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Abstract— In this study, we introduce a novel visual imitation
network with a spatial attention module for robotic assisted
feeding (RAF). The goal is to acquire (i.e., scoop) food items
from a bowl. However, achieving robust and adaptive food
manipulation is particularly challenging. To deal with this, we
propose a framework that integrates visual perception with im-
itation learning to enable the robot to handle diverse scenarios
during scooping. Our approach, named AVIL (adaptive visual
imitation learning), exhibits adaptability and robustness across
different bowl configurations in terms of material, size, and
position, as well as diverse food types including granular, semi-
solid, and liquid, even in the presence of distractors. We validate
the effectiveness of our approach by conducting experiments on
a real robot. We also compare its performance with a baseline.
The results demonstrate improvement over the baseline across
all scenarios, with an enhancement of up to 2.5 times in terms
of a success metric. Notably, our model, trained solely on data
from a transparent glass bowl containing granular cereals,
showcases generalization ability when tested zero-shot on other
bowl configurations with different types of food.

I. INTRODUCTION

Inspired by human eating behavior, we pose a question:
Can robots learn to acquire food of various types from human
demonstrations for assisted feeding? In this study, we focus
on spoon scooping, an essential aspect of RAF. Bhaskar et
al. [1] also explored spoon scooping with a different goal
of clearing the bowl. Here we aim to address the above
question and effectively scoop food from a bowl. Toward this
objective, we developed a novel visual imitation network to
achieve adaptive scooping across varied bowl configurations
and food types. The network incorporates a spatial attention
module, illustrated in Figure 2, which dynamically assigns
weights to different spatial locations in the input image,
enabling the network to only focus on the area of interest.
We name our approach AVIL, which stands for Adaptive
Visual Imitation Learning.

To validate our approach, we tested it on a real robot
and compared its performance with a baseline represented
by a handcrafted scooping motion. The results demonstrate
that our model outperforms the baseline across all varied
bowl configurations and food types. Notably, we trained the
model solely with data collected from granular cereals in
a transparent glass bowl. Despite this, the model exhibited
effectiveness when tested zero-shot with plastic bowls of
different sizes, as well as with other food types such as
semi-solid jelly and liquid water. Moreover, we assessed the
model’s robustness by subjecting it to tests with distractors
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Fig. 1: Learning pipeline diagram of our approach (AVIL)
for spoon scooping in RAF.

on the table. Even in the presence of distractors, the model
maintained its performance, showcasing its robustness and
resilience.

II. APPROACH

Employing visual imitation learning, we build a robust
framework that integrates imitation learning to directly map
input observations, including RGB images and robot pro-
prioception (joint positions), to corresponding robot control
actions. The learned policy is adaptive to variations in bowl
position, size, material, and food types. Figure 1 illustrates
our learning pipeline. This process involves collecting human
expert demonstrations, training the model using our visual
imitation network, and then deploying the learned policy on
a real robot.

A. Preliminaries

1) Observation and Action Space: In our visuomotor
policy learning system of spoon scooping for RAF, the input
observation space Ot = (It, pt), where It ∈ R3×H×W

represents the RGB images captured from a static environ-
ment camera, and pt ∈ R6 denotes the robot proprioception,
representing the 6D joint positions. The state st−k:t =
(It, pt−k+1, pt−k+2, . . . , pt) involves the RGB image of the
current timestep t and a sequence of last k steps of joint
positions. The action at:t+m = (pt+1, pt+2, . . . , pt+m) ∈
Rm×6 involves the predicted joint positions for the next m
steps.

2) Visuomotor Policy Learning: We formulate the policy
learning problem as a supervised learning task with behavior
cloning, aiming to learn a parameterized policy πθ with the
following objective function:

θ = argmin
θ

E(st−k:t,a∗
t:t+m)∼D[L(πθ(st−k:t), a

∗
t:t+m)], (1)



Fig. 2: Proposed visual imitation network.

where θ is the parameters of the policy, πθ(st−k:t) is the
predicted actions for the state st−k:t, and a∗t:t+m is the expert
action. L is the mean squared error loss.

To initiate the visuomotor policy learning process, we
first collect a set of demonstrations as the training data.
Our dataset D = {(st−k:t, a

∗
t:t+m)}Ni=1 consists of N robot

trajectories obtained through kinesthetic teaching, where
each trajectory i comprises pairs of states and actions.

After completing the preliminaries and formulating the
visuomotor policy learning problem, we proceed to tackle
the problem and learn the policy using our visual imitation
network.

B. Visual Imitation Policy Network

In this section, we introduce the main component of our
paper, the visual imitation policy network, designed to learn
visuomotor policies for scooping various food items. The
network is crucial for mapping visual observations and robot
proprioception into robot actions. The network’s objective
is to minimize the discrepancy between the predicted robot
actions πθ(·) and the demonstrated actions throughout the
learning process.

To enhance learning from the historical data, our policy
network takes the RGB image of current timestep t and
a sequence of last k steps of robot proprioception (joint
positions), (It, pt−k+1, pt−k+2, . . . , pt), as input. The net-
work’s outputs consist of the predicted joint positions for
the subsequent m steps, at:t+m = πθ(st−k:t), which is a
practical innovation. This approach, unlike solely predicting
a single step in previous work [2], offers the advantage
of mitigating error accumulation over time and providing
a more detailed view on future trajectories. During inference
on a real robot, we adopt the initial step from the predicted m
future steps for execution, drawing inspiration from Model
Predictive Control (MPC). Then we observe and update the
state st−k+1:t+1 = (It+1, pt−k+2, . . . , pt, pt+1).

The architecture of our visual imitation network, outlined
in Figure 2, incorporates several key components: a spatial
attention module, a visual attention embedding module, a
robot proprioception embedding module, and a control action
module. The output layer generates predicted joint positions
for the next m steps, which are subsequently compared with
expert actions during the training process. Notably, our pro-
posed network incorporates a spatial attention module. This
module enables the model to focus on crucial areas within
the image, facilitating improved adaptation for different bowl
configurations and food types for our RAF system.

a) Spatial attention module: This module dynamically
weights different spatial locations in the input image and
allows the robot to selectively attend to specific areas of
interest, such as the food source or the targeted bowl in our
case, contributing to the development of a more refined and
context-aware RAF system.

We depict the architecture of the spatial attention module
in Figure 2. The module comprises four convolution layers
for image feature extraction, each followed by a ReLU
activation [3]. Each layer employs a filter size of 3, stride
1, and padding 1. In this way, we can maintain the spatial
dimensions of the feature map for an input image while
increasing its depth.

Drawing inspiration from the convolutional block attention
module in [4], we apply channel-wise max pooling and
average pooling to the intermediate feature map, resulting
in two one-dimensional feature maps. Then we concatenate
these two feature maps along the channel, and pass through a
convolution layer and a sigmoid layer, we obtain the spatial
attention map. Notably, different from the approach in [4],
we introduce an auxiliary binary cross-entropy loss to guide
the learning of the spatial attention module.

b) Visual attention embedding module: A linear projec-
tion layer that projects the visual attention feature obtained
from the spatial attention module into higher dimensions.



c) Robot proprioception embedding module: A linear
projection layer that projects the robot proprioception (joint
angles) into higher dimensions.

d) Control action module: A Multi-Layer Perceptron
(MLP) with several fully connected layers for mapping
features to robot actions.

As mentioned before, we can decompose our visual imi-
tation network πθ into four modules. Mathematically, πθ =
(f1, f2, f3, f4), where f1 is the spatial attention module with
parameters θ1, f2 is the visual attention embedding module
with parameters θ2, f3 is the robot proprioception embedding
module with parameters θ3, and f4 is the control action
module with parameters θ4.

ht = f1(It; θ1), (2)
vt = f2(ht; θ2), (3)
ut = f3(pt−k+1, pt−k+2, . . . , pt; θ3), (4)

at:t+m = f4(vt, ut; θ4). (5)

For our proposed visual imitation network, given the RGB
image It, it initially undergoes the spatial attention module
f1, producing a one-channel attention map. By performing
an argmax operation on this map, we derive the coordinates
representing the area of interest in the image. A subsequent
averaging operation allows us to determine the 2D visual
attention feature ht = (xt, yt), essentially representing the
centroid of this region. Then we project ht into higher 64
dimensions via the linear embedding f2. Simultaneously, the
last k steps of 6D robot joint positions are also projected
into higher 64 dimensions via the linear embedding f3. By
projecting data into a higher-dimensional space, our model
gains more capacity to represent complex functions. This
increased expressiveness allows the model to capture non-
linear relationships that might not be discernible in lower di-
mensions. We concatenate the resulting visual feature vector
vt and embedded robot proprioception vector ut and proceed
through the control action module f4, ultimately produce the
robot actions at:t+m.

Fig. 3: Qualitative results of images with various bowl
configurations, positions, food types, and with distractors
on the table along with their corresponding spatial attention
maps.

We present some qualitative results that highlight the
effectiveness of our spatial attention module and its robust-
ness against distractors after training. For training details,
refer to [5]. We display images depicting various bowl
configurations, positions, and food types along with their
corresponding spatial attention maps in Figure 3. Specifi-
cally, we show a transparent glass bowl containing cereals,

followed by its contents shifting to water at a different
position. Subsequently, we depict a plastic bowl containing
jelly. Additionally, we introduce distractor items such as
a water bottle, an apple, a jelly jar, and a knife onto the
table to simulate a realistic kitchen environment. The spatial
attention module effectively focuses on the bowl area, as
evidenced by the corresponding attention map. This allows
the visual imitation network to accurately scoop the desired
food despite the presence of distractors. Notably, our spatial
attention module is much smaller, requires less computation,
and is faster to train compared to pretrained object detectors
like RetinaNet [6], Yolo [7], and Mask-RCNN [8], yet
achieves effective performance in extracting visual features
for our RAF application.

III. EXPERIMENTS

After training the visual imitation network, we test it on a
real robot and compare its performance with a baseline. We
test across varied bowl configurations, positions, and food
types. For the detailed experimental setup, please refer to
[5].

A. Baseline

For the baseline, we first utilize RetinaNet [6] to detect the
bowl given an RGB image. Upon obtaining the bounding
box, we calculate the centroid of the bowl. Subsequently,
we map this position to the robot coordinate and direct the
robot to move to that position with a specific height and
orientation. Then, we adjust the wrist 2 joint of the robot
arm to rotate by −0.6 radians to initiate the scooping action.

During testing on different bowl positions, the baseline
maintains a consistent end-effector height and orientation
to reach the bowl centroid. Additionally, the rotation of
the wrist 2 joint remains fixed at −0.6 radians. We do
not customize different baseline settings for varied bowl
configurations and food types.

B. Experimental Results

For both AVIL and basline, we test across varied bowl
configurations, food types, and different positions. For each
bowl configuration, food type, and position, we conduct
five trials of scooping attempts. We use a success metric
criterion. We assign a numerical value of 1 to successfully
scooping food items from a bowl without spillage. We
consider instances where some spillage occurs as partial
success and assign a numerical value of 0.7. And we assign
a numerical value of 0 to failure cases.

1) AVIL and Baseline Performance Comparison: We
evaluate the performance of our approach AVIL and compare
it with the baseline. To provide comprehensive comparisons,
we average the success metrics over different aspects: when
comparing success metrics across varied bowl configurations,
we average over food types and bowl positions; likewise,
when comparing success metrics across different food types,
we average over bowl configurations and positions; and when
comparing success metrics across bowl positions, we average
over bowl configurations and food types.
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Fig. 4: Experimental results. (a-c) Performance comparison
between AVIL and baseline across varied bowl configura-
tions, food types and bowl positions. We present on the right
side of the dashed red line in (a-b) conditions tested zero-
shot. (d) AVIL performance with and without distractors.
Scene 1 represents without distractors and Scene 2 represents
with distractors.

a) Across varied bowl configurations: In Figure 4a, we
illustrate the comparison results across varied bowl config-
urations, encompassing different bowl materials and sizes.
The results demonstrate that AVIL consistently outperforms
the baseline. Specifically, the success metric is 2.5, 1.8, 2.1,
and 2.2 times higher compared to that of the baseline for TG,
PS, PM, and PL bowls, respectively. The TG bowl achieves
the highest success metric, as we collected the training data
using this bowl. Additionally, among plastic bowls, the PS
bowl has the lowest success metric, likely due to its smaller
size, which increases the likelihood of spillage.

b) Across varied food types: In Figure 4b, we present
the comparison results across varied food types, includ-
ing granular, semi-solid and liquid. Notably, the baseline
struggles particularly with scooping liquid water due to its
inherent property of flowing away. The handcrafted scooping
motion employed by the baseline, involving rotation of the
wrist 2 joint of the robot arm, proves insufficient in handling
this challenge. In contrast, our approach adapts to such
challenges by learning from human demonstrations, enabling
effective scooping even with liquids. For granular and semi-
solid food types, the success metric of AVIL is 1.7 and 1.3
times higher compared to that of the baseline, respectively.

c) Across varied bowl positions: In Figure 4c, we show
the comparison results across varied bowl positions. For a
fair comparison, AVIL and baseline have the same robot
starting configuration for each trail of scooping attempts.
The baseline faces difficulties with position P2, as it only
directs the robot to move to the centroid of the bowl without
planning a path in between. Consequently, the spoon collides

with the bowl and fails to enter it during scooping attempts.
However, our approach overcomes this limitation by learning
from human demonstrations and effectively navigating the
spoon into the bowl. For P1 and P3, the success metric of
AVIL is 1.9 and 1.5 times higher compared to that of the
baseline, respectively.

2) Zero-shot Generalization: Our data collection process
exclusively involved the transparent glass bowl containing
granular cereals. However, during testing, we evaluated
AVIL on plastic bowls of various sizes and containing dif-
ferent food types such as liquid and semi-solid. Remarkably,
AVIL demonstrates effective performance across these varied
plastic bowls, as depicted in Figure 4a on the right side of
the dashed red line, with higher success metrics compared
to the baseline for PS, PM, and PL bowls.

In Figure 4b, positioned to the right of the dashed red
line, when testing on semi-solid and liquid food types, VILA
also exhibits effective performance. Specifically, the success
metric for semi-solid is higher than that for liquid, which
aligns with the expectation that liquid is more likely to flow
away. Meanwhile, the baseline method proves ineffective for
scooping liquid due to its inadequate motion.

3) Robustness Against Distractors: In the above Figure
3, we demonstrate the effectiveness of our spatial attention
module and its robustness against distractors. Here in Figure
4d, we present a performance comparison of AVIL with and
without distractors. We denote Scene 1 as the condition with-
out distractors and Scene 2 as the condition with distractors.
We conduct tests on VILA using the TG bowl at position P1
with various food types, performing five trials of scooping
attempts for each food type. As depicted in Figure 4d, both
Scene 1 and Scene 2 exhibit identical performance. This
suggests that distractors do not influence the performance of
AVIL, verifying the robustness of AVIL against distractors.

IV. CONCLUSIONS

We introduce a novel visual imitation network with a
spatial attention module for spoon scooping in RAF. Our
approach, named AVIL (adaptive visual imitation learning),
demonstrates adaptability and robustness, effectively han-
dling varied bowl configurations in terms of material, size,
and position, as well as diverse food types including granular,
semi-solid, and liquid, even in the presence of distractors.
This overcomes the drawbacks of previous work with limited
adaptability to different container configurations and food
types. To validate our approach, we conduct comprehensive
experiments on a real robot and compare its performance
with a baseline. The results demonstrate clear improvement
over baseline across all variations, with an enhancement of
up to 2.5 times in terms of a success metric, validating the
efficacy of our model.
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