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ABSTRACT

Learning causal relationships in high-dimensional data (images, videos) is a hard
task, as they are often defined on low-dimensional manifolds and must be ex-
tracted from complex signals dominated by appearance, lighting, textures and also
spurious correlations in the data. We present a method for learning counterfactual
reasoning of physical processes in pixel space, which requires the prediction of
the impact of interventions on initial conditions. Going beyond the identification
of structural relationships, we deal with the challenging problem of forecasting
raw video over long horizons. Our method does not require the knowledge or su-
pervision of any ground truth positions or other object or scene properties. Our
model learns and acts on a suitable hybrid latent representation based on a combi-
nation of dense features, sets of 2D keypoints and an additional latent vector per
keypoint. We show that this better captures the dynamics of physical processes
than purely dense or sparse representations. We introduce a new challenging and
carefully designed counterfactual benchmark for predictions in pixel space and
outperform strong baselines in physics-inspired ML and video prediction.

1 INTRODUCTION

Reasoning on complex, multi-modal and high-dimensional data is a natural ability of humans and
other intelligent agents (Martin-Ordas et al., 2008), and one of the most important and difficult chal-
lenges of AI. While machine learning is well suited for capturing regularities in high-dimensional
signals, in particular by using high-capacity deep networks, some applications also require an ac-
curate modeling of causal relationships. This is particularly relevant in physics, where causation is
considered as a fundamental axiom. In the context of machine learning, correctly capturing or mod-
eling causal relationships can also lead to more robust predictions, in particular better generalization
to out-of-distribution samples, indicating that a model has overcome the exploitation of biases and
shortcuts in the training data. In recent literature on physics-inspired machine learning, causality
has often been forced through the addition of prior knowledge about the physical laws that govern
the studied phenomena, e.g. (Yin et al., 2021). A similar idea lies behind structured causal models,
widely used in the causal inference community, where domain experts model these relationships
directly in a graphical notation. This particular line of work allows to perform predictions beyond
statistical forecasting, for instance by predicting unobserved counterfactuals, the impact of unob-
served interventions (Balke & Pearl, 1994) — “What alternative outcome would have happened, if
the observed event X had been replaced with an event Y (after an intervention)”. Counterfactuals are
interesting, as causality intervenes through the effective modification of an outcome. As an exam-
ple, taken from (Schölkopf et al., 2021), an agent can identify the direction of a causal relationship
between an umbrella and rain from the fact that removing an umbrella will not affect the weather.

We focus on counterfactual reasoning on high-dimensional signals, in particular videos of complex
physical processes. Learning such causal interactions from data is a challenging task, as spurious
correlations are naturally and easily picked up by trained models. Previous work in this direction
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was restricted to discrete outcomes, as inCLEVRER(Yi et al., 2020), or to the prediction of 3D
trajectories, as inCoPhy(Baradel et al., 2020), which also requires supervision of object positions.
In this work, we address the hard problem of predicting the alternative (counterfactual) outcomes
of physical processes in pixel space, i.e. we forecast sequences of 2D projective views of the 3D
scene, requiring the prediction over long horizons (150 frames corresponding to� 6 seconds). We
conjecture that causal relationships can be modeled on a low dimensional manifold of the data,
and propose a suitable latent representation for the causal model, in particular for the estimation of
the confounders and the dynamic model itself. Similar to V-CDN (Kulkarni et al., 2019; Li et al.,
2020), our latent representation is based on the unsupervised discovery of keypoints, complemented
by additional information in our case. Indeed, while keypoint-based representations can easily be
encoded from visual input, as stable mappings from images to points arise naturally, we claim that
they are not the most suitable representation for dynamic models. We identi�ed and addressed
two principal problems: (i) the individual points of a given set are discriminated through their 2D
positions only, therefore shape, geometry and relationships between multiple moving objects need to
be encoded through the relative positions of points to each other, and (ii) the optimal representation
for a physical dynamic model is not necessarily a 2D keypoint space, where the underlying object
dynamics has also been subject to the imaging process (projective geometry).

We propose a new counterfactual model, which learns a sparse representation of visual input in the
form of 2D keypoints coupled with a (small) set of coef�cients per point modeling complementary
shape and appearance information. Confounders (object masses and initial velocities) in the studied
problem are extracted from this representation, and a learned dynamic model forecasts the entire
trajectory of these keypoints from a single (counterfactual) observation. Building on recent work in
data-driven analysis of dynamic systems (Janny et al., 2021; Peralez & Nadri, 2021), the dynamic
model is presented in a higher-dimensional state space, where dynamics are less complex. We
show, that these design choices are key to the performance of our model, and that they signi�cantly
improve the capability to perform long-term predictions. Our proposed model outperforms strong
baselines for physics-informed learning of video prediction.

We introduce a new challenging dataset for this problem, which builds onCoPhy, a recent coun-
terfactual physics benchmark (Baradel et al., 2020). We go beyond the prediction of sequences of
3D positions and propose a counterfactual task for predictions in pixel space after interventions on
initial conditions (displacing, re-orienting or removing objects). In contrast to the literature, our
benchmark also better controls for the identi�ability of causal relationships and counterfactual vari-
ables and provides more accurate physics simulation.

2 RELATED WORK

Counterfactual (CF) reasoning— and learning of causal relationships in ML was made popular
by works of J. Pearl, e.g. (Pearl, 2000), which motivate and introduce mathematical tools detailing
the principles ofdo-calculus, i.e. study of unobserved interventions on data. A more recent survey
links these concepts to the literature in ML (Schölkopf et al., 2021). The last years have seen the
emergence of several benchmarks for CF reasoning in physics. CLEVRER (Yi et al., 2020) is a vi-
sual question answering dataset, where an agent is required to answer a CF question after observing
a video showing 3D objects moving and colliding. Li et al. (2020) introduce a CF benchmark with
two tasks: a scenario where balls interact with each other according to unknown interaction laws
(such as gravity or elasticity), and a scenario where clothes are folded by the wind. The agent needs
to identify CF variables and causal relationships between objects, and to predict future frames. Co-
Phy (Baradel et al., 2020) clearly dissociates the observed experiment from the CF one, and contains
three complex 3D scenarios involving rigid body dynamics. However, the proposed method relies
on the supervision of 3D object positions, while our work does not require any meta data.

Physics-inspired ML — and learning visual dynamics has been dealt early on with recurrent mod-
els (Srivastava et al., 2015; Finn et al., 2016; Lu et al., 2017), or GANs (Vondrick et al., 2016;
Mathieu et al., 2016). Kwon & Park (2019) adopt a Cycle-GAN with two discriminator heads, in
charge of identifying false images and false sequences in order to improve the temporal consistency
of the model in long term prediction. Nonetheless, the integration of causal reasoning and prior
knowledge in these models is not straightforward. Typical work in physics-informed models relies
on disentanglement between physics-informed features and residual features (Villegas et al., 2017a;
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Denton & Birodkar, 2017) and may incorporate additional information based on the available priors
on the scene (Villegas et al., 2017b; Walker et al., 2017). PhyDNet Le Guen & Thome (2020) ex-
plicitly disentangles visual features from dynamical features, which are supposed to follow a PDE.
It achieves SOTA performance on Human3.6M (Ionescu et al., 2014) and Sea Surface Temperature
(de Bezenac et al., 2018), but we show that it fails on our challenging benchmark.

Keypoint detection — is a well researched problem in vision with widely used handcrafted base-
lines (Lowe, 1999). New unsupervised variants emerged recently and have been shown to provide a
suitable object-centric representation, close to attention models, which simplify the use of physical
and/or geometric priors (Locatello et al., 2020; Veerapaneni et al., 2020). They are of interest in
robotics and reinforcement learning, where a physical agent has to interact with objects (Kulkarni
et al., 2019; Manuelli et al., 2020; 2019). KeypointsNet (Suwajanakorn et al., 2018) is a geometric
reasoning framework, which discovers meaningful keypoints in 3D through spatial coherence be-
tween viewpoints. Close to our work, (Minderer et al., 2019) proposes to learn a keypoints-based
stochastic dynamic model. However, the model is not suited for CF reasoning in physics and may
suffer from inconsistency in the prediction of dynamics over long horizons.

3 THE FILTERED -COPHY BENCHMARK

We build onCoPhy(Baradel et al., 2020), retaining its strengths, but explicitly focusing on a coun-
terfactual scenario in pixel space and eliminating the ill-posedness of tasks we identi�ed in the
existing work. Each data sample is called anexperiment, represented as a pair of trajectories: an
observedone with initial conditionX 0 = A and outcomeX t =1 ::T = B (a sequence), and acounter-
factualone �X 0 = C and �X t =1 ::T = D (a sequence). Throughout this paper we will use the letters
A ; B ; C andD to distinguish the different parts of each experiment. The initial conditionsA andC
are linked through ado-operatordo(X 0 = C), which modi�es the initial condition (Pearl, 2018).
Experiments are parameterized by a set of intrinsic physical parametersz which are not observable
from a single initial imageA . We refer to these asconfounders. As in CoPhy, in our benchmark the
do-operator is observed during training, but confounders are not — they have been used to generate
the data, but are not used during training or testing. Following (Pearl, 2018), the counterfactual
task consists in inferring the counterfactual outcomeD given the observed trajectoryAB and the
counterfactual initial stateC, following a three-step process:

À Abduction: use the observed dataAB to compute the counterfactual variables, i.e. physi-
cal parameters, which are not affected by the do-operation.

Á Action: update the causal model; keep the same identi�ed confounders and apply the do-
operator, i.e. replace the initial stateA by C.

Â Prediction : Compute the counterfactual outcomeD using the causal graph.

The benchmark contains three scenarios involving rigid body dynamics.BlocktowerCF studies
stable and unstable 3D cube towers, the confounders are masses.BallsCF focuses on 2D collisions
between moving spheres (confounders are masses and initial velocities).CollisionCF is about
collisions between a sphere and a cylinder (confounders are masses and initial velocities) (Fig. 1).

Unlike CoPhy, our benchmark involves predictions in RGB pixel space only. The do-operation
consists in visually observable interventions onA , such as moving or removing an object. The
confounders cannot be identi�ed from the single-frame observationA , identi�cation requires the
analysis of the entireAB trajectory.

Identi�ability of confounders — For an experiment(AB ; CD ; z) to be well-posed, the con-
foundersz must be retrievable fromAB . For example, since the masses of a stable cube tower
cannot be identi�ed generally in all situations, it can be impossible to predict the counterfactual
outcome of an unstable tower, as collisions are not resolvable without known masses. In contrast
to CoPhy, we ensure that each experiment : (X 0; z) 7! X t =1 ::T , given initial conditionX 0 and
confoundersz, is well posed and satis�es the following constraints:

De�nition 1 (Identi�ability, (Pearl, 2018)) The experiment(AB ; CD ; z) is identi�able if, for any
set of confoundersz0:

 (A ; z) =  (A ; z0) )  (C; z) =  (C; z0): (1)
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(a)BlocktowerCF (BT-CF) (b) CollisionCF (C-CF) (c) BallsCF (B-CF)

Figure 1: The Filtered-CoPhy benchmark suite contains three challenging scenarios involving 2D or
3D rigid body dynamics with complex interactions, including collision and resting contact. Initial
conditionsA are modi�ed toC by an intervention. Initial motion is indicated through arrows.

In an identi�able experiment there is no pair(z; z0) that gives the same trajectoryAB but different
counterfactual outcomesCD . Details on implementation and impact are in appendix A.1.

Figure 2: Impact of temporal fre-
quency on dynamics, 3D trajecto-
ries of each cube are shown. Black
dots are sampled at 5 FPS, col-
ored dots at 25 FPS. Collisions be-
tween the red cube and the ground
are not well described by the black
dots, making it hard to infer physi-
cal laws from regularities in data.

Counterfactuality — We enforce suf�cient dif�culty of the
problem through the meaningfulness of confounders. We re-
move initial situations where the choice of confounder values
has no signi�cant impact on the �nal outcome:

De�nition 2 (Counterfactuality). Letzk be the set of con-
foundersz, where thekth value has been modi�ed. The ex-
periment(AB ; CD ; z) is counterfactual if and only if:

9k :  (C; zk ) 6=  (C; z): (2)

In other words, we impose the existence of an object of the
scene for which the (unobserved) physical properties have a
determining effect on the trajectory. Details on how this con-
straint was enforced are given in appendix A.2.

Temporal resolution — the physical laws we target involve
highly non-linear phenomena, in particular collision and rest-
ing contacts. Collisions are dif�cult to learn because their ac-
tions are both intense, brief, and highly non-linear, depend-
ing on the geometry of the objects in 3D space. The temporal
resolution of physical simulations is of prime importance. A
parallel can be made with Nyquist-Shannon frequency, as a
trajectory sampled with too low frequency cannot be reconstructed with precision. We simulate and
record trajectories at 25 FPS, compared to 5 FPS chosen inCoPhy, justi�ed with two experiments.
Firstly, Fig. 2 shows the trajectories of the center of masses of cubes inBlocktowerCF , colored
dots are shown at 25 FPS and black dots at 5 FPS. We can see that collisions with the ground fall
below the sampling rate of 5 FPS, making it hard to infer physical laws from regularities in data at
this frequency. A second experiment involves learning a prediction model at different frequencies,
con�rming the choice 25 FPS — details are given in appendix A.3.

4 UNSUPERVISED LEARNING OF COUNTERFACTUAL PHYSICS

We introduce a new model for counterfactual learning of physical processes capable of predicting
visual sequencesD in the image space over long horizons. The method does not require any super-
vision other than videos of observed and counterfactual experiences. The code is publicly available
online athttps://filteredcophy.github.io . The model consists of three parts, learning the
latent representation and its (counterfactual) dynamics:

• The encoder (De-Rendering module)learns a hybrid representation of an image in the form of a
(i) dense feature map and (ii) 2D keypoints combined with (iii) a low-dimensional vector of coef-
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