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ABSTRACT

GradNorm (Chen et al., 2018) is a broadly used gradient-based approach for train-
ing multitask networks, where different tasks share, and thus compete during
learning, for the network parameters. GradNorm eases the fitting of all individ-
ual tasks by dynamically equalizing the contribution of each task to the overall
gradient magnitude. However, it does not prevent the individual tasks’ gradients
from conflicting, i.e., pointing towards opposite directions, and thus resulting in
a poor multitask performance. In this work we propose Rotograd, an extension
to GradNorm that addresses this problem by dynamically homogenizing not only
the gradient magnitudes but also their directions across tasks. For this purpose,
Rotograd adds a layer of task-specific rotation matrices that aligns all the task
gradients. Importantly, we then analyze Rotograd (and its predecessor) through
the lens of game theory, providing theoretical guarantees on the algorithm stabil-
ity and convergence. Finally, our experiments on several real-world datasets and
network architectures show that Rotograd outperforms previous approaches for
multitask learning.

1 INTRODUCTION

While single-task learning is broadly-used and keeps achieving state-of-the-art results in different
domains—sometimes beating human performance, there are countless scenarios where we would
like to solve several related tasks, we encounter overfitting problems, or the available data is scarce.
Multitask learning is a promising field of machine learning aiming to solve—or at least, alleviate—
the aforementioned problems that single-task networks suffer from (Caruana, 1993).

Many multitask architectures have emerged throughout the past years (Kokkinos, 2017; Maninis
et al., 2019; Dong et al., 2015; He et al., 2017), yet most of them fall under the umbrella of hard pa-
rameter sharing (Caruana, 1993). This architecture is characterized by two components: i) a shared
backbone which acts as an encoder, and produces an intermediate representation shared across tasks
based on the input; and ii) a set of task-specific modules that act as decoders and, using this inter-
mediate representation as input, produce an specialized output for each of the tasks.

These networks have proven to be powerful, efficient, and in many occasions, capable to improve the
results of their single-task counterparts. However, they can be difficult to train. Competition among
tasks for the shared resources can lead to poor results where the resources are dominated by a subset
of tasks. Internally, this can be traced to a sum over task gradients of the form L =

∑
k∇Lk with

respect to the backbone parameters. In this setting two undesirable scenarios may occur, as depicted
in Figure 1a: i) a subset of tasks dominate the overall gradient evaluation due to magnitude differ-
ences across task gradients; and ii) individual per-task gradients point towards different directions
in the parameter space, cancelling each other out.

This problem can be seen as a particular case of negative transfer, a phenomenon describing when
“sharing information with unrelated tasks might actually hurt performance” (Ruder, 2017). Under
the assumption that the problem comes from task unrelatedness, one solution is to use only related
tasks. Several works have explored this direction (Thrun & O’Sullivan, 1996; Zamir et al., 2018),
see for example Standley et al. (2019) for a recent in-depth study on task relatedness.

Another way of tackling the problem is by weighting the task dynamically during training, the
motivation being that with this approach the task contribution can me manipulated at will and a
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fφK
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(c) Hard parameter sharing model.

Figure 1: Examples of: (a) neglecting one vector due to magnitude difference; (b) partial cancella-
tion of two vectors with equal magnitude; (c) a hard parameter sharing architecture.

good balance between gradient magnitudes can be found. Two important works on this direction are
GradNorm (Chen et al., 2018), which we will cover in detail later, and Kendall et al. (2018), which
adopts a probabilistic approach to the problem. For example Guo et al. (2018), adapts the weights
based on their “difficulty” to be solved to prioritize harder tasks.

Furthermore, a series of papers attempting to solve the conflicting gradients problem in different
settings have recently emerged. For example, Flennerhag et al. (2019) deals with a similar problem
in the context of meta-learning, and Yu et al. proposes two different heuristic solutions for rein-
forcement learning. In the context of multitask learning, Levi & Ullman (2020) adopts an image-
dependent solution that uses a top-down network, and Maninis et al. (2019) applies adversarial
training to deal with conflicting gradients, making use of double-backpropagation which poorly
scales.

The key contributions of this paper are the following:

• The introduction of Rotograd, an extension of GradNorm that homogenizes both the mag-
nitude and the direction of the task gradients during training. Different experiments support
this statement, showing the performance gain provided by Rotograd.

• A novel interpretation of GradNorm (and Rotograd) as a gradient-play Stackelberg game,
which allow us to draw theoretical guarantees regarding the stability of the training process
as long as GradNorm (Rotograd) is an asymptotically slower learner than the network’s
optimizer.

• A new implementation of GradNorm where is it applied to the intermediate representation
instead of a subset of the shared parameters. This way remove the process of choosing
this subset. Besides, we give some guarantees regarding the the norm of the gradient with
respect to all the shared parameters, and empirically show that results are comparably good
to the usual way of applying GradNorm.

2 BACKGROUND

2.1 MULTITASK LEARNING

Let us consider K different tasks that we want to simultaneously learn using a gradient-based ap-
proach. All of them share the same input dataset X ∈ RN×D, where each row xn ∈ RD is a
D-dimensional sample. Additionally, each task has its own outputs Yk ∈ RN×Ik , and loss function
`k : Yk × Yk → R.

As mentioned in Section 1 and illustrated in Figure 1c, the model is composed of a shared backbone
and task-specific modules. Upon invoking the model, first the input X ∈ RB×D is passed through
the backbone, hθ : X → Z, which produces a common intermediate representation of the input,
Z ∈ RB×d, where B is the batch size and d the size of the shared intermediate space. Then, each
task-specific module, fφk

: Z → Yk, using the intermediate representation Z as input, predicts the
desired outcome for its designated task, Ỹk.
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As the focus of this work concerns only the shared parameters, we can simplify the notation re-
garding the task-specific pipeline—that is, the branching paths shown in Figure 1c—by writing
the single-point k-th loss evaluation at time t as `ki (t), instead of `k(fφt

k
(zti)), and denoting by

Lk(t) :=
∑
i `
k
i (t) the total loss for the k-th task.

When it comes to training, it is necessary to use a single loss function in order to backpropagate
through it. In our setting, however, there is a loss function `k per task. A common approach is to
combine these losses by taking a weighted sum, so that the training objective is to minimize the
loss function L(t) :=

∑
k ωkLk(t). Therefore, the common parameters θ are updated following the

direction of the gradient

∇θL(t) =

K∑
k=1

ωk∇θLk(t). (1)

As we noted in Section 1, Equation 1 turns out to be the main source of problems since the loss
functions—and thus the tasks—have been artificially coupled. The magnitude of these task-specific
gradients represent how much they contribute to the parameter update: if some of them are relatively
small (large), their tasks will be overlooked (prioritized) during the training procedure, as Figure 1a
exemplifies. More subtly if gradients from different tasks point to completely different regions of the
parameter space, they may cancel each other out, resulting in a direction update potentially harmful
for these tasks, as shown in Figure 1b.

2.2 STACKELBERG GAMES

Let us now introduce some game theoretical concepts necessary for the following sections. A Stack-
elberg game (Fiez et al., 2019) is a type of asymmetric game where two players play alternately.
The first player is the follower F , whose sole objective is to minimize its own loss function. The
other player is the leader L who also attempts to minimize its own loss function, but having access
to additional information regarding which will be the best response the follower could employ in the
next turn. In mathematical terms,

Leader: min
xl∈Xl

{L(xl, xf )| xf ∈ argmin
y∈Xf

F(xl, y)},

Follower: min
xf∈Xf

F(xl, xf ),
(2)

where xl and xf are the actions of the leader and the follower, respectively.

Another important concept in game theory is that of a local equilibrium point. In layman’s terms, a
local equilibrium point in a game between two players is one in which both players have reached a
state that satisfies them, meaning that there is no available move improving any of the player scores
and no further actions are taken. In our case we are interested in the following definition:

Definition 2.1 (differential Stackelberg equilibrium). The pair of points x∗l ∈ Xl, x∗f ∈ Xf , where
x∗f = r(x∗l ) is implicitly defined by ∇xf

F(x∗l , x
∗
f ) = 0, is a differential Stackelberg equilibrium if

∇xl
L(x∗l , r(x

∗
l )) = 0, and ∇fxl

L(x∗l , r(x
∗
l )) is positive definite.

As a final remark, note that in this particular concept of equilibrium both players reach a critical point
(local optimum). Even more, when both players optimize their objectives using a gradient-based
approach and the leader is a slower learner—meaning having an asymptotically smaller learning
rate, both players reach a local minimum on the equilibrium point (Fiez et al., 2019).

3 THE GAME OF GRADNORM

GradNorm (Chen et al., 2018) was conceived with a simple idea in mind: equalizing the contribution
of each task to during training such that they all are learned at the same rate. This idea, as observed
in Equation 1, means making the gradient magnitudes relatively equal across all tasks. GradNorm
achieves this by considering the task weights ωk as parameters that are modified during training.
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These parameters are trained alongside the original network parameters via gradient descent, yet
their gradients are obtained by minimizing a specific loss function:

Lkgrad(ωk, θ) :=

∣∣∣∣ ωk||∇WLk(t)||2 −
1

K
||∇WL(t)||2 × [rk(t)]α

∣∣∣∣ , (3)

where W is a subset of the shared network parameters θ, the weights are corrected such that∑
k ωk = K always, α is a hyperparameter and [rk(t)]α balances the learning speed per task,

and the average gradient magnitude (that is, the target magnitude) is treated as a constant.

Using the concepts from Section 2.2, we can reinterpret GradNorm as a Stackelberg game. Namely,
in this new point of view the follower would be the player whose objective is to optimize the pa-
rameters of the backbone, whereas GradNorm would play the role of the leader, optimizing the task
weights in order to equalize the gradient magnitudes:

Leader: min
{ωk}k

∑
k

Lkgrad(ωk, θ), Follower: min
θ

∑
k

ωkLk(θ). (4)

Note that there is a fundamental difference between Equation 2 and 4: the extra information available
to the leader is not explicitly written in its optimization problem. This is due to the more subtle nature
of this bit of information. The actual objective of the leader is not to equalize the magnitudes at the
current step t, but at t + 1, since that is when the effect of updating ωk will take effect. Therefore,
the extra information that the leader possesses is that the follower updates its parameters in a smooth
way and the gradient magnitude between consecutive steps are similar.

This is, to the best of our knowledge, the first time GradNorm has been interpreted as a (stochastic)
gradient-based Stackelberg game. The main advantage of this point of view is that, based on the
results presented by Fiez et al. (2019), we can provide theoretical guarantees regarding the con-
vergence of the learning dynamics between the leader (GradNorm) and the follower (network’s
optimizer). Specifically, adapted from Fiez et al. (2019):

Proposition 3.1. Suppose a finite-time (stochastic) gradient-based Stackelberg where the learning
rate of the leader tends to zero on a faster timescale than the follower, that is, αl(t) = o(αf (t)).
Then, the game will with high probability converge to a neighborhood of a stable differential Stack-
elberg equilibrium.

This previous statement means—in terms of the training dynamics of the network—that, as long
as the leader is the slow learner, the parameters of the leader will stabilize at some point and the
network parameters will end up in local optimum. In other words, the training will be stable.

4 ROTOGRAD

4.1 Z AS THE CRITICAL SPACE

As an additional remark to Section 3, we believe that it is worth noting that GradNorm is applied
to only a subset of the network parameters W ⊂ θ for efficiency reasons. The selection of such
subset is left to the practitioner and, to the best of our knowledge, there exists no intuition regarding
which parts of the backbone are preferred to be selected as W . In this work, we propose to apply
GradNorm on the last shared representation of the network, which as shown in Figure 1c, we refer
to as Z. In other words, we assume that W = Z.

Since the size of Z tends to be orders of magnitude smaller than the total number of shared pa-
rameters θ, that is, B × d << |θ|, this choice saves on computation. Moreover, we argue that this
selection is the most logical one since the intermediate representation Z is the last shared represen-
tation across all tasks, as shown in Figure 1c. In order to further motivate this selection of W we
provide and proof a proposition in Appendix A.1 stating that, under the assumption that ∇θZ has
linearly independent columns (which is mild since θ >> d), the magnitude of the gradient with
respect to the (arbitrarily many) shared parameters θ is bounded on both sides, which is in stark
contrast with the lack of guarantees when W is selected as a (strict) subset of θ.
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Figure 2: Extended hard parameter sharing model with task-specific representations.

4.2 ROTOGRAD: A BETTER LEADER

In Section 3 we saw that GradNorm’s objective is to equalize the gradient magnitude so that, in the
next step, the shared parameters are updated according to the necessities of all the tasks. GradNorm
does not address the conflicting gradients problem (Figure 1b) in the total gradient computation
(Equation 1), which can be as detrimental as the one of magnitude disparity (Figure 1a). Fortunately,
the reinterpretation of GradNorm as a Stackelberg game presented in Section 2.2 allow us to easily
fix this problem. More specifically, we introduce a new leader that aims to homogenize both the
gradient magnitudes and directions for all tasks. We refer to the resulting algorithm as Rotograd.

Rotograd extends GradNorm by additionally expanding the model’s architecture as shown in Fig-
ure 2. As before, Z ∈ RB×d represents the shared intermediate representation, and now Zk ∈
RB×d denotes task-specific intermediate representations of Z, one per task. This new space Zk is a
shifted-and-rotated version of Z, such that the i-th instance of Z is transformed as zki = Rkzi+dk,
where Rk ∈ SO(d) is a rotation matrix and dk ∈ Rd a translation vector.

For the k-th task at step t, Rotograd optimizes the weights ωk as GradNorm, and finds the rigid
motion that minimizes the distance between the the next set of shared points {zt+1

i }Bi=1 to the next
set of points we would have reached if only that task were being trained {zk,t+1

i }Bi=1. Note that
the additional knowledge of the leader plays a role, as it knows the next evaluation points given
the current ones, concept that we represent using two oracle functions1 O(zti) and Ok(zk,ti ) for the
multi-task and single-task next points, respectively.

This new objective function can be mathematically expressed as

Lkrot(Rk,dk, θ) :=
1

B

B∑
i=1

||RkO(zti) + dk −Ok(zk,ti )||
2

2, (5)

resulting in the Stackelberg game:

Leader: minimize
{ωk,Rk,dk}k

∑
k

[
Lkrot(Rk,dk, θ) + Lkgrad(ωk, θ)

]
,

Follower: minimize
θ

∑
k

ωkLk(θ).
(6)

4.3 SOLVING THE NEW OBJECTIVE FUNCTION

At first glance solving the newly-formulated problem Lrot seems quite challenging: we cannot write
down the oracle functions, and it is a constrained optimization problem since Rk is an orthogonal
matrix. In this section we show how to approximately solve this problem in closed form.

Recall that, at the current step t, we can obtain any current intermediate point in the shared space
as zti = hθt(x

t
i), and its task-specific equivalent as zk,ti = Rtkz

t
i + dtk. To simplify notation, let

us denote the gradient of the k-th task with respect to zk at step t by gk,ti := ∇zk`k(zk,ti ), and the
gradient of the weighted loss with respect to z at step t by gti := ∇z`(zi) =

∑
k ωkR

>
k g

k,t
i .

As mentioned before, we cannot in general write the oracle functions in closed form. However,
since we assume that the network parameters are optimized using a first-order optimization method,
we can approximate the oracle functions by assuming that the next point will follow the gradient

1These could be simulated by training the model with all and a single task at each step, respectively.
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direction, that is, we can approximate the oracles as

O(zti) ≈ zti − βgti , and Ok(zk,ti ) ≈ zk,ti − βg
k,t
i , (7)

where we treat the step-size β as an unknown variable.

By plugging this approximation to the oracles into the loss function in Equation 5 and using the law
of cosines we can approximately solve minRk,dk

Lkrot(Rk,dk, θ) by solving instead

min
Rk∈O(d)

1

B

B∑
i=1

||Rkgti − g
k,t
i ||

2

2 and min
dk∈Rd

1

B

B∑
i=1

||Rkzti + dk − zk,ti ||
2

2, (8)

which are two least-square problems with closed form solutionsR∗k and d∗k. Details in Appendix A.2.

Note that the first problem in Equation 8 looks for the orthogonal matrix that minimizes the gradient
conflict between the weighted gradients gti and the gradients of the k-th task gk,ti , which was our
main objective for this extension. The second problem looks for the best way of translating the
current points in the common space zti to the current points that were plugged into the task-specific
module for the k-th task zk,ti .

Similarly to what we did in Section 3 we can apply again Proposition 3.1, thus providing theoretical
guarantees on the stable behaviour of the algorithm as long as Rotograd has a stronger learning rate
decay than the network’s optimizer. In order for this to hold, we should adopt a gradient-descent ap-
proach and, since we have an approximation to the solution of the problem, we set the gradient of our
parameters to the difference between our solution and its current value. For example, in the case of
applying SGD to the parameterRk, the update rule would be of the formRt+1

k = Rtk − α(Rtk −R∗k)

where, afterwards, we should make sure that Rt+1
k is a rotation matrix.

An overview of the proposed Rotograd algorithm can be found in Algorithm 1.

Algorithm 1 Forward and update methods for the k-task using Rotograd.

1: procedure FORWARD K(zti )
2: return Rkzti + dk . Transform to task-specific space Zk
3: end procedure
4:
5: procedure UPDATE LOSS ROT K({zti , gti , z

k,t
i , gk,ti }i)

6: R∗k ← argminRk

1
B

∑B
i=1 ||Rkgti − g

k,t
i ||

2

2 . Solve conflicting gradient problem

7: d∗k ← argmindk

1
B

∑B
i=1 ||Rkzti + dk − zk,ti ||

2

2 . Solve translation problem
8:
9: dt+1

k ← dtk − α(dtk − d∗k) . Update rule for dk
10: Rt+1

k ← Rtk − α(Rtk −R∗k) . Update rule for Rk
11:
12: U, S, V > ← SVD(Rt+1

k )

13: Rt+1
k ← UV > . Ensure that Rt+1

k is a rotation
14: end procedure

5 EXPERIMENTS

5.1 QUALITATIVE RESULTS

In order to get a better understanding of Rotograd, we provide two simple synthetic examples that
show both, its effect on the shared intermediate space Z, and its effect on the final predictions.

First, we consider two different settings where we use a two-layer feed-forward NN with 10 hidden
units to solve two regression tasks. The first setting problem, illustrated in Figure 3a, shows an
example where not correcting for conflicting gradients may completely prevent from learning (i.e.,
none of the tasks is optimized), while Rotograd converges to the global optima of both tasks. The
second setting in Figure 3b shows that, due to differences in the gradient magnitudes, only one of
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(a) Regression example 1. (b) Regression example 2. (c) Classification example.

Figure 3: Figures (a) and (b) show the trajectories followed when using Rotograd in the spaces
Z1 (blue) and Z2 (brown), versus not using it (red). Circular markers mean the final point of the
trajectory, whereas the triangle and star mark the global optimum of each task. Figure (c) shows the
deep logistic regression classifier learned using Rotograd to predict a binary label and its (Correct)
and its negated (Wrong).

the tasks is learned when Rotograd is not applied. It is worth-mentioning as well that Rotograd is
still subject to the nature of stochastic optimization, and thus being subject to fall into local optima,
as shown in Figure 3b.

As an extreme example, we consider two classification tasks, which aim to predict opposite labels.
As before, we use a feed-forward backbone without task-specific networks, and a logistic output
for each task. In this case, the two tasks, and therefore their gradients with respect to the network
parameter, are in conflict. Thus, without additional model flexibility (i.e., without our rotation layer)
the network cannot learn any of the tasks. In contrast, Rotograd is able to rotate the space and learn
that one function is the opposite of the other, learning an accurate classifier, as shown in Figure 3c.

5.2 QUANTITATIVE RESULTS

Dataset and tasks. Similar to Sener & Koltun (2018), we employ as dataset a multitask version of
MNIST (LeCun et al., 1998) that has been expanded to contain instead two digits, one in each side
of the picture. Regarding the tasks, we learn five different tasks: i) classify the left-side digit; ii)
classify the right-side digit; iii) predict the sum of the two digits; iv) predict their product; and v)
predict the number of pixels that are activated in the picture. The idea behind these tasks is no other
than having a set of tasks that are correlated, highly correlated, and uncorrelated.

Architecture. We use as backbone a modified version of LeNet (LeCun et al., 1998) where the
number of parameters has been greatly reduced in order to not have enough parameters to learn all
the tasks perfectly, and thus, try to force them to collaborate in order to improve their results. The
size of Z is d = 25. For the task-specific parts we make use of a single layer per task, followed by a
sigmoid activation function in the case of solving a classification problem. Regarding loss functions,
we use mean-squared error for the regression tasks and negative log-likelihood for the classification
ones. Furthermore, we divide all losses by their loss at the initial step to normalize them.

Training. We train all models for 150 epochs using a batch size of 1024 and Adam (Kingma & Ba,
2014) as optimizer. All experiments are averaged over ten different runs. The learning rate of the
network parameters are is set to 0.001 and the rest of hyperparameters are selected via grid search.

Metrics. We employ the mean-squared error for regression tasks and accuracy for classification
tasks. Besides, as in Vandenhende et al. (2019), we include an additional metric that summarizes
the overall performance of the multitask network:

∆m =
1

K

K∑
k=1

(−1)lk
Mm,k −Ms,k

Ms,k
, (9)
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Exp. decay Left ↑ Right ↑ Sum ↓ Multiply ↓ Density ↓ ∆m ↑
0.9 89.46± 00.57 85.90± 00.65 4.64± 0.25 133.97± 7.20 0.26± 0.06 0.18± 0.06
0.99 88.99± 00.81 84.92± 00.97 4.58± 0.16 135.19± 4.35 0.24± 0.05 0.18± 0.06
0.999 85.51± 01.55 80.09± 01.86 4.79± 0.18 142.07± 3.86 0.24± 0.08 0.15± 0.06
0.9999 84.56± 01.65 79.46± 01.80 4.81± 0.23 142.64± 4.07 0.24± 0.06 0.15± 0.06
1.0 83.55± 01.69 79.31± 02.43 4.88± 0.20 143.41± 3.17 0.25± 0.13 0.13± 0.09

Rt+1
k = R∗k 64.73± 04.83 58.55± 05.94 6.11± 0.26 193.93± 9.53 0.89± 0.21 −0.23± 0.21

Table 1: Task performance on MNIST for different leader’s learning speeds. Note that multitask
performance gradually worsens as the leader learns faster, being the case where no iterative updates
are performed clearly unstable.

LeNet Method Left ↑ Right ↑ Sum ↓ Multiply ↓ Density ↓ ∆m ↑

original uniform 96.40± 00.17 94.99± 00.16 1.74± 0.39 38.07± 1.21 0.28± 0.07 0.13± 0.20
rotograd 96.45± 00.14 94.89± 00.16 1.67± 0.33 38.70± 1.89 0.27± 0.08 0.15± 0.18

reduced uniform 90.15± 00.53 86.65± 00.41 5.14± 0.33 149.21± 5.97 0.51± 0.02 0.06± 0.11
rotograd 89.01± 00.87 84.62± 01.19 4.54± 0.19 134.95± 5.92 0.23± 0.04 0.18± 0.06

Table 2: Task performance on MNIST for Rotograd and a baseline method using the same architec-
ture with different number of parameters. As observed, the effect of negative transfer diminishes as
the model capacity increases.

where Mm,k and Ms,k are the performance on the k-task for the multitask and single task networks,
respectively, and lk is 1 if a lower value means better performance and 0 otherwise. This metric
simply represents the average performance gained per task.

5.2.1 ABLATION STUDY

In order to better understand different aspects of the proposed algorithm, we perform a simple abla-
tion study where only the quantities of interest are modified.

Slow-learner leader. To understand the negative effect that having a fast-learner leader can have
in the results, we set the initial learning rate of the leader to 0.02 and, at each iteration, exponential
decay is applied to it, being the decay rate the quantity that changes across experiments. Moreover,
and as an extreme case, we consider the case where the parameters of Rotograd are directly set to
their approximated closed-form solutions2 (Rt+1

k = R∗k), which would further justify the use of
iterative updates as introduced in Section 4.3.

Table 1 show the task performance for different types of learning speeds. Results show that there
is a clear trend relating the multitask performance and the decay rate applied to the leader. As this
value gets closer and closer to one, the leader becomes effectively a faster learner than the follower,
and instabilities in the training process (which is easily observed in the classification tasks’ variance)
result in worst performance. As seen in the last row of Table 1 (and in Appendix A.3), when iterative
updates are omitted the training becomes extremely unstable.

Model capacity. As the number of shared parameters increases, it is sensible to think that the model
will have a better time solving the same set of tasks, as it has more capacity to store the same
information and shared parameters are more likely not to be shared. Therefore, we expect the effect
of negative transfer to be less noticeable on bigger models. To verify this, we run Rotograd as well as
a baseline method where uniform weights on two different architectures: the original LeNet (LeCun
et al., 1998); and the reduced version mentioned at the beginning of the section. Results shown in
Table 2 confirm this intuition since results on the original architecture are statistically identical for
both methods, yet in the reduced version negative transfer has more impact and Rotograd is able to
alleviate its effect.

2Note that this is equivalent to using SGD as optimizer and setting the learning rate to one.
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Method Left ↑ Right ↑ Sum ↓ Multiply ↓ Density ↓ ∆m ↑
single task 93.50± 00.47 90.65± 00.46 6.44± 4.63 159.08± 6.16 1.62± 1.78 -
uniform 90.15± 00.53 86.65± 00.41 5.14± 0.33 149.21± 5.97 0.51± 0.02 0.06± 0.11

rotograd 89.01± 00.87 84.62± 01.19 4.54± 0.19 134.95± 5.92 0.23± 0.04 0.18± 0.06
rotograd-sgd 87.30± 00.36 83.48± 00.69 5.08± 0.31 161.86± 8.71 0.30± 0.09 0.12± 0.04
gradnorm Z 89.15± 00.58 85.32± 00.72 5.07± 0.30 144.91± 8.51 0.31± 0.07 0.14± 0.05
gradnorm W 89.60± 00.52 85.72± 00.70 5.13± 0.24 151.58± 8.01 0.44± 0.28 0.13± 0.05
d-grad 88.71± 00.69 84.96± 00.96 4.93± 0.38 144.54± 9.88 0.60± 0.54 0.08± 0.16
adversarial 89.37± 00.60 85.58± 00.53 5.60± 0.45 160.00± 6.98 1.65± 1.06 −0.25± 0.43

Table 3: Test results on the MNIST dataset for different methods. The arrow on the each column’s
title describes whether higher is better or the other opposite.

5.2.2 COMPARING DIFFERENT METHODS

We consider two different baselines: single task, which learns each of the tasks independently (and
which will be also used to compute ∆m); and uniform, which simply assumes uniform weights and
there is no leader involved. Besides, we consider two different versions of GradNorm and Rotograd.
First, to understand the effect of using W = Z instead of a subset of θ, we include these two
methods: gradnorm Z and gradnorm W , respectively. Second, to understand the effect of using
Rtk −R∗k as update direction instead of the usual gradient, we compare the proposed Rotograd with
rotograd-sgd, a variation that also optimizes Equation 8 but relying on automatic differentiation
to compute the update direction. Finally, we compare with two different methods: adversarial
(Maninis et al., 2019), which uses adversarial training to correct the gradient directions and a two-
layer feed-forward neural network as discriminator; and d-grad, an adaption of the method proposed
by Yu et al. for hard-parameter sharing that simply adds a learnable affine transformation per task
before each task-specific module.

Figure 3 summarizes the results obtained. We observe how Rotograd outperforms the rest of meth-
ods with regards to the overall improvement performance ∆m. Rotograd is able to drastically in-
crease the performance on the regression tasks with just a slight trade-off on the classification ones.
Not only we can say that there is an improvement, but also that approximately solving the problem
in Equation 13 in closed-form is important for it, as rotograd-sgd is far from Rotograd’s results.
When it comes to GradNorm, Table 3 shows that there is no disadvantage on applying the algorithm
to Z, thus removing the selection of the hyperparameter W . In Appendix A.3 and A.4 we show
further results regarding the metrics and cosine similarity evolution during traning, as well as some
preliminary results on a larger dataset such as ChestX-ray14 (Rajpurkar et al., 2017).

Finally, it is worth mentioning that d-grad, and adversarial perform considerably worse. Our in-
tuition for these results are that: i) d-grad adds more parameters to each task-specific modules,
but since the per-task capacity is not the problem, it does not result into much of an improvement;
and ii) adversarial suffers from training instability, as it is common with other adversarial train-
ing techniques such as Generative Adversarial Networks (Arjovsky & Bottou, 2017). Additional
experiments on the ChestX-ray14 dataset are included in Appendix A.4, where we observed simi-
lar patterns in the results for the different methods, being the results of GradNorms and Rotograd
comparable, as it seems that such dataset does not suffer from the conflicting gradient problem.

6 CONCLUSIONS

In this work, we have proposed a novel learning algorithm for multitask learning, Rotograd, which
aims to minimize negative transfer among tasks by homogenizing the gradient magnitudes and di-
rections across tasks. Our starting point here has been GradNorm, which we have reinterpreted as
a Stackelberg game where GradNorm act as the leader and the network optimizer as the follower.
With this novel interpretation, we have proposed Rotograd, and derived stability and convergence
guarantees for both Rotograd and GradNorm.

As future work, we plan to extend Rotograd to related scenarios, such as soft parameter sharing
networks and meta-learning, which could gratefully benefit from using our algorithm. We also leave
for future research trying Rotograd in heavier experiments that are affected by negative transfer, as
it could happen in the field of computer vision.
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A APPENDIX

A.1 BOUNDING THE MAGNITUDE GRADIENT W.R.T THE SHARED PARAMETERS

Proposition A.1. If for every task ||ωk∇ZLk(t)||2 = C, where C is a constant value, and the rank
of∇θZ is d, then:

C

||(∇θZ)+||2
≤ ||ωk∇θLk(t)||2 ≤ ||∇θZ||2 · C for all k = 1, 2, . . . ,K, (10)

where (∇θZ)+ is the left inverse of∇θZ, that is, (∇θZ)+∇θZ = Id.

Proof. First, we prove the upper bound, which is a direct consequence of the chain rule and the
submultiplicative property of the 2-norm:

||ωk∇θLk(t)||2 = ||ωk∇θZ∇ZLk(t)||2 ≤ ||∇θZ||2 · C. (11)

To obtain the lower bound we use the reasoning as before, now with the addition that, as
rank(∇θZ) = d, the left inverse matrix (∇θZ)+ exists:

||ωk∇ZLk(t)||2 = ||ωk(∇θZ)+∇θZ∇ZLk(t)||2
≤ ||(∇θZ)+||2||ωk∇θZ∇ZLk(t)||2
= ||(∇θZ)+||2||ωk∇θLk(t)||2,

which implies that
C

||(∇θZ)+||2
≤ ||ωk∇θLk(t)||2. (12)

Q.E.D.

A.2 APPROXIMATION OF ROTOGRAD’S LOSS

In Section 4.2, we had the optimization problem

Lkrot(Rk,dk, θ) :=
1

B

B∑
i=1

||RkO(zti) + dk −Ok(zk,ti )||
2

2, (13)

and claim that, by plugging in the approximation to the oracles

O(zti) ≈ zti − βgti , and Ok(zk,ti ) ≈ zk,ti − βg
k,t
i , (14)

we could get a closed form approximation for the solution of the problem in Equation 13. Here we
are going to derive this approximation. First, by plugging 14 into 13 we can split the latter into three
different problems:

Lkrot(Rk,dk, θ) =
1

B

B∑
i=1

||RkO(zti) + dk −Ok(zk,ti )||
2

2

=
1

B

B∑
i=1

||Rk(zti − βgti) + dk − (zk,ti − βg
k,t
i )||

2

2

=
1

B

B∑
i=1

||(Rkzti + dk − zk,ti ) + β(gk,ti −Rkg
t
i)||

2

2

=
1

B

B∑
i=1

||Rkzti + dk − zk,ti ||
2

2 (15)

+ β2 1

B

B∑
i=1

||gk,ti −Rkg
t
i ||

2

2 (16)

+ 2β
1

B

B∑
i=1

〈Rkzti + dk − zk,ti , gk,ti −Rkg
t
i〉. (17)
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Note that Equation 16 only depends on the rotation matrix Rk and it is a least-square problem, for
which there is closed form solution. In particular, it can be shown that the solution for Equation 16
is R∗k = UV >, where U and V are the two orthogonal matrices obtained in the Singular Value
Decomposition of the d× d matrix obtained of multiplying the task-specific gradients gk,ti with the
target ones gti , that is, [gt1g

t
2 . . . g

t
B ]× [gk,t1 gk,t2 . . . gk,tB ]> = UΣV >. Note that in order to ensure that

the matrix is a rotation, we should make sure that its determinant is one.

Similarly, it is straight-forward to show that the solution of the least-square problem for the transla-
tion dk with respect to Equation 15 is given by d∗k = z̃k,t−Rkz̃t, where z̃k,t and z̃t are the averages
over the batch of zk,ti and zti , respectively. So, instead of having in Rotograd d∗k as our translation
parameter, we can have two parameters zk and z, that we update using the gradient update zk− z̃k,t

and z− z̃t, respectively, and use the transformation zki = Rk(zi−z) +zk when doing the forward
pass.

Finally, note that we can afford to ignore the error term from Equation 17 as long as our solutions
in Equation 16 and 15 are good enough. The reason is that this term is nothing more but the scalar
product between the residuals of the two previous problems. The error on this term will never be
bigger than the maximum error committed in the other two problems.

A.3 FURTHER EXPERIMENTAL RESULTS

In this section we present two additional plots regarding the experiments with MNIST. Specifically,
Figure 4a shows the validation metrics during training for one run of Rotograd and uniform, showing
how Rotograd outperforms the rest of the tasks in the regression metrics (being more stable in
the density task), while having almost the same accuracy of the classification tasks (limited to the
model capacity). More importantly, Figure 4b shows the cosine similarity between the task gradient
∇z`k(z) and the averaged gradient ∇z`(z) (taking the median of the population), that is, how
similar is the direction these two gradients point towards. This value is between −1 and 1, being
−1 that they point to opposite directions, 0 that they are orthogonal (which is the most often case in
high dimensional spaces), and 1 that they are pointing to the same direction.

Figure 4b clearly showcases the effectiveness of Rotograd in regards of homogenizing the direction
of the task gradients while providing a stable training. While keeping almost the same cosine
similarity on the classification tasks, Rotograd highly increases the cosine similarity of the regression
ones, being worth mentioning the case of the density task, which is pretty much orthogonal (i.e.,
unrelated) to the rest of tasks, achieving a cosine similarity of almost 0.5 when Rotograd is applied.
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(a) Metrics over the validation set.

(b) Cosine similarity during training.

Figure 4: Tensorboard plots with the results of one run on the MNIST experiments during training
for uniform, gradnorm W , gradnorm Z, rotograd-sgd, and rotograd. Figure (a) shows the validation
metrics, where rotograd outperforms in the regression tasks. Figure (b) shows the (median) cosine
similarity between the task gradient ∇z`k(z) and the averaged gradient ∇z`(z), clearly showing
how rotograd reduces the direction conflict among task gradients.

A.4 CHEST

In Table 4 we show the results obtained in a similar manner as in the MNIST case. We use the
same model and dataset as in Rajpurkar et al. (2017), using a single linear layer for the task-specific
modules, and we train using only a 20 % of the data.
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Measure single task uniform rotograd rotograd-sgd gradnorm Z gradnorm W d-grad

atelectasis 74.58± 0.91 77.25± 0.77 77.61± 1.06 68.98± 1.87 78.28± 0.61 77.85± 0.63 72.05± 1.32
cardiomegaly 62.74± 5.23 83.00± 3.51 84.43± 1.85 62.70± 1.54 85.77± 0.51 85.00± 1.67 71.47± 4.20
effusion 84.92± 0.72 85.57± 0.29 85.88± 0.48 77.14± 1.19 85.82± 0.40 85.56± 0.64 79.07± 1.30
infiltration 63.89± 1.35 67.65± 0.39 67.96± 0.33 63.12± 0.68 67.62± 0.39 67.31± 0.49 64.35± 0.72
mass 52.43± 1.30 76.88± 1.19 77.50± 0.84 60.89± 1.51 77.73± 1.44 78.30± 1.61 63.09± 1.67
nodule 53.37± 2.10 70.03± 1.34 70.50± 0.70 56.22± 0.98 70.33± 1.75 70.76± 1.33 58.70± 1.01
pneumonia 56.47± 2.78 70.85± 1.89 72.10± 1.13 63.11± 1.75 71.35± 1.00 71.74± 1.29 66.14± 1.67
pneumothorax 67.08± 1.90 76.18± 2.33 78.73± 1.08 64.06± 2.54 77.19± 1.90 77.52± 2.55 69.41± 1.92
consolidation 70.14± 2.28 78.28± 0.53 78.38± 0.55 74.57± 0.48 78.12± 0.81 77.01± 1.27 75.47± 0.61
edema 82.35± 0.91 86.25± 0.46 86.33± 0.41 79.16± 1.17 86.64± 0.61 86.19± 0.66 83.09± 0.94
emphysema 49.35± 1.69 78.57± 2.95 80.48± 1.96 59.61± 2.18 81.80± 1.57 82.22± 1.38 65.55± 1.56
fibrosis 64.69± 2.06 76.47± 1.12 77.63± 1.71 65.10± 2.40 78.07± 1.36 77.69± 1.44 69.34± 0.55
pleural thick. 55.02± 1.36 72.65± 0.86 72.34± 0.97 62.79± 0.99 71.16± 2.55 72.38± 1.14 64.59± 1.06
hernia 68.58± 6.36 83.50± 4.29 85.09± 2.99 62.53± 7.81 88.87± 1.93 89.23± 1.84 70.23± 14.97
∆m - 22.15± 1.37 22.30± 1.40 3.75± 1.17 19.90± 3.18 24.02± 1.28 9.30± 2.43

Table 4: Task performance results on the ChestX-ray14 dataset for different methods. All tasks are
classification tasks.
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