestingly,
Adagrad and SGD exhibit larger generalization gaps.

Table 8: CIFAR10 accuracy generalization gap (train acc - test acc) of the last epoch’s accuracy.

Algorithm MS-SG/(H) MS/(H) STORM+/(H) Adam Adagrad SGD

Test acc 91.7%/92.2% 91.8%/92.7% 92.3%/92.1% 92.5% 87.2% 90.7%
Train acc 99.8%/99.5% 99.7%/99.5% 99.7%/99.4% 99.5% 98.9% 99.6%

Gen gap 8.1%/7.3% 7.9%/6.8% 7.4%/7.3% 7.0% 11.7% 8.9%

B.2.2 IMDB: RESULTS AND DISCUSSIONS

Figure 2 from Section 4 shows the train and test loss of the algorithms used. We include Figure 9
here that includes the error bars across 5 random seeds.

Tables. Tables 9 and 10 show the train and test loss for our experiments.

Table 9: IMDB average training loss across 5 seeds for selected epochs. Lowest loss for each epoch
is bolded below.

Algorithm 1 2 3 4 5 6 7 8 9 10

MS-SG (H) 0.481 0.450 0.435 0.424 0.415 0.407 0.400 0.394 0.389 0.384±0.011
MS (H) 0.482 0.450 0.435 0.424 0.415 0.407 0.400 0.393 0.389 0.384±0.010
MS-SG 0.947 0.483 0.467 0.462 0.458 0.455 0.453 0.452 0.451 0.450±0.009
MS 0.503 0.486 0.481 0.478 0.477 0.475 0.474 0.473 0.473 0.472±0.011
STORM+ (H) 0.474 0.447 0.434 0.425 0.418 0.411 0.406 0.401 0.397 0.394±0.010
STORM+ 0.495 0.476 0.471 0.466 0.464 0.461 0.460 0.459 0.458 0.458±0.007
Adam 0.602 0.514 0.515 0.525 0.536 0.548 0.559 0.568 0.575 0.577±0.013
Adagrad 0.509 0.451 0.441 0.435 0.431 0.428 0.426 0.424 0.424 0.422±0.009
SGD 0.491 0.463 0.450 0.441 0.434 0.428 0.423 0.419 0.415 0.412±0.010
AdamW 0.485 0.453 0.435 0.421 0.410 0.399 0.389 0.381 0.374 0.368±0.010
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Figure 9: Training loss and test loss on IMDB. (H) denotes the addition of heuristics.
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Figure 10: Losses and accuracies on SST2.

Table 10: IMDB test loss. Lowest loss for each epoch is bolded below.

Algorithm 1 2 3 4 5 6 7 8 9 10

MS-SG (H) 0.446 0.433 0.427 0.420 0.416 0.411 0.406 0.403 0.400 0.397±0.010
MS (H) 0.446 0.433 0.427 0.420 0.416 0.411 0.406 0.403 0.400 0.397±0.010
MS-SG 0.470 0.451 0.447 0.442 0.439 0.438 0.436 0.435 0.435 0.433±0.012
MS 0.469 0.462 0.461 0.458 0.457 0.456 0.454 0.454 0.454 0.453±0.010
STORM+ (H) 0.441 0.429 0.423 0.417 0.413 0.409 0.405 0.403 0.401 0.398±0.010
STORM+ 0.462 0.453 0.450 0.445 0.446 0.442 0.442 0.440 0.441 0.440±0.012
Adam 0.498 0.490 0.498 0.507 0.519 0.530 0.538 0.545 0.550 0.550±0.013
Adagrad 0.444 0.432 0.428 0.423 0.421 0.419 0.417 0.417 0.417 0.416±0.010
SGD 0.455 0.440 0.434 0.427 0.424 0.419 0.416 0.413 0.411 0.409±0.009
AdamW 0.455 0.441 0.433 0.425 0.420 0.414 0.409 0.405 0.401 0.398±0.009

Discussion. Here, AdamW achieves the best training loss with the heuristic algorithms coming
in close. For the test loss, these algorithms also have similar performances. All META-STORM
algorithms (with and without heuristics) perform better than STORM+ in minimizing training loss.
For test loss, META-STORM-SG performs better than STORM+ but META-STORM does not.
Both the heuristic versions of META-STORM and META-STORM-SG outperform STORM+. We
see that STORM+ with heurstics performs similarly to META-STORM with heuristics.

B.2.3 SST2: FULL RESULTS AND DISCUSSIONS

Figure 10 shows all 4 plots of the main experiments for SST2.
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Tables. Tables 11 and 12 present the training loss and accuracy for the experiments for SST2.
Tables 13 and 14 show the validation loss and accuracy for the experiments for SST2.

Table 11: SST2 training loss. Lowest loss for each epoch is bolded below.

Algorithm 1 2 3 4

META-STORM-SG (H) 0.200 0.098 0.057 0.032±0.005
META-STORM (H) 0.200 0.098 0.056 0.032±0.005
META-STORM-SG 0.258 0.188 0.165 0.154±0.008
META-STORM 0.251 0.173 0.146 0.132±0.008
STORM+ (H) 0.532 0.112 0.073 0.057±0.006
STORM+ 0.357 0.255 0.218 0.195±0.269
Adam 0.216 0.111 0.071 0.048±0.006
Adagrad 0.227 0.158 0.141 0.134±0.006
SGD 0.257 0.144 0.099 0.070±0.005
AdamW 0.211 0.110 0.071 0.048±0.006

Table 12: SST2 training accuracy. Highest accuracy for each epoch is bolded below.

Algorithm 1 2 3 4

META-STORM-SG (H) 0.923 0.966 0.980 0.988±0.002
META-STORM (H) 0.923 0.966 0.980 0.988±0.003
META-STORM-SG 0.893 0.927 0.937 0.941±0.003
META-STORM 0.896 0.933 0.945 0.951±0.002
STORM+ (H) 0.733 0.946 0.957 0.963±0.001
STORM+ 0.817 0.868 0.883 0.891±0.179
Adam 0.914 0.961 0.975 0.983±0.001
Adagrad 0.910 0.940 0.947 0.951±0.003
SGD 0.893 0.947 0.965 0.976±0.002
AdamW 0.917 0.961 0.975 0.983±0.002

Table 13: SST2 validation loss. Lowest loss for each epoch is bolded below.

Algorithm 1 2 3 4

META-STORM-SG (H) 0.205 0.226 0.261 0.302±0.012
META-STORM (H) 0.199 0.218 0.260 0.297±0.010
META-STORM-SG 0.238 0.238 0.242 0.245±0.007
META-STORM 0.233 0.238 0.247 0.251±0.011
STORM+ (H) 0.216 0.224 0.255 0.273±0.005
STORM+ 0.308 0.326 0.327 0.350±0.195
Adam 0.222 0.236 0.242 0.269±0.007
Adagrad 0.223 0.234 0.243 0.244±0.003
SGD 0.230 0.228 0.238 0.268±0.011
AdamW 0.220 0.234 0.243 0.269±0.006
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Table 14: SST2 validation accuracy. Highest accuracy for each epoch is bolded below.

Algorithm 1 2 3 4

META-STORM-SG (H) 0.924 0.929 0.933 0.934±0.004
META-STORM (H) 0.926 0.927 0.929 0.936±0.002
META-STORM-SG 0.910 0.912 0.915 0.915±0.002
META-STORM 0.913 0.916 0.916 0.917±0.005
STORM+ (H) 0.920 0.923 0.925 0.925±0.003
STORM+ 0.838 0.841 0.841 0.843±0.187
Adam 0.921 0.925 0.926 0.926±0.004
Adagrad 0.912 0.915 0.915 0.916±0.002
SGD 0.915 0.924 0.925 0.925±0.003
AdamW 0.921 0.925 0.926 0.926±0.004

Discussions. Similarly to CIFAR10, we examine the generalization gap of different algorithms in
Table 15. Here, we see that MS-SG attains the lowest generalization gap between training accuracy
and test accuracy while Adam suffers from the largest generalization gap among the algorithms
compared in our experiments.

Table 15: SST2 accuracy generalization gap (train acc − test acc) of the last epoch’s accuracy.

Algorithm MS-SG/(H) MS/(H) STORM+/(H) Adam Adagrad SGD
Train acc. 94.1%/98.8% 95.1%/98.8% 89.1%/96.3% 98.3% 95.1% 97.6%
Val acc. 91.5%/93.6% 91.7%/93.6% 84.3%/92.5% 92.6% 91.6% 92.5%
Gen. gap 2.6%/5.2% 3.4%/5.2% 4.8%/3.8% 5.7% 3.5% 5.1%

C ASSUMPTIONS AND NOTATIONS

C.1 ASSUMPTIONS

We recall the assumptions in Section 1.2 we rely on:

1. Lower bounded function value: F ∗ := infx∈Rd F (x) > −∞.

2. Unbiased estimator with bounded variance: We assume to have access to ∇f(x, ξ) satisfying
Eξ [∇f(x, ξ)] = ∇F (x), Eξ

[
‖∇f(x, ξ)−∇F (x)‖2

]
≤ σ2 for some σ ≥ 0.

3. Averaged β-smoothness: Eξ
[
‖∇f(x, ξ)−∇f(y, ξ)‖2

]
≤ β2‖x− y‖2,∀x, y ∈ Rd.

4. Bounded stochastic gradients: ‖∇f(x, ξ)‖ ≤ Ĝ,∀x ∈ Rd, ξ ∈ support(D) for some Ĝ ≥ 0.

5. Bounded stochastic gradient differences: ‖∇f(x, ξ) − ∇f(x, ξ′)‖ ≤ 2σ̂,∀x ∈ Rd, ξ, ξ′ ∈
support(D) for some σ̂ ≥ 0.

We remind the reader that σ = O(σ̂) and σ̂ = O(Ĝ).

C.2 NOTATIONS

In the analysis below, we employ the following notations

βmax := max {β, 1} ; Dt :=

t∑
i=1

‖di‖2 ; Et,s :=

t∑
i=1

asi+1 ‖εi‖
2

;
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Ht :=

t∑
i=1

‖∇F (xi)‖2 ; Ĥt :=

t∑
i=1

‖∇f(xi, ξi)‖2 ; H̃t :=

t∑
i=1

‖∇f(xi, ξi)−∇f(xi, ξi+1)‖2

We will also write Et := Et,0 =
∑t
i=1 ‖εi‖

2. We denote Ft = σ (ξi, 1 ≤ i ≤ t) as the sigma
algebra generated by the first t samples. Besides, we define 00 := 1. In Section I, we will list and
prove all inequalities used in the subsequent proofs.

D PROOF SKETCH FOR THEOREM 2.3

In this section, to give an overview of the proof techniques, we present the proof sketch for Theorem
2.3 for the special case p = 1

2 . For simplicity, we assume β ≥ 1 to simplify the notation. The
analysis of the fully adaptive algorithms follows a similar approach to the non-adaptive analysis
given in Section 3. As before, towards our final goal of bounding ‖∇F (xout)‖, we will translate to
HT and upper bound it via DT and ET .

Bounding ET : As in existing VR algorithms, we need to calculate how the stochastic error εt
changes with each iteration. By a standard calculation, we obtain

at+1‖εt‖2 ≤ ‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

(11)

where

Zt+1 = ∇f(xt+1, ξt+1)−∇f(xt, ξt+1)−∇F (xt+1) +∇F (xt);

Mt+1 = 2(1− at+1)2〈εt, Zt+1〉+ 2(1− at+1)at+1〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉.

We note that, in META-STORM, at+1 ∈ Ft+1, which implies E[Mt+1 | Ft] 6= 0. This extra term
Mt+1 makes our analysis more challenging compared with previous works. Now, we highlight some
challenges and point out how to solve them:

CHALLENGE 1. How to obtain a term as close to ET as possible with a proper upper bound? In
the L.H.S. of (11), we can see an extra coefficient at+1 appear in front of ‖εt‖2. A straightforward
option is to divide both sides by at+1 then sum up to get ET . However, if we do so, the following
problem arises. Let us focus on the term ‖Zt+1‖2/at+1 . The averaged β-smoothness assumption
gives

E
[
‖Zt+1‖2 | Ft

]
≤ η2β2 ‖dt‖2

b2t
.

However, we cannot apply this result to ‖Zt+1‖2/at+1 since at+1 ∈ Ft+1 as noted above. If we
temporarily think a−1t+1 ≤ ca

−1
t for some constant c (we can expect this because the change from at

to at+1 is not too large due to the bounded differences assumption), we will get E[a−1t+1|‖Zt+1‖2 |
Ft] ≤ E[ca−1t ‖Zt+1‖2 | Ft] ≤ η2β2 ‖dt‖2

atb2t
. If we plug in the update rule of bt = (b20+DT )1/2/a

1/4
t ,

then we obtain E[‖Zt+1‖2|/at+1 | Ft] ≤ η2β2a
−1/2
t

‖dt‖2
b20+Dt

. It can be shown that
∑T
t=1

‖dt‖2
b20+DT

can

be upper bounded by log DT

b20
, but now we still have the extra a−1/2t coefficent. To remove it, it is

reasonable to divide both sides of (11) by a1/2t+1 rather than at+1.

CHALLENGE 2. How to get rid of the term involving Mt+1? As discussed in Challenge 1,
we want to divide both sides by a

1/2
t+1. Now we focus on the term a

−1/2
t+1 Mt+1. Again, due to

at+1 ∈ Ft+1, E[a
−1/2
t+1 Mt+1 | Ft] 6= 0. An important observation here is that, if we replace at+1 by

at in Mt+1, we will have a martingale difference sequence. Formally, we define

Nt+1 = 2(1− at)2〈εt, Zt+1〉+ 2(1− at)at〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉.

Then E[Nt+1 | Ft] and E[a
−1/2
t Nt+1 | Ft] are both 0. This observation tells us that, in

order to bound E[
∑T
t=1 a

−1/2
t+1 Mt+1], it suffices to bound E[

∑T
t=1 a

−1/2
t+1 Mt+1 − a

−1/2
t Nt+1].

Using the Cauchy-Schwartz inequality, we show that the term
∑T
t=1 a

−1/2
t+1 Mt+1 − a

−1/2
t Nt+1
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can be bounded by terms related to
∑T
t=1(a

−1/2
t+1 − a

−1/2
t )‖εt‖2,

∑T
t=1 a

−1/2
t+1 ‖Zt+1‖2 and∑T

t=1 a
3/2
t ‖∇f(xt+1, ξt+1) − ∇F (xt+1)‖2. We then bound these latter terms in turn, and elim-

inate the term involving Mt+1.

After overcoming the two challenges above, we can finally show the following inequality, where
K1,K2,K4 are constants that depend only on σ, σ̂, β, a0, b0, η and are independent of T .

E
[
a
1/2
T+1ET

]
≤ E

[
ET,1/2

]
≤ K1 +K2E

[
log
(

1 + H̃T /a
2
0

)]
+K4E

[
log
(
1 + DT /b

2
0

)]
. (12)

Bounding DT : By following the standard non-adaptive analysis via smoothness, we obtain

F (xt+1) ≤ F (xt)−
η

bt
〈∇F (xt), dt〉+

η2β

2b2t
‖dt‖2. (13)

Here we proceed similarly to the non-adaptive analysis from Section 3.1, but start to diverge
from the analysis approach used in STORM+. The STORM+ analysis proceeds by splitting
−〈∇F (xt), dt〉 = −‖∇F (xt)‖2 − 〈∇F (xt), εt〉 ≤ − 1

2‖∇F (xt)‖2 + 1
2‖εt‖

2, multiplying both
sides of (13) with bt/η, and summing up over all iterations. This gives the following upper bound
on HT :

HT =

T∑
t=1

‖∇F (xt)‖2 ≤
T∑
t=1

2

η
(F (xt)− F (xt+1)) bt +

T∑
t=1

‖εt‖2 + ηβ

T∑
t=1

‖dt‖2

bt
.

This analysis requires F (x) to be bounded so that the sum
∑T
t=1

2
η (F (xt) − F (xt+1))bt can tele-

scope. To remove this assumption, we go back to (13), split −〈∇F (xt), dt〉 = −‖dt‖2 + 〈εt, dt〉,
and upper bound the inner product via the Cauchy-Schwartz inequality and the inequality ab ≤
γ
2a

2 + 1
2γ b

2 which holds for any γ > 0:

〈εt, dt〉 ≤ ‖εt‖‖dt‖ ≤
λa

1/2
t+1bt

2ηβ
‖εt‖2 +

ηβ

2λa
1/2
t+1bt

‖dt‖2

where λ > 0 is a constant (setting λ based on σ̂ yields the best dependence on σ̂). We note that
this choice will need a bound on E[

∑T
t=1 a

1/2
t+1‖εt‖2], and 1/2 turns out to be the smallest choice of

c which makes E[
∑T
t=1 a

c
t+1‖εt‖2] have a constant order. The intuition for setting γ =

λa
1/2
t+1bt
ηβ is

that this coefficient ensures a constant split if at and bt correspond to the non-adaptive choices we
derived in Section 3.1, which were set so that a1/2b = Θ (β). We obtain

E

[
T∑
t=1

‖dt‖2

bt

]
≤ 2

η
(F (x1)− F ∗) + E

[
T∑
t=1

(
ηβ +

ηβ

a
1/2
t+1λ

− bt

)
‖dt‖2

b2t

]
︸ ︷︷ ︸

(?)

+
λ

ηβ
E
[
ET,1/2

]︸ ︷︷ ︸
(??)

.

(14)

The term (?) can be bounded using standard techniques used in the analyses of adaptive algorithms.
The term (??) has already been bounded in the previous analysis. Now we only need to simplify
the term on the L.H.S. to DT . But due to the randomness of bt, this is not achievable. However,
the same as for the first inequality in (12), we can bridge this gap by aiming for a slightly weaker
inequality that bounds D1/2

T instead of DT . More precisely, we connect the left-hand side of (14) to
D

1/2
T as follows:

T∑
t=1

‖dt‖2

bt
≥ −b0 +

b20
b0

+

T∑
t=1

a
1/4
T+1‖dt‖2(

b20 +
∑T
i=1 ‖di‖2

)1/2 ≥ a1/4T+1D
1/2
T − b0. (15)

By plugging in (15) into (14) and setting λ appropriately, we can finally obtain the following upper
bound:

E
[
a
1/4
T+1D

1/2
T

]
≤ K5 +K6E

[
log
(

1 + H̃T /a
2
0

)]
+K7E

log
K8 +K9

(
1 + H̃T /a

2
0

)1/3
b0

 .
(16)
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where K5,K6,K7,K8,K9 depend only on σ, σ̂, β, a0, b0, η and are independent of T .

Combining the bounds: The final part of the analysis is to combine (12) and (16). In contrast
to the simpler non-adaptive analysis, these inequalities bound a1/2T+1ET and a1/4T+1D

1/2
T instead of

DT and ET . In order to obtain an upper bound on HT via the inequality HT ≤ 2DT + 2ET , we
need to connect a1/2T+1ET and a1/4T+1D

1/2
T and DT and ET . The bounded variance assumption on

the stochastic gradients gives us a bound on E[a
−3/2
T+1 ] = E[1 + H̃T /a

2
0] = O(1 + σ2T ) (note that

this −3/2 is the smallest c to make sure we can upper bound E[act+1]). Combining this result and
Holder’s inequality gives us the bound

E
[
D

3/7
T

]
≤ E6/7

[
a
1/4
T+1D

1/2
T

]
E1/7

[
a
−3/2
T+1

]
;

E
[
E

3/7
T

]
≤ E3/7

[
a
1/2
T+1ET

]
E4/7

[
a
−3/8
T+1

]
≤ E3/7

[
a
1/2
T+1ET

]
E1/7

[
a
−3/2
T+1

]
;

where 3/7 is chosen to ensure that we finally can use the bound on E[a
−3/2
T+1 ]. Thus we obtain an

upper bound on E[H
3/7
T ]. Finally, applying the concavity of x3/7 to E[H

3/7
T ] gives Theorem 2.3.

E BASIC ANALYSIS

As discussed in Section 3, we aim to use ET and DT to bound HT . Here, we apply this framework
to give some basic results which will be used frequently for the full analysis of every algorithm. We
first state the following decomposition in our analysis framework. The reason we use p̂ ≤ 1 here is
that we can not always bound HT directly because of the randomness of at and bt in our algorithms.
Lemma E.1. Given p̂ ≤ 1, we have

E
[
Hp̂
T

]
≤ 2p̂+1 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
≤ 4 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
.

Proof. By the definition of HT , ET and DT , we have HT ≤ 2ET + 2DT . Hence

Hp̂
T ≤ (2ET + 2DT )

p̂
(a)

≤ 2p̂Ep̂T + 2p̂Dp̂
T

⇒ E
[
Hp̂
T

]
≤ 2p̂

(
E
[
Ep̂T

]
+ E

[
Dp̂
T

])
≤ 2p̂+1 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
(b)

≤ 4 max
{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
where (a) and (b) are both by due to p̂ ≤ 1.

E.1 VARIANCE REDUCTION ANALYSIS FOR ET

The same as in all existing momentum-based VR methods, we need to analyze how the error term
εt changes in the algorithm. Based on our notations, we give the following two standard lemmas.
Lemma E.2. ∀t ≥ 1, we have

at+1‖εt‖2 ≤ ‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2

+ 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1,

where

Zt+1 := ∇f(xt+1, ξt+1)−∇f(xt, ξt+1)−∇F (xt+1) +∇F (xt),

Mt+1 := 2(1− at+1)2〈εt, Zt+1〉+ 2(1− at+1)at+1〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉.

Proof. Starting from the definition of εt+1, we have

‖εt+1‖2 = ‖dt+1 −∇F (xt+1)‖2
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= ‖∇f(xt+1, ξt+1) + (1− at+1)(dt −∇f(xt, ξt+1))−∇F (xt+1)‖2

= ‖(1− at+1)εt + (1− at+1)Zt+1 + at+1(∇f(xt+1, ξt+1)−∇F (xt+1))‖2

= (1− at+1)2‖εt‖2

+ ‖(1− at+1)Zt+1 + at+1(∇f(xt+1, ξt+1)−∇F (xt+1))‖2 +Mt+1

(a)

≤ (1− at+1)2‖εt‖2

+ 2(1− at+1)2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

(b)

≤ (1− at+1)‖εt‖2

+ 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

where (a) is by (x + y)2 ≤ 2x2 + 2y2, (b) is by 0 ≤ 1 − at+1 ≤ 1. Adding at+1‖εt‖2 − ‖εt+1‖2
to both sides, we get the desired result.

Lemma E.3. ∀t ≥ 1, we have

E
[
‖Zt+1‖2 | Ft

]
≤ η2β2 ‖dt‖2

b2t
.

Proof. From the definition of Zt+1, we have

E
[
‖Zt+1‖2 | Ft

]
= E

[
‖∇f(xt+1, ξt+1)−∇f(xt, ξt+1)−∇F (xt+1) +∇F (xt)‖2|Ft

]
(a)

≤ E
[
‖∇f(xt+1, ξt+1)−∇f(xt, ξt+1)‖2|Ft

]
(b)

≤ β2‖xt+1 − xt‖2
(c)
= η2β2 ‖dt‖2

b2t

where (a) is by E
[
‖X − E [X] ‖2

]
≤ E

[
‖X‖2

]
, (b) is by the averaged β-smooth assumption, (c)

is by the fact xt+1 − xt = − η
bt
dt.

E.2 ON THE WAY TO BOUND DT

We choose to bound the terms DT instead of starting from HT as done in AdaGradNorm or
STORM+. The latter also requires the bounded function value assumption in the analysis.
Lemma E.4. For any of META-STORM-SG, META-STORM or META-STORM-NA, we have, for
any λ > 0

E
[
aqT+1D

1−p
T

]
≤ b

1
p−1
0 +

2

η
(F (x1)− F ∗)

+ E

[
T∑
t=1

(
ηβmax +

ηβmax

a
1/2
t+1λ

− bt

)
‖dt‖2

b2t

]
+
λE
[
ET,1/2

]
ηβmax

.

Proof. Using smoothness, the update rule xt+1 = xt− η
bt
dt and the definition of εt = dt−∇F (xt),

we obtain

F (xt+1) ≤ F (xt) + 〈∇F (xt), xt+1 − xt〉+
β

2
‖xt+1 − xt‖2

= F (xt)−
η〈∇F (xt), dt〉

bt
+
η2β

2b2t
‖dt‖2

= F (xt)−
η‖dt‖2

bt
+
η〈εt, dt〉
bt

+
η2β

2b2t
‖dt‖2.

First we use Cauchy-Schwarz to separate the stochastic gradient and the stochastic error terms

F (xt+1) ≤ F (xt)−
η‖dt‖2

bt
+
λtη‖εt‖2

2bt
+
η‖dt‖2

2λtbt
+
η2β

2b2t
‖dt‖2.
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Taking

λt =
λa

1/2
t+1bt

ηβmax

for some λ > 0. We have

η‖dt‖2

2bt
≤ F (xt)− F (xt+1) +

(
η2β

2b2t
+

η

2λtbt
− η

2bt

)
‖dt‖2 +

λtη‖εt‖2

2bt

= F (xt)− F (xt+1) +

(
η2β

2b2t
+

η2βmax

2b2ta
1/2
t+1λ

− η

2bt

)
‖dt‖2 +

λa
1/2
t+1‖εt‖2

2βmax

= F (xt)− F (xt+1) +

(
η2β

2
+
η2βmax

2a
1/2
t+1λ

− ηbt
2

)
‖dt‖2

b2t
+
λa

1/2
t+1‖εt‖2

2βmax

≤ F (xt)− F (xt+1) +

(
η2βmax

2
+
η2βmax

2a
1/2
t+1λ

− ηbt
2

)
‖dt‖2

b2t
+
λa

1/2
t+1‖εt‖2

2βmax

⇒ E

[
T∑
t=1

‖dt‖2

bt

]
≤ 2

η
(F (x1)− F ∗) + E

[
T∑
t=1

(
ηβmax +

ηβmax

a
1/2
t+1λ

− bt

)
‖dt‖2

b2t

]
+
λE
[
ET,1/2

]
ηβmax

.

The final step is to relate the L.H.S. to DT . Recall for META-STORM-SG and META-STORM-NA,
we have

bt = (b
1/p
0 +

t∑
i=1

‖di‖2)p/aqt+1.

Hence

T∑
t=1

‖dt‖2

bt
=

T∑
t=1

aqt+1‖dt‖2

(b
1/p
0 +

∑t
i=1 ‖di‖2)p

≥
T∑
t=1

aqT+1‖dt‖2

(b
1/p
0 +

∑T
i=1 ‖di‖2)p

= aqT+1(b
1/p
0 +

T∑
i=1

‖di‖2)1−p − aqT+1

b
1/p
0

(b
1/p
0 +

∑T
i=1 ‖di‖2)p

≥ aqT+1(b
1/p
0 +

T∑
i=1

‖di‖2)1−p − b1/p−10

≥ aqT+1D
1−p
T − b1/p−10 .

The same result holds for META-STORM by a similar proof. By using this bound, the proof is
finished.

To finish section, we prove a technical result, Lemma E.5, which will be very useful in the proof
of every algorithm. The motivation to prove it is because we want to bound the term inside the
expectation part in Lemma E.4.

Lemma E.5. Given A,B ≥ 0. We have

• for META-STORM-SG and META-STORM-NA

T∑
t=1

(
A+

B

a
1/2
t+1

− bt

)
‖dt‖2

b2t
≤ (A+B)

1
p−1

1− p
log

A+ a
−1/2
T+1 B

b0
.

• for META-STORM

T∑
t=1

(
A+

B

a
1/2
t

− bt

)
‖dt‖2

b2t
≤ (A+B)

1
p−1

1− p
log

A+ a
−1/2
T+1 B

b0
.
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Proof. In META-STORM-SG and META-STORM-NA, we have

bt = (b
1/p
0 +

t∑
i=1

‖di‖2)p/aqt+1

where p+ 2q = 1. Define the set

S =

{
t ∈ [T ] : bt ≤ A+

B

a
1/2
t+1

}
and let s = maxS. We know

T∑
t=1

(
A+

B

a
1/2
t+1

− bt

)
‖dt‖2

b2t
≤
∑
t∈S

(
A+

B

a
1/2
t+1

− bt

)
‖dt‖2

b2t

=
∑
t∈S

(
A+

B

a
1/2
t+1

− bt

)
a
q/p
t+1b

1/p
t − aq/pt b

1/p
t−1

b2t

(a)

≤
∑
t∈S

(
A+

B

a
1/2
t+1

− bt

)
a
q/p
t+1

b
1/p
t − b1/pt−1

b2t

=
∑
t∈S

(
a
1/2
t+1A+B − a1/2t+1bt

)
a
q
p−

1
2

t+1 b
1
p−2
t

b
1/p
t − b1/pt−1

b
1/p
t

where (a) is by at ≥ at+1. Note that(
a
1/2
t+1A+B − a1/2t+1bt

)
a
q
p−

1
2

t+1 b
1
p−2
t

(b)

≤
(
A+B − a1/2t+1bt

)
a
q
p−

1
2

t+1 b
1
p−2
t

(c)
=
(
A+B − a1/2t+1bt

)
a

1
2p−1
t+1 b

1
p−2
t

=
(
A+B − a1/2t+1bt

)(
a
1/2
t+1bt

) 1
p−2

(d)

≤

(
A+B
1
p − 1

) 1
p−1(

1

p
− 2

) 1
p−2

≤ p

1− p
(A+B)

1
p−1

where (b) holds by at+1 ≤ 1, (c) is due to q
p −

1
2 = 2q−p

2p = 1−2p
2p = 1

2p − 1 by p+ 2q = 1 and (d)

is by applying Lemma I.8. Thus we know
T∑
t=1

(
A+

B

a
1/2
t+1

− bt

)
‖dt‖2

b2t
≤ p

1− p
(A+B)

1
p−1

∑
t∈S

b
1/p
t − b1/pt−1

b
1/p
t

(e)

≤ (A+B)
1
p−1

1− p
∑
t∈S

log
bt
bt−1

(f)

≤ (A+B)
1
p−1

1− p

s∑
t=1

log
bt
bt−1

=
(A+B)

1
p−1

1− p
log

bs
b0

(g)

≤ (A+B)
1
p−1

1− p
log

A+ a
−1/2
T+1 B

b0

where (e) is by taking x = (bt/bt−1)
1/p in 1− 1

x ≤ log x, (f) is because bt is increasing. The reason
(g) is true is that bs ≤ A+a

−1/2
s+1 B ≤ A+a

−1/2
T+1 B where the first inequality is due to s ∈ S and the

second one holds by that a−1/2t is increasing. Now we finish the proof for META-STORM-SG and
META-STORM-NA. The proof for META-STORM is essentially the same hence omitted here.
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F ANALYSIS OF META-STORM FOR GENERAL p

In this section, we give a general analysis for our Algorithm META-STORM. We will see that p = 1
2

is a special corner case. First we recall the choices of at and bt

at+1 = (1 +

t∑
i=1

‖∇f(xi, ξi)−∇f(xi, ξi+1)‖2 /a20)−2/3,

bt = (b
1/p
0 +

t∑
i=1

‖di‖2)p/aqt

where p, q satisfy p+ 2q = 1, p ∈
[
3−
√
7

2 , 12

]
. a0 > 0 and b0 > 0 are absolute constants. Naturally,

we have a1 = 1. We will finally prove the following theorem.

Theorem F.1. Under the assumptions 1-3 and 5, by defining p̂ = 3(1−p)
4−p ∈

[
3
7 ,
√

7− 2
]
, we have

E
[
Hp̂
T

]

≤4


(

2K1

K4

) p̂
1−2p

+

((
2K2

K4

) p̂
1−2p

+ (2K4)
p̂
2p

)(
1 + 2σ2T

a20

) p̂
3

p 6= 1
2(

2K1 + 2
(
K2 + K4

3

)
log
(

1 + 2σ2T
a20

)
+ 2K4

p̂ log 4K4

b2p̂0

)p̂ (
1 + 2σ2T

a20

) p̂
3

+ b2p̂0 p = 1
2

+ 4

(
K5 +

(
K6 +

K7

3

)
log

(
1 +

2σ2T

a20

)
+K7 log

K8 +K9

b0

) p̂
1−p

(
1 +

2σ2T

a20

) p̂
3

,

where Ki, i ∈ [9] are some constants only depending on a0, b0, η, σ, σ̂, β, p, q, F (x1) − F ∗. To
simplify our final bound, we only indicate the dependency on β and F (x1)− F ∗.

E
[
Hp̂
T

]
= O

((
(F (x1)− F ∗)

p̂
1−p + β

p̂
p log

p̂
1−p β + β

p̂
p log

p̂
1−p

(
1 + σ2T

))
(1 + σ2T )

p̂
3

)
.

Remark F.2. For all i ∈ [9], the constant Ki will be defined in the proof that follows.

By using the concavity of xp̂, we state the following convergence theorem without proof.

Theorem F.3. Under the assumptions 1-3 and 5, by defining p̂ = 3(1−p)
4−p ∈

[
3
7 ,
√

7− 2
]
, we have

E
[
‖∇F (xout)‖2p̂

]
= O

(
(F (x1)− F ∗)

p̂
1−p + β

p̂
p log

p̂
1−p β + β

p̂
p log

p̂
1−p

(
1 + σ2T

))( 1

T p̂
+
σ2p̂/3

T 2p̂/3

)
.

Here, we give a more explicit convergence dependency for p = 1
2 used in Theorem 2.3

Theorem F.4. Under the assumptions 1-3 and 5, when p = 1
2 , by setting λ =

min
{

1, (a0/σ̂)7/3
}

(which is used in K5to K9) we get the best dependency on σ̂. For simplicity,
under the setting a0 = b0 = η = 1, we have

E
[
‖∇F (xout)‖6/7

]
= O

((
Q1 +Q2 log6/7

(
1 + σ2T

))( 1

T 3/7
+
σ2/7

T 2/7

))
whereQ1 = O

(
(F (x1)− F ∗)6/7 + σ12/7 + (σ̂σ)

6/7
+ σ̂18/7 +

(
1 + σ̂18/7

)
β6/7 log6/7

(
β + σ̂3β

))
and Q2 = O

((
1 + σ̂18/7

)
β6/7

)
.

To start with, we first state the following useful bound for at:
Lemma F.5. ∀α ∈ (0, 3/2] and ∀t ≥ 1, there is(

at
at+1

)α
≤ 1 +

(
4σ̂2

a20

) 2α
3

aαt .
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Especially, taking α ∈ {1/2, 1, 3/2}, we have(
at
at+1

)1/2

≤ 1 +
41/3σ̂2/3

a
2/3
0

a
1/2
t ;

at
at+1

≤ 1 +
42/3σ̂4/3

a
2/3
0

at;(
at
at+1

)3/2

≤ 1 +
4σ̂2

a20
a
3/2
t .

Proof. Note that(
at
at+1

)α
= aαt

(
1

a
3/2
t

+
‖∇f(xt, ξt)−∇f(xt, ξt+1)‖2

a20

)2α/3

=

(
1 +
‖∇f(xt, ξt)−∇f(xt, ξt+1)‖2

a20
a
3/2
t

)2α/3

≤
(

1 +
4σ̂2

a20
a
3/2
t

)2α/3

≤ 1 +

(
4σ̂2

a20

)2α/3

aαt

where the last inequality is because 2α/3 ≤ 1.

Lemma F.5 allows us to obtain some other properties of at.
Lemma F.6. For t ≥ 1 (

(1− at+1)2 − (1− at)2
)2

at+1
≤ 42/3σ̂4/3

a
4/3
0

((1− at+1)at+1 − (1− at)at)2

at+1
≤ 42/3σ̂4/3

a
4/3
0

a2t .

Proof. Let at+1 = x, at = y and note that x ≤ y ≤ 1. For the first inequality,(
(1− at+1)2 − (1− at)2

)2
at+1

≤ (1− x)2 − (1− y)2

x

=
(y − x)(2− x− y)

x
≤ (

y

x
− 1)(2− y)

≤ 42/3σ̂4/3

a
2/3
0

at × (2− at) (Lemma F.5)

≤ 42/3σ̂4/3

a
4/3
0

.

For the second inequality, we have

((1− at+1)at+1 − (1− at)at)2

at+1
=

((1− x)x− (1− y)y)
2

x
=

(y − x)2(1− x− y)2

x

≤ (y − x)2

x
≤
(y
x
− 1
)
y

≤ 42/3σ̂4/3

a
2/3
0

at × at (Lemma F.5)

=
42/3σ̂4/3

a
4/3
0

a2t .
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F.1 ANALYSIS OF ET

Following a similar approach, we first define a random time τ satisfying

τ = max {[T ] , at ≥ K−1} ,

where
K−1 := min

{
1, a40/(144σ̂4)

}
.

One thing we need to emphasize here is that, in our current choice, at ∈ Ft, which implies
{τ + 1 = t} = {τ = t− 1} = {at−1 ≥ K−1, at < K−1} ∈ Ft. This means τ + 1 is a stopping
time instead of τ itself. We now prove a useful proposition for τ :
Lemma F.7. We have

at+1 ≥ K0,∀t ≤ τ,
a−1t+1 − a

−1
t ≤ 2/9,∀t ≥ τ + 1.

where

K0 := (K
−3/2
−1 + 4σ̂2/a20)−2/3 = (max

{
1, 1728σ̂6/a60

}
+ 4σ̂2/a20)−2/3.

Proof. First, by the definition of τ , we know at ≥ K−1 ≥ K0,∀t ≤ τ . For time τ , we have

a
−3/2
τ+1 − a−3/2τ = ‖∇f(xτ , ξτ )−∇f(xτ , ξτ+1)‖2/a20 ≤ 4σ̂2/a20

⇒ a−1τ+1 ≤ (a−3/2τ + 4σ̂2/a20)2/3 ≤ (K
−3/2
−1 + 4σ̂2/a20)2/3 = K−10 ,

which implies aτ+1 ≥ K0.

For the second proposition, let h(y) = y2/3. Due to the concavity of h, we know h(y1)− h(y2) ≤
h′(y2)(y1 − y2) = 2(y1−y2)

3y
1/3
2

. Now we have

a−1t+1 − a
−1
t = (a

−3/2
t + ‖∇f(xt, ξt)−∇f(xt, ξt+1)‖2/a20)2/3 − (a

−3/2
t )2/3

≤ 2a
1/2
t ‖∇f(xt, ξt)−∇f(xt, ξt+1)‖2

3a20
≤ 8a

1/2
t σ̂2

3a20
≤ 2

9

where the last step is by at ≤ aτ+1 < K−1 ≤ a40/(144σ̂4).

F.1.1 BOUND ON E
[
Eτ,3/2−2`

]
FOR ` ∈

[
1
4 ,

1
2

]
Unlike STORM+ in which they bound E [Eτ ], we choose to bound E

[
Eτ,3/2−2`

]
. We first prove

the following bound on E
[
Eτ,3/2−2`

]
:

Lemma F.8. For any ` ∈
[
1
4 ,

1
2

]
, we have

E
[
Eτ,3/2−2`

]
≤

2σ2 + 16

(
1 + 6σ̂4/3

a
4/3
0

)(
3a20 + 5σ̂2

)
K

2`−1/2
0

+

4

(
1 + 6σ̂4/3

a
4/3
0

)
η2β2

K
2`−1/2
0

E

[
T∑
t=1

‖dt‖2

b2t

]
.

Proof. We start from Lemma E.2

at+1‖εt‖2 ≤ ‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1.

Summing up from 1 to τ and taking expectations on both sides, we will have

E [Eτ,1]

≤E

[
τ∑
t=1

‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

]

≤σ2 + E

[
τ∑
t=1

2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

]
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≤σ2 + E

[
T∑
t=1

2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +

τ∑
t=1

Mt+1

]
. (17)

First we bound E [
∑τ
t=1Mt+1]. From the definition of Mt+1, we have

E [Mt+1] = E
[
2(1− at+1)2〈εt, Zt+1〉+ 2(1− at+1)at+1〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉

]
.

Now for t ≥ 1, we define

Nt+1 := 2(1− at)2〈εt, Zt+1〉+ 2(1− at)at〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉 ∈ Ft+1

with N1 := 0. A key observation is that

E

[
τ∑
t=1

Nt+1

]
= 0.

This is because Nt :=
∑t
i=1Nt is a martingale and τ + 1 is a bounded stopping time. Then by

optional sampling theorem, we have

E

[
τ∑
t=1

Nt+1

]
= E

[
τ+1∑
t=1

Nt

]
= E [Nτ+1] = 0.

By subtracting E [
∑τ
t=1Mt+1] by E [

∑τ
t=1Nt+1], we obtain

E

[
τ∑
t=1

Mt+1

]
= E

[
τ∑
t=1

2
(
(1− at+1)2 − (1− at)2

)
〈εt, Zt+1〉

+ 2 ((1− at+1)at+1 − (1− at)at) 〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉] . (18)

Using Cauchy-Schwarz inequality for each term, we have

2
(
(1− at+1)2 − (1− at)2

)
〈εt, Zt+1〉

≤2
∣∣(1− at+1)2 − (1− at)2

∣∣ ‖εt‖‖Zt+1‖

≤at+1

4
‖εt‖2 +

4
(
(1− at+1)2 − (1− at)2

)2
at+1

‖Zt+1‖2,

2 ((1− at+1)at+1 − (1− at)at) 〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉
≤2 |(1− at+1)at+1 − (1− at)at| ‖εt‖‖∇f(xt+1, ξt+1)−∇F (xt+1)‖

≤at+1

4
‖εt‖2 +

4 ((1− at+1)at+1 − (1− at)at)2

at+1
‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2.

Plugging the above bounds into (18), we obtain

E

[
τ∑
t=1

Mt+1

]

≤E


τ∑
t=1

at+1

2
‖εt‖2 +

(
(1− at+1)2 − (1− at)2

)2
at+1︸ ︷︷ ︸
(i)

4‖Zt+1‖2

+

τ∑
t=1

((1− at+1)at+1 − (1− at)at)2

at+1︸ ︷︷ ︸
(ii)

4‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2

 . (19)

Plugging the bounds for (i) and (ii) from Lemma F.6 into (19), the following bound on
E [
∑τ
t=1Mt+1] comes up

E

[
τ∑
t=1

Mt+1

]
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≤E

[
τ∑
t=1

at+1

2
‖εt‖2 +

45/3σ̂4/3

a
4/3
0

‖Zt+1‖2 +
45/3σ̂4/3

a
4/3
0

a2t‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2
]

≤E

[
1

2
Eτ,1 +

12σ̂4/3

a
4/3
0

‖Zt+1‖2 +
12σ̂4/3

a
4/3
0

a2t‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2
]
.

Then from (17), we have

E [Eτ,1] ≤ σ2 + E
[

1

2
Eτ,1

]
+ E

[
T∑
t=1

(
2 +

12σ̂4/3

a
4/3
0

)
‖Zt+1‖2

]

+ E

[
T∑
t=1

(
2a2t+1 +

12σ̂4/3

a
4/3
0

a2t

)
‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2

]
,

which will give us

E [Eτ,1] ≤ 2σ2 + 4

(
1 +

6σ̂4/3

a
4/3
0

)
E

 T∑
t=1

‖Zt+1‖2︸ ︷︷ ︸
(iii)



+ E


T∑
t=1

4

(
a2t+1 +

6σ̂4/3

a
4/3
0

a2t

)
‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2︸ ︷︷ ︸

(iv)

 . (20)

For term (iii), Lemma E.3 tells us

E
[
‖Zt+1‖2 | Ft

]
≤η2β2 ‖dt‖2

b2t
. (21)

For term (iv), we know

E [(iv)] = E

[
T∑
t=1

4

(
a2t+1 +

6σ̂4/3

a
4/3
0

a2t

)
‖∇f(xt+1, ξt+1)− E [∇f(xt+1, ξt+2)|Ft+1] ‖2

]

≤ E

[
T∑
t=1

4

(
a2t+1 +

6σ̂4/3

a
4/3
0

a2t

)
E
[
‖∇f(xt+1, ξt+1)−∇f(xt+1, ξt+2)‖2|Ft+1

]]

= E

[
T∑
t=1

4

(
a2t+1 +

6σ̂4/3

a
4/3
0

a2t

)
‖∇f(xt+1, ξt+1)−∇f(xt+1, ξt+2)‖2

]
. (22)

Note that

a2t =

(
1 +

t−1∑
i=1

‖∇f(xi, ξi)−∇f(xi, ξi+1)‖2/a20

)4/3

,

then we have
T∑
t=1

4

(
a2t+1 +

6σ̂4/3

a
4/3
0

a2t

)
‖∇f(xt+1, ξt+1)−∇f(xt+1, ξt+2)‖2

=4a20

T∑
t=1

‖∇f(xt+1, ξt+1)−∇f(xt+1, ξt+2)‖2/a20(
1 +

∑t
i=1 ‖∇f(xi, ξi)−∇f(xi, ξi+1)‖2/a20

)4/3
+ 24σ̂4/3a

2/3
0

T∑
t=1

‖∇f(xt+1, ξt+1)−∇f(xt+1, ξt+2)‖2/a20(
1 +

∑t−1
i=1 ‖∇f(xi, ξi)−∇f(xi, ξi+1)‖2/a20

)4/3
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≤4a20

(
12 +

8σ̂2

a20

)
+ 24σ̂4/3a

2/3
0

(
12 +

20σ̂2

a20

)
=16

(
3a20 + 2σ̂2

)
+ 96

σ̂4/3

a
4/3
0

(
3a20 + 5σ̂2

)
≤16

(
1 +

6σ̂4/3

a
4/3
0

)(
3a20 + 5σ̂2

)
, (23)

where, for the first inequality, we use Lemma I.4 and Lemma I.5. Plugging (21) and (23) into (20),
we obtain

E [Eτ,1] ≤ 2σ2 + 16

(
1 +

6σ̂4/3

a
4/3
0

)(
3a20 + 5σ̂2

)
+ 4

(
1 +

6σ̂4/3

a
4/3
0

)
η2β2E

[
T∑
t=1

‖dt‖2

b2t

]
.

Note that by Lemma F.7, we have for t ≤ τ ,at+1 ≥ K0. By using this property and noticing
2`− 1/2 ≥ 0 , we can obtain

E
[
K

2`−1/2
0 Eτ,3/2−2`

]
=E

[
K

2`−1/2
0

τ∑
t=1

a
3/2−2`
t+1 ‖εt‖2

]
≤ E

[
τ∑
t=1

at+1‖εt‖2
]

≤2σ2 + 16

(
1 +

6σ̂4/3

a
4/3
0

)(
3a20 + 5σ̂2

)
+ 4

(
1 +

6σ̂4/3

a
4/3
0

)
η2β2E

[
T∑
t=1

‖dt‖2

b2t

]
,

which will give the desired bound immediately.

F.1.2 BOUND ON E [ET,1−2`] FOR ` ∈
[
1
4 ,

1
2

]
With the previous result on E

[
Eτ,3/2−2`

]
, we can bound E [ET,1−2`].

Lemma F.9. For any ` ∈
[
1
4 ,

1
2

]
, we have

E [ET,1−2`] ≤ K1(`) +K2(`)

E
[(

H̃T /a
2
0

) 4`−1
3

]
` > 1

4

E
[
log
(

1 + H̃T /a
2
0

)]
` = 1

4

+ E

[
T∑
t=1

(
K3(`)a2`t +

3
(
1 + 2`2

)
`2

)
η2β2 ‖dt‖2

a2`t b
2
t

]
,

where

K1(`) := 3

(
σ2 +

24
(
1 + `2

)
σ̂2

`2

)
+

72σ̂2

(
σ2 + 8

(
1 + 6σ̂4/3

a
4/3
0

)(
3a20 + 5σ̂2

))
a20K

2`−1/2
0

K2(`) :=


9(1+2`2)a20
`2(4`−1) ` 6= 1

4
3(1+2`2)a20

`2 ` = 1
4

K3(`) :=
144σ̂2

K
2`−1/2
0 a20

(
1 +

6σ̂4/3

a
4/3
0

)
+

3
(
1 + 2`2

)
`2

(
4σ̂2

a20

) 4`
3

Proof. We use a similar strategy as in the previous proof in which we bound E
[
Eτ,3/2−2`

]
. Starting

from Lemma E.2

at+1‖εt‖2 ≤ ‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1.
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Dividing both sides by a2`t+1, taking the expectations on both sides and summing up from 1 to T to
get

E [ET,1−2`] ≤ E
[ T∑
t=1

‖εt‖2

a2`t+1

− ‖εt+1‖2

a2`t+1

+
2

a2`t+1

‖Zt+1‖2 + 2a2−2`t+1 ‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +
Mt+1

a2`t+1

]

≤ σ2 + E

[
T∑
t=1

(
a−2`t+1 − a

−2`
t

)
‖εt‖2

+

T∑
t=1

2

a2`t+1

‖Zt+1‖2 + 2a2−2`t+1 ‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +
Mt+1

a2`t+1

]
. (24)

As before, we bound E
[
Mt+1

a2`t+1

]
first. From the definition of Mt+1, we have

E
[
Mt+1

a2`t+1

]
= E

[
2(1− at+1)2

a2`t+1

〈εt, Zt+1〉+ 2(1− at+1)a1−2`t+1 〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉
]
.

A similar key observation is that, if we replace at+1 by at, we can find

E
[

2(1− at)2

a2`t
〈εt, Zt+1〉+ 2(1− at)a1−2`t 〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉

]
= 0.

By subtracting E
[
Mt+1

a2`t+1

]
by 0, we know

E
[
Mt+1

a2`t+1

]
= E

[
2

(
(1− at+1)2

a2`t+1

− (1− at)2

a2`t

)
〈εt, Zt+1〉

+2
(
(1− at+1)a1−2`t+1 − (1− at)a1−2`t

)
〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉

]
. (25)

Using Cauchy-Schwarz for each term

2

(
(1− at+1)2

a2`t+1

− (1− at)2

a2`t

)
〈εt, Zt+1〉

≤2

∣∣∣∣ (1− at+1)2

a2`t+1

− (1− at)2

a2`t

∣∣∣∣ ‖εt‖‖Zt+1‖

≤
(
a−2`t+1 − a

−2`
t

)
‖εt‖2 +

(
(1−at+1)

2

a2`t+1

− (1−at)2
a2`t

)2
a−2`t+1 − a

−2`
t

‖Zt+1‖2,

2
(
(1− at+1)a1−2`t+1 − (1− at)a1−2`t

)
〈εt,∇f(xt+1, ξt+1)−∇F (xt+1)〉

≤2
∣∣(1− at+1)a1−2`t+1 − (1− at)a1−2`t

∣∣ ‖εt‖‖∇f(xt+1, ξt+1)−∇F (xt+1)‖

≤
(
a−2`t+1 − a

−2`
t

)
‖εt‖2 +

(
(1− at+1)a1−2`t+1 − (1− at)a1−2`t

)2
a−2`t+1 − a

−2`
t

‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2,

Plugging these two bounds into (25), we obtain

E
[
Mt+1

a2`t+1

]
≤ E

[
2
(
a−2`t+1 − a

−2`
t

)
‖εt‖2

]
+ E


(

(1−at+1)
2

a2`t+1

− (1−at)2
a2`t

)2
a−2`t+1 − a

−2`
t︸ ︷︷ ︸

(i)

‖Zt+1‖2



+ E


(
(1− at+1)a1−2`t+1 − (1− at)a1−2`t

)2
a−2`t+1 − a

−2`
t︸ ︷︷ ︸

(ii)

‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2

 .
(26)
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To bound (i) and (ii), let a`t+1 = x, a`t = y and note that 0 ≤ x ≤ y ≤ 1. By Lemma I.6, we have
for (i) (

(1−at+1)
2

a2`t+1

− (1−at)2
a2`t

)2
a−2`t+1 − a

−2`
t

=

(
(1−x1/`)2

x2 − (1−y1/`)2
y2

)2
x2y2

y2 − x2

≤ 1

`2x2
=

1

`2a2`t+1

. (27)

For (ii), by Lemma I.7,(
(1− at+1)a1−2`t+1 − (1− at)a1−2`t

)2
a−2`t+1 − a

−2`
t

=

(
(1− x1/`)x1/`−2 − (1− y1/`)y1/`−2

)2
x2y2

y2 − x2

≤ y2/`−2

`2
=
a2−2`t

`2
. (28)

Plugging (27) and (28) into (26), we will have

E
[
Mt+1

a2`t+1

]
≤ E

[
2
(
a−2`t+1 − a

−2`
t

)
‖εt‖2

+
1

`2a2`t+1

‖Zt+1‖2 +
a2−2`t

`2
‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2

]
.

Now combining this with (24), we obtain

E [ET,1−2`] ≤ σ2 + E


T∑
t=1

3
(
a−2`t+1 − a

−2`
t

)
‖εt‖2︸ ︷︷ ︸

(iii)

+

T∑
t=1

1 + 2`2

`2a2`t+1

‖Zt+1‖2︸ ︷︷ ︸
(iv)

+

T∑
t=1

(
a2−2`t

`2
+ 2a2−2`t+1

)
‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2︸ ︷︷ ︸

(v)

 . (29)

For (iii), we split the sum according to τ then use Lemma F.7 and Lemma F.5,

T∑
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3
(
a−2`t+1 − a

−2`
t

)
‖εt‖2 =

τ∑
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3
(
a−2`t+1 − a

−2`
t

)
‖εt‖2 +

T∑
t=τ+1

3
(
a−2`t+1 − a

−2`
t

)
‖εt‖2

Note that 3/2− 2` ∈
[
1
2 , 1
]
, we have

a−2`t+1 − a
−2`
t =

(
1

a
3/2
t+1

− 1

a2`t a
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)
a
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a
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−3/2
t

)
a
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≤ 4σ̂2

a20
a
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t+1 , (Lemma F.5)

and we can use Lemma F.7 to bound for t ≥ τ + 1

a−2`t+1 − a
−2`
t =

(
1

at+1
− 1

a2`t a
1−2`
t+1

)
a1−2`t+1 ≤

(
a−1t+1 − a

−1
t

)
a1−2`t+1

≤ 2

9
a1−2`t+1 .
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Thus
T∑
t=1

3
(
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)
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For (iv), note that

E
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≤ 1 + 2`2
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]
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2
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,

where the last step is by Lemma E.3. Hence we obtain

E

[
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For (v), by the same argument when bounding (22), we know
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Now we use Lemma I.2 and Lemma I.3 to get
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Plugging the bounds on (iii), (iv) and (v) into (29), we get
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which gives us
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Now we plug in the bound on E
[
Eτ,3/2−2`

]
in Lemma F.8 to get the final result
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+
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where
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F.1.3 BOUND ON E
[
ET,1/2

]
The following bound on E

[
ET,1/2

]
will be useful when we bound DT .

Corollary F.10. We have

E
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Proof. Take ` = 1
4 in Lemma F.9.
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F.1.4 BOUND ON E
[
a1−2qT+1 ET

]
With the previous result on E [ET,1−2`], we can bound E
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]
immediately.
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4 , by a similar argument, we have
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Now we can define
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The final step is by noticing for 1− 2q = p > 0,
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F.2 ANALYSIS OF DT

We will prove the following bound
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don’t choose λ explicitly anymore. Plugging in the bound on E

[
ET,1/2

]
in Corollary F.10, we have

E
[
aqT+1D

1−p
T

]
≤b

1
p−1
0 +

2

η
(F (x1)− F ∗) +

λK1(1/4)

ηβmax
+
λK2(1/4)

ηβmax
E

[
log

a20 + H̃T

a20

]

+ E

[
T∑
t=1

(
ηβmax +

ηβmax

a
1/2
t+1λ

+
K3(1/4)λη2β2

ηβmax
+

54λη2β2

a
1/2
t ηβmax

− bt

)
‖dt‖2

b2t

]

≤K5 +K6E

[
log

a20 + H̃T

a20

]

+ E

[
T∑
t=1

(
(1 + λK3(1/4)) ηβmax +

(
a
1/2
t

λa
1/2
t+1

+ 54λ

)
ηβmax

a
1/2
t

− bt

)
‖dt‖2

b2t

]

≤K5 +K6E

[
log

a20 + H̃T

a20

]

39



Under review as a conference paper at ICLR 2023

+ E
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where, in the last step, we use Lemma F.5. Next, we apply Lemma E.5 to (i) to get
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By plugging the above bound into (30), we get the desired result.

F.3 COMBINE THE BOUNDS AND THE FINAL PROOF

From Lemma F.11, we have
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Now we can give the final proof of Theorem F.1.
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Note that by Holder inequality
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E
1−2p
p̂

[
Ep̂T

]
≤ K1

K4
+
K2

K4

(
2σ2T

a20

) 1−2p
3

⇒ E
[
Ep̂T

]
≤

(
K1

K4
+
K2

K4

(
2σ2T

a20

) 1−2p
3

) p̂
1−2p

≤
(

2K1

K4

) p̂
1−2p

+

(
2K2

K4

) p̂
1−2p

(
2σ2T

a20

) p̂
3

.

If K4E
1−2p
p̂

[
Ep̂T

]
≥ K1 +K2

(
2σ2T/a20

) 1−2p
3 , then we know

E
[
Ep̂T

]
≤ (2K4)

p̂ E1−2p
[
Ep̂T

](
1 +

2σ2T

a20

) 2pp̂
3

⇒ E
[
Ep̂T

]
≤ (2K4)

p̂
2p

(
1 +

2σ2T

a20

) p̂
3

.

Combining two results, we know when q 6= 1
4

E
[
Ep̂T

]
≤
(

2K1

K4

) p̂
1−2p

+

(
2K2

K4

) p̂
1−2p

(
2σ2T

a20

) p̂
3

+ (2K4)
p̂
2p

(
1 +

2σ2T

a20

) p̂
3
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≤
(

2K1

K4

) p̂
1−2p

+

((
2K2

K4

) p̂
1−2p

+ (2K4)
p̂
2p

)(
1 +

2σ2T

a20

) p̂
3

.

Following a similar approach, we can prove for q = 1
4 ,there is

E
[
Ep̂T

]
≤

K1 +K2 log

(
1 +

2σ2T

a20

)
+
K4

p̂
log

1 +
E
[
Ep̂T

]
b2p̂0

p̂(
1 +

2σ2T

a20

) p̂
3

Now we use Lemma I.9 to get

E
[
Ep̂T

]
≤

2K1 + 2K2 log

(
1 +

2σ2T

a20

)
+

2K4

p̂
log

4K4

(
1 + 2σ2T

a20

) p̂
3

b2p̂0


p̂(

1 +
2σ2T

a20

) p̂
3

+ b2p̂0

=

(
2K1 + 2

(
K2 +

K4

3

)
log

(
1 +

2σ2T

a20

)
+

2K4

p̂
log

4K4

b2p̂0

)p̂(
1 +

2σ2T

a20

) p̂
3

+ b2p̂0 .

Finally, we have

E
[
Ep̂T

]
≤


(

2K1

K4

) p̂
1−2p

+

((
2K2

K4

) p̂
1−2p

+ (2K4)
p̂
2p

)(
1 + 2σ2T

a20

) p̂
3

q 6= 1
4(

2K1 + 2
(
K2 + K4

3

)
log
(

1 + 2σ2T
a20

)
+ 2K4

p̂ log 4K4

b2p̂0

)p̂ (
1 + 2σ2T

a20

) p̂
3

+ b2p̂0 q = 1
4

.

Case 2: E
[
Dp̂
T

]
≥ E

[
Ep̂T

]
. In this case, we will finally prove

E
[
Dp̂
T

]
≤
(
K5 +

(
K6 +

K7

3

)
log

(
1 +

2σ2T

a20

)
+K7 log

K8 +K9

b0

) p̂
1−p

(
1 +

2σ2T

a20

) p̂
3

Note that by Holder inequality

E
[
Dp̂
T

]
= E

[
a
p̂q

1−p
T+1D

p̂
T × a

− p̂q
1−p

T+1

]
≤ E

p̂
1−p

[
aqT+1D

1−p
T

]
E

1−p−p̂
1−p

[
a
− p̂q

1−p−p̂
T+1

]
= E

p̂
1−p

[
aqT+1D

1−p
T

]
E

1−p−p̂
1−p

[(
1 + H̃T /a

2
0

) 2p̂q
3(1−p−p̂)

]
= E

p̂
1−p

[
aqT+1D

1−p
T

]
E
p̂
3

[
1 + H̃T /a

2
0

]
,

where the last step is by 2p̂q
3(1−p−p̂) = (1−p)p̂

3(1−p−p̂) = 1. We know

E
[
aqT+1D

1−p
T

]
≤ K5 +K6E

[
log

a20 + H̃T

a20

]
+K7E

log
K8 +K9

(
1 + H̃T /a

2
0

)1/3
b0


(e)

≤ K5 +K6 log
a20 + E

[
H̃T

]
a20

+K7 log

K8 +K9E
[(

1 + H̃T /a
2
0

)1/3]
b0

(f)

≤ K5 +K6 log
a20 + E

[
H̃T

]
a20

+K7 log
K8 +K9

(
1 + E

[
H̃T

]
/a20

)1/3
b0
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(g)

≤ K5 +K6 log
a20 + 2σ2T

a20
+K7 log

K8 +K9

(
1 + 2σ2T/a20

)1/3
b0

,

where (e) is by the concavity of log function, (f) holds due to E
[
X1/3

]
≤ E1/3 [X] for X ≥ 0, (g)

is by E
[
H̃T

]
≤ 2σ2T . Then we have

E
[
Dp̂
T

]
≤ E

p̂
1−p

[
aqT+1D

1−p
T

]
E
p̂
3

[
1 + H̃T /a

2
0

]
≤

(
K5 +K6 log

a20 + 2σ2T

a20
+K7 log

K8 +K9

(
1 + 2σ2T/a20

)1/3
b0

) p̂
1−p (

1 +
2σ2T

a20

) p̂
3

≤
(
K5 +

(
K6 +

K7

3

)
log

(
1 +

2σ2T

a20

)
+K7 log

K8 +K9

b0

) p̂
1−p

(
1 +

2σ2T

a20

) p̂
3

.

Finally, combining Case 1 and Case 2 and using (31), we get the desired result and finish the proof

E
[
Hp̂
T

]
≤4 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}

≤4


(

2K1

K4

) p̂
1−2p

+

((
2K2

K4

) p̂
1−2p

+ (2K4)
p̂
2p

)(
1 + 2σ2T

a20

) p̂
3

q 6= 1
4(

2K1 + 2
(
K2 + K4

3

)
log
(

1 + 2σ2T
a20

)
+ 2K4

p̂ log 4K4

b2p̂0

)p̂ (
1 + 2σ2T

a20

) p̂
3

+ b2p̂0 q = 1
4

+ 4

(
K5 +

(
K6 +

K7

3

)
log

(
1 +

2σ2T

a20

)
+K7 log

K8 +K9

b0

) p̂
1−p

(
1 +

2σ2T

a20

) p̂
3

.

G ANALYSIS OF META-STORM-SG FOR GENERAL p

In this section, we give a general analysis for our Algorithm META-STORM-SG. Readers will see
p = 1

2 is a very special corner case. First we recall the choices of at and bt:

at+1 = (1 +

t∑
i=1

‖∇f(xi, ξi)‖/a20)−2/3,

bt = (b
1/p
0 +

t∑
i=1

‖di‖2)p/aqt+1

where p, q satisfy p+ 2q = 1, p ∈
[
1
4 ,

1
2

]
. a0 > 0 and b0 > 0 are absolute constants. Naturally, we

have a1 = 1. We will finally prove the following theorem.

Theorem G.1. Under the assumptions 1-4, by defining p̂ = 2(1−p)
3 ∈

[
1
3 ,

1
2

]
, we have

E
[
Hp̂
T

]
≤4C91

[(
2σ2T

)p̂ ≤ 4C9

]
+ 4C101

[(
2σ2T

)p̂ ≤ 4C10

]

+ 4


(

2C1

C3

) p̂
1−2p

+

((
2C2

C3

) p̂
1−2p

+ (2C3)
p̂
2p

)(
1 +

2(2σ2T)
p̂

a2p̂0

) 1
3

p 6= 1
2(

C1 +
(
C2

p̂ + C3

p̂

)
log

(
1 +

(2σ2T)
p̂

min{a2p̂0 /2,4b2p̂0 }

))p̂(
1 +

2(2σ2T)
p̂

a2p̂0

) 1
3

p = 1
2

.

+ 4

(
C4 + (3C5 + C6) log

a
2/3
0 + 2

(
2σ2T

)1/3
a
2/3
0

+ C6 log
2C7 + 2C8

b0

) p̂
1−p
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×

(
1 +

2
(
2σ2T

)p̂
a2p̂0

)1/3

where Ci, i ∈ [10] are some constants only depending on a0, b0, σ, Ĝ, β, p, q, F (x1) − F ∗. To
simplify our final bound, we only indicate the dependency on β and F (x1)−F ∗ when σ 6= 0 and T
is big enough to eliminate C9 and C10

E
[
Hp̂
T

]
= O

((
(F (x1)− F ∗)

p̂
1−p + β

p̂
p log

p̂
1−p β + β

p̂
p log

p̂
1−p

(
1 + σ2T

))
(1 + σ2T )

p̂
3

)
.

Remark G.2. For all i ∈ [10], the constant Ci will be defined in the proof that follows.

Again, by the concavity of xp̂, we have the following convergence theorem, of which the proof is
omitted.
Theorem G.3. Under the assumptions 1-4 by defining p̂ = 2(1−p)

3 ∈
[
1
3 ,

1
2

]
, when σ 6= 0 and T is

big enough, we have

E
[
‖∇F (xout)‖2p̂

]
= O

(
(F (x1)− F ∗)

p̂
1−p + β

p̂
p log

p̂
1−p β + β

p̂
p log

p̂
1−p

(
1 + σ2T

))( 1

T p̂
+
σ2p̂/3

T 2p̂/3

)
.

Here, we give a more explicit convergence dependency for p = 1
2 used in Theorem 2.1.

Theorem G.4. Under the assumptions 1-4, when p = 1
2 , by setting λ = min

{
1, (a0/Ĝ)2

}
(which

is used in C4 to C8 and C10) we get the best dependency on Ĝ. For simplicity, under the setting
a0 = b0 = η = 1, we have

E
[
‖∇F (xout)‖2/3

]
= O

W11
[(
σ2T

)1/3 ≤W1

]
T 1/3

+
(
W2 +W3 log2/3

(
1 + σ2T

))( 1

T 1/3
+
σ2/9

T 2/9

)
where W1 = O

(
F (x1)− F ∗ + σ2 + Ĝ2 + β

(
1 + Ĝ2

)
log
(
β + Ĝ2β

))
, W2 =

O
(

(F (x1)− F ∗)2/3 + σ4/3 + Ĝ4/3 + (1 + Ĝ4/3)β2/3 log2/3
(
β + Ĝ2β

))
and W3 =

O
(

(1 + Ĝ4/3)β2/3
)

.

To start with, we first state the following useful bound for at:
Lemma G.5. ∀t ≥ 1, there is

a
−3/2
t+1 − a

−3/2
t ≤ (Ĝ/a0)2.

Proof.

a
−3/2
t+1 − a

−3/2
t = ‖∇f(xt, ξt)‖2/a20 ≤ (Ĝ/a0)2.

G.1 ANALYSIS OF ET

Following a similar approach, we define a random time τ satisfying

τ = max {[T ] , at ≥ C0}
where

C0 := min
{

1, (a0/Ĝ)4
}
.

Note that {τ = t} = {at ≥ C0, at+1 < C0} ∈ Ft, this means τ is a stopping time. We now prove
a useful proposition of τ :
Lemma G.6. ∀t ≥ τ + 1, we have

a−1t+1 − a
−1
t ≤2/3.
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Proof. Let h(y) = y2/3. Due to the concavity, we know h(y1) − h(y2) ≤ h′(y2)(y1 − y2) =
2(y1−y2)
3y

1/3
2

. Now we have

a−1t+1 − a
−1
t = (a

−3/2
t + ‖∇f(xt, ξt)‖2/a20)2/3 − (a

−3/2
t )2/3

≤ 2a
1/2
t ‖∇f(xt, ξt)‖2

3a20
≤ 2a

1/2
t Ĝ2

3a20
≤ 2

3

where the last step is by at ≤ aτ+1 < C0 ≤ (a0/Ĝ)4.

G.1.1 BOUND ON E
[
Eτ,3/2−2`

]
FOR ` ∈

[
1
4 ,

1
2

]
Similar to the analysis of META-STORM, we choose to bound E

[
Eτ,3/2−2`

]
. We first prove the

following bound on E
[
Eτ,3/2−2`

]
:

Lemma G.7. For any ` ∈
[
1
4 ,

1
2

]
, we have

E
[
Eτ,3/2−2`

]
≤ σ2 + 24a20 + 4Ĝ2

C
2`−1/2
0

+
2η2β2

C
2`−1/2
0

E

[
T∑
t=1

‖dt‖2

b2t

]
.

Proof. We start from Lemma E.2,

at+1‖εt‖2 ≤ ‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2

+ 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1.

Summing up from 1 to τ − 1 and taking the expectations on both sides, we obtain

E [Eτ−1,1] ≤ E
[ τ−1∑
t=1

‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2

+ 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

]
= E

[
‖ε1‖2 − ‖ετ‖2 +

τ−1∑
t=1

2‖Zt+1‖2

+ 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

]
≤ E

[
‖ε1‖2 − ‖ετ‖2 +

T∑
t=1

2‖Zt+1‖2

+ 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +

τ−1∑
t=1

Mt+1

]

⇒ E
[
Eτ−1,1 + ‖ετ‖2

]
≤ σ2 + E

[ T∑
t=1

2‖Zt+1‖2

+ 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +

τ−1∑
t=1

Mt+1

]
Because C0 ≤ 1, aτ+1 ≤ 1, 2`− 1/2 ≥ 0 and 3/2− 2` ≥ 0, so we have

C
2`−1/2
0 a

3/2−2`
τ+1 ≤ 1.

Besides, for t ≤ τ − 1, by the definition of τ , we have C0 ≤ at+1, then we know

C
2`−1/2
0 a

3/2−2`
t+1 ≤ a2`−1/2t+1 a

3/2−2`
t+1 = at+1.
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These two results give us

C
2`−1/2
0 Eτ,3/2−2` = C

2`−1/2
0

τ∑
t=1

a
3/2−2`
t+1 ‖εt‖2 ≤

τ−1∑
t=1

at+1‖εt‖2 + ‖ετ‖2

= Eτ−1,1 + ‖ετ‖2,

which implies

E
[
C

2`−1/2
0 Eτ,3/2−2`

]
≤ σ2 + E

[ T∑
t=1

2‖Zt+1‖2

+ 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +

τ−1∑
t=1

Mt+1

]

LetMt :=
∑t
i=1Mi ∈ Ft with M1 = 0. For s ≤ t, we know E [Mt|Fs] = 0, hence Mt is a

martingale. Note that τ is a bounded stopping time, hence by optional sampling theorem

E

[
τ−1∑
t=1

Mt+1

]
= E [Mτ ] = 0.

Now we have

E
[
C

2`−1/2
0 Eτ,3/2−2`

]
≤ σ2 + E

[
T∑
t=1

2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2
]
.

By Lemma E.3

E
[
‖Zt+1‖2 | Ft

]
≤ η2β2 ‖dt‖2

b2t
.

Besides, under our current choice, at+1 ∈ Ft,

E
[
a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2|Ft

]
=a2t+1E

[
‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2|Ft

]
≤a2t+1E

[
‖∇f(xt+1, ξt+1)‖2|Ft

]
.

Using these two bounds, we have

E
[
C

2`−1/2
0 Eτ,3/2−2`

]
≤ σ2 + E

[
T∑
t=1

2η2β2 ‖dt‖2

b2t
+ 2a2t+1‖∇f(xt+1, ξt+1)‖2

]

= σ2 + E

[
T∑
t=1

2η2β2 ‖dt‖2

b2t
+ 2a20 ×

‖∇f(xt+1, ξt+1)‖2/a20
(1 +

∑t
i=1 ‖∇f(xi, ξi)‖2/a20)4/3

]

≤ σ2 + 24a20 + 4Ĝ2 + 2η2β2E

[
T∑
t=1

‖dt‖2

b2t

]
,

where the last inequality holds by Lemma I.4. Dividing both sides by C2`−1/2
0 , we get the desired

bound immediately

E
[
Eτ,3/2−2`

]
≤ σ2 + 24a20 + 4Ĝ2

C
2`−1/2
0

+
2η2β2

C
2`−1/2
0

E

[
T∑
t=1

‖dt‖2

b2t

]
.
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G.1.2 BOUND ON E [ET,1−2`] FOR ` ∈
[
1
4 ,

1
2

]
With the previous result on E

[
Eτ,3/2−2`

]
, we can bound E [ET,1−2`].

Lemma G.8. For any ` ∈
[
1
4 ,

1
2

]
, we have

E [ET,1−2`] ≤ C1(`) + C2(`)

E
[(

ĤT /a
2
0

) 4`−1
3

]
` > 1

4

E
[
log
(

1 + ĤT /a
2
0

)]
` = 1

4

+ E

[
T∑
t=1

(
Ĝ2

a20C
2`−1/2
0

a2`t+1 + 1

)
6η2β2 ‖dt‖2

a2`t+1b
2
t

]
,

where

C1(`) := 3

σ2 + 6Ĝ2 +
Ĝ2
(
σ2 + 24a20 + 4Ĝ2

)
a20C

2`−1/2
0


C2(`) :=

{
18a20
4`−1 ` > 1

4

6a20 ` = 1
4

.

Proof. Starting from Lemma E.2 as well

at+1‖εt‖2 ≤ ‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1.

Dividing both sides by a2`t+1 and taking expectations, we have

E
[
a1−2`t+1 ‖εt‖2

]
≤ E

[
‖εt‖2

a2`t+1

− ‖εt+1‖2

a2`t+1

+
2

a2`t+1

‖Zt+1‖2

+ 2a2−2`t+1 ‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +
Mt+1

a2`t+1

]
. (32)

Note that under our current choice, at+1 ∈ Ft, hence we have

E
[
Mt+1

a2`t+1

]
= E

[
E [Mt+1|Ft]

a2`t+1

]
= 0;

E
[
‖Zt+1‖2

a2`t+1

]
= E

[
E
[
‖Zt+1‖2|Ft

]
a2`t+1

]
≤ E

[
η2β2 ‖dt‖2

a2`t+1b
2
t

]
;

E
[
a2−2`t+1 ‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2

]
= E

[
a2−2`t+1 E

[
‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2|Ft

]]
≤ E

[
a2−2`t+1 ‖∇f(xt+1, ξt+1)‖2

]
,

where the second bound holds by Lemma E.3. Plugging these three bounds into (32), we know

E
[
a1−2`t+1 ‖εt‖2

]
≤ E

[
‖εt‖2

a2`t+1

− ‖εt+1‖2

a2`t+1

+ 2η2β2 ‖dt‖2

a2`t+1b
2
t

+ 2a2−2`t+1 ‖∇f(xt+1, ξt+1)‖2
]
.

Now sum up from 1 to T to get

E [ET,1−2`]

≤E

[
T∑
t=1

‖εt‖2

a2`t+1

− ‖εt+1‖2

a2`t+1

+ 2η2β2 ‖dt‖2

a2`t+1b
2
t

+ 2a2−2`t+1 ‖∇f(xt+1, ξt+1)‖2
]

≤σ2 + E


T∑
t=1

(
a−2`t+1 − a

−2`
t

)
‖εt‖2︸ ︷︷ ︸

(i)

+2η2β2
T∑
t=1

‖dt‖2

a2`t+1b
2
t

+

T∑
t=1

2a2−2`t+1 ‖∇f(xt+1, ξt+1)‖2︸ ︷︷ ︸
(ii)

 .
(33)
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For (i), we split the time by τ
T∑
t=1

(
a−2`t+1 − a

−2`
t

)
‖εt‖2 =

τ∑
t=1

(
a−2`t+1 − a

−2`
t

)
‖εt‖2 +

T∑
t=τ+1

(
a−2`t+1 − a

−2`
t

)
‖εt‖2

≤
τ∑
t=1

(
a
−3/2
t+1 − a

−3/2
t

)
a
3/2−2`
t+1 ‖εt‖2 +

T∑
t=τ+1

(
a−1t+1 − a

−1
t

)
a1−2`t+1 ‖εt‖2

≤ Ĝ2

a20

τ∑
t=1

a
3/2−2`
t+1 ‖εt‖2 +

T∑
t=τ+1

2

3
a1−2`t+1 ‖εt‖2

≤ Ĝ2

a20

τ∑
t=1

a
3/2−2`
t+1 ‖εt‖2 +

T∑
t=1

2

3
a1−2`t+1 ‖εt‖2

=
Ĝ2

a20
Eτ,3/2−2` +

2

3
ET,1−2`,

where the second inequality is by Lemma G.5 and Lemma G.6.

Next, for (ii), we use Lemma I.2 to get
T∑
t=1

2a2−2`t+1 ‖∇f(xt+1, ξt+1)‖2

=2a20

T∑
t=1

‖∇f(xt+1, ξt+1)‖2/a20(
1 +

∑t
i=1 ‖∇f(xi, ξi)‖2/a20

)4(1−`)/3
≤2a20 ×

3Ĝ2

a20
+

 1
1−4(1−`)/3

(∑T
i=1 ‖∇f(xi,ξi)‖

2

a20

)1−4(1−`)/3
4(1− `)/3 < 1

log
(

1 +
∑T
i=1 ‖∇f(xi,ξi)‖

2

a20

)
4(1− `)/3 = 1



=6Ĝ2 +


6a20
4`−1

(
ĤT /a

2
0

) 4`−1
3

` > 1
4

2a20 log
(

1 + ĤT /a
2
0

)
` = 1

4

.

Plugging these two bounds into (33), we have

E [ET,1−2`] ≤ σ2 + 6Ĝ2 + E

[
Ĝ2

a20
Eτ,3/2−2` +

2

3
ET,1−2` + 2η2β2

T∑
t=1

‖dt‖2

a2`t+1b
2
t

]

+


6a20
4`−1

(
ĤT /a

2
0

) 4`−1
3

` > 1
4

2a20 log
(

1 + ĤT /a
2
0

)
` = 1

4

.

Thus

E [ET,1−2`] ≤ 3
(
σ2 + 6Ĝ2

)
+

3Ĝ2

a20
E
[
Eτ,3/2−2`

]
+


18a20
4`−1E

[(
ĤT /a

2
0

) 4`−1
3

]
` > 1

4

6a20E
[
log
(

1 + ĤT /a
2
0

)]
` = 1

4

+ 6η2β2E

[
T∑
t=1

‖dt‖2

a2`t+1b
2
t

]
Plugging the bound on E

[
Eτ,3/2−2`

]
in Lemma G.7, we finally get

E [ET,1−2`] ≤ 3

σ2 + 6Ĝ2 +
Ĝ2
(
σ2 + 24a20 + 4Ĝ2

)
a20C

2`−1/2
0


︸ ︷︷ ︸

C1(`)

+C2(`)

E
[(

ĤT /a
2
0

) 4`−1
3

]
` > 1

4

E
[
log
(

1 + ĤT /a
2
0

)]
` = 1

4
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+ E

[
T∑
t=1

(
Ĝ2

a20C
2`−1/2
0

a2`t+1 + 1

)
6η2β2 ‖dt‖2

a2`t+1b
2
t

]
,

where

C2(`) :=

{
18a20
4`−1 ` > 1

4

6a20 ` = 1
4

.

G.1.3 BOUND ON E
[
ET,1/2

]
The following bound on E

[
ET,1/2

]
will be useful when we bound DT .

Corollary G.9. We have

E
[
ET,1/2

]
≤ C1 (1/4) + C2 (1/4)E

[
log
(

1 + ĤT /a
2
0

)]
+ E

[
T∑
t=1

(
Ĝ2

a20
a
1/2
t+1 + 1

)
6η2β2 ‖dt‖2

a
1/2
t+1b

2
t

]
.

Proof. Take ` = 1
4 in Lemma G.8.

G.1.4 BOUND ON E
[
a1−2qT+1 ET

]
Lemma G.10. Given p+ 2q = 1,p ∈

[
1
4 ,

1
2

]
, we have

E
[
a1−2qT+1 ET

]
≤

C1 + C2E
[(

ĤT /a
2
0

) 4q−1
3

]
+ C3E

[
D1−2p
T

]
q > 1

4

C1 + C2E
[
log
(

1 + ĤT /a
2
0

)]
+ C3E

[
log
(

1 + DT

b20

)]
q = 1

4

,

where

C1 := C1(q)

C2 := C2(q)

C3 :=


(

Ĝ2

a20C
2q−1/2
0

+ 1

)
6η2β2

4q−1 q > 1
4(

Ĝ2

a20
+ 1
)

6η2β2 q = 1
4

.

Proof. When p 6= 1
2 ⇔ q > 1

4 , by Lemma G.8, taking ` = q, we know

E [ET,1−2q] ≤ C1(q) + C2(q)E
[(

ĤT /a
2
0

) 4q−1
3

]
+ E

[
T∑
t=1

(
Ĝ2

a20C
2q−1/2
0

a2qt+1 + 1

)
6η2β2 ‖dt‖2

a2qt+1b
2
t

]

≤ C1(q) + C2(q)E
[(

ĤT /a
2
0

) 4q−1
3

]
+

(
Ĝ2

a20C
2q−1/2
0

+ 1

)
6η2β2E

[
T∑
t=1

‖dt‖2

a2qt+1b
2
t

]
(a)
= C1(q) + C2(q)E

[(
ĤT /a

2
0

) 4q−1
3

]

+

(
Ĝ2

a20C
2q−1/2
0

+ 1

)
6η2β2 × E

 T∑
t=1

‖dt‖2(
b
1/p
0 +

∑t
i=1 ‖di‖2

)2p


(b)

≤ C1(q) + C2(q)E
[(

ĤT /a
2
0

) 4q−1
3

]
+

(
Ĝ2

a20C
2q−1/2
0

+ 1

)
6η2β2E

[
D1−2p
T

1− 2p

]
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(c)
= C1(q) + C2(q)E

[(
ĤT /a

2
0

) 4q−1
3

]
+

(
Ĝ2

a20C
2q−1/2
0

+ 1

)
6η2β2

4q − 1
E
[
D1−2p
T

]
,

where (a) is by

a2qt+1b
2
t = a2qt+1

(
b
1/p
0 +

∑t
i=1 ‖di‖2

)2p
a2qt+1

=

(
b
1/p
0 +

t∑
i=1

‖di‖2
)2p

,

(b) is by Lemma I.1, (c) is by 1− 2p = 4q − 1.

When p = 1
2 ⇔ q = 1

4 , by a similar argument, we have

E [ET,1−2q] ≤ C1(q) + C2(q)E
[
log
(

1 + ĤT /a
2
0

)]
+

(
Ĝ2

a20
+ 1

)
6η2β2E

[
log

(
1 +

DT

b20

)]
.

Now we can define

C3 :=


(

Ĝ2

a20C
2q−1/2
0

+ 1

)
6η2β2

4q−1 q > 1
4(

Ĝ2

a20
+ 1
)

6η2β2 q = 1
4

.

The final step is by noticing for 1− 2q = p > 0

ET,1−2q =

T∑
t=1

a1−2qt+1 ‖εt‖2 ≥ a
1−2q
T+1

T∑
t=1

‖εt‖2 = a1−2qT+1 ET .

G.2 ANALYSIS OF DT

We will prove the following bound
Lemma G.11. Given p+ 2q = 1,p ∈

[
1
4 ,

1
2

]
, we have

E
[
aqT+1D

1−p
T

]
≤ C4 + C5E

[
log

a20 + ĤT

a20

]
+ C6E

log
C7 + C8

(
1 + ĤT /a

2
0

)1/3
b0


where

C4 := b
1
p−1
0 +

2

η
(F (x1)− F ∗) +

λC1 (1/4)

ηβmax
, C5 :=

λC2 (1/4)

ηβmax
,

C6 :=
(C7 + C8)

1
p−1

1− p
, C7 :=

(
1 +

6λĜ2

a20

)
ηβmax, C8 :=

(
1

λ
+ 6λ

)
ηβmax,

λ > 0 can be any number.

Proof. The same as before, we start from Lemma E.4

E
[
aqT+1D

1−p
T

]
≤ b

1
p−1
0 +

2

η
(F (x1)− F ∗)+E

[
T∑
t=1

(
ηβmax +

ηβmax

a
1/2
t+1λ

− bt

)
‖dt‖2

b2t

]
+
λE
[
ET,1/2

]
ηβmax

where λ > 0 is used to reduce the order of Ĝ in the final bound. In the proof of the general case ,
we don’t choose λ explicitly anymore. Plugging in the bound on E

[
ET,1/2

]
in Corollary G.9, we

know

E
[
aqT+1D

1−p
T

]
≤ b

1
p−1
0 +

2

η
(F (x1)− F ∗) +

λC1 (1/4)

ηβmax
+
λC2 (1/4)

ηβmax
E

[
log

a20 + ĤT

a20

]

+ E

[
T∑
t=1

((
1 +

6λĜ2

a20

)
ηβmax +

(
1

λ
+ 6λ

)
ηβmax

a
1/2
t+1

− bt

)
‖dt‖2

b2t

]
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= C4 + C5E

[
log

a20 + ĤT

a20

]

+ E


T∑
t=1

((
1 +

6λĜ2

a20

)
ηβmax +

(
1

λ
+ 6λ

)
ηβmax

a
1/2
t+1

− bt

)
‖dt‖2

b2t︸ ︷︷ ︸
(i)

 . (34)

Applying Lemma E.5 to (i), we get

(i) ≤

((
1 + 6λĜ2

a20
+ 1

λ + 6λ
)
ηβmax

) 1
p−1

1− p

× log

(
1 + 6λĜ2

a20

)
ηβmax +

(
1
λ + 6λ

)
ηβmax

(
1 + ĤT /a

2
0

)1/3
b0

= C6 log
C7 + C8

(
1 + ĤT /a

2
0

)1/3
b0

By using this bound to (34), the proof is completed.

G.3 COMBINE THE BOUNDS AND THE FINAL PROOF.

From Lemma G.10, we have

E
[
a1−2qT+1 ET

]
≤

C1 + C2E
[(

ĤT /a
2
0

) 4q−1
3

]
+ C3E

[
D1−2p
T

]
q > 1

4

C1 + C2E
[
log
(

1 + ĤT /a
2
0

)]
+ C3E

[
log
(

1 + DT

b20

)]
q = 1

4

From Lemma G.11, we have

E
[
aqT+1D

1−p
T

]
≤ C4 + C5E

[
log

a20 + ĤT

a20

]
+ C6E

log
C7 + C8

(
1 + ĤT /a

2
0

)1/3
b0


Now let

p̂ =
2(1− p)

3
∈
[

1

3
,

1

2

]
.

Apply Lemma E.1, we have

E
[
Hp̂
T

]
≤ 2p̂+1 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
≤ 4 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
, (35)

Now we can give the final proof of Theorem G.1.

Proof. First, we have

E
[
Ĥp̂
T

]
= E

( T∑
i=1

‖∇f(xi, ξi)‖2
)p̂

≤ E

( T∑
i=1

2‖∇F (xi)‖2 + 2‖∇f(xi, ξi)−∇F (xi)‖2
)p̂

= E

(2HT + 2

T∑
i=1

‖∇f(xi, ξi)−∇F (xi)‖2
)p̂
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≤ E

2p̂Hp̂
T +

(
2

T∑
i=1

‖∇f(xi, ξi)−∇F (xi)‖2
)p̂

= 2p̂E
[
Hp̂
T

]
+ E

(2

T∑
i=1

‖∇f(xi, ξi)−∇F (xi)‖2
)p̂

≤ 2p̂E
[
Hp̂
T

]
+ Ep̂

[(
2

T∑
i=1

‖∇f(xi, ξi)−∇F (xi)‖2
)]

≤ 2p̂E
[
Hp̂
T

]
+
(
2σ2T

)p̂ ≤ 22p̂+1 max
{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
+
(
2σ2T

)p̂
≤ 4 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
+
(
2σ2T

)p̂
. (36)

Now we consider following two cases:

Case 1: E
[
Ep̂T

]
≥ E

[
Dp̂
T

]
. In this case, we will finally prove

E
[
Ep̂T

]
≤



(
2C1

C3

) p̂
1−2p

+

((
2C2

C3

) p̂
1−2p

+ (2C3)
p̂
2p

)(
1 +

2(2σ2T)
p̂

a2p̂0

) 1
3

+C91
[(

2σ2T
)p̂ ≤ 4C9

]
q 6= 1

4(
C1 +

(
C2

p̂ + C3

p̂

)
log

(
1 +

(2σ2T)
p̂

min{a2p̂0 /2,4b2p̂0 }

))p̂(
1 +

2(2σ2T)
p̂

a2p̂0

) 1
3

+C91
[(

2σ2T
)p̂ ≤ 4C9

]
q = 1

4

.

where C9 is a constant. Note that by Holder inequality

E
[
Ep̂T

]
= E

[
a
(1−2q)p̂
T+1 Ep̂T × a

−(1−2q)p̂
T+1

]
≤ Ep̂

[
a1−2qT+1 ET

]
E1−p̂

[
a
−(1−2q)p̂

1−p̂
T+1

]
= Ep̂

[
a1−2qT+1 ET

]
E1−p̂

[
(1 + ĤT /a

2
0)

2(1−2q)p̂
3(1−p̂)

]
(a)
= Ep̂

[
a1−2qT+1 ET

]
E1−p̂

[
(1 + ĤT /a

2
0)

2pp̂
3(1−p̂)

]
(b)

≤ Ep̂
[
a1−2qT+1 ET

]
E

2p
3

[
(1 + ĤT /a

2
0)p̂
]

≤ Ep̂
[
a1−2qT+1 ET

]
E

2p
3

[
1 +

(
ĤT /a

2
0

)p̂]
where (a) is by 1− 2q = p, (b) is due to 2p

3(1−p̂) = 2p
1+2p < 1.

First, if q 6= 1
4 , we have

E
[
a1−2qT+1 ET

]
≤ C1 + C2E

[(
ĤT /a

2
0

) 4q−1
3

]
+ C3E

[
D1−2p
T

]
(c)

≤ C1 + C2E
1−2p
3p̂

[(
ĤT /a

2
0

)p̂]
+ C3E

1−2p
p̂

[
Dp̂
T

]
(d)

≤ C1 + C2

4E
[
Ep̂T

]
+
(
2σ2T

)p̂
a2p̂0


1−2p
3p̂

+ C3E
1−2p
p̂

[
Ep̂T

]
,

where (c) is by 4q−1
3 = 1−2p

3 ≤ 2−2p
3 = p̂ and p ≥ 1

4 ⇒ 1 − 2p ≤ 2−2p
3 = p̂, (d) is by (36) and

E
[
Dp̂
T

]
≤ E

[
Ep̂T

]
. Then we know

E
[
Ep̂T

]
≤ Ep̂

[
a1−2qT+1 ET

]
E

2p
3

[
1 +

(
ĤT /a

2
0

)p̂]
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≤

C1 + C2

4E
[
Ep̂T

]
+
(
2σ2T

)p̂
a2p̂0


1−2p
3p̂

+ C3E
1−2p
p̂

[
Ep̂T

]
p̂

×

1 +
4E
[
Ep̂T

]
+
(
2σ2T

)p̂
a2p̂0


2p
3

.

If 4E
[
Ep̂T

]
≤
(
2σ2T

)p̂
, we will get

E
[
Ep̂T

]
≤

C1 + C2

(
2
(
2σ2T

)p̂
a2p̂0

) 1−2p
3p̂

+ C3E
1−2p
p̂

[
Ep̂T

]
p̂(

1 +
2
(
2σ2T

)p̂
a2p̂0

) 2p
3

.

If C3E
1−2p
p̂

[
Ep̂T

]
≤ C1 + C2

(
2(2σ2T)

p̂

a2p̂0

) 1−2p
3p̂

, we have

E
1−2p
p̂

[
Ep̂T

]
≤ C1

C3
+
C2

C3

(
2
(
2σ2T

)p̂
a2p̂0

) 1−2p
3p̂

⇒ E
[
Ep̂T

]
≤

C1

C3
+
C2

C3

(
2
(
2σ2T

)p̂
a2p̂0

) 1−2p
3p̂


p̂

1−2p

≤
(

2C1

C3

) p̂
1−2p

+

(
2C2

C3

) p̂
1−2p

(
2
(
2σ2T

)p̂
a2p̂0

) 1
3

.

If C3E
1−2p
p̂

[
Ep̂T

]
≥ C1 + C2

(
2(2σ2T)

p̂

a2p̂0

) 1−2p
3p̂

, we have

E
[
Ep̂T

]
≤
(

2C3E
1−2p
p̂

[
Ep̂T

])p̂(
1 +

2
(
2σ2T

)p̂
a2p̂0

) 2p
3

= (2C3)
p̂ E1−2p

[
E

2(1−p)
3

T

](
1 +

2
(
2σ2T

)p̂
a2p̂0

) 2p
3

⇒ E
[
Ep̂T

]
≤ (2C3)

p̂
2p

(
1 +

2
(
2σ2T

)p̂
a2p̂0

) 1
3

.

Combining two cases, we know under 4E
[
Ep̂T

]
≤
(
2σ2T

)p̂
E
[
Ep̂T

]
≤
(

2C1

C3

) p̂
1−2p

+

(
2C2

C3

) p̂
1−2p

(
2
(
2σ2T

)p̂
a2p̂0

) 1
3

+ (2C3)
p̂
2p

(
1 +

2
(
2σ2T

)p̂
a2p̂0

) 1
3

≤
(

2C1

C3

) p̂
1−2p

+

((
2C2

C3

) p̂
1−2p

+ (2C3)
p̂
2p

)(
1 +

2
(
2σ2T

)p̂
a2p̂0

) 1
3

.

Now if 4E
[
Ep̂T

]
≥
(
2σ2T

)p̂
, then we have

E
[
Ep̂T

]
≤

C1 + C2

8E
[
Ep̂T

]
a2p̂0


1−2p
3p̂

+ C3E
1−2p
p̂

[
Ep̂T

]
p̂1 +

8E
[
Ep̂T

]
a2p̂0


2p
3
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≤

C p̂1 + C p̂2

8E
[
Ep̂T

]
a2p̂0


1−2p

3

+ C p̂3E
1−2p

[
Ep̂T

]
1 +

8E
[
Ep̂T

]
a2p̂0


2p
3

. (37)

We claim there is a constant C9 such that E
[
Ep̂T

]
≤ C9 because the highest order of E

[
Ep̂T

]
is only

1− 2p+ 2p
3 = 1− 4p

3 < 1. Here we give the order of C9 directly without proof

C9 = O

(
a2p̂0 +

(
C1

C3

) p̂
1−2p

+

(
C

3p̂
2

2 + C
3p̂
4p

3

)
1

ap̂0

)
.

Hence, when q 6= 1
4 , we finally have

E
[
Ep̂T

]
≤
(

2C1

C3

) p̂
1−2p

+

((
2C2

C3

) p̂
1−2p

+ (2C3)
p̂
2p

)(
1 +

2
(
2σ2T

)p̂
a2p̂0

) 1
3

+C91
[(

2σ2T
)p̂ ≤ 4C9

]
.

Following a similar approach, we can prove for q = 1
4 ,there is

E
[
Ep̂T

]
≤

C1 +

(
C2

p̂
+
C3

p̂

)
log

1 +

(
2σ2T

)p̂
min

{
a2p̂0 /2, 4b

2p̂
0

}
p̂(

1 +
2
(
2σ2T

)p̂
a2p̂0

) 1
3

+ C9,

where

C9 = O

(
C

1/2
1 +

(
C

1/2
2 + C

1/2
3

)
log1/2 C2 + C3

a2p̂0 b
p̂
0

+ a2p̂0 + a3p̂0 + ap̂0b
2p̂
0

)
.

Finally, we have

E
[
Ep̂T

]
≤



(
2C1

C3

) p̂
1−2p

+

((
2C2

C3

) p̂
1−2p

+ (2C3)
p̂
2p

)(
1 +

2(2σ2T)
p̂

a2p̂0

) 1
3

+C91
[(

2σ2T
)p̂ ≤ 4C9

]
q 6= 1

4(
C1 +

(
C2

p̂ + C3

p̂

)
log

(
1 +

(2σ2T)
p̂

min{a2p̂0 /2,4b2p̂0 }

))p̂(
1 +

2(2σ2T)
p̂

a2p̂0

) 1
3

+C91
[(

2σ2T
)p̂ ≤ 4C9

]
q = 1

4

.

Case 2: E
[
Ep̂T

]
≤ E

[
Dp̂
T

]
. In this case, we will finally prove

E
[
Dp̂
T

]
≤

(
C4 + (3C5 + C6) log

a
2/3
0 + 2

(
2σ2T

)1/3
a
2/3
0

+ C6 log
2C7 + 2C8

b0

) p̂
1−p

×

(
1 +

2
(
2σ2T

)p̂
a2p̂0

)1/3

+ C10.

where C10 is a constant. Note that by Holder inequality

E
[
Dp̂
T

]
= E

[
a
qp̂

1−p
T+1D

p̂
T × a

− qp̂
1−p

T+1

]
≤ E

p̂
1−p

[
aqT+1D

1−p
T

]
E

1−p−p̂
1−p

[
a
− qp̂

1−p−p̂
T+1

]
= E

p̂
1−p

[
aqT+1D

1−p
T

]
E

1−p−p̂
1−p

[(
1 + ĤT /a

2
0

) 2qp̂
3(1−p−p̂)

]
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(e)

≤ E
p̂

1−p

[
aqT+1D

1−p
T

]
E

1
3

[(
1 + ĤT /a

2
0

)p̂]
≤ E

p̂
1−p

[
aqT+1D

1−p
T

]
E

1
3

[
1 +

(
ĤT /a

2
0

)p̂]
where (e) is by 2q

3(1−p−p̂) = 1−p
3(1−p−p̂) = 1. We know

E
[
aqT+1D

1−p
T

]
≤C4 + C5E

[
log

a20 + ĤT

a20

]
+ C6E

log
C7 + C8

(
1 + ĤT /a

2
0

)1/3
b0



= C4 +
C5

p̂
E

log

(
a20 + ĤT

a20

)p̂+
C6

3p̂
E

log

C7 + C8

(
1 + ĤT /a

2
0

)1/3
b0


3p̂


(f)

≤C4 +
C5

p̂
E

[
log

a2p̂0 + Ĥp̂
T

a2p̂0

]
+
C6

3p̂
E

log

(2C7)
3p̂

+ (2C8)
3p̂

(
1 +

(
ĤT /a

2
0

)p̂)
b3p̂0


(g)

≤C4 +
C5

p̂
log

a2p̂0 + E
[
Ĥp̂
T

]
a2p̂0

+
C6

3p̂
log

(2C7)
3p̂

+ (2C8)
3p̂
(

1 + E
[
Ĥp̂
T

]
/a2p̂0

)
b3p̂0

(h)

≤C4 +
C5

p̂
log

a2p̂0 + 4E
[
Dp̂
T

]
+
(
2σ2T

)p̂
a2p̂0

+
C6

3p̂
log

(2C7)
3p̂

+ (2C8)
3p̂

(
1 +

4E[Dp̂
T ]+(2σ2T)

p̂

a2p̂0

)
b3p̂0

where (f) is by (x+ y)p ≤ xp + yp,(x+ y)
q ≤ (2x)q + (2y)q for 0 ≤ x, y, 0 ≤ p ≤ 1, q ≥ 0, (g)

holds by the concavity of log function, (h) is due to (36) and E
[
Ep̂T

]
≤ E

[
Dp̂
T

]
. Then we know

E
[
Dp̂
T

]
≤ E

p̂
1−p

[
aqT+1D

1−p
T

]
E

1
3

[
1 +

(
ĤT /a

2
0

)p̂]

≤

C4 +
C5

p̂
log

a2p̂0 + 4E
[
Dp̂
T

]
+
(
2σ2T

)p̂
a2p̂0

+
C6

3p̂
log

(2C7)
3p̂

+ (2C8)
3p̂

(
1 +

4E[Dp̂
T ]+(2σ2T)

p̂

a2p̂0

)
b3p̂0


p̂

1−p

×

1 +
4E
[
Dp̂
T

]
+
(
2σ2T

)p̂
a2p̂0

1/3

.

If 4E
[
Dp̂
T

]
≤
(
2σ2T

)p̂
, we will get

E
[
Dp̂
T

]
≤

C4 +
C5

p̂
log

a2p̂0 + 2
(
2σ2T

)p̂
a2p̂0

+
C6

3p̂
log

(2C7)
3p̂

+ (2C8)
3p̂

(
1 +

2(2σ2T)
p̂

a2p̂0

)
b3p̂0


p̂

1−p
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×

(
1 +

2
(
2σ2T

)p̂
a2p̂0

)1/3

≤

(
C4 +

(
C5

p̂
+
C6

3p̂

)
log

a2p̂0 + 2
(
2σ2T

)p̂
a2p̂0

+
C6

3p̂
log

(2C7)
3p̂

+ (2C8)
3p̂

b3p̂0

) p̂
1−p

×

(
1 +

2
(
2σ2T

)p̂
a2p̂0

)1/3

≤

(
C4 + (3C5 + C6) log

a
2/3
0 + 2

(
2σ2T

)1/3
a
2/3
0

+ C6 log
2C7 + 2C8

b0

) p̂
1−p

×

(
1 +

2
(
2σ2T

)p̂
a2p̂0

)1/3

.

If 4E
[
Dp̂
T

]
≥
(
2σ2T

)p̂
, we have

E
[
Dp̂
T

]
≤

C4 +
C5

p̂
log

a2p̂0 + 8E
[
Dp̂
T

]
a2p̂0

+
C6

3p̂
log

(2C7)
3p̂

+ (2C8)
3p̂

(
1 +

8E[Dp̂
T ]

a2p̂0

)
b3p̂0


p̂

1−p

×

1 +
8E
[
Dp̂
T

]
a2p̂0

1/3

. (38)

which implies there is a constant C10 such that E
[
Dp̂
T

]
≤ C10. Here we give the order of C10

directly without proof

C10 = O

(
a2p̂0 + a3p̂0 + C4 + C6 log

C7 + C8

b0
+ (C5 + C6) log

C5 + C6

a3p̂0

)

Combining these two results, we know

E
[
Dp̂
T

]
≤

(
C4 + (3C5 + C6) log

a
2/3
0 + 2

(
2σ2T

)1/3
a
2/3
0

+ C6 log
2C7 + 2C8

b0

) p̂
1−p

×

(
1 +

2
(
2σ2T

)p̂
a2p̂0

)1/3

+ C101
[(

2σ2T
)p̂ ≤ 4C10

]
.

Finally, combining Case 1 and Case 2 and using 35, we get the desired result and the finish the
proof

E
[
Hp̂
T

]
≤4 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
≤4C91

[(
2σ2T

)p̂ ≤ 4C9

]
+ 4C101

[(
2σ2T

)p̂ ≤ 4C10

]

+ 4


(

2C1

C3

) p̂
1−2p

+

((
2C2

C3

) p̂
1−2p

+ (2C3)
p̂
2p

)(
1 +

2(2σ2T)
p̂

a2p̂0

) 1
3

q 6= 1
4(

C1 +
(
C2

p̂ + C3

p̂

)
log

(
1 +

(2σ2T)
p̂

min{a2p̂0 /2,4b2p̂0 }

))p̂(
1 +

2(2σ2T)
p̂

a2p̂0

) 1
3

q = 1
4

.
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+ 4

(
C4 + (3C5 + C6) log

a
2/3
0 + 2

(
2σ2T

)1/3
a
2/3
0

+ C6 log
2C7 + 2C8

b0

) p̂
1−p

×

(
1 +

2
(
2σ2T

)p̂
a2p̂0

)1/3

H ALGORITHM META-STORM-NA AND ITS ANALYSIS FOR GENERAL p

Algorithm META-STORM-NA is shown in Algorithm 5. To highlight the differences with
META-STORM-SG and META-STORM, we set at only based on the time round t, not using the
stochastic gradients. This is the reason that the convergence of this algorithm does not depend on
bounded stochastic gradients or bounded stochastic gradients differences assumptions. Moreover,
the requirement of p ∈

(
0, 12
]

is also more relaxed compared with our previous algorithms.

Algorithm 5 META-STORM-NA
Input: Initial point x1 ∈ Rd

Parameters: a0 >
√

2
3 , b0, η, p ∈

(
0, 12
]
, p+ 2q = 1

Sample ξ1 ∼ D, d1 = ∇f(x1, ξ1)
for t = 1, · · · , T do:
at+1 =

(
1 + t/a20

)− 2
3

bt = (b
1/p
0 +

∑t
i=1 ‖di‖2)p/aqt+1

xt+1 = xt − η
bt
dt

Sample ξt+1 ∼ D
dt+1 = ∇f(xt+1, ξt+1) + (1− at+1)(dt −∇f(xt, ξt+1))

end for
Output xout = xt where t ∼ Uniform ([T ]).

Now we give the main convergence result, Theorem H.1, of META-STORM-NA. As we discussed
before, it can achieve the rate Õ(1/T 3) under the weakest assumptions 1-3, however, with losing
the adaptivity to the variance parameter σ as a tradeoff.
Theorem H.1. Under the assumptions 1-3, by defining p̂ = 1 − p ∈

[
1
2 , 1
)
, we have (omitting the

dependency on η, a0 and b0)

E
[
Hp̂
T

]
= O

((
F (x1)− F ∗ + β

p̂
p log (βT ) + σ2 log T + σ2p̂

)
T
p̂
3

)
.

By combining the above theorem with the concavity of xp̂, we give the following convergence
guarantee omitting the proof:
Theorem H.2. There is

E
[
‖∇F (xout)‖2p̂

]
= O

(
F (x1)− F ∗ + β

p̂
p log (βT ) + σ2 log T + σ2p̂

T
2p̂
3

)
.

Note that 2p̂ ≥ 1, hence the criterion, E
[
‖∇F (xout)‖2p̂

]
, used in Theorem H.2 is strictly stronger

than E [‖∇F (xout)‖]. In the following sections, we will give a proof of Theorem H.1.

H.1 BOUND ON E
[
ET,1/2

]
Lemma H.3. Given p+ 2q = 1, p ∈

(
0, 12
]
, we have

E
[
ET,1/2

]
≤
σ2
(
1 + 2a20 log

(
1 + T/a20

))
+ 2η2β2E

[∑T
t=1

‖dt‖2

a
1/2
t+1b

2
t

]
1− 2/(3a20)

.
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Proof. We start from Lemma E.2,

at+1‖εt‖2 ≤ ‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1.

Dividing both sides by a1/2t+1, summing up from 1 to T and taking the expectations on both sides, we
obtain

E
[
ET,1/2

]
≤E

[
T∑
t=1

‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

a
1/2
t+1

]

≤σ2 + E
[ T∑
t=1

(
a−1t+1 − a

−1
t

)
a
1/2
t+1‖εt‖2 +

2

a
1/2
t+1

‖Zt+1‖2

+ 2a
3/2
t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +

Mt+1

a
1/2
t+1

]
Because at+1is not random, we know

E

[
2

a
1/2
t+1

‖Zt+1‖2
]
≤ E

[
2η2β2‖dt‖2

a
1/2
t+1b

2
t

]
,

E
[
2a

3/2
t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2

]
≤ 2a

3/2
t+1σ

2,

E

[
Mt+1

a
1/2
t+1

]
= 0,

where the first inequality is by Lemma E.3. Besides, by the concavity of x2/3 and a0 >
√

2
3 , we

know

a−1t+1 − a
−1
t =

(
1 + t/a20

)2/3 − (1 + (t− 1) /a20
)2/3

≤ 2

3a20 (1 + (t− 1) /a20)
1/3
≤ 2

3a20
< 1.

Then we have

E
[
ET,1/2

]
≤ σ2 + E

[
2

3a20
ET,1/2 +

T∑
t=1

2η2β2‖dt‖2

a
1/2
t+1b

2
t

+ 2a
3/2
t+1σ

2

]

⇒ E
[
ET,1/2

]
≤
σ2
(

1 + 2
∑T
t=1 a

3/2
t+1

)
+ 2η2β2E

[∑T
t=1

‖dt‖2

a
1/2
t+1b

2
t

]
1− 2/(3a20)

.

Note that
T∑
t=1

a
3/2
t+1 =

T∑
t=1

1

1 + t/a20
≤ a20 log

(
1 + T/a20

)
.

So we know

E
[
ET,1/2

]
≤
σ2
(
1 + 2a20 log

(
1 + T/a20

))
+ 2η2β2E

[∑T
t=1

‖dt‖2

a
1/2
t+1b

2
t

]
1− 2/(3a20)

.

H.2 BOUND ON E [ET ]

Lemma H.4. Given p+ 2q = 1, p ∈
(
0, 12
]
, we have

E [ET ] ≤
6a20σ

2
(
1 + T/a20

)1/3
1− 2/(3a20)

+
2η2β2(1 + T/a20)

2p
3

1− 2/(3a20)


E[D1−2p

T ]
1−2p p 6= 1

2

E
[
log
(

1 + DT

b20

)]
p = 1

2

.
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Proof. We start from Lemma E.2,
at+1‖εt‖2 ≤ ‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1.

Dividing both sides by at+1, summing up from 1 to T and taking the expectations on both sides, we
obtain

E [ET ]

≤E

[
T∑
t=1

‖εt‖2 − ‖εt+1‖2 + 2‖Zt+1‖2 + 2a2t+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +Mt+1

at+1

]

≤σ2 + E
[ T∑
t=1

(
a−1t+1 − a

−1
t

)︸ ︷︷ ︸
≤2/(3a20)

‖εt‖2 +
2

at+1
‖Zt+1‖2

+ 2at+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +
Mt+1

at+1

]
≤σ2 + E

[
2

3a20
ET +

T∑
t=1

2

at+1
‖Zt+1‖2

+ 2at+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2 +
Mt+1

at+1

]
.

Because at+1is not random, we know

E
[

2

at+1
‖Zt+1‖2

]
≤ E

[
2η2β2‖dt‖2

at+1b2t

]
,

E
[
2at+1‖∇f(xt+1, ξt+1)−∇F (xt+1)‖2

]
≤ 2at+1σ

2,

E
[
Mt+1

at+1

]
= 0,

where the first inequality is by Lemma E.3. Then we know

E [ET ] ≤ σ2 + E

[
2

3a20
ET +

T∑
t=1

2η2β2‖dt‖2

at+1b2t
+ 2at+1σ

2

]

⇒ E [ET ] ≤
σ2
(

1 + 2
∑T
t=1 at+1

)
+ 2η2β2E

[∑T
t=1

‖dt‖2
at+1b2t

]
1− 2/(3a20)

.

Note that there is
T∑
t=1

‖dt‖2

at+1b2t
=

T∑
t=1

‖dt‖2

a1−2qt+1

(
b
1/p
0 + Dt

)2p (a)
=

T∑
t=1

‖dt‖2

apt+1

(
b
1/p
0 + Dt

)2p
≤ (1 + T/a20)

2p
3

T∑
t=1

‖dt‖2(
b
1/p
0 + Dt

)2p
(b)

≤ (1 + T/a20)
2p
3


D1−2p
T

1−2p p 6= 1
2

log
(

1 + DT

b20

)
p = 1

2

,

where (a) is by 1− 2q = p, (b) is by Lemma I.1. Besides
T∑
t=1

at+1 =

T∑
t=1

1

(1 + t/a20)
2/3
≤ 3a20

(
1 + T/a20

)1/3 − 3a20 < 3a20
(
1 + T/a20

)1/3 − 2.

So we know

E [ET ] ≤
6a20σ

2
(
1 + T/a20

)1/3
1− 2/(3a20)

+
2η2β2(1 + T/a20)

2p
3

1− 2/(3a20)


E[D1−2p

T ]
1−2p p 6= 1

2

E
[
log
(

1 + DT

b20

)]
p = 1

2

.
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H.3 BOUND ON E
[
D1−p
T

]
Lemma H.5. Given p+ 2q = 1, p ∈

(
0, 12
]
, we have

E
[
D1−p
T

]
≤
(
1 + T/a20

) 1−p
3

(
b

1
p−1
0 +

2

η
(F (x1)− F ∗) +

σ2
(
1 + 2a20 log

(
1 + T/a20

))
ηβmax (1− 2/(3a20))

)

+

(
1 + T/a20

) 1−p
3

1− p

(
3a20 − 1

3a20 − 2
4ηβmax

) 1
p−1

log

(
1 +

9a20−2
3a20−2

(
1 + T/a20

)1/3)
ηβmax

b0
.

Proof. The same as before, we start from Lemma E.4

E
[
aqT+1D

1−p
T

]
≤ b

1
p−1
0 +

2

η
(F (x1)− F ∗)

+ E

[
T∑
t=1

(
ηβmax +

ηβmax

a
1/2
t+1λ

− bt

)
‖dt‖2

b2t

]
+
λE
[
ET,1/2

]
ηβmax

.

Now we simply take λ = 1 and use Lemma H.3 to get

E
[
aqT+1D

1−p
T

]
≤ b

1
p−1
0 +

2

η
(F (x1)− F ∗) +

σ2
(
1 + 2a20 log

(
1 + T/a20

))
ηβmax (1− 2/(3a20))

+ E


T∑
t=1

((
1 +

9a20 − 2

(3a20 − 2) a
1/2
t+1

)
ηβmax − bt

)
‖dt‖2

b2t︸ ︷︷ ︸
(i)

 . (39)

Applying Lemma E.5 to (i), we get

(i) ≤

(
3a20−1
3a20−2

4ηβmax

) 1
p−1

1− p
log

(
1 +

9a20−2
3a20−2

(
1 + T/a20

)1/3)
ηβmax

b0
.

Note that aqT+1 = a
1−p
2

T+1 =
(
1 + T/a20

)− 1−p
3 is deterministic, by multiplying both sides of (39) by(

1 + T/a20
) 1−p

3 , we get the desired result.

H.4 COMBINE THE BOUNDS AND THE FINAL PROOF.

From Lemma H.4, we have

E [ET ] ≤
6a20σ

2
(
1 + T/a20

)1/3
1− 2/(3a20)

+
2η2β2(1 + T/a20)

2p
3

1− 2/(3a20)


E[D1−2p

T ]
1−2p p 6= 1

2

E
[
log
(

1 + DT

b20

)]
p = 1

2

.

From Lemma H.5, we have

E
[
D1−p
T

]
≤
(
1 + T/a20

) 1−p
3

(
b

1
p−1
0 +

2

η
(F (x1)− F ∗) +

σ2
(
1 + 2a20 log

(
1 + T/a20

))
ηβmax (1− 2/(3a20))

)

+

(
1 + T/a20

) 1−p
3

1− p

(
3a20 − 1

3a20 − 2
4ηβmax

) 1
p−1

log

(
1 +

9a20−2
3a20−2

(
1 + T/a20

)1/3)
ηβmax

b0
.

Now let

p̂ = 1− p ∈
[

1

2
, 1

)
.

Apply Lemma E.1, we know

E
[
Hp̂
T

]
≤ 4 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
. (40)

Now we can give the final proof of Theorem H.1.
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Proof. Now we consider following two cases:

Case 1: p 6= 1
2 . Note that by Holder inequality

E
[
Ep̂T

]
= Ep̂ [ET ] ,

E
[
D1−2p
T

]
≤ E

1−2p
p̂

[
Dp̂
T

]
.

So we know

E
[
Ep̂T

]
≤

(
6a20σ

2
(
1 + T/a20

)1/3
1− 2/(3a20)

+
2η2β2(1 + T/a20)

2p
3

(1− 2/(3a20))(1− 2p)
E
[
D1−2p
T

])p̂

≤

(
6a20σ

2
(
1 + T/a20

)1/3
1− 2/(3a20)

+
2η2β2(1 + T/a20)

2p
3

(1− 2/(3a20))(1− 2p)
E

1−2p
p̂

[
Dp̂
T

])p̂
.

Now if E
[
Ep̂T

]
≥ E

[
Dp̂
T

]
, we know

E
[
Ep̂T

]
≤

(
6a20σ

2
(
1 + T/a20

)1/3
1− 2/(3a20)

+
2η2β2(1 + T/a20)

2p
3

(1− 2/(3a20))(1− 2p)
E

1−2p
p̂

[
Ep̂T

])p̂

≤

(
6a20σ

2
(
1 + T/a20

)1/3
1− 2/(3a20)

)p̂
+

(
2η2β2(1 + T/a20)

2p
3

(1− 2/(3a20))(1− 2p)

)p̂
E1−2p

[
Ep̂T

]

Then if
(

2η2β2(1+T/a20)
2p
3

(1−2/(3a20))(1−2p)

)p̂
E1−2p

[
Ep̂T

]
≤
(

6a20σ
2(1+T/a20)

1/3

1−2/(3a20)

)p̂
, we know

E
[
Ep̂T

]
≤ 2

(
6a20σ

2
(
1 + T/a20

)1/3
1− 2/(3a20)

)p̂
=

(
2

1
p̂ 6a20σ

2

1− 2/(3a20)

)p̂ (
1 + T/a20

) p̂
3

If
(

2η2β2(1+T/a20)
2p
3

(1−2/(3a20))(1−2p)

)p̂
E1−2p

[
Ep̂T

]
≥
(

6a20σ
2(1+T/a20)

1/3

1−2/(3a20)

)p̂
, we know

E
[
Ep̂T

]
≤ 2

(
2η2β2(1 + T/a20)

2p
3

(1− 2/(3a20))(1− 2p)

)p̂
E1−2p

[
Ep̂T

]

⇒ E
[
Ep̂T

]
≤

(
2

1
p̂ 2η2β2

(1− 2/(3a20))(1− 2p)

) p̂
2p (

1 + T/a20
) p̂

3 .

Hence under E
[
Ep̂T

]
≥ E

[
Dp̂
T

]
, we get

E
[
Ep̂T

]
≤

( 2
1
p̂ 2η2β2

(1− 2/(3a20))(1− 2p)

) p̂
2p

+

(
2

1
p̂ 6a20σ

2

1− 2/(3a20)

)p̂(1 + T/a20
) p̂

3 .

Then by using (40), we know

E
[
Hp̂
T

]
≤4 max

{
E
[
Ep̂T

]
,E
[
Dp̂
T

]}
≤4
(
1 + T/a20

) p̂
3

×

( 2
1
p̂ 2η2β2

(1− 2/(3a20))(1− 2p)

) p̂
2p

+

(
2

1
p̂ 6a20σ

2

1− 2/(3a20)

)p̂
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+b
1
p−1
0 +

2

η
(F (x1)− F ∗) +

σ2
(
1 + 2a20 log

(
1 + T/a20

))
ηβmax (1− 2/(3a20))

+

(
3a20−1
3a20−2

4ηβmax

) 1
p−1

1− p
log

(
1 +

9a20−2
3a20−2

(
1 + T/a20

)1/3)
ηβmax

b0


=O

((
F (x1)− F ∗ + β

p̂
p log (βT ) + σ2 log T + σ2p̂

)
T
p̂
3

)
.

Case 2: p = 1
2 . By a similar proof, we still have

E
[
Hp̂
T

]
≤O

((
F (x1)− F ∗ + β

p̂
p log (βT ) + σ2 log T + σ2p̂

)
T
p̂
3

)

I BASIC INEQUALITIES

In this section, we prove some technical lemmas used in our proof.
Lemma I.1. For c0 > 0, ci≥1 ≥ 0, p ∈ (0, 1], we have

T∑
t=1

ct

(c0 +
∑t
i=1 ci)

p
≤

 1
1−p

(∑T
i=1 ci

)1−p
p 6= 1

log
(

1 +
∑T
i=1 ci
c0

)
p = 1

.

Proof. We first prove the case p 6= 1. From Lemma 3 in Levy et al. (2021), for b1 > 0, bi≥2 ≥ 0,
p ∈ (0, 1), we have

T∑
t=1

bt

(
∑t
i=1 bi)

p
≤ 1

1− p

(
T∑
i=1

bi

)1−p

.

Now we define
T0 = min {t ∈ [T ] : ct > 0} .

By the definition of T0, we know for any 1 ≤ t ≤ T0 − 1, ct = 0. Then we have

T∑
t=1

ct

(c0 +
∑t
i=1 ci)

p
=

T0−1∑
t=1

ct

(c0 +
∑t
i=1 ci)

p
+

T∑
t=T0

ct

(c0 +
∑T0−1
i=1 ci +

∑t
i=T0

ci)p

=

T∑
t=T0

ct

(c0 +
∑t
i=T0

ci)p
≤

T∑
t=T0

ct

(
∑t
i=T0

ci)p

≤ 1

1− p

(
T∑

i=T0

ci

)1−p

=
1

1− p

(
T∑
i=1

ci

)1−p

.

For p = 1, we know

T∑
t=1

ct

c0 +
∑t
i=1 ci

=

T∑
t=1

1−
c0 +

∑t−1
i=1 ci

c0 +
∑t
i=T0

ci

≤
T∑
t=1

log
c0 +

∑t
i=T0

ci

c0 +
∑t−1
i=1 ci

= log

(
1 +

∑T
i=1 ci
c0

)
,

where the inequality holds by 1− 1
x ≤ log x.
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Lemma I.2. For c0 > 0, ci≥1 ∈ (0, c], p ∈ (0, 1], we have

T∑
t=1

ct+1

(c0 +
∑t
i=1 ci)

p
≤ 3c

cp0
+

 1
1−p

(∑T
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)1−p
p 6= 1

log
(

1 +
∑T
i=1 ci
c0

)
p = 1

.

Proof. Define

T0 = min

{
t ∈ [T ] ,

t∑
i=1

ci ≥ c

}
,

then we know
T∑
t=1

ct+1

(c0 +
∑t
i=1 ci)

p
≤
T−1∑
t=1

ct+1

(c0 +
∑t
i=1 ci)

p
+

c

cp0

=
c

cp0
+

T0−1∑
t=1

ct+1

(c0 +
∑t
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p
+

T−1∑
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(c0 +
∑T0
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∑t
i=T0+1 ci)

p

≤ c

cp0
+

T0−1∑
t=1
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cp0
+

T−1∑
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(c0 + c+
∑t
i=T0+1 ci)

p

≤ 3c

cp0
+
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(c0 +
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p
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+
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p 6= 1
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(
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∑T
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cp0
+

 1
1−p

(∑T
i=1 ci

)1−p
p 6= 1

log
(

1 +
∑T
i=1 ci
c0

)
p = 1

where (a) is by Lemma I.1.

Lemma I.3. For c0 > 0, ci≥1 ∈ (0, c], p ∈ (0, 1], we have

T∑
t=1

ct+1

(c0 +
∑t−1
i=1 ci)

p
≤ 6c

cp0
+

 1
1−p

(∑T
i=1 ci

)1−p
p 6= 1

log
(

1 +
∑T
i=1 ci
c0

)
p = 1

.

Proof. Define

T0 = min

{
t ∈ [T ] :

t−1∑
i=1

ci ≥ c

}
.

Then we know
T∑
t=1

ct+1

(c0 +
∑t−1
i=1 ci)

p
=

T0−1∑
t=1

ct+1

(c0 +
∑t
i=1 ci)

p
+

T∑
t=T0

ct+1

(c0 +
∑T0−1
i=1 ci +

∑t−1
i=T0

ci)p

≤
T0−1∑
t=1

ct+1

cp0
+

T∑
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(c0 + c+
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ci)p

≤ 3c

cp0
+

T∑
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ct+1

(c0 +
∑t
i=T0

ci)p

(a)

≤ 6c

cp0
+


1

1−p

(∑T
i=T0
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)1−p
p 6= 1

log

(
1 +
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)
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≤ 6c

cp0
+

 1
1−p

(∑T
i=1 ci

)1−p
p 6= 1

log
(

1 +
∑T
i=1 ci
c0

)
p = 1

where (a) is by Lemma I.2.

Lemma I.4. (Lemma 6 in Levy et al. (2021)), for ci≥1 ∈ (0, c], we have

T∑
t=1

ct

(1 +
∑t−1
i=1 ci)

4/3
≤ 12 + 2c.

Lemma I.5. For ci≥1 ∈ (0, c], we have, we have

T∑
t=1

ct+1

(1 +
∑t−1
i=1 ci)

4/3
≤ 12 + 5c.

Proof. Define

T0 = min

{
t ∈ [T ] :

t−1∑
i=1

ci ≥ c

}
.

Then we know
T∑
t=1

ct+1

(1 +
∑t−1
i=1 ci)

4/3
=

T0−1∑
t=1

ct+1

(1 +
∑t−1
i=1 ci)

4/3
+

T∑
t=T0

ct+1

(1 +
∑t−1
i=1 ci)

4/3

≤
T0−1∑
t=1

ct+1 +

T∑
t=T0

ct+1

(1 +
∑T0−1
i=1 ci +

∑t−1
i=T0

ci)4/3

≤ 3c+

T∑
t=T0

ct+1

(1 + c+
∑t−1
i=T0

ci)4/3

≤ 3c+

T∑
t=T0

ct+1

(1 +
∑t
i=T0

ci)4/3

≤ 12 + 5c,

where the last inequality is by Lemma I.4.

Lemma I.6. Given 0 ≤ x ≤ y ≤ 1, 0 < ` ≤ 1, we have(
(1− x1/`)2

x2
− (1− y1/`)2

y2

)2

≤ y2 − x2

`2x4y2
.

Proof. Note that(
(1− x1/`)2

x2
− (1− y1/`)2

y2

)2

=

(
1− x1/`

x
+

1− y1/`

y

)2(
1− x1/`

x
− 1− y1/`

y

)2

≤
(

1

x
+

1

y

)2(
1− x1/`

x
− 1− y1/`

y

)2

,

now let h(x) = 1−x1/l

x , we can find h′(x) = − (1−`)x1/`+`
`x2 ≤ 0. Hence

1− x1/`

x
− 1− y1/`

y
= h(x)− h(y) ≥ 0.

Besides, let g(x) = h(x)− 1
`x , we can find that

g′(x) =
(1− `)

(
1− x1/`

)
`x2

≥ 0.
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This means
h(x)− 1

`x
− h(y) +

1

`y
= g(x)− g(y) ≤ 0,

which implies

0 ≤ h(x)− h(y) ≤ 1

`x
− 1

`y
.

Thus we finally have(
(1− x1/`)2

x2
− (1− y1/`)2

y2

)2

≤
(

1

x
+

1

y

)2

(h(x)− h(y))
2

≤
(

1

x
+

1

y

)2(
1

`x
− 1

`y

)2

=

(
y2 − x2

)2
`2x4y4

≤ y2 − x2

`2x4y2
.

Lemma I.7. Given 0 ≤ x ≤ y ≤ 1, 0 < ` ≤ 1
2 , we have(

(1− x1/`)x1/`−2 − (1− y1/`)y1/`−2
)2
≤ y2 − x2

`2x2
y2/`−4.

Proof. If ` = 1
2 , then we know(

(1− x1/`)x1/`−2 − (1− y1/`)y1/`−2
)2

=
(
y2 − x2

)2 ≤ (y2 − x2) y2 ≤ 4
(
y2 − x2

)
x2y2

y2

=
y2 − x2

`2x2y2
y2/`−4.

If ` 6= 1
2 , let h(x) denote (1 − x1/`)x1/`−2, then we know h′(x) = x1/`−3 2(`−1)x1/`−2`+1

` . By
Taylor’s expansion, there exists x ≤ z ≤ y, such that

h(x)− h(y) = h′(z)(x− y)

= z1/`−3
2 (`− 1) z1/` − 2`+ 1

`
(x− y).

This will give us(
(1− x1/`)x1/`−2 − (1− y1/`)y1/`−2

)2
= (h(x)− h(y))2

= z2/`−6 ×
(
2 (`− 1) z1/` − 2`+ 1

)2
`2

× (y − x)
2

≤ y2/`−4

x2
× 1

`2
×
(
y2 − x2

)
=
y2 − x2

`2x2
y2/`−4.

Lemma I.8. Given m,n ≥ 0, For 0 ≤ x ≤ m, we have

(m− x)xn ≤
(

m

n+ 1

)n+1

nn.
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Proof. Note that

log ((m− x)xn) = log (m− x) + n log x = log (m− x) + n log
x

n
+ n log n

(a)

≤ (n+ 1) log

(
m− x
n+ 1

+
n

n+ 1
× x

n

)
+ n log n

= (n+ 1) log
m

n+ 1
+ n log n = log

((
m

n+ 1

)n+1

nn

)

where (a) is by the concavity of log function. Then we know (m− x)xn ≤
(

m
n+1

)n+1

nn.

Lemma I.9. Given X,A,B ≥ 0, C > 0, D ≥ 0, 0 ≤ u ≤ 1,if we have

X ≤
(
A+B log

(
1 +

X

C

))u
D,

then there is

X ≤

(
2A+ 2B log

4uBD

C
+

(
C

D

)1/u
)u

D.

Especially, when D ≥ 1, we know

X ≤
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2A+ 2B log
4uBD

C
+ C1/u

)u
D.

Proof. Let Y = (X/D)1/u, then we know

Y ≤ A+B log

(
1 +

DY u

C

)
= A+ uB log

(
1 +

DY u

C
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(a)

≤ A+ uB log

(
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2D

C

)1/u

Y

)

= A+ uB log 21/u + uB log

(
1 +

(
D

C
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Y

)

= A+B log 2 + uB log
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(
D
C
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Y

2uB
(
D
C

)1/u + uB log

(
2uB

(
D

C
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)

(b)

≤ A+B log 2 +
(C/D)

1/u

2
+
Y

2
+ uB log 2uB +B log

D

C

≤ Y

2
+A+B log

4uBD

C
+

(C/D)
1/u

2
,

where (a) is by (x+ y)
p ≤ (2x)

p
+ (2y)

p, for x, y ≥ 0, p ≥ 1. (b) is by log x ≤ x− 1 ≤ x. Then
we know

Y ≤ 2A+ 2B log
4uBD

C
+

(
C

D

)1/u

⇒ X ≤

(
2A+ 2B log

4uBD

C
+

(
C

D

)1/u
)u

D.
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