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ABSTRACT

Understanding videos that contain multiple modalities is crucial, especially in
egocentric videos, where combining various sensory inputs significantly improves
tasks like action recognition and moment localization. However, real-world appli-
cations often face challenges with incomplete modalities due to privacy concerns,
efficiency needs, or hardware issues. Current methods, while effective, often ne-
cessitate retraining the model entirely to handle missing modalities, making them
computationally intensive, particularly with large training datasets. In this study, we
propose a novel approach to address this issue at test time without requiring retrain-
ing. We frame the problem as a test-time adaptation task, where the model adjusts
to the available unlabeled data at test time. Our method, MiDl (Mutual information
with self-Distillation), encourages the model to be insensitive to the specific modal-
ity source present during testing by minimizing the mutual information between the
prediction and the available modality. Additionally, we incorporate self-distillation
to maintain the model’s original performance when both modalities are available.
MiDl represents the first self-supervised, online solution for handling missing
modalities exclusively at test time. Through experiments with various pretrained
models and datasets, MiDl demonstrates substantial performance improvement
without the need for retraining. Code is available at this anonymous link.

1 INTRODUCTION

Understanding multimodal data has emerged as a pivotal challenge in various domains, including
foundational model construction (Radford et al., 2021), emotion recognition (Lee et al., 2019), and
analysis of egocentric videos for tasks (Grauman et al., 2023; 2022; Damen et al., 2018) like recog-
nition (Kazakos et al., 2021; Nagrani et al., 2021; Xiao et al., 2020) and localization (Ramazanova
et al., 2023; Wang et al., 2023a). Recent efforts focused on crafting models harnessing data diverse
modalities showing performance gains in multiple tasks Lin et al. (2022). However, a critical limita-
tion arises: these models presuppose complete modality availability at test-time, which diverges from
real-world scenarios where data modalities may be incomplete (Ma et al., 2022; Ramazanova et al.,
2024). For instance, in real-time prediction using wearable devices, portions of recordings might
be redacted to safeguard privacy, or cost constraints may necessitate using cheaper modalities like
audio or IMU (Grauman et al., 2022; 2023). Consequently, models designed under this assumption
demonstrate significant performance degradation in the face of missing modalities, sometimes even
underperforming unimodal counterparts trained with a single modality (Ramazanova et al., 2024).

The challenge of addressing missing modalities gained significant attention from researchers recently,
where various strategies have been proposed to mitigate this issue (Neverova et al., 2015; Ma et al.,
2021; 2022; Ramazanova et al., 2024). Some works have explored architectural modifications to fuse
information from different modalities effectively (Ma et al., 2022). Additionally, other approaches
have focused on designing effective regularizers to boost model performance when confronted with
missing modalities (Colombo et al., 2021). More recently, a promising direction has emerged,
wherein transformer models have been augmented with learnable tokens during training (Lee et al.,
2023; Ramazanova et al., 2024). These tokens serve to compensate for missing information at
test time, significantly enhancing model robustness against missing modality (Ramazanova et al.,
2024). Despite these advancements, a common drawback persists: all existing approaches necessitate
expensive retraining of the multimodal model, rendering pretrained models obsolete. This poses a
substantial challenge, particularly in applications with extensive training data, where the retraining
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Figure 1: Test-Time Adaptation for missing modalities. The concept of test-time adaptation in
the presence of missing data modalities focuses on a system where a stream of multimodal data is
input, potentially lacking one or more modalities. Without adaptation, the pretrained model fθ0 may
predict inaccurate labels due to incomplete data. With test-time adaptation, the model is dynamically
adjusted using the adaptation method g, resulting in an adapted model fθt , designed to handle the
missing modalities and improve over time. The graph on the right illustrates the performance of
the non-adapted baseline (blue) vs. the model adapted with our proposed adaptation method MiDl
(green) on Epic-Kitchens dataset. It shows the adaptation efficacy in maintaining higher performance
levels despite the variability in modal-completeness, surpassing the unimodal performance (orange)
for all missing rates.

process is prohibitively expensive, making the aforementioned approaches impractical. Consequently,
a fundamental question arises: Can we develop methods to address missing modalities at test time
without imposing retraining requirements?

In this work, we take the initial step of framing the missing modality problem as a test-time adaptation
problem (Wang et al., 2020; Liang et al., 2020; Li et al., 2016). Specifically, we aim to establish a new
approach wherein pretrained models undergo adaptation at test time to optimize their performance
in the presence of missing modalities. Our formulation assumes a scenario where a continuous
stream of unlabeled data is fed into the pretrained model during testing, with some instances missing
certain modalities. The objective is to devise an adaptation algorithm capable of refining the model’s
predictions under missing modality in real-time settings (refer to Figure 1). Based on this formulation,
we first evaluate existing methodologies from the test-time adaptation literature and demonstrate
their limited efficacy in addressing this specific multimodal challenge. Subsequently, we introduce
a novel test-time adaptation technique explicitly tailored to tackle the missing modality problem.
Our method revolves around incentivizing the output of the pretrained model to remain invariant
to the modality source present during testing. To achieve this, we propose minimizing the mutual
information between the model’s output and the modality type of the incoming unlabeled data at test
time in a self-supervised manner. Moreover, to ensure the preservation of model performance under
a complete modality setup, we integrate our approach with a self-distillation mechanism. Notably,
our method termed MiDl (Mutual information with self-Distillation minimization) is theoretically
motivated and agnostic to the choice of pretrained model architecture, the dataset, and the specific
type of missing modality encountered during testing.

We summarize our contributions in three-fold: (1) We redefine the missing modality problem as a
test-time adaptation challenge, pioneering a novel approach where pretrained models are adapted at
test-time to optimize performance in the face of missing modalities. We evaluate the effectiveness
of the current adaptation method under this challenging problem. (2)We introduce MiDl (Mutual
information with self-Distillation minimization), a versatile test-time adaptation method explicitly
designed to address the missing modality problem. MiDl ensures that model outputs remain invariant
to modality sources during testing, enhancing robustness. It is agnostic to factors such as the
pretrained model architecture, training dataset, and the specific type of missing modality, making
it a comprehensive solution for diverse scenarios. When combined with pretrained models, MiDl
achieves significant performance improvements, including a 6% gain on the Epic-Sounds dataset and
an 11% gain on the Epic-Kitchens dataset.

2 RELATED WORK

Missing Modalities in Multimodal Datasets. Several works addressed the problem of missing
modality in the multimodal datasets (Tsai et al., 2018; Ma et al., 2021; Zhao et al., 2021; Neverova
et al., 2015; Ma et al., 2022). Most methods addressing the missing modality problem assume full
access to the source (training) data. Some works are based on the assumption that the training data is
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modal-complete, and the goal is to train a model robust to the missing inputs at test time (Ma et al.,
2021; 2022). For example, Dai et al. (2024) investigate a strategy of randomly dropping video frames
during training to improve the robustness of a multimodal system. Similarly, Lee et al. (2019) propose
a method to train a network capable of generating audio features to handle missing modalities. Wang
et al. (2023b) focus on a multimodal learning approach that models shared and specific features for
classification and segmentation tasks. Other works tackle the modality distillation task, where the
training data is multimodal, but only one modality is used at test time (Radevski et al., 2023; Garcia
et al., 2019). Few works assume the modalities could be missing at train and test times and attempt to
train a robust network (Lee et al., 2023; Ramazanova et al., 2024). In our work, we explore a more
realistic scenario where we might not have access to the training data or network re-training is not
feasible. We formulate this setup as a test-time adaptation problem, where the model is experiencing
a distribution shift caused by the unavailability of some modalities at test time. Further, we propose
the first test-time adaptation algorithm tailored to combat the missing modality challenge at test-time.

Test-Time Adaptation. Test-time Adaptation (TTA) attempts to combat performance gaps that
pretrained models suffer from when exposed to distribution shifts at test-time (Mancini et al., 2018;
Kojima et al., 2022). This is usually attained through modifying the model’s parameters (Liang
et al., 2020) or its input (Gao et al., 2022) by using the incoming unlabeled data at test-time. TTA
methods are practical, as they avoid assumptions on the training phase of a given model (Wang et al.,
2020). The first of these approaches adjusts the statistics of the Batch Normalization (BN) layers (Li
et al., 2016). This was followed by more powerful adaptation methods that involved self-supervised
objective functions such as entropy minimization (Wang et al., 2020; Niu et al., 2022; Niu14 et al.,
2023), information maximization (Liang et al., 2020), and teacher-student approaches (Yuan et al.,
2023). While such TTA methods made significant progress towards combating distribution shifts at
test-time, they solely focused on simple covariate shifts such as changes in weather conditions or
pixel illumination (Hendrycks & Dietterich, 2019). In this work, we extend the problem formulation
of test-time adaptation to a very practical and realistic domain shift: missing modality. In particular,
we adapt the stream setting of online test-time adaptation (Alfarra et al., 2023) to formulate the
missing modality problem along with the corresponding evaluation protocol. Building on this novel
view of the missing modality problem, we analyze the current state-of-the-art TTA methods where we
show their limited impact. Further, we propose a novel TTA method tailored to combat the missing
modality problem.

3 MISSING MODALITY AS TEST-TIME ADAPTATION

In this section, we first formulate the missing modality problem as a test-time adaptation problem 3.1.
We then outline the evaluation protocol of a given adaptation method in Section 3.2.

3.1 PROBLEM FORMULATION

In this work, we focus on the recognition problem. Let fθ : Rd → P(Y) be a classifier that maps a
given input x ∈ Rd into the probability simplex P(Y) over the set of labels Y = {1, 2, . . . ,K}1. In
this work, we assume that an input x is a multimodal input. However, in many realistic applications,
the input provided to the model might have missing modalities, thus containing either audio only,
visual only, or audio-visual information. Let m ∈ {A, V,AV } denote the type of available modality
for a given input x corresponding to audio only, visual only, audio-visual, respectively. For a simple
formulation, we fix the dimensionality of the input x by replacing the missing modality part with
zeros. Further, we assume that fθ is a pretrained multimodal model on a training set D. In this work,
we make no assumptions on fθ (i.e. choice of architecture), the dataset D, nor the training process.

At test time, fθ is presented with a stream of unlabeled data S with possibly missing modalities.
The likelihood with which a certain modality appears in data revealed from S is characterized by
a probability mass function; denoted by PS(M = m). For example, if PS(M = V ) = 0.5 and
PS(M = AV ) = 0.5, then the audio missing rate in the test stream is 50%. In other words, half the
data arrives as video only, without its accompanying audio. Let pm = PS(M = m), then the missing
rate of different modalities can be equivalently characterized with P = {pA, pV , pAV }. Thus, for
a stream with 25% missing video, P = {0.25, 0.0, 0.75} (i.e. the stream will reveal data with 25%

1e.g. the output after a softmax layer.
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probability of having only audio and 75% probability of revealing both modalities). According to this
characterization, one can define the missing rate of at least one modality as 1− pAV with pA being
the rate of missing video and pV being the audio missing rate. Next, we discuss the online evaluation
protocol of fθ under the stream S of unlabeled data.

3.2 EVALUATION PROTOCOL

Given our formulation of missing modality in Section 3.1, we are now ready to outline the evaluation
protocol. Note that an adaptation method is a function g(θ) that sequentially adapts the model’s
parameters θ to enhance the performance under the missing modality setup. Formally and following
the online learning literature (Cai et al., 2021; Ghunaim et al., 2023; Alfarra et al., 2023), we simulate
the interaction between the stream S characterized by P and the TTA method g, at each time step
t ∈ {0, 1, . . . ,∞}, as follows:

1. S reveals a sample/batch xt with its corresponding modality m.
2. fθt generates the prediction ŷt.
3. g adapts the model parameter θt to θt+1.

where fθ0 is the non-adapted pretrained model. That is, for each revealed sample/batch xt, the model
needs to predict its label before receiving the next data point xt+1. The adaptation method g can
exploit the predicted label to improve the model performance on the next revealed samples. The
performance of an adaptation method g is measured in an online manner by comparing the predicted
label ŷt with the ground truth label yt.

4 PROPOSED SOLUTION

This section proposes our novel adaptation strategy to combat missing modalities at test time. Recall
that the adaptation method g has to satisfy the following requirements. Firstly, g has to be fully
self-supervised. The test stream reveals strictly unlabeled data at test time. Secondly, g has to conduct
the adaptation in an online manner. That is, g should adapt on each revealed sample/batch of data xt

since S reveals xt+1 only after the model predicts ŷt (refer to the Evaluation Protocol in Section 3.2).

To formulate our adaptation method, we begin by asking the following question: How should an
optimal fθ behave under missing modality? We believe that a robust model against missing modality
should satisfy two properties. First, the prediction of fθ should be invariant to the modality source m.
Ideally, fθ should output the same prediction under both complete and incomplete modality, hence
satisfying the following equality: (i) fθ(xi;M = A) = fθ(xi;M = V ) = fθ(xi;M = AV )∀i. (ii)
fθ should retain high performance in predicting data with complete modality, which is generally
satisfied for fθ0 . Satisfying both properties will result in a model that is accurate (satisfying (ii)) and
robust against missing modality (satisfying (i)). To construct an adaptation algorithm that satisfies
both properties, we propose to solve the following optimization problem:

θ∗ = argmin
θ

E
x∼S

[MI (fθ(x;m),m) + KL (fθ(x |M = AV )||fθ0(x |M = AV )] (1)

where MI(u, v) is the mutual information between u and v and KL is the KL-Divergence. Note that
if the mutual information between two random variables MI(u, v) = 0, then u and v are independent
of each other. That is, minimizing the first term in the objective function in equation 1 aims to
satisfy property (i). Hence, if MI (fθ∗(x;m),m) = 0, then the output of the adapted classifier
becomes independent from the available modality at test time. Furthermore, to ensure that the adapted
parameters are still performing well upon adaptation, we equip the mutual information minimization
with a self-distillation approach through minimizing KL divergence between the prediction of the
adapted model and the original fθ0 , satisfying property (ii).

Although the objective function in equation 1 is self-supervised, obtaining θ∗ requires accessing
all samples from the stream S to evaluate the expectation Ex∼S , which is not available at test
time in the online evaluation protocol. To that end, we approximate the expected value during
adaptation at time t with the samples xt revealed from the stream. Hence, our Mutual information
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Figure 2: Adapting at test-time with MiDl. At test time, the stream reveals a sample. MiDl
uses multimodal samples to adapt and requires one forward pass for each modality combination.
MiDl leverages (KL) divergence to align the predictions of the adapted model fθt with those of
the original model fθ0 , ensuring that the adapted model does not deviate too far from the original
model’s predictions. The Mutual-Information (MI) component uses the prediction from the different
modalities to reduce the dependency on any specific modality, fostering a more generalized and
robust prediction across different modality combinations. MiDl updates the model for step t + 1
using the combination of KL and MI in Equation 2.

with self-Distillation (MiDl) adaptation step at timestamp t can be expressed as the following:

θt+1 = θt − γ∇θLMiDl|θ=θt = θt − γ∇θ(LMI + LKL)|θ=θt (2)

with LKL = KL (fθ(xt;M = AV )||fθ0(xt;M = AV )

LMI = Em

[
K∑
i=1

f i
θ(xt;m) log

(
f i
θ(xt;m)

)]
︸ ︷︷ ︸

Lent

−
K∑
i=1

f̂ i
θ(xt) log

(
f̂ i
θ(xt)

)
︸ ︷︷ ︸

Ldiv

where f̂θ(xt) = Em[fθ(xt;m)], f i
θ(xt;m) is the ith element in the vector fθ(xt;m), and γ > 0 is

the learning rate of the gradient descent step.

To estimate the expectation Em[fθ(xt;m)], we conduct three forward passes for xt with setting
m ∈ {A, V,AV }. We average these predictions to calculate Ldiv and we average their entropy to
calculate Lent (refer to Figure 2). Note that Ldiv is the entropy of the average prediction across
modalities. Note that under incomplete modality, Lent = Ldiv resulting in LMI = 0. Hence, LMI ̸= 0
only when xt has complete modalities (refer to Appendix A for details). Based on that, we propose
to conduct our adaptation step only when S reveals xt with complete modalities. However, when S
reveals xt with incomplete modality, we refrain from adaptation and set θt+1 = θt. This makes the
interaction between the stream S and our proposed MiDl at each time step t take the following form:

1. S reveals a sample/batch xt with its corresponding modality m.
2. fθt generates the prediction ŷt.
3. If xt is with complete modalities then g adapts the model parameter θt to θt+1 through

equation 2, else set θt+1 = θt.

For xt with missing modality, we leverage the most recent adapted model to perform predictions
without adaptation. Since this work focuses on the multimodal setting, we assume that pAV ̸= 0.
This setup aligns with real-world scenarios where multimodal data streams are common, and some
modal-complete instances are expected. Note that adapting a multimodal model at test time to an
unimodal stream is particularly challenging without labeled data. Nevertheless, to demonstrate that
MiDl does not degrade the original multimodal model’s performance in this extreme case, we also
report results with pAV = 0.

Takeaway. We are the first to formulate the missing modality challenge as a test-time adaptation
problem. Our work makes no assumptions about the training phase in terms of architecture or training
objectives. We only require a model that works with multiple modalities at test time. We proposed
MiDl, the first test-time adaptation method that effectively combats the missing modality challenge.
MiDl updates the model only when it encounters modality-complete samples but generates predic-
tions for all samples, regardless of the modalities they contain. MiDl operates on any pretrained
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multimodal model at test-time by adapting its parameters on the received unlabeled data in an
unsupervised online manner.

5 EXPERIMENTS

We thoroughly analyze MiDl’s performance under different missing modality scenarios. We present
our experimental setup in Section 5.1. In Section 5.2, we compare MiDl on a simple TTA scenario
where the model has to adapt while replying to the stream. In Section 5.3, we study MiDl’s behavior
under the Long-Term Adaptation (LTA) setup that happens when the model has been exposed to a
long stream of data S. Finally, Section 5.4 analyzes the scenario, in which one has access to some
unlabeled data from an out-of-domain source before the model is deployed. Under all these three
scenarios, we show that MiDl is the better alternative to combating missing modalities at test time.

5.1 SETUP

We follow Ramazanova et al. (2024) and use validation sets of Epic-Kitchens and Epic-Sounds and
report action accuracy. We use Ego4D-AR videos for the out-of-domain experiments in Section 5.4.

Datasets. Epic-Kitchens (Damen et al., 2018; 2022) contains 100 video hours of people performing
cooking activities recorded with wearable cameras. The dataset is commonly used for benchmarking
audiovisual egocentric action recognition. Each instance is annotated as a noun and verb pair (e.g.,
cut tomato), with a total of 300 noun and 97 verb classes. The validation set contains 9668 samples.
Epic-Sounds (Huh et al., 2023) provides sound-based annotations for the same 100 video hours. It
has 44 classes and 8045 validation samples. We stick to the official train/val/test splits provided for
both datasets. The approximate ratios are 75% for training, 10% for validation, and 15% for testing.

We assess the effectiveness of the baselines and our proposed MiDl in combating missing modalities
at test time. To do so, we present the pretrained model with a stream Sval of unlabeled validation
data where we drop one modality with a rate of 1− pAV . We set pAV ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
resulting in a missing rate of {100%, 75%, 50%, 25%, 0%}, respectively. Following Ramazanova
et al. (2024), for each dataset, we drop the primary modality (i.e. sound for Epic-Sounds and video for
Epic-Kitchens). Thus, for a 75% missing rate (i.e. pAV = 0.25), the stream containing Epic-Sounds
has P = {0.0, 0.75, 0.25}, and the one for Epic-Kithcnes has P = {0.75, 0.0, 0.25}. We also
report the performance of unimodal models that rely solely on the available modality (e.g., video for
Epic-Sounds and audio for Epic-Kitchens). Ideally, a well-adapted multimodal model should match
or exceed this performance.

Architecture. Unless stated otherwise, we use the stronger architecture Multimodal Bottleneck
Transformer (MBT) (Nagrani et al., 2021) as fθ. Yet, we experiment with the vanilla self-attention
architecture (Vaswani et al., 2017) in Section 6.1. Each backbone is fine-tuned on the training set of
the corresponding dataset.

5.2 MIDL IMPROVES PERFORMANCE

Table 1 compares our proposed MiDl against three off-the-shelf TTA methods. Namely, we include
the information maximization approach, Shot (Liang et al., 2020), and the state-of-the-art entropy
minimization with data selection from ETA (Niu et al., 2022) (refer to Section B.1 for details).

We observe that: (i) MiDl significantly enhances the baseline performance under missing modality.
We record a significant gain of 5% and 7% on Epic-Kitchens with missing rates of 50% and 75%,
respectively. In Epic-Sounds, MiDl boosts the accuracy of the baseline from 37.1% and 28.3% to
38.8% and 29.8% under the same missing rates, respectively. Note that this performance boost comes
at no cost of retraining the model; simply adapting it during test time. This result demonstrates
how our proposed mutual information minimization encourages the model to become invariant to
domain shifts due to missing modality. (ii) MiDl successfully retains the baseline performance when
all modalities are present, with accuracies of 55.0% and 63.7% at 0% missing rate on Epic-Sounds
and Epic-Kitchens, respectively. This demonstrates that our proposed KL divergence regularization
effectively preserves the information retention capability of the baseline under modal-complete
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Table 1: Combating missing modalities at test time. The first two rows show the unimodal
performance and the MBT baseline with no adaptation. We show three alternative TTA methods
and demonstrate that our proposed MiDl is effective at combating missing modalities at test time,
outperforming all presented TTA baselines. Refer to Table 11 to see the standard deviations.

Epic-Sounds (%) Epic-Kitchens (%)
Model

1− pAV

0 25 50 75 100 0 25 50 75 100

Unimodal 41.4 41.4 41.4 41.4 41.4 40.0 40.0 40.0 40.0 40.0
Baseline 55.1 45.6 37.1 28.3 19.5 63.9 55.5 46.8 37.9 29.5

+Shot 55.0 45.6 37.1 28.5 20.0 63.9 55.9 47.9 40.6 34.3
+Tent 54.8 45.0 35.9 26.5 17.8 63.7 54.0 39.2 24.2 9.9
+ETA 55.1 45.6 37.1 28.3 19.5 63.5 51.3 33.7 20.6 7.9

+MiDl (ours) 55.0 46.8 38.8 29.8 19.5 63.7 58.4 52.4 46.4 29.5

Table 2: Adaptation at Test-time under Long-term Adaptation and with Ego4D warm-up.
LTA. We showcase the results of MiDL under the assumption that the stream of data is very long.
We use unlabeled data to simulate a longer stream and report results on the validation set of each
dataset. Our MiDl benefits from long-term adaptation, especially at higher missing rates (>75%).
Ego4D warm-up. We show another use cause of MiDL, in which the assumption is having access to
out-of-domain unlabeled data to adapt before deployment. The results showcase MiDL’s capabilities
on leveraging unlabeled-out-of-domain data to combat missing modalities.

Epic Sounds (%) Epic Kitchens (%)
Model

1− pAV

0 25 50 75 100 0 25 50 75 100

Baseline 55.1 45.6 37.1 28.3 19.5 63.9 55.5 46.8 37.9 29.5
+MiDl 55.0 46.8 38.8 29.8 19.5 63.7 58.4 52.4 46.4 29.5

+ MiDl - LTA 54.9 46.8 39.5 32.6 26.0 63.7 58.4 52.4 46.7 41.4
+ Ego4D Warm-up 55.0 46.5 38.6 30.4 20.4 63.7 58.4 52.4 46.7 37.8

inference. (iii) We also observe that presented TTA methods are less effective. This limitation arises
because TTA methods are designed to tackle covariate domain shifts and, thus, are not tailored to
enhance performance under this specific type of domain shift (missing modality).

5.3 PERFORMANCE UNDER LONG-TERM ADAPTATION (LTA)

Next, we analyze the effectiveness of our proposed MiDl under a long stream of data S . Since MiDl
operates at test time, its performance gain can vary depending on the amount of data revealed at
test time. Note that for any pAV ̸= 0, as t → ∞, MiDl would be exposed to a large amount of
unlabeled data with complete modality; enhancing the invariance properties of the adapted model
against missing modality.

To study this interesting setting, we present MiDl with Sin followed by Sval used in Section 5.2. In
this scenario, we allow MiDl to access unlabeled data with complete modality from Sin, to only
perform adaptation. Then, we assess the efficacy of MiDl by performing adaptation and evaluation
on Sval. We then ask the following question: how would MiDl perform after this long adaptation?
We let Sin be a subset of training data, and test the model on Sval being the validation set, following
the standard evaluation in Section 5.2.

Table 2 summarizes the results on Epic-Sounds and Epic-Kitchens datasets at the same missing
rates considered in Section 5.2. We observe: (iv) the longer the stream is, MiDl provides a bigger
performance gain. For example, MiDl further improves the non-adapted baseline by 4.3% and 8.8%
on Epic-Sounds and Epic-Kitchens, respectively, under a missing rate of 75% (i.e. pAV = 0.25). In
addition, even under 100% missing rate, MiDl improves the accuracy by a notable margin of 6.5%
and 11.9% on Epic-Sounds and Epic-Kitchens, respectively. That is, the adaptation on Sin unlocks a
bigger potential of MiDl for life-long adaptation even when Sval reveals data with a single modality.
(v) Unlike MiDl, other adaptation approaches do not benefit from this long stream setup as their
objective functions do not promote building an invariant model against missing modality. We present
these results in Table 7.
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5.4 WARM-UP ON EGO4D: EXPLOITING OUT OF DOMAIN ADAPTATION

Next, we analyze another practical setup in which the model can be warmed up with some available
data before deployment. In particular, we consider the case when not only the pretrained model fθ is
provided, but unlabeled data from out-of-domain, denoted as Sout can also be accessible. Given this
setup, we wonder: would warming up with MiDl on a different data distribution Sout help combat
missing modalities in Sval?

To answer this question, we leverage the recent Ego4D (Grauman et al., 2022) data. Although
Ego4D has egocentric videos, they come from very different environments and scenarios that deviate
from the usual kitchen scene. These changes introduce additional domain shifts when evaluating on
Epic-Sounds and Epic-Kitchens. We set Sout to be 5,000 clips of the Ego4D-AR training set. It is
worth noting that we keep using our self-supervised MiDL objective, and we do not require any labels
from Ego4D-AR. We use our setup from Section 5.3 and perform adaptation on Sout followed by the
standard evaluation (Section 5.2) on Sval. We refer to the adaptation on Sout as the warm-up phase.

Table 2 summarizes the results where we show the performance of the non-adapted baseline, our
proposed MiDl when adapted solely on Sval, and our MiDL equipped with warm-up adaptation on
Sout. We observe that (vi) conducting a warm-up generally positively influences overall performance
in cases of missing modality. The enhanced version of MiDl with Ego4D warm-up improves over
MiDl by 0.6% and 0.3% on Epic-Sounds and Epic-Kitchens, respectively, under a missing rate of
75%. Furthermore, we observe that even under 100% missing rate, adapting on Sout enhances the
accuracy of MiDl by an impressive 8% on Epic-Kitchens. This demonstrates the versatility of MiDl,
which provides consistent performance gains under different setups.

Takeaway. In this section, we showcased the effectiveness of our proposed MiDl in combating the
missing modality challenge at test time (Section 5.2). Further, we analyzed the impact of long-term
adaptation where MiDl provided further performance gain where the relative improvement is up
to 30% (Section 5.3). At last, we showed how adapting with MiDl on out-of-distribution data,
mimicking data scarcity situations, still boosts the model’s accuracy (Section 5.4).

6 ANALYSIS ON MIDL

In this section, we conduct a comprehensive analysis of MiDl. In particular, we show how our
proposed test-time adaptation is agnostic to the choice of fθ (Section 6.1), the missing modality
(Section 6.2). We conclude by analyzing the different components of MiDl in Section 6.4 and its
computational requirements in Section 6.5.

6.1 AGNOSTIC TO ARCHITECTURE CHOICE

Table 3: MiDL performance with self-attention base-
line. We showcase the effectiveness of MiDL with multi-
modal self-attention. MiDL enhances performance across
all missing rates, underscoring its robustness and adapt-
ability to various underlying architectures.

Model
1− pAV Epic-Sounds (%)

0 25 50 75 100

Self-Att. Baseline 45.3 38.8 32.7 26.7 20.5
+Shot 45.5 39.0 32.8 26.8 20.7
+Tent 45.3 38.6 32.3 26.0 19.8
+ETA 45.3 38.8 32.7 26.7 20.5

+MiDl (ours) 45.5 39.5 33.8 27.5 20.5
+MiDl - LTA (ours) 45.5 39.6 34.5 29.0 23.2

Here, we analyze the robustness of MiDl
against the architecture choice fθ. To
this end, we replicate our experimental
setup from Sections 5.2 and 5.3 but set fθ
to be the multimodal fusion via vanilla
self-attention architecture (Vaswani et al.,
2017), as opposed to the MBT architec-
ture (Nagrani et al., 2021).

Table 3 summarizes the results under dif-
ferent missing rates. We compare the
non-adapted baseline, Shot and ETA, and
our proposed MiDl. We observe that
MiDl provides a consistent performance
boost under the self-attention architec-
ture, similar to our observations with the
MBT architecture in Section 5.2. For ex-
ample, MiDl improves the accuracy of the baseline under 50% missing rate by a notable 1.1% without
affecting the performance under complete modality.
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Table 4: Adaptation at Test-time - Other Missing Modalities. In this table we show the results
using the complementary modality for each of the datset, i.e. video for Epic Sounds and Audio
for Epic Kitchens. We observe that MiDL improves consistently under this setup, highlighting its
robustness to different types of modalities missing at test time.

Epic Sounds (%) Epic Kitchens (%)
Model

1− pAV

0 25 50 75 100 0 25 50 75 100

Unimodal 46.5 46.5 46.5 46.5 46.5 63.2 63.2 63.2 63.2 63.2

Baseline 55.1 53.4 51.8 50.5 48.8 63.9 61.0 58.0 54.8 52.1
+MiDl 55.0 53.3 51.8 50.7 48.8 63.7 61.6 59.1 55.9 52.1
+MiDl - LTA 55.0 53.4 52.0 51.0 49.4 63.7 61.7 59.5 57.3 55.3

Addtionally, Table 3 presents the results under Long-Term Adaptation (LTA), following the setup in
Section 5.3. Similar to our earlier findings, LTA unlocks a better potential of MiDl where further
performance gain is attained. Under this setup, MiDl improves the baseline by 2% under 50% and
75% missing rates, and by 2.7% under 100% missing rates. These results show that MiDl is agnostic
to the choice of architecture.

6.2 AGNOSTIC TO THE TYPE OF MISSING MODALITY

In previous sections, we focused our experiments on the effectiveness of MiDl when the dominant
modality is missing. In particular, we analyzed dropping the audio modality for Epic-Sounds and
the visual modality for Epic-Kitchens. In this section, we attempt to study the robustness of MiDl
against dropping the non-dominant modality at test time. Thus, in these experiments, we drop
the visual modality in Epic-Sounds and audio in Epic-Kitchens. In contrast to the scenarios with
missing dominant modality, these baselines experience less performance degradation. We replicate
our experimental setup from Section 5.3 where we compare the non-adapted baseline, its equipped
version with our proposed MiDl, and the LTA effect of MiDl.

Table 4 summarizes the results. Our experiments show that MiDl consistently enhances the perfor-
mance of the pretrained model irrespective of the type of missing modality. For example, MiDl
improves the baseline by 1% on Epic Kitchens under missing rates of 50% and 75%. Further, and
similar to our observations in Section 5.3 and 6.1, the LTA further improves MiDl by over 3% under
100% missing rate (i.e. pAV = 0). In Table 9, we demonstrate how MiDl generalizes to a "mixed
modality" setup, where either modality could be missing at test time.

6.3 AGNOSTIC TO PRETRAINING

In previous sections, we adopted the baseline from Ramazanova et al. (2024), which uses masked
autoencoder pretraining. To demonstrate how MiDl can generalize to the different pretraining
mechanisms, we apply MiDl on the Omnivore backbone (Girdhar et al., 2022). Note that Omnivore is
a modality-agnostic vision model with leverages several visual modalities in one unified architecture
during pretraining. During testing, Omnivore is used for single-modality downstream tasks on any
visual modality (Girdhar et al., 2022). Thus, we use omnivore to initialize each one of our backbones.
We report the results in Table 5. We observe how MiDl provides a significant performance boost
over the Omnivore baseline, when presented with missing modalities at test time. For example,
under the 25% missing rate, MiDl improves the baseline performance by 9.5%, from 48.1% to
57.6%. These results demonstrate that MiDl maintains its robustness and adaptability across different
pretraining strategies, significantly improving the Omnivore baseline. This, yet again, highlights
MiDl’s generalization capability.

6.4 COMPONENTS OF MIDL

At last, we ablate the effectiveness of each component of MiDl. Recall from our adaptation step
in equation 1 that MiDl has two components: mutual information minimization (Mi) and self-
distillation through minimizing KL-divergence (Dl). We believe that the success of MiDl is attributed
to the interplay between both components.
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Table 5: MiDl performance with Omnivore pretraining. MiDl is highly effective when applied to
Omnivore model, demonstrating its effectiveness with a different pretraining strategy.

Model
1− pAV Epic-Kitchens (%)

0 25 50 75 100

Omnivore Baseline 65.6 48.1 47.6 46.0 44.2
+MiDl (ours) 65.6 57.6 52.4 47.5 44.2

Table 6: Analyzing MiDl components. We analyze the different components of MiDL. When the
Mutual-Information (MI) component is missing, the model does not have any reason to adapt since
the KL divergence is maximized by predicting the same as the base model. When KL is not present,
the MI alone deviates from the initial results and performs poorly under higher missing rates.

Epic Sounds (%) Epic Kitchens (%)
Model

1− pAV LMI LKL 0 25 50 75 0 25 50 75

Baseline ✗ ✗ 55.1 45.6 37.1 28.3 63.9 55.5 46.8 37.9
+ Dl ✗ ✓ 55.2 45.6 37.1 28.3 63.9 55.5 46.8 37.9
+ Mi ✓ ✗ 40.4 39.3 36.1 29.6 53.5 50.5 47.6 45.9

+MiDl (ours) ✓ ✓ 55.0 46.8 38.8 29.8 63.7 58.4 52.4 46.4

To analyze the importance of each component, we adapt the baseline with each loss function
independently and compare the performance. Table 6 summarizes the results. We observe that
adapting solely with self-distillation (i.e. minimizing LKL) results in no adaptation. On the contrary,
adaptation by minimizing only LMI can result in a significant performance drop for low missing
rates. While minimizing LMI can indeed result in fθ that is robust against missing modality; it might
be less accurate for modal-complete samples (i.e. satisfying the first (i) property in Section 4 and
violating the second (ii)). Note that for high missing rates, LMI can result in a performance boost as a
small number of adaptation steps will enhance the invariance properties while not causing significant
divergence from the original model. MiDl balances information minimization with the information
retention loss LKL, providing consistent performance gains under all missing rates.

6.5 COMPUTATIONAL REQUIREMENT OF MIDL

While our results have demonstrated the efficacy of MiDl in providing performance gains, we note
that this improvement comes at a computational cost. In fact, conducting an adaptation step with
MiDl requires 3 inferences through fθt and an inference through the initial pretrained model fθ0 ,
followed by a single backward pass. This makes an inference through MiDl 5× more expensive than
doing inference without any adaptation. In practice, the latency of MiDl is only 2× slower than the
non-adapted model since all the additional 4 forward passes can be performed in parallel.

Takeaway. In this section, we conducted comprehensive analysis on our proposed MiDl. We
showed that MiDl is agnostic to the choice of architecture (Section 6.1) and the type of missing
modality (Section 6.2), and the type of pre-training 6.3. We further analyzed the importance of both
components of MiDl in Section 6.4 and its computational requirements in Section 6.5. MiDl shows
remarkable performance across the board, consistently delivering strong results regardless of the
dataset or scenario.

7 CONCLUSIONS

In this work, we presented MiDl, a new method for improving how pretrained video recognition
models handle missing modalities at test time. MiDl improves the model’s ability to give accurate
predictions regardless of the availability of modalities by minimizing mutual information and using
self-distillation. Our experiments show that MiDl can significantly increase accuracy across various
datasets and scenarios and under various missing rates, making it a practical solution for real-world
applications dealing with incomplete modalities.
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A PROPOSED SOLUTION: EXTENDED DISCUSSION

In Section 4, we proposed our novel adaptation strategy; MiDl. First, note that our intuition of
minimizing the mutual information between the output of the network and the modality source comes
from the following observation: Let X and Y be two random variables, then

If MI(X,Y ) = 0 → X and Y are independent.

Proof: MI(X,Y ) =
∑
x∈X

∑
y∈Y

PXY (x, y) log

(
PXY (x, y)

PX(x)PY (y)

)
If MI(X,Y ) = 0 → PXY (x, y) = PX(x)PY (y)

That is, minimizing the mutual information between the output prediction of fθ and the available
modality should make the adapted network robust against missing modality. Second, MiDl adapts the
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pretrained model fθ on the unlabeled data revealed from the stream only if the revealed data is with
complete modality. This is since: (1) the KL-divergence loss only applies on data with full modality
and (2) the information minimization loss only operates under complete modality. To wit, let xt be
revealed with m = A. Then the estimate of our LMI will be

LMI =

K∑
i=1

f i
θ(xt;M = A) log

(
f i
θ(xt;M = A)

)
︸ ︷︷ ︸

Lent

−
K∑
i=1

f i
θ(xt;M = A) log

(
f i
θ(xt;M = A)

)
︸ ︷︷ ︸

Ldiv

= 0.

This is since Em will be estimated with a single point at m = A. Thus, MiDl adapts the parameters
only when S reveals data with complete modality at test time.

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

In Section 5.1, we detailed our experimental setup. Here, and for reproducibility, we provide the
implementation details for MiDl and the baselines. Note that for all considered adaptation methods,
we follow the standard practice in the test-time adaptation literature (Wang et al., 2020; Liang
et al., 2020; Niu et al., 2022; Niu14 et al., 2023) and only adapt the learnable parameters of the
normalization layers. We freeze the rest of the model parameters during the update step. Further, for
MiDl, we balance the mutual information loss and the self-distillation loss through:

LMiDl = λ1LMI + λ2LKL.

Note that we set λ1 = λ2 = 3 for all our experiments. These hyperparameters were determined
through a grid search to identify the optimal settings for the task. Further, we conduct the adaptation
step with an SGD (Robbins & Monro, 1951) step with a learning rate of 25× 10−4, and a momentum
of 0.9, following (Niu14 et al., 2023; Niu et al., 2022; Wang et al., 2020).

Regarding the considered test-time adaptation baselines, we considered the entropy minimization
approach known as Tent (Wang et al., 2020), its improved version equipped with data-selection
process ETA (Niu et al., 2022), and the information maximization Shot (Liang et al., 2020). We
followed the official implementation of each method and used the recommended hyperparameters.

Each experiment was run using one V100 GPU. We repeat all experiments 5 times with different
seeds and report the average accuracy.

B.2 BASELINES UNDER LONG TERM ADAPTATION

We extend our comparison against the considered baselines under the Long Term Adaptation (LTA)
setup. We replicate our experimental setup in Section 5.3 and compare MiDl against SHOT, Tent, and
ETA. We report the results in Table 7 for the MBT architecture. We observe consistent findings in
Section 5.3, where naive adaptation baselines do not benefit from this long-term adaptation. Further,
we find that MiDl is the only adaptation method that provides further performance gains under this
LTA setup.

B.3 ADAPTING MORE LAYERS

At last, we extend our analysis on MiDl to include the effect of adapting more parameters. In
particular, we compare adapting only the learnable parameters of the normalization layers against
adapting the whole network parameters. We report the result in Table 8 on Epic-Kitchens. We observe
that adapting all network parameters with MiDl results in a minor performance gain. For instance,
under the 75% missing rate, adapting all parameters improves over adapting only the normalization
layers by 0.4% under the LTA setup and by 1.4% with the test-time adaptation of MiDl. We note
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Table 7: Adaptation at Test-time under Long-term Adaptation. We showcase the results of MiDL
under the assumption that the data stream is very long. We use unlabeled data to simulate a longer
stream and report results on the validation set of each dataset. Our MiDl benefits from long-term
adaptation. Especially at higher missing rates (>75%).

Epic-Sounds (%) Epic-Kitchens (%)
Model

1− pAV

0 25 50 75 100 0 25 50 75 100

Unimodal 41.4 41.4 41.4 41.4 41.4 40.0 40.0 40.0 40.0 40.0

Baseline 55.1 45.6 37.1 28.3 19.5 63.9 55.5 46.8 37.9 29.5
+Shot - LTA 55.0 45.6 37.2 28.7 20.3 63.8 56.0 48.2 41.0 34.4
+Tent - LTA 54.5 44.6 35.5 26.1 17.7 62.7 53.5 40.0 25.8 12.3
+ETA - LTA 55.0 45.5 37.0 28.2 19.5 60.9 48.8 33.0 19.3 7.5

+MiDl - LTA (ours) 54.9 46.8 39.5 32.6 26.0 63.7 58.4 52.4 46.7 41.4

Table 8: Adaptation at Test-time - Updating all parameters. We show the results when we unfreeze
all network parameters, not only the normalization layer. We observe that there is no significant
difference when compared to updating only the normalization layers.

Epic-Kitchens (%)
Model

1− pAV

0 25 50 75 100

Unimodal 40.0 40.0 40.0 40.0 40.0

Baseline 63.9 55.5 46.8 37.9 29.5
+MiDl (all parameters) 63.6 58.4 52.4 46.3 29.5
+MiDl (norm layers) 63.8 58.4 52.1 44.9 29.5
+MiDl - LTA (all parameters) 63.6 58.3 52.5 47.1 42.0
+MiDl - LTA (norm layers) 63.8 58.4 52.4 46.7 41.4

here that this comes at a computational expense as it is faster and more efficient to adapt only the
normalization layers.

B.4 MIXED MODALITIES

In this setup we also set pAV ∈ {0.0, 0.25, 0.5, 0.75, 1.0}, but also pA = pV = 0.5 ∗ (1 − pAV ).
Thus, for each missing rate (1 - pAV ), exactly half of the modal-incomplete samples have missing
audio, and the other half have missing video. The results of this setup are shown in Table 9. We
observe that MiDl consistently improves the baseline performance for all missing rates. Furthermore,
when presented with a long stream (LTA), MiDl benefits by further improving the accuracy.

B.5 KL LOSS ON ALL PREDICTIONS

One might suggest applying KL loss to both the individual audio and video predictions, as well as the
combined audiovisual predictions. We present the results of this experiment in Table 10. We found
that applying KL loss individually to each modality produced results very similar to applying it to the
combined audiovisual predictions. This is because the combined predictions essentially average the
individual modality predictions, making the effect of applying the loss individually or in combination
nearly equivalent.

C LIMITATIONS

As we mentioned in Section 6.5, MiDl requires three forward passes of the model over a single
instance, which can be implemented efficiently by parallelizing the pass on the GPU. However, it
does require more FLOPs than a method without adaptation. Additionally, MiDl can only adapt to
modal-complete instances. Finally, our experiments are limited to audiovisual egocentric datasets.
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Table 9: MiDL Performance with Mixed Modalities Setup. We present results similar to those
in Table 4 for Epic Sounds, but this time under mixed missing modalities at test time. Our results
demonstrate that MiDL continues to enhance the base model’s performance even in the challenging
scenario where any modality may be absent.

Model
1− pAV Epic-Sounds (%)

0 25 50 75 100

Baseline 55.1 49.5 44.0 39.5 34.1

+MiDl (ours) 55.1 50.0 45.0 40.3 34.1
+MiDl - LTA (ours) 55.0 50.3 45.4 42.1 37.4

Table 10: KL loss on each prediction. We apply KL loss to the prediction of each modality. As
the audiovisual predictions are derived from the individual modality predictions, there is no much
difference in the performance.

Epic-Sounds (%) Epic-Kitchens (%)
Model

1− pAV

0 25 50 75 100 0 25 50 75 100

Unimodal 41.4 41.4 41.4 41.4 41.4 40.0 40.0 40.0 40.0 40.0

Baseline 55.1 45.6 37.1 28.3 19.5 63.9 55.5 46.8 37.9 29.5
+MiDl (ours) 55.0 46.8 38.8 29.8 19.5 63.7 58.4 52.4 46.4 29.5

+MiDl (KL on each modality) 55.0 46.8 38.9 30.0 19.5 63.5 57.9 52.1 46.4 29.5

Although we designed MiDl without these constrains in mind, the validation of our method was
only made under this setup. Thus, results on other multimodal datasets with other modalities and
other data sources need further validation. However, we believe that MiDl would still work in other
scenarios.

D QUALITATIVE RESULTS

Figure 3 presents a qualitative analysis of our method’s test-time adaptation for audiovisual models
on Epic-Kitchens. The top subfigures (Positive Cases) highlight successful adaptations, where the
model accurately compensates for the missing modality to predict the correct label. For example, in
Positive Case 1, the model initially predicts "cupboard" without adaptation but successfully adapts to
the correct label "chair" by leveraging the sound cues. This demonstrates how MiDl effectively uses
auditory signals to distinguish the distinct sound of a chair. Similarly, in Positive Case 3, the model
transitions from an incorrect prediction of "wash" to the correct action "mix."

In contrast, the bottom subfigures (Negative Cases) illustrate instances where adaptation introduces
errors. For instance, in Negative Case 1, the model changes its correct prediction of "turn-on" (without
adaptation) to an incorrect "wash," and in Negative Case 2, the method erroneously adapts from
"open" (correct without adaptation) to "close."

Likewise, Figure 4 showcases the qualitative performance of our test-time adaptation method in
scenarios where the audio modality is missing, using Epic-Sounds. The top subfigures (Positive
Cases) demonstrate successful adaptations that align the predictions with ground truth despite the
missing audio. For example, in Positive Case 1, the model refines its initial prediction from "wipe"
(without adaptation) to the correct label "chop," effectively utilizing visual cues. Similarly, in Positive
Case 3, the prediction is adapted from "whisk" to the correct "metal-only collision," showcasing
MiDl’s capacity to mitigate the absence of sound.

However, the bottom subfigures (Negative Cases) reveal errors introduced by adaptation. In Negative
Case 1, the model changes a correct "wipe" prediction to an incorrect "water," potentially due to
the visually confusing presence of a sink without audio context. In Negative Case 2, the method
misclassifies "wipe" as "metal-only collision," likely influenced by visible metallic objects, making it
a plausible yet incorrect adaptation.
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Table 11: Combating missing modalities at Test-time. We present the extended results of Table 1
that include the standard deviation of each of the results. Our proposed MiDl is effective at combating
missing modalities at test time, outperforming all presented TTA baselines by convincing margins
over several runs.

Epic-Sounds (%) Epic-Kitchens (%)
Model

1− pAV

0 25 50 75 100 0 25 50 75 100

Unimodal 41.4 41.4 41.4 41.4 41.4 40.0 40.0 40.0 40.0 40.0
Baseline 55.1 45.6 37.1 28.3 19.5 63.9 55.5 46.8 37.9 29.5

+Shot 55.0±0.04 45.6±0.02 37.1±0.06 28.5±0.06 20.0±0.07 63.9±0.04 55.9±0.05 47.9±0.1 40.6±0.08 34.3±0.1
+Tent 54.8±0.04 45.0±0.08 35.9±0.06 26.5±0.04 17.8±0.05 63.7±0.07 54.0±0.15 39.2±0.25 24.2±0.24 9.9±0.22
+ETA 55.1±0.02 45.6±0.02 37.1±0.01 28.3±0.00 19.5±0.00 63.5±0.04 51.3±0.75 33.7±0.26 20.6±0.24 7.9±0.27

+MiDl (ours) 55.0±0.10 46.8±0.09 38.8±0.11 29.8±0.07 19.5 63.7±0.08 58.4±0.04 52.4±0.05 46.4±0.11 29.5

Overall, Figures 3 and 4 illustrate both the strengths and limitations of our test-time adaptation
method. While MiDl frequently improves prediction accuracy, as evidenced by our quantitative
results, it occasionally induces misclassifications. To provide a balanced perspective, we included an
equal number of success and failure cases. These failure cases offer valuable insights, paving the way
for further refinements and future research.

E ADDITIONAL RESULTS ON EGO4D

We evaluated MiDL’s performance on the Ego4D-AR dataset Ramazanova et al. (2024), derived from
Ego4D (Grauman et. al., 2022), to assess its generalizability and robustness under varying levels of
missing audio. Ego4D-AR encompasses diverse daily activities and naturally includes instances of
missing audio. As shown in Table 12, MiDL consistently surpasses baseline methods across 50%,
and 75% missing audio rates .

MiDL demonstrates significant advantages, achieving 23.41% accuracy at a 75% missing rate,
compared to 21.46%, 15.92%, and 22.06% for Baseline, TENT, and SHOT, respectively. These results
highlight MiDL’s ability to effectively handle missing modality scenarios, adapting to challenging
conditions where conventional approaches struggle.

By offering greater resilience to incomplete or noisy data, MiDL establishes itself as a robust solution
for multimodal learning in egocentric video applications. These findings underscore its potential to
advance state-of-the-art methods, particularly in real-world settings characterized by data sparsity or
inconsistency.

Table 12: MiDL Performance on Ego4D-AR with Missing Audio. Performance comparison at
various missing rates of audio (1− pAV ).

Model
1− pAV (%) Ego4D-AR (%)

50 75 100

Baseline 26.21 21.46 16.58

TENT 23.29 15.92 9.25
SHOT 26.56 22.06 18.29

MIDL (ours) 27.13 23.41 16.58
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Positive Cases (Model Successes)

(a) Positive Case 1

(b) Positive Case 3

Negative Cases (Model Failures)

(c) Negative Case 1

(d) Negative Case 2

Figure 3: Qualitative analysis of MiDl’s adaptation performance on Epic-Kitchens. The top
two subfigures highlight positive cases where MiDl successfully adapts to predict the correct label
(marked in green). Conversely, the bottom two subfigures illustrate negative cases (marked in red)
where adaptation introduces errors.
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Positive Cases (Model Successes)

(a) Positive Case 1

(b) Positive Case 3

Negative Cases (Model Failures)

(c) Negative Case 1

(d) Negative Case 2

Figure 4: Qualitative analysis of MiDl’s adaptation performance on Epic-Sounds . The top
two subfigures highlight positive cases where MiDl successfully adapts to predict the correct label
(marked in green). Conversely, the bottom two subfigures illustrate negative cases (marked in red)
where adaptation introduces errors.
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