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Abstract

We investigate the problem of Vision-and-
Language Navigation (VLN) in the context of
autonomous driving in outdoor settings. We
solve the problem by explicitly grounding the
navigable regions corresponding to the textual
command. At each timestamp, the model pre-
dicts a segmentation mask corresponding to the
intermediate or the final navigable region. Our
work contrasts with existing efforts in VLN,
which pose this task as a node selection prob-
lem, given a discrete connected graph corre-
sponding to the environment. We do not as-
sume the availability of such a discretised map.
Our work moves towards continuity in action
space, provides interpretability through visual
feedback and allows VLN on commands like
‘park between the two cars”, requiring finer ma-
noeuvres. Furthermore, we propose a novel
meta dataset CARLA-NAV to allow efficient
training and validation. The dataset comprises
pre-recorded training sequences and a live envi-
ronment for validation and testing. We provide
extensive qualitative and quantitive empirical
results to validate the efficacy of the proposed
approach.

1 Introduction

Humans have exceptional navigational abilities,
which, combined with their visual and linguistic
prowess, allow them to perform navigation based
on the linguistic description of the objects of in-
terest in the environment. This is in direct conse-
quence of the human capability to associate visual
elements with their linguistic descriptions. Refer-
ring Expression Comprehension (REC) (Rohrbach
et al., 2016) and Referring Image Segmentation
(RIS) (Hu et al., 2016a) are two tasks for associ-
ating the visual objects based on their linguistic
descriptions using bounding-box-based and pixel-
based localizations, respectively. However, it is
non-trivial to utilize these localizations directly for
a navigation task (Deruyttere et al., 2019). For
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Figure 1: A major limitation of single image based
grounding methods is that they fail if the language com-
mand is not immediately visible, which restricts these
methods to be used for VLN. Here, we show an example
result using the RNR model and on an image from their
dataset (Rufus et al., 2021). The model accurately local-
izes the black car (middle), however, the it completely
confuses when asked to predict the left turn, which does
not exist in the current view.

example, consider the linguistic command "take a
right turn from the intersection," an object-based
localization is not usable for navigation as it does
not answer the question "which region" on the road
to navigate to. To solve the aforementioned issue,
the task of Referring Navigable Regions (RNR)
was proposed in (Rufus et al., 2021) to localize the
navigable regions in a static front camera image on
the road corresponding to the linguistic command.

Although these single image-based visual
grounding methods (Rufus et al., 2021; Hu et al.,
2016a; Deruyttere et al., 2019) showcase the ex-
cellent ability of neural networks to correlate vi-
sual and linguistic data, they are still limited in
many ways. These methods are trained on care-
fully paired data, assuming that the region to be
grounded is always visible in the frame. They
give an erroneous output when the region to be
grounded is not currently visible, is occluded, or
goes out of frame (as the carrier moves). Such sce-
narios are part of everyday language-guided nav-
igation; for instance, consider a command “Take
a right once you see the traffic signal" the traffic
signal here may not be immediately visible. Fig-
ure 1 illustrates one such scenario, where the single



image-based RNR method gives an incorrect output
that is not correlated with the linguistic command.
As a second major limitation, single image-based
predictions (Rufus et al., 2021) are devoid of any
temporal context (short term or long term), which
is crucial in successful navigation, especially in a
dynamically changing environment. Finally, since
single image methods are evaluated on frames from
pre-recorded videos, they cannot be validated ap-
propriately on their ability to complete the entire
episode (from start to desired finish). Our work
addresses these limitations and re-formulates the
RNR approach to perform language-guided navi-
gation in a dynamically changing environment by
grounding intermediate navigable regions when the
referred navigable region is not visible.

Our work also contrasts with the prior art for
language-guided navigation in both indoor and out-
door environments. Most existing works on indoor
navigation (Anderson et al., 2018; Shrestha et al.,
2020; Zang et al., 2018) assume that the naviga-
tional environment is fully known. This allows
them to discretize the known map into a graphical
representation, where the nodes are the set of navi-
gable regions (landmarks) that the agent can navi-
gate given the linguistic command. However, such
an approach is not practical for outdoor settings
(as studied in our work) where the environment is
unknown. Moreover, even if the environment is
known, discretization of the maps is not feasible
when more refined localization and manoeuvres are
required (e.g. “stop beside the person with a red

cap").

Finer control remains a challenge in indoor and
outdoor VLN methods, which model navigation
as a selection from a set of discrete actions (Schu-
mann and Riezler, 2022; Zhu et al., 2021; Xiang
et al., 2020) or as a reinforcement learning prob-
lem (Anderson et al., 2018; Fu et al., 2019). For
instance, one of the commonly used Touchdown
dataset (Chen et al., 2019) consists of pre-recorded
google street view images and allows navigation
across street views by choosing from a set of four
discrete actions, i.e. FORWARD, RIGHT, LEFT
and STOP. Discretizing the action space (and the
environment) limits the type of navigational ma-
noeuvres that can be performed. For instance, these
methods (Schumann and Riezler, 2022; Zhu et al.,
2021; Xiang et al., 2020) cannot be used for com-
mands like "park between the two cars on the right",
which require fine-grained control of the car.

The aforementioned issues become apparent in
a dynamically changing environment, where fine-
grained control of the car’s navigation and a fully
navigable environment is required to adapt to the
dynamic surroundings and perform navigational
manoeuvres based on the linguistic command. In
this paper, we present a novel meta-dataset in the
CARLA environment (Dosovitskiy et al., 2017) for
outdoor navigation, which addresses the limitations
associated with the existing navigation datasets.
Additionally, the visual grounding-based approach
combined with a planner allows us to have a fine-
grained control over the vehicle as it enables navi-
gation to any drivable region on the road.

Another concern with the current sequence-to-
sequence and reinforcement learning approaches is
that their predictions are not interpretable. It is non-
trivial to understand their predictions as there is no
feedback. Instead, in the visual-grounding-based
approach, there is visual feedback associated with
each prediction in terms of the segmentation mask
corresponding to the navigable region on the road.
We take a step forward and also predict the short
term intermediate trajectories, using a novel multi-
task network. Moreover, we perform live inference
on the proposed meta-dataset in a dynamic environ-
ment. To the best of our knowledge, this is the first
attempt towards live language-based navigation in
outdoor environments. Lastly, we conduct com-
prehensive qualitative and quantitative ablations to
validate the effectiveness of our approach. To sum-
marize, the main contributions of this paper are the
following:

* We present a vision language navigation
tool, CARLA-NAYV, on the CARLA simula-
tor which provides fine-tuned control of the
vehicle to execute various language-based nav-
igational manoeuvres.

* We propose a novel multi-task network for tra-
jectory prediction and per-frame RNR tasks
in dynamic outdoor environments. The pre-
diction for each task is explainable and inter-
pretable in the form of segmentation masks.

* We perform real-time navigation in the
CARLA environment with a diverse set of
linguistic commands.

* Finally, extensive qualitative and quantitative
ablations are performed to validate the practi-
cality of our approach.



Turn left and stop
next to the bus stop

Input Command

Figure 2: Ground truth annotations of three sampled frames from an episode of CARLA-NAYV dataset. The textual
command for the episode is shown on the top. The green rectangle illustrates the navigable region and the red curve
corresponds to the short future trajectory. (a) At the start, the left turn or the final navigable region is not visible, so
a straight path is chosen as intermediate mask; (b) the intermediate mask corresponding to the left turn; (c) final

navigable region (stop next to bus stop).

2 Related Work

2.1 Visual Grounding

Visual grounding aims to help associate the linguis-
tic description of entities with their visual counter-
parts by localizing them visually. There are two
prevalent approaches for visual grounding based
on the type of localization used. Proposal-based
localization is formally referred to as Referring
Expression Comprehension (REC). Most meth-
ods in REC follow a propose-then-rank strategy,
where the ranking is done using similarity scores
(Rohrbach et al., 2016; Hu et al., 2016b; Plum-
mer et al., 2018; Rufus et al., 2020) or through
attention-based methods (Deng et al., 2018; Zhang
etal., 2018; Yang et al., 2019; Qiu et al., 2020). The
other approach is to localize the objects by their
pixel-level segmentation mask, formally known
as Referring Image Segmentation (RIS). In RIS,
methods use different strategies to fuse the spatial
information of the image with the word-level infor-
mation of the language query (Shi et al., 2018; Ye
et al., 2019; Huang et al., 2020; Jain and Gandbhi,
2022). Recently, (Rufus et al., 2021) proposed the
Referring Navigable Region (RNR) task to directly
localize the navigable regions on the road corre-
sponding to the language commands. However,
their work limits to predictions on static images in
pre-recorded video sequences (Caesar et al., 2020).
We propose reformulating the RNR task for dy-
namic outdoor settings and performing real-time
navigation based on language commands.

2.2 Language-based Navigation

Majority of efforts on Vision Language Naviga-
tion (VLN) have focused on the indoor scenario.
Availability of interactive synthetic environments
has played a key role in indoor navigation re-
search. The environments are either designed

manually by 3D artists (Kolve et al., 2017; Wu
et al., 2018) or are constructed using RGB-D scans
of actual buildings (Chang et al., 2017). Exist-
ing methods have approached language guided
navigation in variety of ways, including imita-
tion learning (Nguyen et al., 2019; Nguyen and
Daumé III, 2019), behavior cloning (Das et al.,
2018), sequence-to-sequence translation (Anderson
et al., 2018) and cross-modal attention (Cornia and
Cucchiara, 2019). In these methods, the navigation
is modelled as traversing an undirected graph, pre-
suming known environment topologies. In recent
work, (Krantz et al., 2020) suggest that the per-
formance in prior ‘navigation-graph’ settings may
be inflated by strong implicit assumptions. Hu et
al. (Hu et al., 2019) questions the role of visual
grounding itself by highlighting that models which
only use route structure outperform their visual
counterparts in unseen new environments. Most
indoor VLN methods are also hindered by limit-
ing the output to a discretized action space (Irshad
et al., 2021).

For outdoor VLN, Sriram et al. (Sriram et al.,
2019) use CARLA environment to perform nav-
igation as waypoint selection problem, however,
their work limits to only turning actions. The
Talk2Car dataset limits to localizing the referred
object (Deruyttere et al., 2019). Another line of
work focuses on interactive navigation environment
of Google Street View (Mirowski et al., 2018).
The Touchdown dataset (Chen et al., 2019) pro-
poses a task of following instructions to reach a
goal (identifying a hidden teddy bear). Map2Seq
dataset (Schumann and Riezler, 2020) learns to
generate navigation instructions that contain visi-
ble and salient landmarks from human natural lan-
guage instructions. The navigation on both datasets
is modelled as node selection in a discrete connec-
tivity graph. Most methods (Schumann and Riezler,



2022; Zhu et al., 2021; Xiang et al., 2020) using
these datasets, solve outdoor VLN as sequence to
sequence translation in a discrete action space. The
role of vision modality remains illusive when tested
in unseen areas (Schumann and Riezler, 2022). In
this work, we propose a paradigm shift towards
utilizing RNR-based approaches for VLN. The ex-
plicit visual grounding forces the network to utilize
visual information. Integrating with a local planner,
the navigation is performed in a continuous space,
without any reliance on the map information.

3 Dataset

The proposed CARLA-NAV dataset was curated
using the open-source Carla Simulator for au-
tonomous driving research. It contains episodic
level data, where each episode consists of a lan-
guage command and the corresponding video from
Carla Simulator of navigation towards the final
goal region described by the command. Example
ground truth annotations from an episode from the
CARLA-NAYV dataset are shown in Figure 2. The
ground truth segmentation mask for each frame
either corresponds to the final or an intermediate
navigable region. Each frame is additionally an-
notated with a plausible future trajectory of the
vehicle in the next few frames.

The dataset includes video sequences captured
in 8 different maps, 14 distinct weather conditions,
and a diverse range of vehicles and passengers in
the environment. The language commands in our
dataset contain detailed visual descriptions of the
environment and describe a wide range of manoeu-
vres. In some cases, there are multiple manoeuvres
in a single command, e.g., "stop for the traffic light,
then take a right turn and park near the bus stand."
Overall, the training split of the dataset consists
of 500 episodes, the validation split consists of 25
episodes, and the test split consists of 34 episodes.
During data collection, in each episode, the vehicle
is spawned in a randomly selected map at a ran-
dom position. During the training phase, we use
the pre-recorded sequence for the network training.
However, during the inference phase on validation
and test splits, for each episode, we spawn the ve-
hicle at the corresponding starting location, and the
navigation is performed based on network predic-
tion and not on the pre-recorded sequences.

3.1 Dataset Creation

We created a data-collection toolkit on top of
Carla’s API and plan to open-source it upon accep-
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Figure 3: Pipeline for the data collection procedure. The
user is provided with a language command conforming
to the current environment state. Based on the linguistic
command, the user successively selects the navigable
region on the road until the final destination correspond-
ing to the command is reached.

tance. The data collection process is illustrated in
Figure 3. It happens in a two step manual process:
(a) providing a language command through a text
prompt and (b) navigating the Carla environment
based on the language command through mouse
clicks. The 2D point corresponding to the mouse
click in the front view of the car is transformed
into the 3D world coordinates using Inverse Pro-
jective transform; and this 3D position is passed as
input to the local planner to navigate the CARLA
environment. We use CARLA’s default rule-based
planner for our case; however, this can easily be re-
placed with more sophisticated planners like RRT*
or end-to-end imitation learning models like NEAT
(Chitta et al., 2021). An episode comprise of mul-
tiple mouse clicks, until the final navigable region
is not visible in the front view. These intermediate
mouse clicks signify the intermediate navigable re-
gions, and the last mouse click depicts the final goal
region corresponding to the command. The mouse
clicks are converted into segmentation masks by



drawing a 3m x 4m rectangle (approx size of a
car) in the top view, centered at the mouse click.
The rectangle is then projected in the front-camera.
Similarly, for the future trajectory prediction task,
we take the 3D position of the vehicle in the suc-
cessive frames and project the 3D positions to the
front-camera image using the projective transfor-
mation. We treat trajectory prediction as a dense
prediction task which makes it interpretable during
navigation. Overall, only the language commands
and mouse clicks require manual effort, the rest of
the data-collection process is fully automated.

4 Problem Statement

Given an input of video frames V =
{Vt—k, Vt—kt1, -V}, contextual  historical
trajectory P and a language command
L = {l,Is,..Iny}, where t is the current
timestamp, k is the window size for historical
frames and N is the maximum number of words
in the linguistic expression, the goal is to predict
the navigable mask y; and the future trajectory
mask z; corresponding to the frame from current
timestamp, i.e. v;. The contextual trajectory P
is utilized to ensure that the network gets the
contextual information necessary to identify which
part of the linguistic command has been executed.
For example, if the linguistic command is "turn
left and park near the blue dustbin", the contextual
trajectory will provide information regarding the
trajectory already taken by the vehicle, i.e. whether
the "left turn" has been taken or not. The spatial
location of the navigation mask should determine
the trajectory path’s direction; similarly, the
orientation of the trajectory path should determine
the location of the navigable regions. In the next
section we describe the network architecture and
the training process.

5 Methodology

We propose a novel multi-task network for naviga-
tion region prediction and future trajectory predic-
tion tasks. Both tasks are treated as dense predic-
tion tasks to make them interpretable for practical
scenarios. We convert the dense pixel points to 3D
world coordinates using inverse projective transfor-
mation during real-time inference. The architecture
for our model is illustrated in Figure 4. In this sec-
tion, we describe the feature extraction process and
the architecture in detail.

We utilize CLIP (Radford et al., 2021) to ex-

tract both linguistic and visual features. For the
linguistic expression L = {ly,ls,...Ix}, where
l; is the " word of the expression, we tok-
enize the linguistic command using CLIP tok-
enizer and pass it through CLIP architecture to
compute word-level feature representation F! =
{5 i) of shape RBXN*Ci  For visual
frames V' = {vi_k,Vt—k+1,...v¢}, the CLIP ar-
chitecture encodes the video features as F¥ =
U fijyrs - f#'}. Finally, for the trajectory
context P, we project the past trajectory on an im-
age having same size as the input video frames v;’s
and pass it through convolution and pooling layers
to get feature map F'P with the same feature size as
video frame features f;’s.

The input to our network are the video frames
V, historical trajectory context P and the language
command L. Specifically, for video V, we get
visual features F of shape RC»*T*HW \where
H, W, T, and C represent the height, width, time,
and channel dimensions, respectively. The trajec-
tory context feature FP € RC*1XHW contains
information about the past trajectory taken by the
vehicle. Following feature extraction, we concate-
nate the trajectory context feature F'? with video
features F'V along the temporal dimension resulting
in joint feature Fv? € RCv*(T+)XHW capturing
the video and trajectory related contextual informa-
tion. Finally, we apply multi-head self-attention
over the joint contextual feature F'*P and linguistic
feature £ in the following manner,

F=F"0F!
A = Mhead(F, F, F) (1)
M = Conv3D(A  F)

Here, ® represents the length-wise concatena-
tion of the word-level linguistic features ' and
the joint feature F'“P, Mhead is the multi-head self-
attention over the multi-modal features F' and *
represents the matrix multiplication. Conv3D rep-
resents 3D convolution operation and is used to
collapse the temporal dimension, M is the final
multi-modal contextual feature with information
from both visual and linguistic modalities.

Next, we describe the procedure for predicting
the navigation and trajectory prediction masks. We
want the future trajectory and the navigable region
for the current time-step to be correlated with each
other, i.e. the future trajectory should point in the
direction of the predicted navigable region. Con-
sequently, we utilize the multi-modal contextual
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Figure 4: Overall pipeline of the proposed approach. Given the visual frames, already executed past trajectory
(context map) and the textual command, the network predicts a segmentation map corresponding to the navigable

region and a plausible future trajectory.

feature M to predict the segmentation masks corre-
sponding to the navigation and trajectory prediction
tasks. For each task, we have a separate segmenta-
tion head, where each segmentation head comprises
of sequence of convolution layers with upsampling
operation. For training the segmentation masks, we
utilize combo loss (Taghanaki et al., 2019) which
is a combination of binary cross-entropy loss and
dice loss:

Lyce = —(yt log(9e) + (1 — y¢) log(1 — 4¢))
e N Yy
Lo — 9 2t 19t (2)
dice * Eyt + Eyt

Lcombo = )\Lbce - (1 - A)Ldice

The proposed approach is end-end trainable and
the predicted trajectory is highly correlated with
the predicted navigation mask, as a result the pre-
dicted trajectory is interpretable in the sense that
it suggests the future route to be taken by the au-
tonomous vehicle.

6 Experiments

Implementation Details: We utilize CLIP back-
bone (Radford et al., 2021) for feature extraction.
The frames are selected with a stride of 10 and are
resized to 224 x 224 resolution. After feature ex-
traction, we get per-frame visual features of spatial
resolution H = W = 7 and channel dimension
C, = 512. For the historical contextual trajectory,
we plot the trajectory from the starting location of
episode to the current timestamp and resize it to
680 x 480 spatial resolution image, this is passed
as input through convolution + MLP layers to ob-
tain trajectory features with same resolution as per-
frame visual features. For linguistic features, we

use the CLIP tokenizer followed by the CLIP lan-
guage encoder to compute the word-level features
corresponding to the linguistic command. Maxi-
mum length of command is set to N = 20 and
the channel dimension is C; = 512. We use batch
size of 32 and our network is trained using AdamW
optimizer, the initial learning rate is set to 1e =% and
polynomial learning rate decay with power of 0.5
is used. For the combo loss, we set A = 0.3.

Live-Navigation: In order to utilize the segmen-
tation mask corresponding to the navigable region
directly for navigation, we first need to sample a
point from the predicted region. We take the largest
connected component from the predicted mask and
use its centroid as the target point for the local
planner. As we move closer to the final navigable
region, the distance between the current car loca-
tion and the centroid target location consistently de-
creases. Simultaneously, the area of the predicted
mask should increase as we move closer to the tar-
get region due to the perspective viewpoint of the
front camera. Consequently, we use an area-based
threshold to determine if the predicted navigation
mask corresponds to the final navigable region or
not. If the area of the predicted navigation mask is
higher than the threshold for five consecutive times,
we treat the predicted region as the final goal region
corresponding to the linguistic command and stop
the navigation.

Evaluation Metrics: Like previous approaches
to VLN (Schumann and Riezler, 2022; Xiang et al.,
2020; Chen et al., 2019), we use the gold stan-
dard Task Completion metric to measure the suc-
cess ratio for the navigation task. In addition, we
use Frechet Distance and normalized Dynamic
Time Warping (nDTW) metrics to compare the pre-



Task Completion

Method Val Test
RNR-S 0.44 0.29
RNR-SC | 0.52 0.32
CLIP-S 0.48 0.47
CLIP-SC | 0.52 0.50
CLIP-M 0.56 0.55
CLIP-MC | 0.72 0.68

Table 1: Results on the Task Completion metric. The
superior performance of proposed approach CLIP-MC,
showcases the effectiveness of historical context for the
navigation task.

dicted navigation path during live inference with
the ground truth navigation path.

6.1 Experimental Results

We compare our proposed approach CLIP-MC
against the RNR-based approach proposed in (Ru-
fus et al., 2021). We use their proposed approach
with CLIP-based backbone, CLIP-S as the baseline
for our experimental results. The original RNR
approach is limited to using a static scene with
linguistic commands for navigation, which fails
in a dynamically changing environment where the
scene can change drastically when we start the nav-
igation. Additionally, we motivate the benefits of
contextual trajectory and multiple frames by pre-
senting two variant baselines, (1) multiple frames
without a contextual trajectory CLIP-M and (2)
single frame with contextual trajectory CLIP-SC.
Table 1 presents the results on the gold standard
Task Completion metric and Table 2 presents the
results on Frechet Distance and nDTW metrics.
We observe that our proposed approach CLIP-
MC outperforms all the other variants. Introducing
historical contextual trajectory consistently helps
improve performance as it increases by 4% and
16% in cases of single-frame approaches (CLIP-
SC, CLIP-S) and multi-frame approaches (CLIP-
MC, CLIP-M), respectively on the validation split.
Furthermore, the multi-frame approach CLIP-M
gives an improvement of 8% on both the validation
and test splits, respectively, over the single-frame
approach CLIP-S. These results indicate that a com-
bination of multiple frames and contextual trajec-
tory are required to effectively tackle the VLN task.
In Table 2, we present experimental results on
the Frechet Distance and nDTW metrics. Our re-
formulated approach CLIP-MC outperforms all
other variants by significant margins. However,
we would like to stress that these metrics are not

Frechet Distance | nDTW 1
Method Val Test Val | Test
RNR-S 28.14 42.45 035 | 0.16
RNR-SC | 21.64 44.65 045 | 0.33
CLIP-S 40.30 42.53 0.23 | 0.24
CLIP-SC | 35.58 38.49 0.36 | 0.39
CLIP-M | 3292 53.10 0.39 | 0.26
CLIP-MC | 13.54 15.06 0.54 | 0.59

Table 2: Experimental results on the Frechet Distance
and nDTW metrics. | indicates lower value is better and
1 indicates that the higher value is better.

. Task Completion
Method Split o= = =2 =6 =8
val [ 052 [ 048 [ 052 [ 0.68 | 0.72
CLIP-MC - T050 [ 053 [ 0.56 [ 0.62 | 0.68
val | 048 | 044 | 048 [ 052 | 0.56
CLIP-M I 17047 1047 [ 050 [ 053 [ 055

Table 3: Ablation on the number of frames for multi-
frame models for the Task Completion metric.

indicative of the performance on the actual naviga-
tion task, as one outlier can drastically affect the
final score on these metrics. For example, if "a
left turn" is taken instead of "a right turn," the pre-
dicted trajectory will diverge from the ground truth
trajectory, and the score will be heavily penalized.

Effect of feature extraction backbone: Addi-
tionally, we compare our CLIP-based single frame
approaches with the original non-CLIP RNR ap-
proach proposed in (Rufus et al., 2021), referred
to as RNR-S and RNR-SC (single frame without
and with context, respectively) in Table 1. Both
RNR-S and RNR-SC are trained from scratch on
the proposed CARLA-NAV dataset. The results
showcase the advantage of superior multi-modal
features captured by the CLIP-based approaches
over non-CLIP approaches, as the performance con-
sistently increases on the challenging test split in
case of both with context (RNR-SC, CLIP-SC) and
without context (RNR-S, CLIP-S).

Effect of Number of Frames: In Table 3, we
study the impact of the number of video frames on
the multi-frame models for the Task Completion
metric. As the number of video frames increases,
the visual modality’s contextual information also
increases. We hypothesize that the network should
utilize this additional contextual information and
employ it effectively for the VLN task. The results
in Table 3 indeed corroborate our hypothesis, as
we observe consistent performance gains as the
number of video frames increases. The networks
with n = 1 frame give the same performance as the
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Figure 5: Qualitative navigation results in the CARLA-
NAV dataset. represents the starting point for
the navigation. Orange is used to depict the navigational
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S network’s navigational path and blue represents the
ground-truth path.

corresponding single-frame variants. We obtain the
best performance with n = 8 frames with CLIP-
MC on both validation and test splits.

6.2 Qualitative Results

In Figure 5, we qualitatively compare the proposed
approach CLIP-MC with the RNR approach (RNR-
S) proposed in (Rufus et al., 2021). We juxta-
pose the entire navigation path taken by each ap-
proach during live inference for a given linguistic
command and overlay it on the aerial map of the
CARLA environment. We showcase successful
navigation scenarios of CLIP-MC in (a) , (b) and
(c). With additional contextual information from
multiple frames and historical trajectory, CLIP-MC
can successfully perform "turning" and "stopping"
based navigational manoeuvres. While the RNR
approach, without any contextual information and
trained on static images, fails. For the command
“change to the left lane", RNR-S fails to change the
lane and continues in a straight line. While CLIP-
MC manages to change the lane with a slight delay.
For the example in the bottom-right corner, the road
is curved in left direction and both the CLIP-MC
and RNR-S stop much before the traffic light, as
they mistake the curve with an intersection.

7 Conclusion

This paper proposes a language-guided navigation
approach in dynamically changing outdoor envi-
ronments. We reformulate the RNR approach, de-
signed for static scenes to make it amenable for
dynamic scenes. Our approach explicitly utilizes
visual grounding directly for the navigation task.
Along the same lines, we propose a novel meta-
dataset CARLA-NAYV, containing realistic scenar-
ios of language-based navigation in dynamic out-
door environments. Additionally, we propose a
novel multi-task grounding network for the tasks
of navigable region and future trajectory predic-
tion. The predicted navigable regions are explicitly
used for navigating the vehicle in the dynamic en-
vironment. The predicted future trajectories bring
interpretability to our approach and correlate with
the predicted navigable region, i.e., they indicate
the vehicle’s navigational route. Furthermore, the
proposed approach allows us to perform live navi-
gation in a dynamic CARLA environment. Finally,
quantitative and qualitative results validate our ap-
proach’s effectiveness and practicality.

8 Limitations & Future Work

A major limitation of our approach that limits the
practicality of our approach in real-world scenarios
is the synthetic nature of our dataset. Future work
should explore domain adaptation techniques like
(Kundu et al., 2021; Kang et al., 2020) to ensure
adaptability to real-world scenes. Stopping criteria
is another aspect that future work can focus on. In
this work, we utilize a rule-based stopping crite-
rion; however, learning the stopping criteria like
(Xiang et al., 2020) is more feasible for real-world
scalability. Finally, we employ the predicted future
trajectory to bring interpretability to our approach;
future work should incorporate the predicted trajec-
tory directly for end-to-end navigation.
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