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ABSTRACT

We study the application of variance reduction (VR) techniques to general non-
convex stochastic optimization problems. In this setting, the recent work STORM
(Cutkosky & Orabonal 2019) overcomes the drawback of having to compute gra-
dients of “mega-batches” that earlier VR methods rely on. There, STORM utilizes
recursive momentum to achieve the VR effect and is then later made fully adaptive
in STORM+ (Levy et al.,|2021)), where full-adaptivity removes the requirement for
obtaining certain problem-specific parameters such as the smoothness of the ob-
jective and bounds on the variance and norm of the stochastic gradients in order
to set the step size. However, STORM+ crucially relies on the assumption that the
function values are bounded, excluding a large class of useful functions. In this
work, we propose META-STORM, a generalized framework of STORM+ that re-
moves this bounded function values assumption while still attaining the optimal
convergence rate for non-convex optimization. META-STORM not only main-
tains full-adaptivity, removing the need to obtain problem specific parameters, but
also improves the convergence rate’s dependency on the problem parameters. Fur-
thermore, META-STORM can utilize a large range of parameter settings that sub-
sumes previous methods allowing for more flexibility in a wider range of settings.
Finally, we demonstrate the effectiveness of META-STORM through experiments
across common deep learning tasks. Our algorithm improves upon the previous
work STORM+ and is competitive with widely used algorithms after the addition
of per-coordinate update and exponential moving average heuristics.

1 INTRODUCTION

In this paper, we consider the stochastic optimization problem in the form

min F(z) := Eewp [f(2,€)], ()
zER?

where F' : R? — R is possibly non-convex. We assume only access to a first-order stochastic oracle

via sample functions f(z, &), where £ comes from a distribution D representing the randomness in

the sampling process. Optimization problems of this form are ubiquitous in machine learning and

deep learning. Empirical risk minimization (ERM) is one instance, where F'(x) is the loss function

that can be evaluated by a sample or a minibatch represented by &.

An important advance in solving Problem (1) is the recent development of variance reduction (VR)
techniques that improve the convergence rate to critical points of vanilla SGD from O(1/T"/%)
to O(1/T"/3) (Fang et al., 2018; |Li et al., 2021) for the class of mean-squared smooth functions
(Arjevani et al., 2019). In contrast to earlier VR algorithms which often require the computation of
the gradients over large batches, recent methods such as |Cutkosky & Orabona) (2019); |[Levy et al.
(2021)); Huang et al.|(2021) avoid this drawback by using a weighted average of past gradients, often
known as momentum. When the weights are selected appropriately, momentum reduces the error in
the gradient estimates which improves the convergence rate.

A different line of work on adaptive methods (Duchi et al., 2011} Kingma & Bal [2014), some of
which incorporate momentum techniques, have shown tremendous success in practice. These adap-
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Table 1: Comparison of the convergence rate after T iterations under constant success probability. The as-
sumptions and definitions of the parameters referenced can be found in Section|[T.2} Assumptions 1 and 2 are
used in all algorithms, thus we leave them out from the table.

Methods Adaptive? Convergence rate Assumptions
K24 R3/AGT2 o4 Glog?/t T | o1/3
(Sg(illek & o( ) 3,4
utkosky B -
Orabonal 2019) k=0(B(F() - 7))
Sﬁper-ADAlM O ((nl/Q + crlogT) (T11/2 + Tll/g)) ,
(Huang et al., N >
2021) r=0(B(F(z1) - F7))
Does not adapt to o
O ( K1 1‘620'1/3>
STORM+ (Levy T1/2 T1/3
112021 v s san 3,4,6
et al.) ) K1 =O (59/4 + G5 Jr53/26716 + Bg/s)
Ko = O (53/2 + 33/4>
o) log (1+ 02T)) =Ly + 2o
META-STORM-SG, (("“ +rzlog (1+0°T)) (T1/2 + T1/3)) 34
P=3 (Oursfl] k1 =0 (F(.T1) — F* 402+ G?+ kalog 52) ’
k2 = O((1 4+ G*)B)
51/3
META-STORM, , 0 (("‘1 + 2 log (1+07T)) (Tf/z + ﬁs)) ‘e
p =1 (Ours) k1 =0 (F(z1) — F* + 00 + 0> + 0" + kalog k2) ’

ke = O((1+5%)p)

tive methods remove the burden of obtaining certain problem-specific parameters, such as smooth-
ness, in order to set the right step size to guarantee convergence. STORM+ (Levy et al., 2021 is the
first algorithm to bridge the gap between fully-adaptive algorithms and VR methods, achieving the
variance-reduced convergence rate of O(1/7"/?) while not requiring knowledge of any problem-
specific parameter. This is also the first work to demonstrate the interplay between adaptive momen-
tum and step sizes to adapt to the problem’s structure, while still achieving the VR rate. However,
STORM+ relies on a strong assumption that the function values are bounded, which generally does
not hold in practice. Moreover, the convergence rate of STORM+ has high polynomial dependencies
on the problem parameters, compared to what can be achieved by appropriately configuring the step
sizes and momentum parameters given knowledge of the problem parameters (see Section [3.1).

Our contributions: In this work, we propose META-STORM-SG and META-STORM, two flexible
algorithmic frameworks that attain the optimal variance-reduced convergence rate for general non-
convex objectives. Both of them generalize STORM+ by allowing a wider range of parameter selec-
tion and removing the restrictive bounded function value assumption while maintaining its desirable
fully-adaptive property — eliminating the need to obtain any problem-specific parameter. These have
been enabled via our novel analysis framework that also establishes a convergence rate with much
better dependency on the problem parameters. We present a comparison of META-STORM and
its sibling META-STORM-SG against recent VR methods in Table [T} In the appendix, we pro-
pose another algorithm, META-STORM-NA, with even less restrictive assumptions; however, with
a tradeoff of losing the adaptivity to the variance parameter.

We complement our theoretical results with experiments across three common tasks: image classi-
fication, masked language modeling, and sentiment analysis. Our algorithms improve upon the pre-
vious work, STORM+. Furthermore, the addition of heuristics such as exponential moving average
and per-coordinate updates improves our algorithms’ generalization performance. These versions of
our algorithms are shown to be competitive with widely used algorithms such as Adam and AdamW.
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1.1 RELATED WORK

Variance reduction methods for stochastic non-convex optimization: Variance reduction is in-
troduced for non-convex optimization by |Allen-Zhu & Hazan|(2016)); [Reddi et al.|(2016) in the con-
text of finite sum optimization, achieving faster convergence over the full gradient descent method.
These methods are first improved by |Lei et al.|(2017) and later by [Fang et al.| (2018)); |Li et al.| (2021}
both of which achieve an O(1/T"/?) convergence rate, matching the lower bounds in|Arjevani et al.
(2019). However, these earlier methods periodically need to compute the full gradient (in the finite-
sum case) or a giant batch at a check point, which can be quite costly. Shortly after, |Cutkosky &
Orabonal (2019) and Tran-Dinh et al.| (2019) introduce a different approach that utilizes stochastic
gradients from previous time steps instead of computing the full gradient at a checkpoints. These
methods are framed as momentum-based methods as they are similar to using a weighted average
of the gradient estimates to achieve the variance reduction. Recently, SUPER-ADAM (Huang et al.,
2021) integrates STORM in a larger framework of adaptive algorithms, but loses adaptivity to the
variance parameter o. At the same time, STORM+ (Levy et al.l [2021) proposes a fully adaptive
version of STORM, which our work builds upon.

Adaptive methods for stochastic non-convex optimization: Classical methods, like SGD
(Ghadimi & Lan,2013)), typically require the knowledge of problem parameters, such as the smooth-
ness and the variance of the stochastic gradients, to set the step sizes. In contrast, adaptive methods
(Duchi et al.|, 2011} Tieleman et al.| |2012; Kingma & Ba, [2014) forgo this requirement: their step
sizes only rely on the stochastic gradients obtained by the algorithms. Although these adaptive
methods are originally designed for convex optimization, they enjoy great successes and popular-
ity in highly non-convex practical applications such as training deep neural networks, often making
them the method of choice in practice. As a result, theoretical understanding of adaptive methods
for non-convex problems has received significant attention in recent years. The works by [Ward et al.
(2019); Kavis et al.| (2021)) propose a convergence analysis of AdaGrad under various assumptions.
Among VR methods, STORM+ is the only fully adaptive algorithm that does not require knowledge
of any problem parameter. Our work builds on and generalizes STORM+, removing the bounded
function value assumption while obtaining much better dependencies on the problem parameters.

1.2 PROBLEM DEFINITION AND ASSUMPTIONS

We study stochastic non-convex optimization problems for which the objective function F : R% —
R that has form F(z) := E¢op [f(z,€)] and f(-,€) is a sampling function depending on a ran-
dom variable ¢ drawn from a distribution D. We will omit the writing of D in Ecp [f(z, £)] for
simplicity in the remaining paper. || - || represents || - ||z for brevity. [T is defined as {1,2,--- ,T}.

The analysis of our algorithms relies on the following assumptions 1-5:
1. Lower bounded function value: F'* := inf cpa F(z) > —o0.

2. Unbiased estimator with bounded variance: We assume to have access to V f(z, &) satisfying
Ee [Vf(z,8)] = VF(x),Ee [|[Vf(x,§) — VF(2)|?] < o2 for some o > 0.

3. Averaged -smoothness: E¢ [[|Vf(z, &) — Vf(y,&)|?] < 8[|z — y?, Va,y € R%

4. Bounded stochastic gradients: |V f(z,¢)|| < G,V € R?, ¢ € support(D) for some G > 0.

5. Bounded stochastic gradient differences: ||V f(z,¢) — Vf(2,&)| < 26,Vz € R4, ¢, ¢ €
support (D) for some & > 0.

Assumptions 1, 2 and 3 are standard in the VR setting (Arjevani et al) 2019). Assumption 5 is
weaker than the assumptions made in the prior works based on the STORM framework (Cutkosky
& Orabona, [2019; Levy et al.L[2021)). These works assume that the stochastic gradients are bounded,
i.e., Assumption 4. We note that assumption 4 implies that assumption 5 holds by replacing & by
G, thus we only have to consider @ = O(G). To better understand assumption 5, we fix £ €
support(D) and consider another £’ ~ D, then due to the convexity of ||-||, |V f(x,&) -V F(z)| =
IVf(x,&) —Ee [Vf(z, )] || < Ee [[|Vf(z,8) —Vf(x,§)||] < 20. This means assumption 5
implies a stronger version of assumption 2. For this reason, we can consider o = O(7).

"This bound holds when o > 0 and T is large enough.
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Algorithm 1 META-STORM-SG Algorithm 2 META-STORM
Input: Initial point x; € R? Input: Initial point x; € R?
Parameters: ag, by, 7,p € [i, %],]H— 2g =1  Parameters: ag,bo,n,p € [2= é] p+2q=
Sample & ~ D,dy = Vf(x1,&1) Sample & ~ D, d; = Vf(xl,gl) a =1
fort=1,---,7T do: fort:1,~~~,Td0
2 b t
- (1 Py, Lt >||2) 5 l;t = (b ;p + 3y [l /af
e
1

b= O3+ S P Sample &1 ~ D 2

Lol =Ty, _ IV S (@i:6) =V f (@s&p)lI? 72

Sample &1 ~D Gt+1 = (1 + i ag = )

div1 = Vf(@g1,&41) + (L — ap1)(de —  dig1 = Vf(@eg1,&41) + (1 — apg)(de —
V(e &e11)) Vf(xe,&41))
end for end for
Output 2oy = x; where t ~ Uniform ([77). Output zoy = x; where ¢ ~ Uniform ([T).

Additional assumptions made in the prior works (Cutkosky & Orabona, 2019; [Levy et al. 2021}
Huang et al.,|2021)) include the following:

3’. Almost surely 3-smooth: ||V f(x,&) — Vf(y,€)|| < Bllz —y||,Vz,y € R%, ¢ € support(D).
6. Bounded function values: There exists B > 0 such that |F(x) — F(y)| < B for all 7,y € R9.

We remark that 3’ is strictly stronger than 3 and it is NOT a standard assumption in |Arjevani et al.
(2019). Moreover, assumption 6, which plays a critical role in the analysis of [Levy et al.| (2021)),
is relatively strong and cannot be always satisfied in non-convex optimization. Our work removes
these two restrictive assumptions and also improves the dependency on the problem parameters.

2  OUR ALGORITHMS

In this section, we introduce our two main algorithms, META-STORM-SG and META-STORM,
shown in Algorithm [T]and Algorithm [2] respectively. Our algorithms follow the generic framework
of momentum-based variance-reduced SGD put forward by STORM (Cutkosky & Orabona, [2019).
The STORM template incorporates momentum and variance reduction as follows:

di = a/Vf(x,&) + (L —ar) dior + (1 —ag) (Vf(24,&) — VF(@i-1,6)) 2
momentum variance reduction
Ti41 = Tt — :dt 3)
t

The first variant, META-STORM-SG, similar to prior works, uses the gradient norms when setting
a; and similarly, requires the strong assumption on the boundedness of the stochastic gradients.
The major difference lies in the structure of the momentum parameters and the step sizes and their
relationship, which is further developed in the second algorithm META-STORM so that assumption
4 can be relaxed to assumption 5. We now highlight our key algorithmic contributions and how they
depart from prior works.

A first point of departure is our use of stochastic gradient differences when setting the momen-
tum parameter a; in META-STORM: prior works set a; based on the stochastic gradients, while
META-STORM sets a; based on the difference of two gradient estimators taken at two different
time step &;—; and &; at the same point x;_;. The gradient difference can be viewed as a proxy
for the variance o2, which allows us to require the mild assumption 5 in the analysis. With this
choice, our algorithm obtains the best dependency on the problem parameters. On the other hand,
the coefficient 1 — a;1 in the update for d;;; now depends on £;1, and addressing this correlation
requires a more careful analysis. The second point of departure is the setting of the step sizes b; and
their relationship to the momentum parameters a; in both META-STORM-SG and META-STORM.

We propose a general update rule b, = (bé/ Py Z§=1 ld:]|?)?/aj that allows for a broad range of
choices for p and ¢ that subsume prior works. In practice, different problem domains may ben-
efit from different choices of p and ¢q. Our framework allows us to capture prior works such as
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the STORM+ update b; = (320_, [|di]|?/ai+1)/? using a different but related choice of momen-
tum parameters and a simpler update that uses only the current momentum value a; instead of all
the previous momentum values a;11 with ¢ < ¢. We further motivate and provide intuition for
our algorithmic choices in Section [3] We note that our algorithm uses only the stochastic gradient
information received, and it does not require any knowledge of the problem parameters.

We provide an overview and intuition for our algorithm in Section [3] and give the complete anal-
ysis in the appendix. Our analysis departs significantly from prior works such as STORM+, and it
allows us to forgo the bounded function value assumption and improve the convergence rate’s de-
pendency on the problem parameters. It remains an interesting open question to determine the best
convergence rate that can be achieved when the function values are bounded.

We can further alleviate assumption 5 in another new algorithm, META-STORM-NA (Algorithm
[3), provided in Section [H]in the appendix. To the best of our knowledge, META-STORM-NA is
the only adaptive algorithm that enjoys the convergence rate 5( 1/T*/3) under only the weakest
assumptions 1-3. It also allows a wide range of choices for p € (O, %] . However, the tradeoff is that

the algorithm does not adapt to the variance parameter o. For the detailed analysis, we refer readers
to Section

Finally, we show the convergence rate obtained by Algorithms |1{and [2|in the following theorems.
The convergence rates for general p are given in the appendix.

Theorem 2.1. Under the assumptions 1-4 in Sectiowith the choice p = % and setting ag =
bo = n = 1 to simplify the final bound, META-STORM-SG ensures that

wil [(aQT)1/3 < W] 1 52/9
Ti/3 T8 T m))
where Wy = O(F (1) — F* + 02+ G?+ 8(1+G?) log (8+G2B)), Wa = O((F(x1) — F*)*/3 +
o434 GA/3 4 (1+ @4/3)/82/3 1og2/3 (ﬁ + CAY'ZB)) and W3 = O((l + @4/3)52/3).

E[IVF(zan)}] = O( + (W + Wslog (140°7) ) (

We note that when o2 > 0 and T is large enough, the effect of W, can be eliminated. Combining
Theorem 2.1 and Markov’s inequality, we immediately have the following corollary.

Corollary 2.2. Under the same setting in Theorem additionally we assume o® > 0 and T is
large enough, then for any 0 < § < 1, with probability 1 — §

K1 + kKo log (1 + J2T) 1 ot/3
53/2 (T1/2 + T1/3))
where k1 = O(F(x1) —F* 402+ G2+ K2 log@) and kg = O((l + 62)5)

Theorem 2.3. Under the assumptions 1-3 and 5 in Section with the choice p = % and setting
ag = by = n =1 to simplify the final bound, META-STORM ensures that

IV F ()| < O

3 [P tl] =0 (1 + st 1 +0°1) (11 + 227)

where Q1 = O((F(z1) — F*)6/7 + (80)6/7 + o127 45187 4 (1+ 818/7)56/7 log®/7 (B+338)
and Q2 = O((1 4 3'8/7)B%/7).

Combining Theorem [2.3]and Markov’s inequality, we also have the following corollary.

Corollary 2.4. Under the same setting in Theorem [2.3] then, for any 0 < & < 1, with probability
1-9

K1+ kalog (14 0%T) 1 1 ol/3
5776 (T1/2 * T1/3>>
where k1 = O(F(ml) —F* 4504+ 02+0> + Kalog Iig) and Ky = O((l + 33)ﬂ).

IVE ()| < O(

We emphasize that the aim of our analysis is to provide a convergence in expectation or with constant
probability. In particular, we state Corollaries and only to give a more intuitive way to
see the dependency on the problem parameters. To boost the success probability and achieve a
log %. c}ependency on the probability margin, a common approach is to perform log% independent
repetitions of the algorithms.
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We briefly discuss the difference between the convergence rate of the two algorithms. We note
that these two rates cannot be compared directly since assumption 4 is stronger than assumption 5.

Additionally, as pointed out in Section we have & = O(G) and thus the term O(5%) in Corollary

is O(G?), whereas Corollary [2.2| has a O(G?) term. To give an intuition why an extra higher
order term W, appears in Theorem[2.T)when o = 0 compared with Theorem[2.3] we note that when
o = 0, d; in both algorithms degenerates to V F'(x;). However, the coefficient a;11 becomes 1 in
META-STORM but does not in META-STORM-SG. This discrepancy leads to b; being larger in
META-STORM-SG than in META-STORM, and moreover the META-STORM b; becomes exactly
the same as the stepsize used in AdaGrad. Due to the larger b; when o = 0, it is reasonable to expect
a slower convergence rate for META-STORM-SG. The appearance of the term W7 reflects that.

3  OVERVIEW OF MAIN IDEAS AND ANALYSIS

In this section, we an overview of our novel analysis framework. We first give a basic non-adaptive
algorithm and its analysis to motivate the algorithmic choices made by our adaptive algorithms. We
then discuss how to turn the non-adaptive algorithm into an adaptive one. Section [D]in the appendix
gives a proof sketch for Theorem for the special case p = % that illustrates the main ideas used
in the analyses of all of our algorithms. We give the complete analyses in the appendix.

3.1 NON-ADAPTIVE ALGORITHM

As a warm-up towards our fully adaptive algorithms and their analysis, we start with a basic non-
adaptive algorithm and analysis that will guide our algorithmic choices and provide intuition for our
analysis. The algorithm instantiates the STORM template using fixed choices a; = a and b;/n = b
for the momentum and step size. In the following, we outline an analysis for the algorithm and
derive appropriate choices for the values a and b.

Algorithm: As noted above, the algorithm performs the following updates:

1
Tip1 = Ty — Edﬁ diy1 = Vf(@p1,641) + (1 —a)(de — V (2, 641))-

To make it simpler, we assume d; = VF(z1). Alternatively, one can use a standard mini-batch
setting to set d; = % o, Vf(x1;&) with a proper m leading to small variance as in previous
non-adaptive analysis (Fang et al.l 2018} |Zhou et al.,|2018; [Tran-Dinh et al., 2019).

Key idea: We start by introducing some convenient notation. Let ¢; = d;—V F'(x) be the stochastic
error (in particular, ¢; = 0) and
t t t
H, =Y |VF@)2  Di=Yldl?  Ei=3 el
i=1 i=1 i=1

First, to bound E [||V F(2oy)||] where oy is an iterate chosen uniformly at random, it suffices to up-
per bound E[Hy]. Then, we can translate this term to a convergence guarantee for E [||VF (2oy)||]-
An important intuition from STORM/STORM+ is the incorporation of VR in (2), leading to a de-
crease over time of the error term €;. Thus, we can view d; as a proxy for VF(z;). It is then natural
to decompose Hr in terms of D7 and Ep. By the definition of €;, we can write Hy < 2Dy +2Ep.
Therefore, to upper bound E[Hr], it suffices to upper bound E[D7] and E[Er], which will be the
essential steps in the analysis framework. A key insight is that E[D] and E[Er] can be upper
bounded in terms of each other, as we now show.

Bounding D7: Starting from the function value analysis, using smoothness, the update rule z;11 =
Ty — %dt, the definition of ¢, = d; — VF(x), and Cauchy-Schwarz, we obtain

1
Flan) = Fla) < (VF(e) zer — ) + 5 e — 2l = —3 (VF (), de) + 2o e
1 5 1 B 9 1 o 1 2 8 9
= —— — _ < —— —_ _— .
S 3 e )+ gl <~ el + o el 4+ k]

Suppose that we choose b so that b > 23, which ensures that % < 4%). By rearranging the previous

inequality, summing up over all iterations, and taking expectation, we obtain
E[Dr] < 40E (F(z1) — F(x741)) + 2E [Er] < 4b(F(z1) — F*) 4+ 2E [E7] . 4)
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Bounding E7: By the standard calculation for the stochastic error €; used in STORM, we have

E leral?] < (1 - aPE [le?] +20 - 0?25 [Ia:]?] + 2%
Summing up over all iterations, rearranging, and using that a € [0, 1] and ¢; = 0, we obtain
E[E7] < ———————QHAﬁyéhﬂDﬂ+ﬂf0%v 52[Dﬂ+ame (5)
“1-(1-a)? b2
By combining inequalities (@) and (5), we obtain
62
E[Dr] < 4 (F(@:) ~ F*) + ~5E [Dr] + dao’T; ©)
8ﬂ2 « 432 2
E[Br] < " (F(a2) ~ F*) + o [Br] + 2a0°T. ™

Ideal non-adaptive choices for a,b: Here, we set a and b to optimize the overall bound, and
obtain choices that depend on the problem parameters. In the next section, we build upon these
choices to obtain adaptive algorithms that use only the stochastic gradient information received by
the algorithm.

We observe that (6) and bound E[D7| and E[E7] in terms of themselves and the coefficient on

2
&,
so that 4€2 =3 L (note that this requires setting b > 21/24, so that a < 1). By plugging this choice
into (6) and (7)), we obtain

the right-hand 51de is 457 . Suppose that we set a so that this coefficient is z, i.e., we set a =

The best choice for b is the one that balances the two terms above: b = © (%) 1/3. Since we

also need b > Q(f3), we can set b to the sum of the two. Hence, we obtain
B 1
=0 ; 8
b2) (1+(6(F(:C1)—F*))2/3( 2T)2/3> ®)
9(54‘52/3( (z1) —F*)_1/3( 2T)1/3) 9)
EHMUM&LEMﬂgO@((ﬂ—Fﬂ+@@h@—FﬂfB®Wfﬂ. (10)

a—@(

3.2 ADAPTIVE ALGORITHM

In this section, we build on the non-adaptive algorithm and its analysis from the previous section.
We first motivate the algorithmic choices made by our algorithm via a thought experiment where we
pretend that H7, D7, E7 are deterministic quantities.

Towards adaptive algorithms: To develop an adaptive algorithm, we would like to pick a, b without
an explicit dependence on the problem parameters by using quantities that the algorithm can track.
We break this down by first considering choices that do not depend on 3, but on ¢, and then removing
the dependency on o. As a thought experiment, let us pretend that Hy, Dy, Ep are deterministic
quantities. A natural choice for a that mirrors the non-adaptive choice (8)) is a = (1 + 7)) ~2/3.
Since we are pretending that D is a deterministic quantity, we can set b by inspecting (3)):

2 2
ET %DT + 2aa T

If wesetb = DIT/ 2 / a'/*, we ensure that D7 cancels and we obtain the desired upper bound on Er-.
More precisely, by plugging in a = (1 4+ ¢>T)~%/3 and b = DlT/Q/al/4 into , we obtain

e 28°

ETflﬂD1h+mﬁT<ow%H-1?“+@+ﬁm”%
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We now consider two cases for Dy. If Dy < 1632(1 + ¢>T)'/3, the above inequality together
with Hy < 2D7 + 2E7 imply that Hy < O((1 + 2)(1 + ¢2T)'/3). Otherwise, we have Dy >
168%(1 + ®T)'/3 and thus ab® > 162. Plugging into (6], we obtain

Dy 2 O(vDr (1+02T)* (F(z)) — F(z*)) + (1 + 0>T)"?)

which solves to Dy < O((1 4 o2T)Y/3(F(x;) — F*)?). We can again bound Hy using Hy <
2D+ + 2E~. In both cases, we have the bound

Hy < O((1+ 82+ (F(a1) — F*)?) (14 627)"/)

We now turn to removing the dependency on 2T in a. The algorithm can also track Hy :=
ZZ;I |V f(x; &) — Vf(xe;€41)||%, which can be viewed as a proxy for 0T Replacing 0T by
this proxy and making a and b be time dependent give the update rules employed by our algorithm
in the special case p = % Our update rule for general p follows from a similar thought experiment.

Analysis: Using a similar approach as in the non-adaptive analysis, we can turn the above argument
into a rigorous analysis. In the appendix, we give the complete analysis as well as a proof sketch in
Section D] that gives an overview of our main analysis techniques.

4 EXPERIMENTS

We examine the empirical performance of our methods against the previous work STORM+ (Levy
et al.,2021)) and popular algorithms (Adam, AdamW, AdaGrad, and SGD) on three tasks: (1) Image
classification with the CIFAR10 dataset (Krizhevsky et al.,2009) using ResNet18 (Ren et al.,[2016))
models; (2) Masked language modeling via the BERT pretraining loss (Devlin et al., |2018)) with
the IMDB dataset (Maas et al., |2011) using distill-BERT models (Sanh et al.l 2019), where we
employ the standard cross entropy loss for MLM fine tuning (with whole word masking and fixed
test masks) with maximum length 128; and (3) Sentiment analysis with the SST2 dataset (Socher
et al.| 2013)) via finetuning BERT models (Devlin et al., |2018). We use the standard train/validation
split and run all algorithms for 4 epochs.

We use the default implementation of AdaGrad, Adam, AdamW, and SGD from Pytorch. For
STORM+, we follow the authors’ original implementationﬂ We give the complete implementation
details and tables of hyperparameters for all algorithms in Section of the Appendix.

Heuristics. For our algorithms and STORM+, we further examine whether heuristics like exponen-
tial moving average (EMA) of the gradient sums (or often called online moment estimation) and
per-coordinate update would be beneficial. The versions with heuristics is denoted (H) in the results
below. This is discussed in full details in Section[B.1.1]of the Appendix.

Results. We perform our experiments on the standard train/test splits of each dataset. We tune
for the best learning rate across a fixed grid for all algorithms and perform each run 5 times. For
readability, we omit error bars in the plot. Full plots with error bars and tabular results with standard
deviation as well as further discussions are presented in Section of the AppendixE]

1. CIFAR10 (Figure[T). Overall, META-STORM-SG achieves the lowest training loss with META-
STORM and STORM+ coming in close. META-STORM with heuristics attains the best test accu-
racy, with Adam coming in close.

2. IMDB (Figure[2). AdamW attains the best training loss. However, META-STORM with heuris-
tics achieve the best test loss (with AdamW coming in close). META-STORM-SG and the heuristic
algorithms outperform STORM+ in both minimizing training loss and test loss.

3. SST2 (Figure [3). META-STORM with heuristics attain the best training loss and accuracy,
above Adam and AdamW. It also achieves the best validation accuracy out of all the algorithms.
Furthermore, non-heuristic META-STORM and META-STORM-SG outperform STORM+. We

2Link to the code of STORM+: https://github.com/LIONS-EPFL/storm-plus—codel

3The reader should keep in mind that variance-reduced algorithms like META-STORM require twice the
amount of gradient queries, so the improvement in performance that our algorithms exhibit does not come
without a cost. Additional plots and further discussions are available in Section
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remark that STORM+ appears to be rather unstable for this task as some of the random runs do not
converge to good stationary points.
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Figure 1: Training loss and test accuracy on CIFAR10. (H) denotes the addition of heuristics.
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Figure 2: Training loss and test loss on IMDB. (H) denotes the addition of heuristics.
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Figure 3: Training loss and validation accuracy on SST2. (H) denotes the addition of heuristics.

5 CONCLUSION

In this paper, we propose META-STORM-SG and META-STORM, two fully-adaptive momentum-
based variance-reduced SGD frameworks that generalize upon STORM+ and remove STORM+’s
restrictive bounded function values assumption. META-STORM and its sibling META-STORM-SG
attain the optimal convergence rate with better dependency on the problem parameters than previous
methods and allow for a wider range of configurations. Experiments demonstrate our algorithms’
effectiveness across common deep learning tasks against the previous work STORM+, and when
heuristics are further added, achieve competitive performance against state-of-the-art algorithms.
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Reproducibility Statement. We include the full proofs of all theorems in the Appendix. For our
experiments, full implementation details including hyperparameter selection and algorithm devel-
opment are included in Section [B] of the Appendix. We also make our source code available.
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A APPENDIX OUTLINE

The appendix is organized as follows.

* Section [B] presents the full implementation details for our algorithms and hyperparameters
used. This section also includes additional ablation studies and experiments.

* Section |C]introduces the notations used in the analysis of our algorithms.

* Section D] presents the proof sketch of Theorem

* Section [E] establishes some basic results that are used in our full analysis.

* Section [F] gives the analysis of META-STORM for general p.

* Section [G| gives the analysis of META-STORM-SG for general p.

* Section [H|introduces META-STORM-NA and gives the analysis for general p.

* Section [ gives several basic inequalities that are used in our analysis.

B EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we present the complete implementation details along with the full experimental
setup. All of our experiments were conducted on two NVIDIA RTX3090.

B.1 IMPLEMENTATION DETAILS AND HYPERPARAMETER TUNING

In this section, we present the full implementation details of the heuristics version, parameter selec-
tion, and hyperparameter tuning for all 3 datasets.

B.1.1 HEURISTICS VERSIONS OF META-STORM AND META-STORM-SG

Algorithm 3 Heuristic update of META-STORM and META-STORM-SG.

G — aGyo1 + (1= @) (Vf(w1,&) — VF(1,641))°  for META-STORM (H)
") eG4+ (1= ) (V2 &) for META-STORM-SG (H)

a1 = (1 + Gt/ag) —2/3
D; = aD;_q + (1 — a)d?
(bl/l’ p q
ey Dt) /a?  for META-STORM (H)
P
(bé/ Py Dt) Jal,, for META-STORM-SG (H)

by =

n
Tt41 = Tt — th
t

diy1 = Vf(@eg1,641) + (1 —app1)(de — V(24 641))
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Algorithm 4 Heuristic update of STORM+

G=aG1+(1—a) (Vf(xtaft))2
ar1 = (1+Gifag)>/?
d3

at+1

Dt = Cthfl + (1 — O[)

be

(bo + Dt)_1/3

Ui
Tt41 = Tt — th
t

div1 = Vf(@er1,&41) + (1 —app1)(de — V (@, &41))

For our algorithms, we employ the common heuristic of using an exponential moving average
(EMA) scheme in the momentum and the step size. We also perform a per-coordinate update instead
of simply using the norm. With this, our update rules for x;11 = x; — nd;/b; becomes coordinate-
wise division with the update rules as in Algorithm [3] where all the operations between vectors
here are coordinate-wise multiplication, exponentiation, and division. In our experiments, we set
a=0.99,a0=1, by = 108 as selected by the criterion detailed next. Similarly, we also examine
the same heuristics on STORM+ via an analogous implementation in Algorithm 4]

B.1.2 ALGORITHM DEVELOPMENT AND DEFAULT PARAMETERS SELECTION

We develop our algorithm on MNIST and tune for p, ag, and by. For ag, we tune on MNIST across a
range of values from 1 to 10® and found that larger values of ag are helpful. For by, we simply need
a small number for numerical stability so we pick 10~8. For the heuristic versions of our algorithms,
ag = 1 gives the best results. This might be due to the effects of per-coordinate operations removing
the need to scale down the gradient-accumulated step-size.

Effects of varying p. In Figures @ and 5] we show the training loss and test accuracy of different
values of p of our algorithms on MNIST (with ag = 108 and by = 10~%). For each configuration,
we tune the base learning rate 7 across {10*37 1072,1071,1, 10} .The results suggest that the lower
values of p tend to perform better. While p = 1/3 has comparable performance to the lowest setting
of p, this choice is somewhat analogous to STORM+. Hence, we select the lowest possible value p
for our algorithms in the subsequent experiments (with p = 0.20 for META-STORM and p = 0.25
for META-STORM-SG).

Train Loss Test Accuracy
1.00

0.99

Accuracies
o
©
=3

Train Loss

=3
©
<

0.96

0.95
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

For e Fetirt st B o & o e e R eSO e

in Figures[6]and[7} Since p = 0.50 attains the lowest training loss for both heuristics versions of our
algorithms, we select such value for all our experiments.

Default parameters.
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Figure 5: Training loss and test accuracy for META-STORM-SG on MNIST for different p values.
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Figure 6: Training loss and test accuracy for META-STORM (H) on MNIST for different p values.

Table 2: Default parameters for META-STORM algorithms and STORM+. The version with heuris-
tics is denoted with an additional (H).

| Algorithm | » | ao [ bo ‘
META-STORM 0.20 a2 =108 be/? =108
META-STORM-SG | 0.25 a2 =108 by'? =108
META-STORM (H) | 0.50 a2 =1 by/? =108
META-STORM-SG (H) | 0.50 a2 =1 be/? =108
STORM+ N/A | ao =# of parameters bp=1
STORM+ (H) N/A ag =1 b = 1078

The discussion above leads to the choice of ag = 10% and by = 10~ by default for our algorithms
with p = 0.20 for META-STORM and p = 0.25 for META-STORM-SG on the benchmarks present
in this section. For the heuristic versions of META-STORM, we use p = 0.50,a9 = 1, and by =
10~8 for our algorithm with heuristics. This version with heuristics is further denoted (H) in our
results below. For STORM+, we use the original authors’” implementation of setting a to the number
of parameters of the model (which is roughly 10® for ResNet18 for example) and by = 1. For other
baseline algorithms, we use the default parameters from Pytorch implementation.

Hyperparameter tuning. For all algorithms, we tune only the learning rate while using the default
values for the other parameters for all algorithms.
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Figure 7: Training loss and test accuracy for META-STORM-SG (H) on MNIST for different p
values.

For learning rate tuning, we perform a grid search across values {10*5, 1074,1073,1072,1071, 1}
for CIFAR10 and IMDB and across values {10*5, 2x107°,1074,1073,1072,1071, 1} for SST2
(due to 2 x 1075 being the default learning rate for AdamW on SST2 and also more practical due to
SST2 being a smaller dataset). For Adam on IMDB, the learning rate in our grid search is not small
enough to converge, requiring additional tuning for decreasing training loss.

Table [3] includes the selected learning rate we used for each algorithm across the datasets. After
obtaining the best learning rate, we additionally run each algorithm across 5 different seeds to obtain
error bars.

Table 3: Table of Hyperparameters.

| Algorithm [ CIFARIO [ IMDB | SST2 |
META-STORM 1 102 1072
META-STORM-SG 1 10T 1072
META-STORM (H) 1073 107% [ 2-107°
META-STORM-SG (H) 1073 107% [ 2.107°
STORM+ 0.1 1072 1072
STORM+ (H) 102 1073 10~%
Adam 1073 10°° 10—°
AdamW N/A 1072 10~°
Adagrad 1073 1073 1071
SGD 1073 1072 1073

B.2 FULL RESULTS FOR EXPERIMENTS IN SECTION 4] AND ADDITIONAL EXPERIMENTS

In this section, we show complete plots and tabular results along with more detailed discussions
for our experiments. The reader should note that STORM-based methods require twice the amount
of oracle access over the baselines. The plots show average across 5 seeds along with min/max
bars. The tables show the average across 5 seeds across a range of selected epochs and one standard
deviation is included at the last epoch. In the plots and tables below: (H) denotes the version of the
algorithm with the heuristics (EMA and per-coordinate update) employed.

B.2.1 CIFAR10: RESULTS AND DISCUSSIONS

Figure[§] shows all 4 plots of the main experiments in Section[d]in Figure 8]
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Figure 8: Losses and accuracies on CIFAR10.

Tables.  Tables [ and 3] show the training loss and accuracy for CIFAR10. Tables [6] and [7] show
the test loss and accuracy for CIFAR10.

Table 4: CIFAR10 average training loss across 5 seeds for selected epochs. Lowest loss is bolded
per selected epoch.

Algorithm 1 10 20 40 60 70 80 90 100

MS-SG (H) 1.611 0328 0.154 0.052 0.029 0.023 0.018 0.015 0.014+£0.004
MS (H) 1.618 0329 0153 0.051 0.028 0.023 0.018 0.016 0.0144+0.003
MS-SG 1.899 0421 0.194 0.053 0.023 0.016 0.014 0.011  0.008+0.001
MS 1.941 0441 0204 0.056 0.023 0.017 0.013 0.010 0.009+0.001
STORM+ (H) 1.727 0358 0.167 0.089 0.053 0.037 0.027 0.022 0.018+0.006
STORM+ 1.604 0349 0.177 0.059 0.026 0.019 0.017 0.011 0.009+0.002
Adam 1452 0327 0153 0.052 0.030 0.024 0.021 0.019 0.016+0.003
Adagrad 1.359 0456 0305 0.164 0.096 0.076 0.059 0.048 0.040£0.002
SGD 1.561 0441 0253 0.097 0.044 0031 0.024 0.019 0.014+0.001
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Table 5: CIFAR10 average training accuracy across 5 seeds for selected epochs. Highest accuracy
is bolded per selected epoch.

Algorithm 1 10 20 40 60 70 80 90 100

MS-SG (H) 0405 0.886 0946 0982 0990 0992 0.994 0995 0.995£0.000
MS (H) 0403 0.886 0946 0982 0990 0992 0.994 0.995 0.995+0.000
MS-SG 0.317 0.854 0932 0981 0992 0.995 0.995 099 0.997+0.001
MS 0.306 0.846 0928 0980 0.992 0994 0.996 0.997 0.997+0.000
STORM+ (H) 0.365 0.876 0941 0.968 0981 0.987 0990 0.992 0.99440.001
STORM+ 0413 0.879 0938 0979 0991 0993 0.994 099 0.997+0.000
Adam 0468 0.887 0946 0.982 0989 0992 0.993 0994 0.995£0.000
Adagrad 0.504 0.840 0.894 0945 0969 0976 0983 0986 0.988+0.001
SGD 0423 0.847 0912 0966 0985 0989 0.992 0994 0.995£0.000

Table 6: CIFAR10 average test loss across 5 seeds for selected epochs. Lowest loss is bolded per
selected epoch.

Algorithm 1 10 20 40 60 70 80 90 100

MS-SG (H) 1272 0405 0343 038 0423 0423 0456 0.487 0.48140.039
MS (H) 1.250 0390 0337 0390 0431 0441 0444 0446 0.460+0.021
MS-SG 1.553 0472 0373 0437 0473 0484 0501 0498 0.522+0.034
MS 1.577 0498 0379 0425 0463 0490 0.488 0.496 0.506+0.016
STORM+ (H) 1429 0417 0342 0346 0400 0405 0433 0455 0.451+£0.022
STORM+ 1.321 0457 0355 0385 0404 0423 0443 0457 0.47040.025
Adam 1222 0412 0335 0384 0401 0432 0434 0441 0.44610.025
Adagrad 1.104 0541 0468 0447 0468 0476 0488 0499 0.502£0.013
SGD 1.315 0525 0446 0425 0450 0447 0471 0460 0.487£0.017

Table 7: CIFARI10 average test accuracy across 5 seeds for selected epochs. Highest accuracy is
bolded per selected epoch.

Algorithm 1 10 20 40 60 70 80 90 100

MS-SG (H) 0.539 0.867 0901 0916 0923 0.922 0.924 0924 0.922+0.005
MS (H) 0546 0.871 0901 0914 0918 0922 0.924 0925 0.927+0.001
MS-SG 0427 0.843 0.886 0.902 0909 0914 0913 0914 0.915£0.004
MS 0418 0.834 0.883 0902 0910 0913 0915 0917 0.918+0.004
STORM+ (H) 0482 0861 0.898 0909 0911 0920 0919 0919 0.9214+0.002
STORM+ 0.529 0.852 0.892 0911 0918 0920 0921 0922 0.923+£0.003
Adam 0.574 0.866 0.902 0913 0921 0920 0.923 0923 0.925+0.002
Adagrad 0.601 0.816 0.845 0.862 0.866 0.869 0.868 0.870 0.872+0.003
SGD 0.522 0.825 0.860 0.888 0.897 0.904 0.905 0.909 0.907£0.003

Discussion. META-STORM-SG achieves the lowest training loss and best training accuracy (with
META-STORM and STORM+ coming in close). META-STORM-SG maintains the best training
loss and accuracy for longest before the final epoch. For test loss and test accuracy, META-STORM
(H) attains the best test accuracy (with Adam coming in close) while Adam attains the best test
loss. While META-STORM-SG and META-STORM achieve low training loss, their generalization
performance seems worse than their heuristic counterparts.
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To further study this generalization gap among different algorithms, Table [§] shows the generaliza-
tion gap of different algorithms. META-STORM with heuristics and Adam achieve the smallest gap
among all the algorithms. For our algorithms, the version with heuristics exhibit a smaller gener-
alization gap than the version without the heuristics while STORM+ lies in between. Interestingly,
Adagrad and SGD exhibit larger generalization gaps.

Table 8: CIFAR10 accuracy generalization gap (train acc - test acc) of the last epoch’s accuracy.

Algorithm MS-SG/(H)  MS/(H) STORM+/(H) Adam Adagrad SGD

Test acc 91.7%/92.2% 91.8%/92.7%  92.3%/92.1% 92.5% 87.2% 90.7%
Trainacc ~ 99.8%/99.5% 99.7%/99.5%  99.7%/99.4%  99.5% 98.9% 99.6%

Gen gap 8.1%/7.3% 7.9%1/6.8 % 1.4%/17.3%  7.0% 11.7%  8.9%

B.2.2 IMDB: RESULTS AND DISCUSSIONS

Figure 2] from Section ] shows the train and test loss of the algorithms used. We include Figure 9]
here that includes the error bars across 5 random seeds.

Tables. Tables[9and[I0]show the train and test loss for our experiments.

Table 9: IMDB average training loss across 5 seeds for selected epochs. Lowest loss for each epoch
is bolded below.

Algorithm 1 2 3 4 5 6 7 8 9 10

MS-SG (H) 0481 0.450 0435 0424 0415 0407 0400 0394 0389 0.384+0.011
MS (H) 0.482 0450 0435 0424 0415 0407 0400 0.393 0.389 0.384+0.010
MS-SG 0947 0483 0467 0462 0458 0455 0453 0452 0451 0.45040.009
MS 0503 0486 0.481 0478 0477 0475 0474 0473 0473 0.472£0.011
STORM+ (H) 0474 0447 0434 0425 0418 0411 0406 0401 0.397 0.394+0.010
STORM+ 0495 0476 0471 0466 0464 0461 0460 0.459 0458 0.458+0.007
Adam 0.602 0.514 0515 0525 0536 0548 0.559 0.568 0575 0.57740.013
Adagrad 0.509 0451 0441 0435 0431 0428 0426 0424 0424 0.422+0.009
SGD 0491 0463 0450 0441 0434 0428 0423 0419 0415 0.4124+0.010
AdamW 0485 0453 0435 0421 0410 0399 0389 0381 0.374 0.368+0.010
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Figure 9: Training loss and test loss on IMDB. (H) denotes the addition of heuristics.

18



Under review as a conference paper at ICLR 2023

Train Loss

—4— META-STORM-SG (H)
META-STORM (H)

#— META-STORM-SG
—+— META-STORM
—»— STORM+ (H)

—>— STORM+
- Adam
Adagrad

ki
SGD
0.30 | AdamW
“'\
020 \t‘\Ko\‘
0.10 \\.\_’

1.0 L5

2.0

2.5
Epoch

Train Accuracy

3.0 3.5

4G

)

——

/ ————————3}
0.90 //

—4— META-STORM-SG (H)

META-STORM (H)
#— META-STORM-SG
—— META-STORM

Accuracy
o
2
3

o
3
3

0.60

2.0

05
Epoch

—¥— STORM+
—v— STORM+

& Adam
Adagrad
SGD
AdamW

3.0 3.5

(H)

1.0

0.94

0.92

0.90

o
®
&8

Accuracy

0.86

0.84

0.82

Val Avg loss

—4— META-STORM-SG (H)
META-STORM (H)

#— META-STORM-SG

—— META-STORM

—%— STORM+ (H)

—— STORM+

#- Adam

Adagrad

SGD

AdamW

/——/
—

—

1.0 L5 2.0 3.0 3.5 1.0

2.5
Epoch

Val Accuracy

—4— META-STORM-SG (H)
META-STORM (H)
@~ META-STORM-SG
~+— META-STORM
—%— STORM+ (H)
—w— STORM+
#- Adam I e s S
Adagrad
SGD
AdamW

L0 L5 2.0 2.5 3.0 3.5 1.0

Figure 10: Losses and accuracies on SST?2.

Table 10: IMDB test loss. Lowest loss for each epoch is bolded below.

Algorithm 1 2 3 4 5 6 7 8 9 10

MS-SG (H) 0.446 0433 0427 0420 0416 0411 0406 0403 0.400 0.397£0.010
MS (H) 0446 0433 0427 0420 0416 0411 0.406 0.403 0.400 0.397+0.010
MS-SG 0470 0451 0.447 0442 0439 0438 0436 0435 0435 0.433+0.012
MS 0469 0462 0461 0458 0457 0456 0454 0454 0454 0.453£0.010
STORM+ (H) 0.441 0429 0423 0417 0413 0409 0405 0403 0401 0.398£0.010
STORM+ 0462 0453 0450 0445 0446 0442 0442 0440 0441 0.440+0.012
Adam 0498 0490 0498 0507 0519 0530 0.538 0545  0.550  0.55040.013
Adagrad 0.444 0.432 0428 0423 0421 0419 0417 0417 0417 0.416£0.010
SGD 0455 0440 0434 0427 0424 0419 0416 0413 0411 0.409£0.009
AdamW 0455 0441 0433 0425 0420 0414 0409 0405 0401 0.398+0.009

Discussion. Here, AdamW achieves the best training loss with the heuristic algorithms coming

in close. For the test loss, these algorithms also have similar performances. All META-STORM
algorithms (with and without heuristics) perform better than STORM+ in minimizing training loss.
For test loss, META-STORM-SG performs better than STORM+ but META-STORM does not.
Both the heuristic versions of META-STORM and META-STORM-SG outperform STORM+. We
see that STORM+ with heurstics performs similarly to META-STORM with heuristics.

B.2.3 SST2: FULL RESULTS AND DISCUSSIONS

Figure[I0[shows all 4 plots of the main experiments for SST2.

19



Under review as a conference paper at ICLR 2023

Tables. Tables [11| and [12] present the training loss and accuracy for the experiments for SST2.
Tables [I3]and [T4] show the validation loss and accuracy for the experiments for SST2.

Table 11: SST2 training loss. Lowest loss for each epoch is bolded below.

Algorithm 1 2 3 4
META-STORM-SG (H) 0.200 0.098 0.057 0.032=0.005
META-STORM (H) 0.200 0.098 0.056 0.032+0.005
META-STORM-SG 0258 0.188 0.165 0.154£0.008
META-STORM 0.251 0.173 0.146  0.13240.008
STORM+ (H) 0.532 0.112 0.073 0.057£0.006
STORM+ 0.357 0.255 0.218 0.195£0.269
Adam 0216 0.111 0.071  0.048+0.006
Adagrad 0227 0.158 0.141 0.134£0.006
SGD 0.257 0.144 0.099 0.070£0.005
AdamW 0.211 0.110 0.071  0.048+0.006

Table 12: SST?2 training accuracy. Highest accuracy for each epoch is bolded below.

Algorithm 1 2 3 4
META-STORM-SG (H) 0.923 0.966 0.980 0.988-£0.002
META-STORM (H) 0.923 0.966 0.980 0.988+0.003
META-STORM-SG 0.893 0927 0.937 0.941+0.003
META-STORM 0.896 0.933 0945 0.951£0.002
STORM+ (H) 0.733  0.946 0957 0.963£0.001
STORM+ 0.817 0.868 0.883  0.89140.179
Adam 0914 0961 0975 0.983+0.001
Adagrad 0910 0940 0.947 0.95140.003
SGD 0.893 0.947 0965 0.976£0.002
AdamW 0917 0961 0975 0.983£0.002

Table 13: SST2 validation loss. Lowest loss for each epoch is bolded below.

Algorithm 1 2 3 4
META-STORM-SG (H) 0.205 0.226 0.261 0.302+0.012
META-STORM (H) 0.199 0.218 0.260 0.297£0.010
META-STORM-SG 0238 0.238 0.242  0.245+0.007
META-STORM 0233 0.238 0.247 0.251£0.011
STORM+ (H) 0216 0.224 0255 0.273£0.005
STORM+ 0.308 0.326 0327 0.350+£0.195
Adam 0222 0.236  0.242 0.269£0.007
Adagrad 0223 0.234 0243 0.244+0.003
SGD 0230 0.228 0.238 0.268+0.011
AdamW 0220 0.234 0.243  0.269£0.006
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Table 14: SST?2 validation accuracy. Highest accuracy for each epoch is bolded below.

Algorithm 1 2 3 4
META-STORM-SG (H) 0.924 0.929 0.933 0.934+0.004
META-STORM (H) 0.926 0.927 0929 0.936+0.002
META-STORM-SG 0910 0912 0915 0.915£0.002
META-STORM 0913 0916 0916 0.917£0.005
STORM+ (H) 0920 0923 0925 0.92540.003
STORM+ 0.838 0.841 0.841 0.843+0.187
Adam 0921 0925 0926 0.926£0.004
Adagrad 0912 0915 0915 0.916£0.002
SGD 0915 0924 0925 0.925+0.003
AdamW 0921 0925 0926 0.926+0.004

Discussions. Similarly to CIFAR10, we examine the generalization gap of different algorithms in
Table[T5] Here, we see that MS-SG attains the lowest generalization gap between training accuracy
and test accuracy while Adam suffers from the largest generalization gap among the algorithms
compared in our experiments.

Table 15: SST2 accuracy generalization gap (train acc — test acc) of the last epoch’s accuracy.

Algorithm MS-SG/(H) MS/(H) STORM+/(H) Adam Adagrad SGD

Train acc.  94.1%/98.8% 95.1%/98.8%  89.1%/96.3% 98.3% 95.1% 97.6%
Val acc. 91.5%/93.6% 91.7%/93.6%  84.3%/92.5% 92.6% 91.6% 92.5%
Gen. gap 2.6%15.2% 3.4%15.2% 4.8%/3.8%  5.7% 35%  5.1%

C ASSUMPTIONS AND NOTATIONS

C.1 ASSUMPTIONS

We recall the assumptions in Section|l.2| we rely on:
1. Lower bounded function value: F'* := inf cpa F(z) > —o0.

2. Unbiased estimator with bounded variance: We assume to have access to V f(z, &) satisfying
Ee [Vf(z,8)] = VF (), Ee [|[Vf(2,§) — VF(2)|?] < o2 for some o > 0.

3. Averaged 3-smoothness: E¢ [V f(z,£) — Vf(y,&)|?] < 82|z — y||?,Va,y € R

4. Bounded stochastic gradients: |V f(z,¢)|| < G, Vz € R, ¢ € support(D) for some G > 0.

5. Bounded stochastic gradient differences: ||V f(z,¢) — Vf(z,&)| < 26,Vz € R4, ¢, ¢ €
support (D) for some & > 0.

We remind the reader that o = O(3) and & = O(G).

C.2 NOTATIONS

In the analysis below, we employ the following notations

t t
2 s 2
5max = max {5; ]-}7 Dt = Z Hd2H 3 Et,s = Z ;11 ||62H 5
=1

i=1
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t t t
H, =Y [VE@)?: o= IV @& =S Vi (@0n6) - V&)
i=1 i=1 i=1
We will also write E; == E;g = >.'_, lel|*. We denote F; = o (&,1 <i <t) as the sigma
algebra generated by the first ¢ samples. Besides, we define 0° := 1. In Section we will list and
prove all inequalities used in the subsequent proofs.

D PROOF SKETCH FOR THEOREM [2.3]

In this section, to give an overview of the proof techniques, we present the proof sketch for Theorem
for the special case p = % For simplicity, we assume 5 > 1 to simplify the notation. The
analysis of the fully adaptive algorithms follows a similar approach to the non-adaptive analysis
given in Section[3] As before, towards our final goal of bounding ||V F'(ey)||, we will translate to
H and upper bound it via D7 and E.

Bounding Er: As in existing VR algorithms, we need to calculate how the stochastic error ¢
changes with each iteration. By a standard calculation, we obtain

asprllecl® < lleell® = lleesill® + 20 Zega |I? + 2021 IV f (me41, E41) — VF (@41) 1> + Myga
(11)

where

Zi1 = V@1, 641) = V(@ §41) = VF(241) + VF(2y);
My = 2(1 — ag1)* (€, Zea) + 2(1 — ap1) a1 (6, VF (@41, E41) — VE(T441)).

We note that, in META-STORM, a1 € Fy41, which implies E[M;1 | F¢] # 0. This extra term
M, 1 makes our analysis more challenging compared with previous works. Now, we highlight some
challenges and point out how to solve them:

CHALLENGE 1. How to obtain a term as close to E7 as possible with a proper upper bound? In
the L.H.S. of (11), we can see an extra coefficient a; 1 appear in front of ||¢;||?. A straightforward
option is to divide both sides by a;41 then sum up to get E;. However, if we do so, the following
problem arises. Let us focus on the term || Z;11||?/as+1 . The averaged 3-smoothness assumption
gives

2
> 2 g2 [1di]]
E [|Zerall® | Fe] <n°B 2
t
However, we cannot apply this result to || Z;,1]|? /a1 since a;11 € Fy11 as noted above. If we
temporarily think a,_ +11 < ca; ! for some constant ¢ (we can expect this because the change from a,

t0 @41 is not too large due to the bounded differences assumption), we will get E[a; ', ||| Z¢41]? |

Fi] < Elea; | Zesa|)? | Fi] < nQBQM If we plug in the update rule of b, = (b2 +D7)/2/a;’*,

then we obtain E[|| Zy41 12| /acsy | Fi] < n?B2%a; /> ndtn Tt can be shown that 3"/, b!jtgi can
~1/2

be upper bounded by log 2 =% but now we still have the extra a; coefficent. To remove it, it is
0

reasonable to divide both sides of l) by atl _{21 rather than a; ;.

CHALLENGE 2.  How to get rid of the term involving M;,,? As discussed in Challenge 1,
we want to divide both sides by ai ﬁ Now we focus on the term a,_ +11/ *Myy1. Again, due to

ar41 € Fig1, E[a:lthH | F¢] # 0. An important observation here is that, if we replace a;1 by
a; in My 1, we will have a martingale difference sequence. Formally, we define

Nipr = 2(1 = ap)*(er, Zega) +2(1 — ap)ae(er, VI (w11, E1) — VF(2441)).

Then E[N,1; | Fi] and E[a;1/2Nt+1 | Fi] are both 0. This observation tells us that, in
order to bound E[ZtT 1 a;_llthH] it suffices to bound E[Zf 1 a;_llﬂMtH - at_l/2Nt+1].
Using the Cauchy-Schwartz inequality, we show that the term Zt 10y +1/ My —a; 1/ 2Nt+1
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can be bounded by terms related to 3, ( at+11/2 — a7 )2, 1a;rll/2||Z,5+1||2 and

Zt ) 3/2||Vf(33t+1, €41) — VF(x411)||?>. We then bound these latter terms in turn, and elim-
inate the term involving My ;.

After overcoming the two challenges above, we can finally show the following inequality, where
Ky, Ko, K4 are constants that depend only on o, 7, 3, ag, by, n and are independent of 7.

E [0/} \Br| <E[Brip) < Ki+ KE [log (1+ Hr/af) | + KiE [log (1 + Dr/18)] . (12)
Bounding Dr: By following the standard non-adaptive analysis via smoothness, we obtain
2
F(ai1) < F(a) = 3 (VF (), di) + 2o il (13)
t t

Here we proceed similarly to the non-adaptive analysis from Section [3.1] but start to diverge
from the analysis approach used in STORM+. The STORM+ analysis proceeds by splitting
~(VF(2).d) = ~IVF(x)|? — (VF(x,).e) < —5IVF(@,)]? + Alec][%. multiplying both
sides of 1.} with b; /1, and summing up over all 1terat10ns This gives the followmg upper bound
on Hr:

T T

2 d

Hr =3 [VF@)IP < Y 2 (Flo) = Flova)) b+ Z ol + nﬁz ldeli”
t=1 t=1

This analysis requires F'(z) to be bounded so that the sum thl E(F(xt) — F(x441))bs can tele-
scope. To remove this assumption, we go back to (13, split —(VF (), d;) = —||d¢||? + (er, ds),
and upper bound the inner product via the Cauchy-Schwartz inequality and the inequality ab <
a2 4 %62 which holds for any v > 0:

||2

Aa, b nps
(ernde) < llerlllde]] < Z52E 2 + Id|I?
23 202 b,
where A\ > 0 is a constant (setting A based on & yields the best dependence on 7). We note that

this choice will need a bound on ]E[Zf:1 at1 J/rzl lle£|?], and 1/2 turns out to be the smallest choice of

. o . Aa}/2b; .
¢ which makes E[3/_, a¢ ||e;||%] have a constant order. The intuition for setting y = :;bl s
that this coefficient ensures a constant split if a; and b, correspond to the non-adaptive choices we
derived in Section[3.1] which were set so that a'/2b = © (5). We obtain

dy? . ¢ dy
[Z” ||] 2 Pla) - ) 4 B Z(nﬂ+ 35{*”) ||bt||

t=1 Ar1q

+ E [Er1)2] -
B N————
(%)

()
(14)
The term (%) can be bounded using standard techniques used in the analyses of adaptive algorithms.
The term (xx) has already been bounded in the previous analysis. Now we only need to simplify
the term on the L.H.S. to D7 . But due to the randomness of b;, this is not achievable. However,
the same as for the first inequality in (I2)), we can bridge this gap by aiming for a slightly weaker

inequality that bounds DlT/ ? instead of D. More precisely, we connect the left-hand side of to
DlT/ % as follows:
d 2 b2 T 1/4 d 2
Z” TP I S 1]
=1 = (B 2L

By plugging in (I5)) into (14)) and setting A appropriately, we can finally obtain the following upper
bound:

)1/2 > ay/t D3 — b (15)

~ 1/3
Kg + Ky (1 + HT/ag)
bo

E [a;/jlelT/z] < K5+ KGE [log (1 n ﬁT/ag)] + KE |log
(16)
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where K5, K¢, K7, Ks, K9 depend only on o, 7, 3, ag, bg, 1 and are independent of 7.
Combining the bounds: The final part of the analysis is to combine and (I6). In contrast

to the simpler non-adaptive analysis, these inequalities bound alT/flET and alT/lelT/ % instead of

Dt and E7. In order to obtain an upper bound on Hr via the inequality Hy < 2D7 4 2E7, we

need to connect alT/flET and alT/lelT/ % and Dy and Ep. The bounded variance assumption on

the stochastic gradients gives us a bound on E[a;i/f] =E[1+ Hp /a3] = O(1 + o°T) (note that
this —3/2 is the smallest ¢ to make sure we can upper bound E[af ,]). Combining this result and
Holder’s inequality gives us the bound

3/7 1/4 1/2 —3/2
E [DT/ :| < E6/7 |:G’T/+1DT/ j| E1/7 |:G,T+/1j| )
E [Ei”} < BT [a;/+21ET} R4/ [a;i/ls} < B3/7 {alT/flET} R/ [a;iﬂ ;

where 3/7 is chosen to ensure that we finally can use the bound on ]E[a;i/f]. Thus we obtain an

upper bound on E[Hf}/ 7}. Finally, applying the concavity of z3/7 to ]E[H;/ 7] gives Theorem

E BASIC ANALYSIS

As discussed in SectionE], we aim to use Ep and D7 to bound Hy. Here, we apply this framework
to give some basic results which will be used frequently for the full analysis of every algorithm. We
first state the following decomposition in our analysis framework. The reason we use p < 1 here is
that we can not always bound H directly because of the randomness of a; and b; in our algorithms.

Lemma E.1. Given p < 1, we have
E [H] < 27" max {E[E}] ,E [D}|} < 4max{E [E}| E[DE]}.
Proof. By the definition of Hy, E7 and Dp, we have Hy < 2Er + 2Dp. Hence

HP, < (2E; + 2Dy) < 97F, 4 2°DF,

= &[] <2 (BB} +E [Df])
< 27" max {E [E}] ,E D} |}
Y dmax {E[E%] E D]}
where () and (b) are both by due to 5 < 1. O

E.1 VARIANCE REDUCTION ANALYSIS FOR Ep

The same as in all existing momentum-based VR methods, we need to analyze how the error term
€; changes in the algorithm. Based on our notations, we give the following two standard lemmas.

Lemma E.2. V¢ > 1, we have

at+1||€t||2 < ||€t||2 - ||€zt+1||2 + 2||Zt+1||2
+ 207 |V f (@141, Ee1) — VF (@41 || + My,

where

Zip1 =V (@41, 641) — V(24,&1) — VE(2e41) + VF(22),
Miiy =201 — ag1)* (e, Zegr) + 2(1 — app1) a1 (e, Vf (o1, &41) — VF(2441)).

Proof. Starting from the definition of €1, we have

ler1ll® = lldes1 — VF(z11) |
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= [IVf (@1, &41) + (1 = ars1)(de = V (@1, 6041)) = VF(2e10) |
=11 = arr1)e + (1= arp1) Zosr + arr (VF (@41, Ep1) — VE(242)) )12
= (1= a1)?|lel?

+ (1= ar11) Zesr + a1 (Vf (@141, &01) — VF(z0)) 1P + Miga

(@)

< (1= aps1)?[led]?

+2(1 = a1)* | Zega |? + 207 1 |V f (@041, E41) — VF(@e51) | + Myga

< (1 — appr)lle]?
+ 2| Ze1 ||? + 207 IV f(es1, E41) — VE (1) |2 + Mysa

where (a) is by (z + y)? < 222 +2y2, (b)isby 0 < 1 — ay11 < 1. Adding ay11||e]|? — ||er+1]?
to both sides, we get the desired result. O

Lemma E.3. V¢ > 1, we have

d
E[HZt+1||2 ‘ }—t] 252” t” )

Proof. From the definition of Z;,, we have

E [ Zeall? | Fe] = E[IV (41, E041) — VI (e, 6041) — VE(2e11) + VF(20)|*|F]

(a)
<E [“vf(xt+17£t+1) - vf(xt7£t+1)“2|ft:|

(c) dy
SBQth—H xt||2 262” ”

where (a) isby E [|| X — E[X } [?] < E[||X]]?], (b) is by the averaged 3-smooth assumption, (c)
is by the fact Ti41 — Tt = b, dt O

E.2 ON THE WAY TO BOUND D

We choose to bound the terms D7 instead of starting from Hr as done in AdaGradNorm or
STORM+. The latter also requires the bounded function value assumption in the analysis.

Lemma E.d4. For any of META-STORM-SG, META-STORM or META-STORM-NA, we have, for
any A > 0

- 11 2
E[af, Dy 7] <o+ (Bl = F)

T
1Bmax Id:|*| | AE [Er, 1/2}
E 1Pmax + — by
; < tlJ/rQl)‘ > b% nﬁmax

Proof. Using smoothness, the update rule z;,1 = z; — —dt and the definition of e; = d; — VF(a),
we obtain

F(ein) < F(a) + (VF(@), 2ot — ) + 2 lees —

VF(z),d
— Fley - TR T2 a?
nllde||? 77<€t»dt>
= Flw) - ==+~ 2b2 ”dt”2

First we use Cauchy-Schwarz to separate the stochastic gradient and the stochastic error terms

nlldel> | Aenllel® | nlldell® | n° 2
F < F _ —|ld]=.
(It+1) — (th) bt + 2bt + 2)\tbt + 2b% H tH
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Taking
_ Aap2b,
NBmax
for some A > 0. We have
nlld:|? n*p n 2 Aenplledl
< F - F
g, < P~ Pl + (G + 33, ~ g, ) 1407+ =
2 1/2 2
n B n Bmax 2 )‘at+1||6t||
F(xzy) — F(z + d —_—
() — Flaran) ( 57 a2 ) T
2 2 2 1/2 2
n ﬁ n ﬁmax nbt ||dt|| Aat+1”€t”
= F(xy) — F(x + | — - = +
( t) ( t-‘rl) ( 2 2a,t14/>21)\ 2 ) b% QBmax
2 2 1/2 2
7° Bma n 5max nbt [l ]| Aat+1||€t||
< F - F —
(.%t) (ﬂft+1) + ( JF 2a1/2>\ 2 ) b? Qﬁmax

AE [E
N (/o]

2
T
nﬂmax ||dt ||2
max - b
Z (775 + 1/2 )\ t) b% nﬂmax

A

The final step is to relate the L.H.S. to D7. Recall for META-STORM-SG and META-STORM-NA,
we have

t
1
be= (0" + > ldil?)"af, .
=1

Hence

||2 T T

||dt a§+1||dt||2 ag‘+1”dt”2
Z = : >>

= (/" +z; ldil2r = e+ S a2y

1
= a0 +Z ] B
(e S Py

1 _ 1/p—1
2 aqT+1(bo/p + Z 1dal|*) P — bo/p
i=1
> CLT+1D1 P _ bl/P 1

The same result holds for META-STORM by a similar proof. By using this bound, the proof is
finished. O

To finish section, we prove a technical result, Lemma [E.5] which will be very useful in the proof
of every algorithm. The motivation to prove it is because we want to bound the term inside the
expectation part in Lemma

Lemma E.5. Given A, B > 0. We have

* for META-STORM-SG and META-STORM-NA

T 2 1A 2B
Z<A+ B _bt> ld)? _ (A+B)t | AtarlB

172 2 = _
t=1 aw/ﬂ bi 1=p bo

* for META-STORM

T 1_ —1/2
Z A _b, HdtH2<(A+B)‘“ 110gA+aT+1B
t=1 1/2 b% B 1_p bo .
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Proof. In META-STORM-SG and META-STORM-NA, we have

t
1
be = (b7 + > Idil®) /aly
=1

where p + 2q = 1. Define the set

B

Qi1
and let s = max .S. We know

T
B [|d]? B | ||?
Z<A+1/2_bt> 2 <> A+ 75— be 2

t=1 Ayl tes Ay
q/pbl/p q/pbl/p
_Z <A+ 1/2 _bt> = b2 e
tes G411 t
bt = bk
< > <A+ 12 > gﬁT
tes Appq t
a_1 l—2b1/p761£p
= (atlflA +B- atilbt) I
b
tesS t

where (a) is by a; > a;41. Note that

V244 B_all?p b”iAB HALTARL
a1 A+ A419¢ at+1 t > + at+1 ¢ ) a4y

S

-2
(A—i—B atJ/rlbt)at+1 bv

:(A+B a:ﬁbt) (at+1bt) -

19
<A+B> 7_2
I

-1

< —
1 p A+
where (b) holds by ai+1 < 1, (c) is due to 1 — 2= 22p = 2p —1byp+2¢g=1and (d)
is by applying Lemma|[.8] Thus we know
T 1/p _41/p
B [cals p 11 b — b5
oA+ bt> < (A+B)r 1y L=
1/2 2 _ 1
t=1 ( atJ/rl b; 1-p tes bt/p
1
© (A+B)r ! b
2 ( Jlr ) S o . b
—p tesS -1
1
N (A+B)r 1 & b
LUEBT 5, b
1-p bi—1
t=1
1
_(A+B)? log bs
I-p bo
@ (A+B)s' . A+ar?B
< log
1-— P bo
where (e) is by taking z = (bt/bt,l)l/p in1—1 <logw, (f)isbecause b is increasing. The reason

(g)istrueis thatbs < A+ a;:{QB <A+ a;}r/fB where the first inequality is due to s € S and the

second one holds by that a, 125 increasing. Now we finish the proof for META-STORM-SG and
META-STORM-NA. The proof for META-STORM is essentially the same hence omitted here. [
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F ANALYSIS OF META-STORM FOR GENERAL p

In this section, we give a general analysis for our Algorithm META-STORM. We will see that p = %
is a special corner case. First we recall the choices of a; and b,

a1 = (1+ DIV (@i, &) = V(@i &) fad) 2,

=1
t
1
be = (b7 + > Idil®) /af
=1

where p, ¢ satisfy p+2qg =1,p € [3_2‘ﬁ, %] .ag > 0 and by > 0 are absolute constants. Naturally,

we have a; = 1. We will finally prove the following theorem.

Theorem F.1. Under the assumptions 1-3 and 5, by defining p = ?’s%;p) € [%, VT — 2], we have
E [H7]
()™ + ((%)”‘#(2&)%) (1+221)° p#L
<4 _
02 ﬁ 02 % I
(261 +2 (Ko + 52)log (14 228 ) 4 2a10g 482 )7 (14 227)" 407 p=1

P P
3

K 202T Ks+ Ko\ T7 202T
+4<K5+(K6+7)log(1+ 2 >+K7log89> (1+ 7 ) ,
3 ag bo ag

where K;,i € [9] are some constants only depending on ag,by,n,0,0,8,p,q, F(x1) — F*. To
simplify our final bound, we only indicate the dependency on 3 and F(x1) — F*.

E [Hﬂ -0 (((F(xl) _ F*)% + ﬂ% 10g% B8+ [3% log% (1 + JQT)> (14 o2T)

oy

Remark F.2. For all i € [9], the constant K; will be defined in the proof that follows.

By using the concavity of 27, we state the following convergence theorem without proof.

Theorem F.3. Under the assumptions 1-3 and 5, by defining p = 3(41:5 ) € [%, VT — 2], we have

E [|VF (207

1 o2p/3 )

—0 ((F(xl) — P + 87 logT B+ B logTr (1+ oQT)) (ﬁ + T

Here, we give a more explicit convergence dependency for p = % used in Theorem

Theorem F.d4. Under the assumptions 1-3 and 5, when p = % by setting N\ =
min {1, (a0/8)7/3}(which is used in Ksto Kg) we get the best dependency on . For simplicity,
under the setting ag = by = n = 1, we have

1 2/7
B 197 7] = 0 (@1 + Qatoe®” (140°T)) 7 + 777 )
where Q1 = O ((F(xl) — F*)G/7 +o12/7 4 (80)6/7 +518/7 4 (1 + 318/7) B8/7 logG/7 (6 + 836))
and Qz = O ((1+'%/7) go/7).

To start with, we first state the following useful bound for a;:
Lemma F.5. Va € (0,3/2] and Vt > 1, there is

2a
a ~2\ %
a 40
( ) S”(?)
Qi1 g
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Especially, taking oo € {1/2,1,3/2}, we have
1/2 oy
( 9 ) <1 741/302/3 12,

a
2 t
A1 a0/3
a 42/36.\4/3
575 ¢,
— 2 )
at+1 a0/3
3/2
Qg / 40’2 3/2
st —a
A¢+1 ag

Proof. Note that

(- )a:a?< ! +||Vf<xt,ft>—Vf<xt,ft+1>||2>2“/3

3/2 2
At+1 at/ ap

_ (1 IV g) - Vf<xt,st+1>|2a§/z>2“/3

aj
4/\2 204/3 4/\2 204/3
< <1 + JQQf/2> <1+ (Z) ag
ap ap

where the last inequality is because 2«/3 < 1.

Lemma [F5]allows us to obtain some other properties of a;.
Lemma F.6. Fort > 1

(1= ar1)? = (1 —an)?)?  42/354/3

a¢i1 - a3/3
(1= av)ars = (1 aa)® _ 429543
at+1 - aé/?’ t

Proof. Letayy1 = x,a; = y and note that x < y < 1. For the first inequality,

(1 —am)? —(1-a)?)’ _ (1-2)*— (1—p)?

Ai41 X
W-—2)2-z-y) _ .y
- <@ -ne-
D) < (Y ey
42/354/3
< Wat x (2 — ay) (Lemmal[E3))
0
- 42/36.\4/3
=" a3
ao/

For the second inequality, we have

(1 —ap)as — (L —ada)’  (L-z)e—(1-y)y)® (y—2)°(1 -z —y)?

a¢41 x X
2
<WoDD (V)
x x
42/354/3
< o X ar (Lemma [E3))
o
_ 42/384/3@2
- 4/3 e
Qo
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F.1 ANALYSIS OF Er

Following a similar approach, we first define a random time 7 satisfying
T=max{[T],a; > K_1},

where

K_; =min{1,a5/(1445")} .
One thing we need to emphasize here is that, in our current choice, a; € F;, which implies
{r+1=t} ={r=t—1} = {ay-1 > K_1,a; < K_1} € F;. This means 7 + 1 is a stopping
time instead of 7 itself. We now prove a useful proposition for 7:

Lemma F.7. We have
ai+1 > Ko, vt < 1,
ay—a;t <£2/9,V¢ > T+ 1.
where

Ko = (K™% 1 45%/a2)%/* = (max {1,17285% a8} + 452 /a2)~2/°.

Proof. First, by the definition of 7, we know a; > K_; > K;,Vt < 7. For time 7, we have
—3/2 _ —~
a0 = a7 = |V f(2r &) = V(e )P/} < 457 /ad
= arty < (732 +46%/ad)? < (K7}% 4462 /ad)*® = Ky,
which implies a,41 > Kj.

For the second proposition, let A(y) = y>/%. Due to the concavity of h, we know h(y;) — h(ys) <

P (y2)(y1 — yo) = % Now we have
2

aih —a;t = (a7 P 4 |V (20, &) — V(e E41) |2 /ad)? — (ay %)/

< Qai/QHVf(xt,ft) — Vf(ze, &1)|)? < 8ai/282 < 2
- 3ag = 32 ~9
where the last step is by a; < a,11 < K_1 < ag/(1445%). O

F.1.1 BOUNDONE [E, 3/, 5] FOR( € [1,2]
Unlike STORM+ in which they bound E [E.], we choose to bound E [E, 3/2_o¢]. We first prove
the following bound on E [E; 3/5_o]:
11
Proof. We start from Lemma
aralledl® < llecll® = lleerall® + 21 Zegall? + 2074, IV F (w141, Erg1) — VE(@40) [P+ Miga.

Lemma F.8. Forany/{ € [Z’ 5
Summing up from 1 to 7 and taking expectations on both sides, we will have

] , we have

202+ 16 <1 + 6;“/33) (302 +552) 4 <1 + 6;4/33) n? B
E|E;3/2 2 < > + > E
[ / ] ngq/Q ngq/z

T
t=1

|| |?
b7

E [ET,I]
<E Z led|® = llec1ll® + 2| Zesall® + 207 1 |V F (@41, Ev1) — VE(@e31)]|* + Mt+11
t=1
<o’ +E ZQHZtHHQ + 207 4[|V f (@11, E1) — V(@) |1 + Mtﬂ]
t=1
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T T
<o® +E | 20 Zeal® + 2071 IV F (@141, §e1) = VE @)1+ D> Miga | - (17)
t=1 t=1

First we bound E [>°;_; M;1]. From the definition of M, 1, we have

E[Mi1] = E[2(1 = arr1)(er, Zera) + 201 — argr)arsr (e, Vi (241, §41) — VF(2041))] -
Now for ¢t > 1, we define

Nigp1=2(1 - at)2<€t7 Zip1) +2(1 — ag)ar(er, VF(wi41,§e41) — VF(2111)) € Frpa
with V; := 0. A key observation is that

E lz Nt+1‘| = 0
t=1

This is because N; := Zle N, is a martingale and 7 + 1 is a bounded stopping time. Then by
optional sampling theorem, we have
T+1

E [i: NM] =K ZNtl =E[N, 1] = 0.

By subtracting E [y, M;11] by E[Y"/_; Niy1], we obtain

-
D> Min
t=1

E =E

Z 2 ((1 = aps1)® — (1= a)?) (er, Zegr)

+ 2((1 = at1)aetr — (1 — aag) (er, Vf (@e41, &41) — VE(2e41))] . (18)
Using Cauchy-Schwarz inequality for each term, we have
2((1 = a1)® = (1= ar)?) (ers Zet)
<2|(1 = aer1)? = (1= ae)?| [lecll| Zes
a1 4((1 = ag41)® — (1 —ap)?
—lleel* + ( )

4 @iyl

2((1 = app1)asr — (1 = ap)ar) (6, V (@141, §e41) — VE(2441))
<2|(1 = ary1)art1 — (1 = ap)ae e[|V f (@41, §41) — VE(@141) ]

4((1 - a a — (1= ap)ay)?
£ = ::1 : e IV f(@er1,€1) = VF(ze41) %

2
< 1 Zesa |12,

IN

at+1 2
e +

Plugging the above bounds into (I8), we obtain

E Z Mitq
Li=1

. 2
at41 (1 —ar41)” — (1 —ap)?

<E |> 5 lec® + ( — ) 4 Zpa|?

t=1

L (@)

T

2
pys Wz e =02 0)ae) G r g - VE@)R] . (9)

=1 at+1
(i)
Plugging the bounds for (i) and (i7) from Lemma into (19), the following bound on
E[S~,_, Myy] comes up

[

31



Under review as a conference paper at ICLR 2023

T4 45/354/3 45/354/3
<E [Z el + T\\Ztﬂﬂz + Tagnvf(xwrlafwl) — VF ()]
ag ag

2
t=1
1 1264/3 1264/3

<E |zE;1 4+ — | Zei1]? + @} |V (@41, E41) — VF(241)|?
2 aé“ ag*“

Then from (I7), we have

T ~.
126 4/3
E <2+ e > 1 Ze4a]?

1254/3
(2@?“ T > IVf(zit1,&i1) — VF(xt+1)||2] ;
Q,

which will give us

~ T
E[E, 1] <20%+4 1+w E Y 1 Zeal?
1] > 40 i3 t+1

g t=1 7”’)—’
d 2 654/3 2 2
+ E Z 4 a’t+1 + %a’t Hv‘f(l’t+1, §t+1) — VF(JIt+1)|| . (20)
t=1 Qg
(iv)
For term (iii), Lemma [E.3|tells us
2 2 22 HdtH
E[[|Zeal* | Fi] <n®B : (1)

For term (iv), we know

M=

~4/3
Ef(iv)] =E 4 (a?-&-l +% R at) IVf(@r1,&41) — B[V (@e41, Seq2) [ Fraa] ||2]

#
Il
_

IA
=
M=

654/3
4 (a?—&-l + e at) E [IVf(#t41,Ee41) — Vf($t+1,§t+2)2|ft+1}]

t Qg

1

Il
M=

2 684/3 2
4 aiy, + e —750; | IVf(@ig1,&1) = VI (@i, &) 1] - (22)
)

&
I
-

Note that

i1 4/3
= <1 + D V(@i &) - Vf($i7£i+1)||2/a(%> )
i=1
then we have

T 634/3 ,
24 aiii + 4/3 ai | IV f(@es1,Ee41) = Vi (@rs1, S|

d IV (@i, &41) — VI (@p4a, £t+2)”2/ag

— : 9/ 9 4/3

(1 S IV f e &) — V(i &)l /aB)
4+ 2454/3023 ZT: IV f(xeq1,&41) — VI (@eg1, Er2)l?/ad -
T (14 SV (06 — V€ [2/a3)

4.2
=4ay
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=2 2 ~2
<da} <12 + 802) +245/342/° (12 + 2 >
ag ag

/3

—16 (302 + 262) + 96 =— (3a2 + 557)

27

6/\4/3 N
<16 <1 n U4/3> (3a2 + 562) (23)
Qg

where, for the first inequality, we use Lemma [[.4)and Lemma|[[.3] Plugging (ZI) and 23) into (20),
we obtain

654/3 654/3 | ||2
E [ETJ] < 20’2 + 16 (1 + a4/3> (3@0 + 50 ) <]- + 4/3 Z t .

0 Qg

Note that by Lemma |[E.7} we have for ¢t < 7,a,41 > Kj. By using this property and noticing
2¢ —1/2 > 0, we can obtain

E {K§£_1/2E7,3/2—22]

20-1/2 3/2—2¢
B (K3 Y el <E |3 aclel? ]
t=1 t=1
65/ 651/ -~ lld ||2
2 2 252 t
<20 +16< - R (3ad +55%) +4 |1+ e n*B°E Z :
which will give the desired bound immediately. O

F.1.2 BOUND ONE[Er; 5] FOR( € [ 1]

With the previous result on E [E; 3/5_o], we can bound E [Er,1_5].

Lemma F.9. Forany/{ € [ ] we have

N

E (ITIT/CL%)MSI} >
E 10g(1+I~{T/a%)} (=

T
3(1+20 dq||?
Z<K3(€)a$e+ (ZZ )) 252”2@22]’

t=1

E[Er1-20] < K1(£) + K(¢)

PN

+E

where

K(0) = 3 (UQ ez (1+£2)32> N 7252 <a +8< o7 ) (302 + 552 )>

2 BT
9(1+20%)ad
Ka(t) = e 0
25 3(1420%)ad /o1
A% =1

44

14452 654/3 3(1+20%) /452\*®
Ks(0) = —573 L= | + ( 2 ) 2
K202 ag/ ¢ ap

Proof. We use a similar strategy as in the previous proof in which we bound E I:E7—73 /2,24} . Starting
from Lemma

aceille® < lleell® = lewrll® + 20 Zesa | + 2071 1V f (201, §41) = VE (@) [” + Mo
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Dividing both sides by a2 1, taking the expectations on both sides and summing up from 1 to 7" to
get

||61t||2 lex
E[Er1-2] <E Z 20

—1 at+1 AN]
M1
||Zt+1H2+2at+l IV f(@eg1,&41) — VF(@11) |I” + 2
t+1 U]

<o’ +E

T
—2¢

> (0 = a7 ) Jledl?

t=1

+Z 5 ||Zt+1||2+2at+1 IV f (@41, €641) = VF ()P + =57~ | - 24
1 Yt t+1

M
As before, we bound E [ T
t41

} first. From the definition of M, , we have

M| [2(1 —apq)? 1-2¢
E| == | =E | =7 (et, Ze1) + 2(1 — ar1)ayii e, VI (@er1, 1) — VF(2e41)) | -
A1 A1

A similar key observation is that, if we replace a;11 by a;, we can find

N2
A [W<Et’ Zisa) +2(1 — ar)ay > (er, Vf (weg, ) — VF(th))] =0.
t

By subtracting E {M‘“} by 0, we know

M 1—a 1—ay)?
E { 2?_1] =E [2 <( ggt+1) - ( ggt) ) <€taZt+1>
At

i1
+2 (1= apg1)ar 7 — (1 —ar)ay ) (e, Vi (@eg1, &41) — VE(e41))] . (25)
Using Cauchy-Schwarz for each term

9 ((1 —Zt+1)2 e _;;t)2> (e, Zor1)

Ayt a;
(1—at+1) (1—at 2‘
<2| - fexll1Zec
at2-l;-1 azt
((1—¢1t+1)2 _ (1—at)2>2
< —2¢ -2/ 2 “%A azt 7 2
(at+1 — a4 ) ||€tH + Y7 Y7 H t+1H )

Appr — Oy
1-2¢ 1-2¢
2((1—ap1)agsi — (1 —a)a; ™) (er, V@11, &41) — VE(2441))
<2|(1—arp)ai " — (L= a)ay | |ellIV f (@31, &1) = VF(@i41)|

2
_ _ (1- atH)a e (1—ap)a
< (a7 — a7) llecl® + ( e ) IV f (@41, Ee41) — VF(zes) I,

Plugging these two bounds into (25), we obtain

M ((1“22“) - a 3;)‘)2

t+1 - - ay ai”

E[ﬂ }<EP@£f¢%%Mﬂ+E e 1 2o

a3 a;; — a;
(7)
1—a)a 20— (1 al 2
+E ( 1) tjzlg (_21; a)0; ) IV f (@41, &41) — VF(211)])?
App1 — Q¢
(14)

(26)
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To bound (i) and (i), let af,; = x,af = y and note that 0 < = < y < 1. By Lemma|L6] we have
for (¢)

((1—?“) (1=a,)* ) ((1—12/62 _ (1*1/;”)2)2%2?;2

at+1 at _ x Yy
a2 Y2 — 22
1 1
< - 27)
Cx Ca?,
For (ii), by Lemmal[L.7}
_ o2
((1 _ at+1)a%+1 (1 _ at) 1— 2[) _ ((1 _ xl/é)xl/f 2 _ (1 _ yl/l)yl/é 2) m2y2
a2 = yZ — a2
2/0-2 2-2¢
Y _ 9
<l = (28)
Plugging and (28) into (26), we will have
M, _ _
E [ 271} S ]E[Q (atff ay %) llec]?
t—‘rl
1 2-20
+ W||Zt+1||2 IV f (@41, &41) — VF(ze41) |
t+1
Now combining this with (24), we obtain
T 14202
E[Eri-o2] <o”+E > 3 (a7 — a7 ™) el + ) WHZHlHQ
t=1 t=1 t+1
—_————
(i) (iv)
T[22 .
JFZ tlT + 20720 IV f (@41, €1) = VF(ze) || - (29)
t=1

(v)

For (iii), we split the sum according to 7 then use Lemma|F.7]and Lemma|F.3]

T

—20 — 4 —2¢ —2/
23 (ar?y = ai) lleel® = 23 (arft = a7 ) lleel® + Y 3(ai —a7™) fledl?

t=7+1

Note that 3/2 — 20 € [1,1], we have

a2 g2 — L 1 3122 < (32 _ o302 B2
t+1 t = 3/2 20 3/2—2¢ | Gt+1 S (G TG A

A1 A Gy

462 5/9_9
S a2 at+1 5 (Lemmam)

0

and we can use Lemma[F7|to bound for ¢t > 7 + 1

—2¢ —20 1 1 —2¢ —1) ,1-2¢
Appr — A = w T~ o7 1-20 at+ < (at+1 —a; )at+1
t+1 Ay Ay
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Thus
T T ~ T
1252 _ 2
—2¢ 20 3/2—2¢ —2¢
23 agfy —ap )H6t||2§2 a2 atil ||€zt||2+ Z 3a’t+1 ||€1t||2
t=1 t=1 0 t=7+1
1252 3/2—2¢ ¢
<= el + Z e
0 =1
1252 2
=—FE;302 2+ ;Eri-2.
a? 3
For (iv), note that
1+ 202 1+202 [ a2 || Zea|?
E{ s 1 Zenl”] = @b 27 ” t;eln
Cag Lay11 G
%

IN

14202 [ 45> Zysa|?
—p B (1 + (cﬂ) afl> | ;;;H (Lemmal[E3)
0 ¢
1420 E||l1+ ﬁ a2t w
02 I a? k a2t

r 4e
1+ 202 452\ 5 5 o lld¢|?
< 02 E <1+(a(2) n°p 2eb2 )

where the last step is by Lemma[E.3] Hence we obtain
T ~
1+ 202 ) 1+202 152\ ¥ ) 2||dt||2
o[ et 2[5 (10 ()" o) L]
t=1

t=1 t+1
For (v), by the same argument when bounding (22)), we know

w‘t

IN

<E

E[(v)] <E

T 22/
> <a52 + 2“?+12Z> IVf(wgr,&q1) — Vf($t+1,ft+2)||2] .

t=1

Now we use Lemma|[[:2]and Lemma[[3]to get

T 2—2¢
CL
( 7 + 2a §+12€> IV f (@151, &41) — Vo (eg1, E42) |1
1

&~
I

_ad IV (@1, &11) = V@i, 640) /03
iz L o\ 20073
(14 SIS (0 6) — V(w0 €i) [2/a3)
0a2 S IV @1, 1) = Vi @eer, &) /a3
+ 2ap . 1(1-0/3
=1 (1 + 2 IVF(@i, &) — Vf(xivfi-&-l)HQ/a%)
2 ~2 ~2
aj 240 2 120
<20 2a2 x ——
2 a? P a?
L (r2)ad ) g (Hr/ad) * 044
£ log (1 + ﬁT/ag> (=1

_ 24(1+¢%)5° N (1+2)af | 7% (ﬁT/ag) Ty #
& e log (1 + ﬁT/a%) (=

NN
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Plugging the bounds on (ii%), (iv) and (v) into (29), we get
24 (14 0%) 5?2 1252 2
( + ) o +E [ o

E _ —Er_
72 a2 7,3/2 2é+3 T,1 24]

T
1+ 202 452 A
Z 02 <1+((Ig) > B 2zb2

t=1

E[E71-2] <0” +

+E

40—1

L (roe)as [ | (/) ] 04

62 ]E{log 1+ﬁT/a%)} (=

=

N

which gives us

24 (1 + £3) 52 3652
( )7 ) + Z E [E;3/2-2¢]

E[Er1-2] <3 <02 +

2 ad
3 (1+26) 45° 5 2 l1de]?
+E Z 02 <1+<a(2)> > B 2%2
t=1

40—1

+3(1+252)ag =E (ﬁT/ag) ’ } 0#1

E[log 1+IA:IT/(I(2)):| (=

=

Now we plug in the bound on E [Er,s /Q,Qd in Lemmato get the final result
E[E71-2]

< o

72 a(Q)ng 1/2
K1(0)
. 4[371
Hr/a? } 0+
+ Ks(0) (s °)~ 7
E (log (1—|—HT/a%>} (=1

14452 6543\  3(1+202) (452\ 7T o, 3(1+22) | , il
+E Z < 20-1/2 2 <1+ e ) + 02 (ag) a; + 02 n°p a?v? |’
ag 0

t=1
K3(0)
where
9(142¢%)ad 021
— 40—1)¢2 4
Ky(0) = 3él+222)a(2] 1
e (=3

F.1.3 BOUNDONE [Ef 5]

The following bound on E [ETJ /2] will be useful when we bound D
Corollary F.10. We have

E[Eri ] < Ki(1/4)+Ks(1/4)E [log (1 + ﬁT/ag)} 3 (K3 1/4)a}’? + 54) B2 ”3;”()22] .

t=1

Proof. Take { = 1 in Lemma O
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F.1.4 BOUND ONE [aj;}Er|

With the previous result on E [ET 1—2¢], we can bound E [aT I ET} immediately.

Lemma F.11. Givenp+2q = 1,p € {3_2‘ﬁ, %}, we have

o faomy] < | K0 F0E (Brv) 7] eElE] s
K1 + ISE |log (1 +HT/a3)} + KJE [1og (1 + IgT)} g=1
where
K, = Ki(q)
K> = K(q)
Ka(q) + L20)) w2t g1

=

3(142¢%
Kylq) + 20200 ) g2 g =

Proof. Whenq > < p < 1, by Lemma taking ¢ = ¢, we know

. 3 (1 4 2¢2
Z <K3(C])aff1 + (;q)) 232 ||62l;|b|2]

t=1

4q1

E[Er1-24) < Ki1(q) + K(q)E (HT/ao) +E

T

3(1+2¢? 2

. Z<K3<q>+ ( ;‘”) 252”3{322]
t=1

i

Z 2;b2‘|

4g—117

< Ki(q) + Kala)E | (Fir /a3)

K@) + Ka(E [(Fir/ad) T | +<K3(Q) ) ) P

Y Kilg) + K2 () {(ﬁT/ag) }

3 (1 + 2¢2 T d,||2
+<K3(Q)+< q2 ) e D
= (07 + i i)

(%) K1(q) + K2(¢)E [(ﬁT/ag) 4q3_1} + <K3(q) + 3(1-5-22q2)> n’B*E lDl%]

2p

© Ki(q) + K2(q)E [(ﬁT/ag> 4{13_1} i (Ks(q) . 3 (1 :22(]2)) 47;2€21E [D;—%} ,

where (a) is by

2p
(v” + X i) : .
afqbf = a?q = <b(1)/p + Z ||d12> s
=1

2q
ay

(b) is by Lemma|L.1} (¢)isby 1 — 2p = 4¢q — 1.

When ¢ = %, by a similar argument, we have

E[Er1-2] < Ki(q) + K2(q)E [log (1 . ﬁT/a%)}

+ (Kg(q) + 3(1;2@2)) n’B*E [log <1 + 122)} .
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Now we can define
s(112) ) s
q* -1 4~

3(14242
Kg(é]H% s q=

The final step is by noticing for 1 — 2¢ = p > 0,

Ks3(q) +

N

K4 =

PN

T T
1-2 1-2 1-2
Eri 2 = Zat+1q||5t||2 2 aT+1q Z ledl|* = ClT-HqET-
t=1 t=1

F.2 ANALYSIS OF Dr

We will prove the following bound

Lemma F.12. Givenp +2¢=1p € [3’2‘ﬁ, %} we have

~ 1/3
Ks + Ko (1 + HT/ag>

-
_ +H
E[a%+1D; p] < K5+ KgE logaOTT + K7E |log b
where
11 2 AK1(1/4) AK5(1/4)
Ks=b, +—-—(F(z1)—-F")4+——"—= K¢ = ——,
st ) e e T

K + Kg)7 !

( 1 2523
K7 = 1 “p 7K8 = (1 + AK3(1/4))776maX7K9 = |+ + —75— +54A nﬁmam

2/3
A ao/ A
A > 0 can be any number.
Proof. We start from LemmalE.4]
_ i1 2
E|af Dy b5+ (F) - FY)

T

NBmax llde||?
z MBmax + - bt) 2
=1 ( 1/2)\ by

A

AE |E
, XE[Br.]

+E
1Bmax

where A > 0 is used to reduce the order of ¢ in the final bound. In the proof of the general case, we
don’t choose \ explicitly anymore. Plugging in the bound on E [ET,l /2] in Corollary , we have

1—
E[af,, Dy ]

102 MK (1/4)  AKy(1/4) a2+ Hy
<bE 4+ = (F(xy) — F*) + + E |log ———
0 77( ( 1) ) nﬁmax nﬁmax a%
T
max Ks(1/DA282  54n?p2 dy)?
i E Z(nﬁmaﬁnirz RSO0 1/2775 _bt> HthH 1
t=1 at+1)‘ 1Bmax a;" " nPmax t
24 H
§K5+K6E lOga0+72T
ap
T 1/2 2
a max d
+E Z<(1+/\K3(1/4))77,6’max+< v +54A> Mo —m) ] ]
t=1 Aagl ag t
24 H
<K+ KoE lloga0+2T
ap
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T o /9
1 267 max i
Z ( 1 + AKS 1/4)) nﬂmax + ()\ + 2/3 + 54/\) 7751/2 — bt) H beH (30)
=1 ap’ " A ay t

(@)
where, in the last step, we use Lemma|F.5] Next, we apply Lemma[E.5|to (i) to get

%71
(<1+)\K3(1/4)+ + 2 2/3 +54)\> nb’max>

) <
(i) < =
. 1/3
(1+ MK3(1/4)) Bmax + (A 42 2/3 o 54)\> 1B (1 + HT/aO)
1
% log bo
~ 1/3
Ks + Ky (1 + HT/a3>
= Krlog
bo
By plugging the above bound into (30), we get the desired result. O
F.3 COMBINE THE BOUNDS AND THE FINAL PROOF
From Lemmal|F.11] we have
4q—1
Ky + IGE | (Hr/a3) } + KiE [D} | g>1
E [aT 2 qET} <

W=

Ky + 1GE [log (14 Hr/a3) | + KiE [log (1+ 22| g =
0
From Lemma[E12] we have
- 1/3
Kg + Ky (1 + HT/CL(2)>

, =
H
E [aqT+1D%r_p] < K5+ KgE |}O§ %o :(2) L + K7E |[log b
Now let 34 ) ;
~ p
VT2
===, € [7,f7 ]

Apply Lemma|E.T] we can obtain
E[H}] < 4max {E B} ,E [D}]}. 31)
Now we can give the final proof of Theorem [FI]

Proof. First, we have

T
=K Z IV f(zi,&) — vf(xi7£i+1)||2]
i=1

E [ﬁT]

T
=2 Var[Vf(z;,&)] < 20°T,
i=1
where the second equation is by the independency of &; and ;. Now we consider following two
cases:

Case1: E [ D? } <E { ’;} In this case, we will finally prove

T
)7 ()7 o) (1) »

<2K1+2 (K5 + ) log (1+ 2237 ) + 2 log 854)" (14 25T) " 4 4P ¢ =
0 0

wols)

=

=)
)

=
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Note that by Holder inequality
E (B} = [of;{77B] x ap 27|
(1 29)p
< E? [aT+qET} E!~P aT_H P ]
YBr| B [(1+ Hr/ad) S5 |

@ gp [aT+ Er| B [(1+ Hy/a3) 507

< EP {alT ffET} E# 1+ Hy /ag] :
where (a) is by 1 — 2¢ = p, (b) is due to 3(2117_517) _ 22(111;5) < 1.

First, if ¢ # %, we have

E [a;ﬁqET} < K, + KoF {(f{T /ag) } + K,E [Dl 2p]
(©) _ o o
< Ky + KB " [HT /ao] [D’}}
(@) 13 _
< Ky + Ky (20°T/a3) © [Ef;}

where()lsby4q L :%Slandpz?’%ﬁél 2p < (1 ;’) zﬁ,(d)isby]E[ﬁT} <

20°T and E | D} | < E [Bf . Then we know
E[B7) < B [ol ¥Br | B [1+ ﬁT/ag}
7

< (K1 Ky (20°T)a2) T [E’;D (14 20°T/a2) "

—2p = 1-2p
7 {E’:’F} < Ky + Kz (202T/a}) * , we know
K, Ky (202T\
1— o :
E [EP] Ly 82
TR\ &2

ag
1-2p =
Smfmg] < (B S (20T T
Ty = K4 K4 a%

2K\ (2K, 262T
< (= +
- Ky K4 CL%
1—2p

[Ep} > K, + Ko (202T/a0) ~ 3, then we know

o)

2pp
5 202T\ 5
E[E’}} < (2K,)PE!-2P [E”} <1+ - )
5 2027\ ¥
= E |B| < (2K)% (1+ 7 )
ap
Combining two results, we know when g # i
_ U\ T (2K, 2027\ ¥ - 2527 5
]E[Ep}< it ork % (1

= () () () et (12
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)

b

1|

9K, \ T 9K, \ T
< (22 22 2K
_(K4> +<<K4) + (2K4)

Following a similar approach, we can prove for ¢ = i,there is

202T
P 1 + 5
g

o)

5 22T\ K, E [Ef] 20T
BB} < | Ki+ Kalog (1450 ) + Zhiog [ 14 — o ;
ap p by ap

Now we use Lemma|[[.9[to get
2 z ﬁ
2027\ 3 D
2027\ 2K, 4K (1 + 5% ) 22T\ o
+ ——log 5= 1+ —5 +5b
baP ag

E [EZ;] < | 2K, + 2K log (1 + =
p 0

0

P
K 202T 2K 4K, 202T =
<2K1+2<K2+4)log (1+ Z >+ ~ Jog 21‘) <1+ Z ) + b2
ag p bs? ag

3 0

Finally, we have

(3)77 + ((3)7" + ) (1+357)

Ky

(2K1 +2 (K> + &) log (1 + 7%?) + % log fg“

)|
~—
Sy
~~
=
+
N
Q Q
| N
N
—

Case2: E [Dﬂ >E [Eﬂ . In this case, we will finally prove

)
@)

_ K 202T Ko+ Ko\ 7 202T
]E[D’}}S(K5+<K6+37>log<l+ 22 >+K7log8;;9> <1+ ? >
0

Note that by Holder inequality

P _ 1-p—p __Pa__
<ET |af, Dy | BT [aT;P—P]

2Pq__
(1 n ﬁT/ag) 3“”)]

=BT [af,, Dy 7| BS 1+ Hr/a})],

where the last step is by 3(13’;‘[@ = 3((11:5)7% = 1. We know

~ 1/3
Kg + Kg (1 + HT/CL(QJ)

, =
H
E {aqTHD;*_p} < K5 + K¢ llog %‘*‘72T + K7E |log ;
ao 0
. NV
© 3 +E [fir] Koot 5o | (14 Firag)
< K5 + Kglog ——5—— + Krlog
ag bo
~ . 1/3
”) o} +E [Hr]| K+ Ky (1+E [Hy| /a3)
§K5+K610gT+K710g ;
0

0
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(g 22T Ks + Ko (14 202T/a2)"?
<K5—|-Kblog7a0+ 7 + K7log s o ( 2 o°T/at) ,
a? 0

where (e) is by the concavity of log function, (f) holds due to E [X1/3] < EY/? [X] for X > 0, (g)

isby E [I?IT} < 202T. Then we have
E[D}] <E™ [af, D} 7| B [1+ Hy/a]

ag +20°T Ks+ Ky (1+ 202T/“(2)>1/3> b <1 + 202T>

@)

+ Krlog
ag bo a?

K, 202T Ks + Ko\ 77 202T
< | K5+ K6—|-f log [ 1+ 02 +K7log78+ 9 1+ 02
3 ag bo ag

< <K5 + Kglog

wls)y

Finally, combining Case 1 and Case 2 and using (3I)), we get the desired result and finish the proof

E [H} ]
<4max{E [E}| E[Df]}
(32)™7 + ((QKI?) T <2K4>:p> (1+22T)’ ¢# 5
<4 )
(261 +2 (K + 52) log (1 + 2257 ) + 2Ki 10g ‘ﬁff“) (1+220)" + 8 a=1

wls)y

K 20°T Ks+ Ko\ 77 20%T
A( Kyt (Ke+ 20 ) log (14+ 222 ) + Kylog 2540 1+ 22
3 aO bo ag

G ANALYSIS OF META-STORM-SG FOR GENERAL p

In th1s section, we give a general analysis for our Algorithm META-STORM-SG. Readers will see
1s a very special corner case. First we recall the choices of a; and b;:

p =
a1 = (1+ Z IV f (i, &) /a) /2,
i=1

t
= (b/" + Y lldilI?)P fal s,
=1

where p, ¢ satisfy p+2¢ = 1,p € [+, 3] . ap > 0 and by > 0 are absolute constants. Naturally, we
have a; = 1. We will finally prove the following theorem.

Theorem G.1. Under the assumptions 1-4, by defining p = M € [%, %}, we have
E [Hf]
<4Cy1 {(QJZT < 4Co| +4C1o1 [(20°T)” < 40|

()™ ¢ ()™ voeat) (e 250)
(Cl+<%+%>log(l+m>)ﬁ<l+(QUST))ﬁ i

2/3 2\ 1/3 T—p
a2 +2 (202T 2C7 + 20
4<C’4+(3C’5+C’6)10g 0 5/3 ) +C’610g7b8>
a 0
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< 2 (202T)’7>1/3
X 1—"-7/\

where C;,i € [10] are some constants only depending on ao,bo,o,@,ﬁ,p,q,F(xl) — F* To
simplify our final bound, we only indicate the dependency on 3 and F(x1) — F* when o # 0 and T
is big enough to eliminate Cy and C1

E [H’;] =0 (((F(xl) - F*)% + Bg log% B8+ Bg log% (1+ 0'2T)> (1+ UZT)g) .
Remark G.2. For all i € [10], the constant C; will be defined in the proof that follows.

Again, by the concavity of 27, we have the following convergence theorem, of which the proof is
omitted.

Theorem G.3. Under the assumptions 1-4 by defining p = M € [%, %], when o # 0and T is
big enough, we have

o5 B B B B, 5 ) 1 o2/
E | [IVF(2ouw)]| ”} =0 ((F(xl) — F*)T5 + B» logT» 8+ B> logT-» (1+U T)) (Tﬁ + T2ﬁ/3>'

Here, we give a more explicit convergence dependency for p = % used in Theorem [2.1
Theorem G.4. Under the assumptions 1-4, when p = %, by setting A\ = min {1, (ag/@)z}(which

is used in Cy4 to Cg and C1g) we get the best dependency on G. For simplicity, under the setting
ag = by =n =1, we have

Wl]l {(0‘2T)1/3 S Wl}
T1/3

2/9
E[IVF (@) /] = 0 + (W2 + Walog?® (1+0°T)) ( Iyt o >

T1/3 T2/9

where Wi = O(F(xl)—F*—FaQ—i—@Q—i—ﬁ(l—i-@g) log (ﬁ—l—@Qﬁ)), Wy
O ((F(w1) = F*)3 4 V3 + G 4 (14 G333 1og?* (8 + CB))  and Wy =
0 ((1 + @4/3)52/3)_
To start with, we first state the following useful bound for a;:
Lemma G.5. Vt > 1, there is

a, " —a* < (G/ag)*,

Proof.

a2 — a7 = |V (w1, €))% /ag < (GJao)>.

G.1 ANALYSIS OF Ep

Following a similar approach, we define a random time 7 satisfying

7 =max {[T],a; > Co}
where

Co = min{l, (ao/@)4} .

Note that {7 =t} = {a; > Coy,at41 < Cy} € Fi, this means 7 is a stopping time. We now prove
a useful proposition of 7:

Lemma G.6. Vt > 7 + 1, we have

—1 —1
a;q —a; <2/3.
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Proof. Let h(y) = y?/3. Due to the concavity, we know h(yy) — h(y2) < W (y2)(y1 — y2) =
2(y1—y2)
3ys/?

. Now we have

agy —a;t = < O IV f (@ €)1 /a2 — (0 P23

ol/? 124
PIVi @ e)l® _ 20,°G _ 2
- 3ad - 3¢ T3
where the last step is by a; < a, 11 < Cy < (aO/CAv')‘l. O

G.1.1 BOUNDONE [E, 3/5 2] FOR/ € [, 1]
Similar to the analysis of META-STORM, we choose to bound E [E; 3/5_2,]. We first prove the
following bound on E [ET 3/2— 25} :

Lemma G.7. Forany { € [1,1], we have

0% + 2442 + 4@2 275 o

20—1/2 2€ 1/2
21 /

IA

E [E;3/2-2]

Z ||dt||2] |

Proof. We start from Lemma|[E.2]
arprllecl® < llecll® = leweall® + 201 Zesa |
+ 207 1[IV f (@141, &41) — VF(ze1)[|* + Mg

Summing up from 1 to 7 — 1 and taking the expectations on both sides, we obtain
T—1
E[E,_11] < E[Z leell? = llees1ll? + 201 Zo I
t=1
#2217 o1, 601) =~ VP + Mo
—E[Jal? - el + Y202 P

+ 207 1|V f (@41, &41) — VF(ze1)|* + Mt+1}

T
< E[Ha? el 3 2 Ze P

t=1

+207 41|V (@er1, €41) = VE(2er1)| +2Mt+1:|

T
S E[Brori + [l ?] <02 +E[Zz||zt+1||2
t=1

+2a; 1 ||V (@141, &41) — VF(zeq1) || + Z Mt+1]

Because Cp < 1,a,41 < 1,20 —1/2 > 0and 3/2 — 2¢ > 0, so we have

20—1/2 3/2—2¢
Cy all; T <1
Besides, for ¢ < 7 — 1, by the definition of 7, we have Cy < a4 1, then we know

20—1/2 3/2—2¢
Cy Arqq

20—1/2 3/2—2¢

Sapy T T = G
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These two results give us

T T—1
20-1/2 20-1/2 3/2—2¢

Cy P Eragn 0 = C3 Y a6l <Y avallal? + e

t=1 t=1
— B+ e
which implies

T

20-1/2

E|Cy'VE 73/2—24 <o +E[ZQ||Z:&+1||2

t=1

2034, 1V f (@1, E1) — VE ()| +ZM4

LetM, = 22:1 M; € F; with M; = 0. For s < t, we know E [M;|Fs] = 0, hence M, is a
martingale. Note that 7 is a bounded stopping time, hence by optional sampling theorem

T—1
E [Z M| =E[M,]=0.
t=1
Now we have
T
{—
E [Cg 1/2ET,3/2722] <o’ +E ZQHZt+1||2 + 2071 |V f (@41, €641) — VE(2441)]°

t=1

By Lemma

d 2
E[|Zun]? | 7] < n2p 100
t

Besides, under our current choice, a;41 € Fy,
E [a7 1[IV f (@41, &41) — VF(@41)|*| ]

=a; 1B [IVf (@41, E41) — VF(z51) ||| F2]
<a; 1B [V f(@er1, &) IIP|F2] -

Using these two bounds, we have

E Cw 1/2 E 3/ 26] <o’ +E

22 252H tH +2a7,, |vf($t+1,§t+1)||21

t=1

=’ +E

2 2|\dt|\2 2 IV f (@41, Ee1)]?/ad
zpnﬁjr+%w%uqzﬂWﬂ%&mew

Xﬂw”y

tlt

< 0® + 24a2 + 4G? + 21 B°E

where the last inequality holds by Lemma Dividing both sides by C’% 1/2

bound immediately

, we get the desired

o + 24a(2) + 4@2 277252
E [ET,S/%%] S 2172 2@ 1/2
0

Eyww]
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G.1.2 BOUNDONE [Er;_5] FOR( € [1 1]

With the previous result on E [ - 3/2_2[] , we can bound E [E7 1 _o].

Lemma G.8. Forany{ € [ we have

4’2}

(Frja) "] e
E 1og<1+ﬁT/a%>} (=

T
Z G2 _ G 612 3 e ||
2( S o20-1/2 t+1+ %ilbz ’

t=1

= =

where
G2 (02 + 24a + 4@2)

Ci(0) =3 %+ 6G> + 2 212
apLo

18a? ‘>
Ca(l) = g5t~
3 =

e

Proof. Starting from Lemma [E-2 as well
apllec])? < llel® = e l* + 201 Zesa|I* + 2081 |V (@es1. 1) = VE(@era)|? + Miga.
Dividing both sides by afﬁl and taking expectations, we have

[leel]? . sl

E [a}72|e] <E[ \Zus 2
[ e ] atzil aﬁl aiiq
M
2022V f (241, €)= VE (s + ;} (32)
t+1

Note that under our current choice, a;+1 € F;, hence we have

3] -4 -

at2-l;-1 Ayt

E [IIZtHIIT o | E 1 Zea |1 { 2 g2 le1” [[de? ] _
20 = 20 a2l b2’
Ait1 Ayl a1

E [af NV (w41, &41) = VE (@) IP] = B [af 2B [IV f (w01, &1) = VF (@030) 1P F]]
<E[af NV (e, &) ]
where the second bound holds by Lemma[E3] Plugging these three bounds into (32), we know

E oty 2e?] <& [l Jenl® | gga I0E o019 pan, )P
v a%il a?f_l %1[)2 Q41 Ti+1,Et4+1 .

Now sum up from 1 to 7" to get

IE[ET1 2]
el ||€t+1H2 de | ¢
<E ZTQZ o2 +20° 8% S PEI + 207 PNV f (@, G I
=1 Mt e 41

M=

<o’ +E

- - [EAs
(ar 2 = a ) lleell* +2n Qﬂzz o +22 Tt IV f (e, &)1

t=1

(@) ()
(33)
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For (4), we split the time by 7

T T
Z (a2t = a ) lleel® =D (s = ai ) lleal® + DY (ai — a7 ™) lleel)?
t=1 t=1 t=r+1
T T
—3/2  —3/2\ 3/2-2¢ _
<> (0l =) 5 el + Y (ot — ) alrled
t=1 t=7+1
G? & 32—
< o @y el + 5 el
0 =1 t=741
G & aja-ne
< oyl t|\2+2 Satie?
0 ¢=1
G2
S PN ) S
P 3/2—2¢ + 3T -2
where the second inequality is by Lemma [G.5|and Lemma[G.6
Next, for (ii), we use Lemma[[.2]to get
T
Z2“?;12£|Wf(37t+1,5t+1)“2
t=1
o2 IV f (@i, E+1)1*/ad
=2a5) . R
S (14 X0, IV (0,€)112/a3)
N Ty e |2\ LAA0/3
<2ag y G2 1,4(1175)/3 Z»b 1 H af( 5)” 4(1 _ g)/g < 1
— 2 x 2
6 log (1+—Z7 LT gl ) 41— 0)/3=
0
6a2 R ) 4E3—1 L
—6G? 4 { 3T (Fr/ad) >3
2a3 log (1 + HT/ao) (=3
Plugging these two bounds into (33), we have
2 | 602 62 25 il
E[Er ;2] < 0" +6G" +E E 32 2€+3ET1 20+ 21°8 Z a2 12
aiiq
4@71
4 4( 1 (HT/CLO) > i .
2a3 log (1 + HT/ao) (=1
Thus
~ 18a2 I / 2 41]’3_1 ¢ 1
N 302 8oy g [(HT a3) > 1
E [ET,172Z] <3 (02 + 6G2) + 7E [Eﬂg/g_zg] + 4
0 63E [log (1+ Fir/a3)| =1

t+1

+ 612 B°E [Z || ]
20 b2
Plugging the bound on E [ 7,3/2724] in Lemma we finally get

~ ~ R 4[;1
G? (02 + 24a? + 4G2) E (HT/ag) ] 0>
Cze 1/2 +Cs(¢)

E[ETJ_QA S 3 0'2 + 6@2 +

E |log (1 + ﬁT/a%)} (=

C1(¢)
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G 2 2 52 llde|?
Z( 2z i %t n°p a2 52|

t=1 t+1

where

18a?2

&/
cg<é>:={gg; .

2

Ll

G.1.3 BOUNDONE [Ef 5]

The following bound on E [Er 1 /2| will be useful when we bound Dr.
Corollary G.9. We have

E [Er/2) <Ci(1/4)+Ca (1/4)E [10g (1 +Hr/ “3)]

T /A
Z Gﬁalﬂl 617232 [[de? .
2\ T

t+1

+E

Proof. Take { = % in Lemma

G.1.4 BOUNDONE {alefET]

Lemma G.10. Givenp+2q=1,p € [i, %}, we have

49—1

C1 + OE (ﬁT/ag) +03E[ D! 27’}

E [G%FflqET} <

S
\4
Ll

C1 4+ CsE |log (1 + ITIT/a(%)} + C3E [bg (1 + %Z]T)} q= i
where
= C1(q)
= Ca2(q)
202
[z et
—I— 1) 6132 q= %
Proof. Whenp # + < ¢ > 1, by Lemma taking ¢ = ¢, we know
- ozt d G? d
E[Er1-24] < Ci(q) + C2(9)E [(HT/G%) } +E ) ma?-qu 61°3° qutHbQ
i=1 \4Co it
5 ) G Il
2 3 2 02 t
< C1(q) + C2(q)E |:<HT/GO> :| + (W +1]6n°B°E Z 20 2
0“0 =1 Btt1
(@) A =
= Ci(g) + C2(9)E [(HT/G3> }
% 2 g N A
(ol
= (s )
®) N G2 - D1 o
S Cl(q) +02(Q)E |:<HT/CLO) :| + (W + > [‘3 E 2p

|
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(_c) ~ 2 4(13771 62 677252 1—2p
_Cl(q)+02(q)E[(HT/ao) }+ (ao — +1> 4q_1E[DT }

where (a) is by

2p
1/p t 2 2p
(86" + i laal?) :
0 1= 1 1
afl bf = a}d, = (0" + > Nl )
=1

2
aify
(b) is by Lemma[L1] (¢) isby 1 — 2p = 4q — 1.

Whenp=1oq=

1. by a similar argument, we have

E[Ex,1-2,] < C1(q) + Ca(q)E [log (1+ Hr/a3)| + <f§ + ) 6n26E {log (1 + I;? )] .

Now we can define

G 61> 1
Ca = <agc§q1/2 + 1> pras
3 — .
A2
(G+)ors 0=

The final step is by noticing for 1 —2¢g =p >0

Eri o = Zaiﬁqnetn? > a;ffz lecl|® = ay; 3 By

G.2 ANALYSIS OF Dp

We will prove the following bound
Lemma G.11. Givenp+2qg = 1,p € [i, %} we have

. 1/3
H C; + Cy 1+HT/a%
E[aqT+1D1 P] < Cy+ C5E |log M + C6E |log ( )
(10 bo
where
i1 2 ACy (1/4) ACs (1/4)
Cy=b +—-—F(x1)—F")+—"2L,C5 = ————"—=,
* 0 77( ( 1) ) nﬂmax 5 nﬁmax
Cr+ Cg)» 6AG2 1
Cg = %707 = (1 + ) nﬂmamC’S = < + 6/\) nﬂmaxy
1 - P ao )\

A > 0 can be any number.

Proof. The same as before, we start from Lemma@

- i1 2
E |ab Dy 054 (F(on) ~ F)+E

T
max di||*|  AE |Eq,
Z (nﬂmax-i- 77?/2 _bt> I bt2|| ]—i— [ T1/2]
A ?

t—1 a’t-‘,—l U/Bmax

where A > 0 is used to reduce the order of G in the final bound. In the proof of the general case ,
we don’t choose A explicitly anymore. Plugging in the bound on E [ETJ /2] in Corollary we
know

2 ACp (1/4)  ACo(1/4 21 H
E [aqTHD ] < b” o —I—E(F(xl) - F*)+ 7715( /4 + nQﬁ( /g E [log 2T 2 T
max max 0
T
6)\02 1 nﬂmax ||dif||2
+E Z(( )nﬁmax+<>\+6)\) 1/2 _bt b2
t=1 Gy t
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24+ H
= C4 + C5E |log %—|_72T
ag
(L we Do) W Y B2 |,
+ Z T2 "Bmax + 3T vz "%t T | (34
t=1 0 Ay q t
(@)
Applying Lemma|E.5|to (i), we get
~ 1_q
((1 4 OACE L L 6/\> nﬁmx) ’
(i) < °
I-p
67G? 1 O 2 1/3
1+ a2 nﬁmax + ()\ + 6>\) nﬁmax 1+ HT/ao
x log 0
bo
~ 1/3
Cr 4+ Cg (1 + HT/G%)
= Cglog
bo
By using this bound to (34)), the proof is completed. O
G.3 COMBINE THE BOUNDS AND THE FINAL PROOF.
From Lemma[G.10} we have
4g—1
E { 1-2¢ :| C1 + C5E (I/‘\IT/CL%) ° :| + C3E {D;«_Qp} q> %
ap 7 Er| < =
O + CoE [log (1 v HT/agﬂ + C4E [1og (1 + %)} g=1

From Lemma|G.11] we have

. 1/3
Cr + Cy (1 + HT/CL%>
bo

5 o

a, +HT

10g072
ap

+ C6E |log

E [a%+1D%F_p} < Cy+CsE

Now let

Apply Lemma[E.T] we have
E [Hﬂ < 9P+ max {E [E’;} E [Dﬂ } < 4max {JE [Eﬂ E [Dﬂ } , (35)
Now we can give the final proof of Theorem|G.1

Proof. First, we have

E {ﬁﬂ =E (i ||Vf($i>§i)||2>

T

<E (Z 2AVE ()| + 20V f (i &) - wmn?)

T P
=FE <2HT + 22 IV fxs, &) — VF(%‘NQ)

i=1
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T

P
<E QﬁHg + <2 Z IV f(25,&) — VF(%)F)

i=1

r A T v
= 2°E HY.| + E <22|Vf(l‘i7§i)_vF(xi)|2>

i=1

< 2E |Hf| +

(22 IV f (s, &) — VF(mHQ)]
< 2B [H] + (20°T)” < 2%+ max {]E BL] B [D}]} + (20°7)7

< 4max {E [E}| ,E [D} ]} + (20°T) (36)

Now we consider following two cases:

Case1: E {Eg] >E [Dg} . In this case, we will finally prove

(ﬁ)ﬁ + <(2003)” + (203)2‘37) (1 " 2(2Zgg)ﬁ)é
E [Eﬁ} < +Co1 [(Q(TQT)’7 < 409} g#1
T| S ) / ., '
(01 + (% + %) log (1 + %))P (1 . 2<2§§§)p) :
+Co1 [ (20°T)" < 4Gy g=1

where Cy is a constant. Note that by Holder inequality
E [} = E [af;{77B] x a7 7]

IN

~ —(1=29)p
EP [aT+ qET} E'P |:aT+1 }

q 1— 2(1-2q)p
=EP [aT+ ET} E'P {(1 +Hp/ad) S }

25 ] 9+ oy ]

) 2p
< B o} YBr | EF [(1+ Br/ad)?]

< [af qET} E¥ [1 + (HT/aO)p]

where (@) is by 1 — 2¢ = p, (b) is due to 3(1 p) = li’;p <1

First, if ¢ # &, we have

49—

B [ob 8] < €+ Ca [ (Fiajaf) T | + o [D4 ]

(©) oy [/m 5 -

<+ GES [(HT/a%) ] P

@ AE [Eijp} + (2027)° o

< (C1+Cy % : ﬁzp [Eg«:| R
Qg

where (c) is by 4‘13_1 = 1_32p < 2_32p =pandp>1=1-2p< % =D, (d)isbyand

E {D’}} <E E’;} Then we know
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-
N 4R [Ep];ﬁ(%QT)p 5 o [Eﬂ
0

agp
If4E [Ef | < (20°7)", we will get
D
_ 2 (202T)7\ 7 2 2 (20T
E[E%}S Ci+ Cy <( 02]3) ) JFC?,EI; [Eg’} <1+ ( 2 )
) Qg
_ 152
2 P P
IfC4E 7 [Ep} <Cy+Cy (2(202,?) ) , we have
aq
Lz
1—2 =~ C C 2 (20’2T)p v
== | P i 2 a\s 2
e o] < 8 (%
12 1—’\212
5 C, Gy (2(202T)7 7
P “1
:E[ET} <lete ( 7
R _ 1
() () ()
3 Cs ag?
[EP] >C1+C2< ( ;T)p> v , we have
0

ol
s

= (2C3)PE'~ 21’

( xal

> E |} < (203>f< 2(20°7) )
[E

Combining two cases, we know under 4 T} < (202T)

_ 20, \ 5 /20 2 (2027)7\ ° 2 2 (20277
1= (27 ()7 () ot 25
0

20, \ T 2 2 (2027)7\ *

Now if 4E [Eﬂ > (202T)ﬁ, then we have

)

1—2p

0 0
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=2 = £
o (sE[ER]\ T N sE [Bf ]\
<|ct+cp|—52 ]  +agErE[EL | {1+ —5%2 ] . 6D
ag Qo

We claim there is a constant Cy such that E {Eﬁ } < Cg because the highest order of E {Eﬂ is only
1-2p+ %p =1— =2 < 1. Here we give the order of Cy directly without proof

Ci\ T2 3p EIA|
Cy=0 a2p+<> <02 C4P>A :
? ( 0 Cs ab
Hence, when q # %, we finally have
(20 20, =
7 it}
B B < (03 ) +<< 03) e

Following a similar approach, we can prove for ¢ = %,there is

R 27\ P g 2\ P
EB;] < |+ 9+9 tog 14 — 2T P CLch I RS
min {a%p/z 4b3p}

m‘.m

) (1 + 2(2";T)§> §+C9]1 [(20°T)7 < 4G5

Qg

2P bp

Cy+C 5,25
Co =0 (Cll/2+ (021/2+C§/2) 172 C2 +C3 i 0p+a +a€b3p>.
o Yo

Finally, we have

(%)7 + ((Qg) + (203)£> <1 N 2(2;,;5),3);
E|B7] < Ol | (20°T) <4G| at}
(01 + (% + %) log <1+ %))p <1_|_ 2(2‘:2)?)5>3
+Col [(20°T)” < 4Gy =1

Case 2: E [Eﬂ <E {D’;} In this case, we will finally prove

2/3 2.\ 1/3 Tfp
_ +2(20°T 207 + 20,
E [Df}} < (04 ¥ (3C5 + Cg) log 20 2( = ) Cs log 7b08>
Qg

~. 1/3
2 (20°T)"
X |1+ % + Cho-

Qg

where C1 is a constant. Note that by Holder inequality

E[D}| =E {aTHD x aT_H}

<E™7 [af, D} 7| BT

p

—Es [Q%HDé—p} gt
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(e) 5 ~ P
< B [, D] B} [(1+HT/a§) ]
< [0 D] gl g o\P
<E77 [af,, Dy *] ES |1+ (Fir/a})

where (e) is by 3(1_22_5) = 3(11__;’_@ = 1. We know

1—
E[af,, D} ]

Cr + Cy (1 + ﬁT/ag)l/S

S

H
<Ci+ C5E [log D 2T | 4 G4 |1og

Qg bo

P Cr+C Hy /a3 N
2. |7 7+ 8<1+ Tao)
:C4+g\5]E log %_*_72T +Q,6\IE log
p ay 3p bo

(2C7)7 + (2Cs) <1 + (ﬁT/a8)§>

) C P+HL| C©
<Cy+ 5K log (IO_F% + 2k log =
p ag? 3p by?
W o o +E[EE] o o7+ @0)” (1+E [} /o))
SC4+TIOgﬁ+7AIOg 35
p ag? 3p by?
Wy af +4E D]+ (20°7)"
<Oy + = log o
p ag”
~ ~ B o27)?
o 20D+ (2007 (1 + ot Lorr)” )
6 aq
=1 -
+ 35 og bgp

where (f) isby (z +y)P < 2P +yP,(z +y)? < (22)7 + (2y)? for 0 < 2,5,0 <p < 1,4 > 0, (g)
holds by the concavity of log function, () is due to and E [E’;} <E [D’H . Then we know

E [DF] <57 a0 B [1+ (Ha/ad)'|

af +4E D} + (20°7)"

C
<[ Cit =log o
p ag’
-~ Py P 0.2 p 1Ep
o 20T+ (2007 (1 + Z{pi (o) )
6 0
+£\log 7
0
5y 1/3
4E [DE | + (20°T)
x |14 5
ag’
If 4 [D} | < (20°7)", we will get
~ R 35 35 2(202T)" 1
E[DE] < [cu+ O 1og 0 £20T)" Co e <1 M
i a2 3 b
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P

<<C4+(05 CG)bg‘W Co (207)3ﬁ+(208)35>1‘p

— + —log —
ag? 3p bpP

2/3 2 1/3 T—p
ag/® +2(20°T 2C7 + 2C;
< <C4+(SC5+CG)log 0 §/3 ) cn g =" 8)
ag 0
1/3

2 (20277
x (14 ==
g

If 4 [Df | > (20°T)”, we have

- ~ b 5 SE[D?. -
aff + SE | D (207) + (2C5)™ (1 + = }>

~ C5 6 ag
E{Dp]g Cit Zlog — L 71 4 ¥4 _
r * p a%p 3p bgp
SE [D’;} Ve
Qg

which implies there is a constant C( such that E [Dg] < (4. Here we give the order of C
directly without proof

Cs +Cs

Cr+C
L +(C5+06)10g35>
a

bo

Cio=0 <a§'3 + a3 + Cy + Cslog
0

Combining these two results, we know
a?® + 2 (202T)"* 207 +2C5\
273 + Cglog ———
ag bo

E [D’}} < ((14 + (3C5 + Cg) log

2 (20%T)" v

o _

x (1 - 25) + Choll [(20—2T)” < 4010} .
o

Finally, combining Case 1 and Case 2 and using we get the desired result and the finish the
proof

=

( )
()™ +((8) ™ raet) (4 25) o

0
+4 / . .
202T)" 2(20%2T)" \ 3
(01+(C;+Cpé) log <1+mm{(agﬁ/2?4bgﬁ})) (1+( a3§)> q=
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P

2/3 2\ 1/3 T-p
ay' " +2(20°T 2C7 + 2C;
+4 <C4 + (3C5 + Cg) log 2 2(/3 ) + Cg log 7()8>
ag 0
~ 1/3
2 (2027)"
o

H ALGORITHM META-STORM-NA AND ITS ANALYSIS FOR GENERAL p

Algorithm META-STORM-NA is shown in Algorithm [5] To highlight the differences with
META-STORM-SG and META-STORM, we set a; only based on the time round ¢, not using the
stochastic gradients. This is the reason that the convergence of this algorithm does not depend on
bounded stochastic gradients or bounded stochastic gradients differences assumptions. Moreover,

the requirement of p € (O7 %} is also more relaxed compared with our previous algorithms.

Algorithm 5 META-STORM-NA
Input: Initial point z; € R?

Parameters: a, > \/g, bo,m,p€ (0,3] . p+2¢=1
Sample fl ~ D,dl = Vf(l'l,fl)
fort=1,---,7T do:
_2
ae1 = (1+t/ag) *
1

be = (bg/" + i ldil|?)P /iy

L1 = Tt — b%dt

Sample ;41 ~ D

dir1 = V(@1 8e41) + (L= arp1)(de — V (24, 6e41))
end for
Output 2oy = x where t ~ Uniform ([T7]).

Now we give the main convergence result, Theorem [H.I] of META-STORM-NA. As we discussed

before, it can achieve the rate 6(1 /T?) under the weakest assumptions 1-3, however, with losing
the adaptivity to the variance parameter o as a tradeoff.

Theorem H.1. Under the assumptions 1-3, by definingp =1 —p € [%, 1), we have (omitting the
dependency on 1, ag and by)

E [Hg} =0 ((F(xl) —F* +ﬁ% log (BT) +0210gT+02ﬁ) Tg) .

By combining the above theorem with the concavity of 2P, we give the following convergence
guarantee omitting the proof:

Theorem H.2. There is

3

E [IIVF(xom)HQﬁ] =0 (F(xl) — F* + 7 log (ﬁT) +0log T + 025> .

Note that 2p > 1, hence the criterion, E [||VE(2ou)||??], used in Theoremis strictly stronger
than E [|| VF (zou)]|]- In the following sections, we will give a proof of Theorem [H. 1

H.1 BOUNDONE [Ef 5]

Lemma H.3. Givenp+2¢=1,p¢€ (O, %] we have

o® (1 +2ag log (1+ T/at)) + 2n° B°E [zf_l 'fiz';]
Aq1%
1—2/(3a3)

E[Er,2] <
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Proof. We start from Lemma|[E.2]
asprllecl® < llecll® = llewrall® + 201 Zega® + 207, IV F(@eq1, Ee41) — VE(@eg1)[|* + Miga.

Dividing both sides by atl fl, summing up from 1 to 7" and taking the expectations on both sides, we
obtain

E [Er,1/2]
T
E leel = lleerrll? + 20 Zesa|* + 2021 |V f (weq1, €e41) = VE (1) []* + My
< Z 412
t+1

T
<o HE[Z (arty — o) all2 el + g | Zu |2

t=1 Q11
3/2 2 My 4
+ 205V (21, §e1) = VE ()17 + —75
t+1
Because a4 1is not random, we know
232\ d, |2
o] 21| <u [ 2]
Ayt ] a1 b
E |24°% |V VF 2] < 243252
t+1|| f(@eg1,&01) — VF(2eq0) 17| < 2034707,
My |
El 1/2 =0,
Ay |

where the first inequality is by Lemma Besides, by the concavity of #2/% and ay > % we
know

a;rll—a;lz(1+t/a§)2/3—(1+(t—1)/a3 2/3
2 2

< 1/3§72<1‘
302 (1+ (t—1) /ad) 3ag

Then we have

E[Er1] <o*+E ETE at410

2 2 202 d 2
37ET1 +Z 1”82 dy || 12 3/2 2]
t=1 41

3/2 Als
o? (1 +2 ZtT 1 atJ/rl) + 2n°B°E [ZtT—l alld/zlbz}
t+10%

* ElBras) < T2/

Note that
T

T
3/2 1
;atﬂ Zlmﬁaglog(l—&-T/ag).

So we know

2
o (1+ 2af1og (1 + T/af)) + 2076%8 [, ]
1—2/(3ad)

E[Er2] <

H.2 BOUNDONE[Er]

Lemma H4. Givenp+2q=1,p € (O, %] we have

2 2 2\1/3 242 2o ((E[Dy ] 1
E[Eq] < 6ago (1 + T/ao) 202B%(1 +T/a2)s = PF 5
= 1-2/(3a3) 1—2/(3a3) E {log (1 + %OT)} p=1
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Proof. We start from Lemma|[E.2]

arllec® < lleell* = Newrall* + 20 Zesa|” + 2081 [V f (241, Ee1) = VF(2040) |2 + Mesyr.
Dividing both sides by a1, summing up from 1 to 7" and taking the expectations on both sides, we
obtain

E [ET}
Z lecll? = lleesill® + 2l Zeaall? + 2071 |V f (2441, Eev1) — VE(2451) 12 + Myg

t=1 Gi+1
£l 2
<o’ +E[Z (as — e ) el + =12
1
= <o/(a2)
2 Mt+1
+ 2011 IV f (241, 41) — VE(@e)||" + ——
at+1
2 T 9
<o’ +E|-—E — | Zst1||?
<o® + {3(13 T+;at+l\| t1l|
2 Mt+1
+ 20111 ||V (@41, &41) — VF(2041) || T
t+1

Because a;.1is not random, we know
2 2 232 d 2
B | Zlzual?| <[22I,
) 4107

E (20141 (|V f(i41,&41) — VF(e31)[?] < 2004107,
M,
E {t"‘l] =0,
At+1
where the first inequality is by Lemma@ Then we know
22 82|, |12
E +Z n° % ||| +2@t+102

E[Er] <c?+E
[T]—U+ at+1b2

2
— 2 (1 + 2Zt:1 at+1) + 20 B*E [EtT:I aHitIHbf}
= ElBr] < 1-2/(3a3) |

Note that there is
T

T
z:||dt||2 Z e || 12 llde|?
2_ - 2
et D) (1)

2z~ e
<(1+T/ag) > Zﬁ
t=1 (bo/p +Dt>

(b) M £ 1
<+T/)F{ Ty T
log (1 + TQT) pP=3
where (a) is by 1 — 2¢ = p, (b) is by Lemma[[.1] Besides
T T
1 2 2\1/3 2 2 2\1/3
Z Q41 = Z =73 <345 (1 + T/ao) —3ag < 3ag (1 + T/ao) —2.
= =1 (L+t/ag) /
So we know
oy < 08 (L T/ad) o Ty [T p#
7| <
1—-2/(3a3) 1-2/Gat) | E[og(1+57)] »=1
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H.3 BOUNDONE [DlT’p}

Lemma H.5. Givenp+2q=1,p € (0, 3], we have
v (a2 (14 2ads (14 T/ad)
5[pi7] < () <”0 R T N (T €7

2
bt (14 595 (14 T/a3) ") e
4nﬁmax> log ° :

1—

L (1+T/dj) . (3a3 -1

1-— p 3(13 -2 bo

Proof. The same as before, we start from Lemma@
1_ 2

E|af Dy? <8 + = (F(ay) = FY)
n

T
1 Bmax ||dtH2 AE [ET 1/2}
+ ]E nﬂmax + - bt : .
Z( o ) | T T
Now we simply take A = 1 and use Lemma [H.3]to get
12 0% (1+2aklog (1+T/ad))

B oD 64 (P — 1) s T

9a2 — 2 e

2
t=1 3ag — 2) Arqq

(@)

Applying Lemma [E3]to (i), we get

3ag—1 Ce 9a2—2 1/3
() < (3a§_24nﬂmax) ’ (1 + 311%—2 (1 + T/a%) ) nﬂmax
Z .

I
o l—p o8 bo
1p _1p
Note that a%.,; = a2, = (1+T/ag) ?* is deterministic, by multiplying both sides of by
1—p
(1+T/a3) * , we get the desired result. O

H.4 COMBINE THE BOUNDS AND THE FINAL PROOF.

From Lemma[H.4] we have

2 2 2\1/3 2 92 o2z [ E[Dr ] 1
E[By] < 6a3o? (1+T/a3) 20?B%(1+T/a3) T P#3
= 1-2/(3a3) 1—2/(3a3) E {log (1 + %j)} p=1
From Lemma[H.3] we have
_ 1p (1.7 9 o2 (1+2a2 log (1+T/a(2)))
E|DS?| < (1+T/a2) ™ (b  +=(F(x1)—F*)+ 0
] < e s ( b (1= 2/Ga3)

a?— 1/3
1 %71 (1 + ga(g,i (1 + T/a%) ) nﬁmax
24nﬁmax log .

LG +T/ad) (3ag -

1—p 3a3 — bo
Now let
p=1-pe B, 1)
Apply Lemma [E.T] we know
E[H}] < 4max {E B} ,E [D}]}. (40)

Now we can give the final proof of Theorem
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Proof. Now we consider following two cases:

Case 1: p # % Note that by Holder inequality

E[D} ZP} +* [Dh].

So we know

6ago? (14 T/a )1/3 27]262(1—1—T/a2)27p _9p ’
e Rl fe yrere (e i i

< (6 0T/ y 2o L] )E% {D’ﬂ)

P

1 —2/(3a) (1—2/(3a3))(1 - 2p

Now if E [Ef,| > E D], we know

5 6a3o? (1+T/a3)"° 22821+ T/aR)% 12 [ s ’
= 7] S( aed) T aoveaiomt | B
6ago” (1 + T/a%)l/3 ’ 202 6%(1 + T/a%)%p 4 1—2p [F
= ( 1—2/(3a3) e ) = [E

o (202820141 /a2) F P _ n 6aZ0>(14T/a2)"* d
Then if ((177—2/((3(13))/(10—)2p)> El-2p {E?] < % , we know

5 6azo? (1+T/a2)1/3 ’ 2760202 4
E[ETF?( T 2/Ga) ) :<1_z/?30)) (14 7ag)

wl)

2 2[32(1+T/a2)2§ P B _ 6202 (14T /a2 13\ P
If<<10—2/<3a3>>(10—2p> B [Eﬂ =\ 1E2/<3a%[>)) » we know

sl <2 ()

sy
wls)

5 27 205 2
= E[FF] < ((1 ~2/(a3))(1 - 2p>> (1 +1/e0)

Hence under E {E’;} >E {D’;} , we get
- £9,2 32
E [Ez}} < 27 272] 153
(1—2/(3a3))(1 — 2p)
Then by using {@0), we know

E [H7]

<4max {E [E}| E[Df]}

2% 6a2o? g 9
+ (1_2/?3%2))) (1 +T/Clo)

st
o)

wls)

<4 (1+T/aj)?
y 27222
(1—2/(3ag))(1 - 2p)
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a2 o (L 2aRlog (14 T/a))
+bg o, F@) = )+ — e s Ba?))

1.1
(Bt nBua)” (145922 (14 T/a)") nan
+ log
1—p bo

=O<< (x1) — F* +5plog(BT)+U log T + o )Tg)

Case2: p = % By a similar proof, we still have

@)

E[Hﬂ SO(( (x1) — F* +Bplog(BT)+U log T + o )T

)

I BASIC INEQUALITIES

In this section, we prove some technical lemmas used in our proof.

Lemma L1. Forco >0, ¢;>1 > 0, p € (0, 1], we have

1-p
T
i < ﬁ (Zi:l Ci) p#1
t=1 CO+ZZ lcl)p N lOg (1+%) p:1

Proof. We first prove the case p # 1. From Lemma 3 in [Levy et al.| (2021), for b3 > 0,b;>2 > 0,
€ (0,1), we have

T T 1-p
by 1
E < E b; .
t = 7
= (oim bi)P 1—p (i—1 )
Now we define
To=min{t € [T] : ¢, > 0}.

By the definition of Tj, we know for any 1 <t < Ty — 1, ¢; = 0. Then we have

To—1 T .
t
Ly —
; CO+Z? 102 ; CO+Z7 161) tZTO (CO+Z 0 i+Z§:To Ci)p
T

B oy S Ty

t=Tp (co + Zi:To ci)P t=T, i=Tp Ci

1 T 1-p 1 T 1-p
S(2e) 53

Co i

1 Cco + Zi:TO Ci

IN

For p = 1, we know

T t
co + - C;
< Zlog DT LTy i1, Ci

1
t=1 o+ D1 G

T
= log <1 + 7Zi:1 CZ) )
co

where the inequality holds by 1 — 1 < logx. O
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Lemma L2. Forcy > 0, ¢;>1 € (0,¢], p € (0, 1], we have

T 1=p
ET: Ct41 < 3c n ﬁ (Zi:1 Ci) p#1
— (co+ 2;;1 G)P ch log (1 + Z:Tp:iolc) p=1

Proof. Define

then we know

c Ct41 Ct+1
% t—zl (co+ 2limg Ci)P —Z (co+ Zz 1Gi+ Z::Tg-i-l ci)P

< % Z Ci4+1 + Z Ct4+1
0

“ co+c+zZ TO_HCZ)

3c Ct+1
s 5t Z t+1
Cg t=To (Co + Zl To+1 Cl)p

1 T 1=p
@3, )T (Zi Tyt1 Ci) p#1

= 1og(1+W) p=1

co
1 T 1=p
3c ip (Eizl Ci) p#1
= A + L e
o (14 B52) poi

where (a) is by Lemmal[L.1]

Lemma L.3. Forcy > 0, ¢;>1 € (0,¢], p € (0, 1], we have
1-p
T
zT: Ct+1 6c ﬁ (Zi:l Ci) p#1
log (1—1—72%}10") p=1

Proof. Define

Then we know

T . To—1 . T .
t+1 t+1 t+1
_—— = _— —|—
T To—1
tz; (co+ Zz 1 CZ) tz:; (co+ > iy Ci)P tzT:o (cot+ 22y e+t Zz Ty ¢i)?
To-1 T .
< t+1 + t+1

7 (o fet+ 0 —1, Ci)P

IN

&
3c i Ct+1

1 T 1=p
(i) 6c N »p (Ez To Ci) p#1
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1 T 1=p
bc p (Zi:l Ci) p#1
= b + > e
log(1—|— = ) p=1
where (a) is by Lemmal[l.2]

Lemma L4. (Lemma 6 in|Levy et al.|(2021)), for ¢;>1 € (0, |, we have

Z <124 2c
= (1 E ci)t/?
Lemma L5. For ¢;>1 € (0, c|, we have, we have
d c
A 12 + 5¢

Proof. Define

Then we know
To—1 T

t=1 t=1

To—1

Z Cty1 + Z Cetl

IN

T
Ct+1 Ct+1 Ct+1
—: —+
Z (14 3y )3 2 (14 iy e)/? ; (1+ X0 )/

To—1
=7, (L+220 i+ 34 Tgcl)4/3

Ct4+1
< 3c+
Z (14+c¢ +Zl T c; )43
<3c+ Z Cril

(143 ci)¥/3
<12+ 50,

where the last inequality is by Lemma[[.4]

Lemma L.6. Given 0 <z <y <1,0< /¢ <1, we have

_1/6\2 _o1/6\2N 2 2 .2
((1x)<13,2>)<y 2
Yy

xr2 - /2 x4y2

Proof. Note that

(1—951/")2 (1_y1/e)2 2: 1—x1/€+1—y1/é 2 1_w1/e_1_y1/e
x? y? T Y T Yy

IN

11\ (1=t 1yt
) (5=-=7)
r oy € Y
1 —_zt/

nowleth(x):%M,wecanﬁndh’(ax):—%SO. Hence

17'%1/[ 17y1/f
r oy
we can find that

_ _gl/e
Sy = 4)(5; ) <o,

= h(z) — h(y) > 0.

Besides, let g(x) = h(z) — ~

lx>
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This means

which implies

1 1
0< h(z)—nh ——
@ —hw) < g~ 3
Thus we finally have
2 2
(1 o $1/€)2 (1 o y1/€)2 1 1
( 22 - Y2 < x + ; (h(z) — h(y))2
(L0 210 1)?
“\x oy lr Ly
(v — =)
= iyt
y? — 22
ahy?
O
Lemma L7. Given 0 <z <y <1,0< (<1, we have
2 2 _ .2
4 - )— Yy T )—
((1 _xl//)xl/é 2. (1 _yl/z)yl// 2) < s yz// 4
Proof. If ¢ = % then we know
((1 . x1/z)m1/472 —(1- yl/e)yl/e”)Q
9 4 y2 _ {E2
:(y2—x2) < (y2—:v2)y2§ ( — )y2
ey
_y2 —a? 2/0—4
- gzxzyz :
If £ # L, let h(z) denote (1 — z/*)21/*~2, then we know h/(z) = xl/f_?’w. By
Taylor’s expansion, there exists x < z < y, such that
h(z) = h(y) = ' (2)(z —y)
L2 —1) 2 -2 41
:zl/€3 ( ) ; (x—y)
This will give us
2
(=222 — (1= gy 2) = (h(e) - h(y))?
2
2(0—1) 2t —20+1
_ L2/t GX( e ) X(y_x)z
2/0—4 1
Yy
>~ .TQ X 672 X (y2 — 1'2)
_ y -z 2/0—4
0272 4
O

Lemma L.8. Given m,n > 0, For 0 < x < m, we have

(m—x)xng( m >n+1n".

n+1
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Proof. Note that

log ((m — x) ™) = log (m —x)+nlogxzlog(m—x)—&—nlog%—&—nlogn

(a) _
< (n+1)log (M—i-n X x) +nlogn
n

n+1 n+1
m m n+1
= 1)1 1 =1 —_— "
(n+ )ogn 1+nogn og((n+1) n)
n+1
where (a) is by the concavity of log function. Then we know (m — z) 2" < ( :’[1) n". O

Lemma 1.9. Given X;A,B>0,C >0,D > 0,0 <wu < 1,if we have

X u
X< (A—i—Blog(l—i—C)) D,

1/u\ ¥
X < <2A+2Blog 4“CBD + (g) ) D.

Especially, when D > 1, we know

then there is

AuBD u
X < (2A+2Bloguo+cl/“> D.

Proof. LetY = (X/D)'/*, then we know

Y§A+Blog<1+Dg )

u\ 1/u
A+uBlog(1+Dg >

(a) 1/u
< A+ uBlog (21/“ + (2(?) Y)

1/u
:A+uBlog21/“+uBlog<1+ C) Y)

1+( )1/u 1/u
= A+ Blog2+ uBlog ——%—— + uBlog | 2uB ()
2uB (2)" C

®) D) D
< A+Blog2+%-ﬁ-Eﬂ-uBlogQuB—i-Bloga
Y 4uBD (C/D)"*
< =
5 tA+Blog—— +——,

where (a) is by (z + y)* < (22)" + (2y)*, forz,y > 0,p > 1. (b) is by logxz < x — 1 < z. Then
we know

Y <2A+ 2Blog

wBD  (C\'*
C D

4 AN
- X< <2A+2Blog ugD-i-(g) ) D.
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