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Abstract

We investigate the problem of Vision-and-001
Language Navigation (VLN) in the context of002
autonomous driving in outdoor settings. We003
solve the problem by explicitly grounding the004
navigable regions corresponding to the textual005
command. At each timestamp, the model pre-006
dicts a segmentation mask corresponding to the007
intermediate or the final navigable region. Our008
work contrasts with existing efforts in VLN,009
which pose this task as a node selection prob-010
lem, given a discrete connected graph corre-011
sponding to the environment. We do not as-012
sume the availability of such a discretised map.013
Our work moves towards continuity in action014
space, provides interpretability through visual015
feedback and allows VLN on commands like016
‘park between the two cars”, requiring finer ma-017
noeuvres. Furthermore, we propose a novel018
meta dataset CARLA-NAV to allow efficient019
training and validation. The dataset comprises020
pre-recorded training sequences and a live envi-021
ronment for validation and testing. We provide022
extensive qualitative and quantitive empirical023
results to validate the efficacy of the proposed024
approach.025

1 Introduction026

Humans have exceptional navigational abilities,027

which, combined with their visual and linguistic028

prowess, allow them to perform navigation based029

on the linguistic description of the objects of in-030

terest in the environment. This is in direct conse-031

quence of the human capability to associate visual032

elements with their linguistic descriptions. Refer-033

ring Expression Comprehension (REC) (Rohrbach034

et al., 2016) and Referring Image Segmentation035

(RIS) (Hu et al., 2016a) are two tasks for associ-036

ating the visual objects based on their linguistic037

descriptions using bounding-box-based and pixel-038

based localizations, respectively. However, it is039

non-trivial to utilize these localizations directly for040

a navigation task (Deruyttere et al., 2019). For041

Figure 1: A major limitation of single image based
grounding methods is that they fail if the language com-
mand is not immediately visible, which restricts these
methods to be used for VLN. Here, we show an example
result using the RNR model and on an image from their
dataset (Rufus et al., 2021). The model accurately local-
izes the black car (middle), however, the it completely
confuses when asked to predict the left turn, which does
not exist in the current view.

example, consider the linguistic command "take a 042

right turn from the intersection," an object-based 043

localization is not usable for navigation as it does 044

not answer the question "which region" on the road 045

to navigate to. To solve the aforementioned issue, 046

the task of Referring Navigable Regions (RNR) 047

was proposed in (Rufus et al., 2021) to localize the 048

navigable regions in a static front camera image on 049

the road corresponding to the linguistic command. 050

Although these single image-based visual 051

grounding methods (Rufus et al., 2021; Hu et al., 052

2016a; Deruyttere et al., 2019) showcase the ex- 053

cellent ability of neural networks to correlate vi- 054

sual and linguistic data, they are still limited in 055

many ways. These methods are trained on care- 056

fully paired data, assuming that the region to be 057

grounded is always visible in the frame. They 058

give an erroneous output when the region to be 059

grounded is not currently visible, is occluded, or 060

goes out of frame (as the carrier moves). Such sce- 061

narios are part of everyday language-guided nav- 062

igation; for instance, consider a command “Take 063

a right once you see the traffic signal" the traffic 064

signal here may not be immediately visible. Fig- 065

ure 1 illustrates one such scenario, where the single 066
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image-based RNR method gives an incorrect output067

that is not correlated with the linguistic command.068

As a second major limitation, single image-based069

predictions (Rufus et al., 2021) are devoid of any070

temporal context (short term or long term), which071

is crucial in successful navigation, especially in a072

dynamically changing environment. Finally, since073

single image methods are evaluated on frames from074

pre-recorded videos, they cannot be validated ap-075

propriately on their ability to complete the entire076

episode (from start to desired finish). Our work077

addresses these limitations and re-formulates the078

RNR approach to perform language-guided navi-079

gation in a dynamically changing environment by080

grounding intermediate navigable regions when the081

referred navigable region is not visible.082

Our work also contrasts with the prior art for083

language-guided navigation in both indoor and out-084

door environments. Most existing works on indoor085

navigation (Anderson et al., 2018; Shrestha et al.,086

2020; Zang et al., 2018) assume that the naviga-087

tional environment is fully known. This allows088

them to discretize the known map into a graphical089

representation, where the nodes are the set of navi-090

gable regions (landmarks) that the agent can navi-091

gate given the linguistic command. However, such092

an approach is not practical for outdoor settings093

(as studied in our work) where the environment is094

unknown. Moreover, even if the environment is095

known, discretization of the maps is not feasible096

when more refined localization and manoeuvres are097

required (e.g. “stop beside the person with a red098

cap").099

Finer control remains a challenge in indoor and100

outdoor VLN methods, which model navigation101

as a selection from a set of discrete actions (Schu-102

mann and Riezler, 2022; Zhu et al., 2021; Xiang103

et al., 2020) or as a reinforcement learning prob-104

lem (Anderson et al., 2018; Fu et al., 2019). For105

instance, one of the commonly used Touchdown106

dataset (Chen et al., 2019) consists of pre-recorded107

google street view images and allows navigation108

across street views by choosing from a set of four109

discrete actions, i.e. FORWARD, RIGHT, LEFT110

and STOP. Discretizing the action space (and the111

environment) limits the type of navigational ma-112

noeuvres that can be performed. For instance, these113

methods (Schumann and Riezler, 2022; Zhu et al.,114

2021; Xiang et al., 2020) cannot be used for com-115

mands like "park between the two cars on the right",116

which require fine-grained control of the car.117

The aforementioned issues become apparent in 118

a dynamically changing environment, where fine- 119

grained control of the car’s navigation and a fully 120

navigable environment is required to adapt to the 121

dynamic surroundings and perform navigational 122

manoeuvres based on the linguistic command. In 123

this paper, we present a novel meta-dataset in the 124

CARLA environment (Dosovitskiy et al., 2017) for 125

outdoor navigation, which addresses the limitations 126

associated with the existing navigation datasets. 127

Additionally, the visual grounding-based approach 128

combined with a planner allows us to have a fine- 129

grained control over the vehicle as it enables navi- 130

gation to any drivable region on the road. 131

Another concern with the current sequence-to- 132

sequence and reinforcement learning approaches is 133

that their predictions are not interpretable. It is non- 134

trivial to understand their predictions as there is no 135

feedback. Instead, in the visual-grounding-based 136

approach, there is visual feedback associated with 137

each prediction in terms of the segmentation mask 138

corresponding to the navigable region on the road. 139

We take a step forward and also predict the short 140

term intermediate trajectories, using a novel multi- 141

task network. Moreover, we perform live inference 142

on the proposed meta-dataset in a dynamic environ- 143

ment. To the best of our knowledge, this is the first 144

attempt towards live language-based navigation in 145

outdoor environments. Lastly, we conduct com- 146

prehensive qualitative and quantitative ablations to 147

validate the effectiveness of our approach. To sum- 148

marize, the main contributions of this paper are the 149

following: 150

• We present a vision language navigation 151

tool, CARLA-NAV, on the CARLA simula- 152

tor which provides fine-tuned control of the 153

vehicle to execute various language-based nav- 154

igational manoeuvres. 155

• We propose a novel multi-task network for tra- 156

jectory prediction and per-frame RNR tasks 157

in dynamic outdoor environments. The pre- 158

diction for each task is explainable and inter- 159

pretable in the form of segmentation masks. 160

• We perform real-time navigation in the 161

CARLA environment with a diverse set of 162

linguistic commands. 163

• Finally, extensive qualitative and quantitative 164

ablations are performed to validate the practi- 165

cality of our approach. 166
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Figure 2: Ground truth annotations of three sampled frames from an episode of CARLA-NAV dataset. The textual
command for the episode is shown on the top. The green rectangle illustrates the navigable region and the red curve
corresponds to the short future trajectory. (a) At the start, the left turn or the final navigable region is not visible, so
a straight path is chosen as intermediate mask; (b) the intermediate mask corresponding to the left turn; (c) final
navigable region (stop next to bus stop).

2 Related Work167

2.1 Visual Grounding168

Visual grounding aims to help associate the linguis-169

tic description of entities with their visual counter-170

parts by localizing them visually. There are two171

prevalent approaches for visual grounding based172

on the type of localization used. Proposal-based173

localization is formally referred to as Referring174

Expression Comprehension (REC). Most meth-175

ods in REC follow a propose-then-rank strategy,176

where the ranking is done using similarity scores177

(Rohrbach et al., 2016; Hu et al., 2016b; Plum-178

mer et al., 2018; Rufus et al., 2020) or through179

attention-based methods (Deng et al., 2018; Zhang180

et al., 2018; Yang et al., 2019; Qiu et al., 2020). The181

other approach is to localize the objects by their182

pixel-level segmentation mask, formally known183

as Referring Image Segmentation (RIS). In RIS,184

methods use different strategies to fuse the spatial185

information of the image with the word-level infor-186

mation of the language query (Shi et al., 2018; Ye187

et al., 2019; Huang et al., 2020; Jain and Gandhi,188

2022). Recently, (Rufus et al., 2021) proposed the189

Referring Navigable Region (RNR) task to directly190

localize the navigable regions on the road corre-191

sponding to the language commands. However,192

their work limits to predictions on static images in193

pre-recorded video sequences (Caesar et al., 2020).194

We propose reformulating the RNR task for dy-195

namic outdoor settings and performing real-time196

navigation based on language commands.197

2.2 Language-based Navigation198

Majority of efforts on Vision Language Naviga-199

tion (VLN) have focused on the indoor scenario.200

Availability of interactive synthetic environments201

has played a key role in indoor navigation re-202

search. The environments are either designed203

manually by 3D artists (Kolve et al., 2017; Wu 204

et al., 2018) or are constructed using RGB-D scans 205

of actual buildings (Chang et al., 2017). Exist- 206

ing methods have approached language guided 207

navigation in variety of ways, including imita- 208

tion learning (Nguyen et al., 2019; Nguyen and 209

Daumé III, 2019), behavior cloning (Das et al., 210

2018), sequence-to-sequence translation (Anderson 211

et al., 2018) and cross-modal attention (Cornia and 212

Cucchiara, 2019). In these methods, the navigation 213

is modelled as traversing an undirected graph, pre- 214

suming known environment topologies. In recent 215

work, (Krantz et al., 2020) suggest that the per- 216

formance in prior ‘navigation-graph’ settings may 217

be inflated by strong implicit assumptions. Hu et 218

al. (Hu et al., 2019) questions the role of visual 219

grounding itself by highlighting that models which 220

only use route structure outperform their visual 221

counterparts in unseen new environments. Most 222

indoor VLN methods are also hindered by limit- 223

ing the output to a discretized action space (Irshad 224

et al., 2021). 225

For outdoor VLN, Sriram et al. (Sriram et al., 226

2019) use CARLA environment to perform nav- 227

igation as waypoint selection problem, however, 228

their work limits to only turning actions. The 229

Talk2Car dataset limits to localizing the referred 230

object (Deruyttere et al., 2019). Another line of 231

work focuses on interactive navigation environment 232

of Google Street View (Mirowski et al., 2018). 233

The Touchdown dataset (Chen et al., 2019) pro- 234

poses a task of following instructions to reach a 235

goal (identifying a hidden teddy bear). Map2Seq 236

dataset (Schumann and Riezler, 2020) learns to 237

generate navigation instructions that contain visi- 238

ble and salient landmarks from human natural lan- 239

guage instructions. The navigation on both datasets 240

is modelled as node selection in a discrete connec- 241

tivity graph. Most methods (Schumann and Riezler, 242
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2022; Zhu et al., 2021; Xiang et al., 2020) using243

these datasets, solve outdoor VLN as sequence to244

sequence translation in a discrete action space. The245

role of vision modality remains illusive when tested246

in unseen areas (Schumann and Riezler, 2022). In247

this work, we propose a paradigm shift towards248

utilizing RNR-based approaches for VLN. The ex-249

plicit visual grounding forces the network to utilize250

visual information. Integrating with a local planner,251

the navigation is performed in a continuous space,252

without any reliance on the map information.253

3 Dataset254

The proposed CARLA-NAV dataset was curated255

using the open-source Carla Simulator for au-256

tonomous driving research. It contains episodic257

level data, where each episode consists of a lan-258

guage command and the corresponding video from259

Carla Simulator of navigation towards the final260

goal region described by the command. Example261

ground truth annotations from an episode from the262

CARLA-NAV dataset are shown in Figure 2. The263

ground truth segmentation mask for each frame264

either corresponds to the final or an intermediate265

navigable region. Each frame is additionally an-266

notated with a plausible future trajectory of the267

vehicle in the next few frames.268

The dataset includes video sequences captured269

in 8 different maps, 14 distinct weather conditions,270

and a diverse range of vehicles and passengers in271

the environment. The language commands in our272

dataset contain detailed visual descriptions of the273

environment and describe a wide range of manoeu-274

vres. In some cases, there are multiple manoeuvres275

in a single command, e.g., "stop for the traffic light,276

then take a right turn and park near the bus stand."277

Overall, the training split of the dataset consists278

of 500 episodes, the validation split consists of 25279

episodes, and the test split consists of 34 episodes.280

During data collection, in each episode, the vehicle281

is spawned in a randomly selected map at a ran-282

dom position. During the training phase, we use283

the pre-recorded sequence for the network training.284

However, during the inference phase on validation285

and test splits, for each episode, we spawn the ve-286

hicle at the corresponding starting location, and the287

navigation is performed based on network predic-288

tion and not on the pre-recorded sequences.289

3.1 Dataset Creation290

We created a data-collection toolkit on top of291

Carla’s API and plan to open-source it upon accep-292

Figure 3: Pipeline for the data collection procedure. The
user is provided with a language command conforming
to the current environment state. Based on the linguistic
command, the user successively selects the navigable
region on the road until the final destination correspond-
ing to the command is reached.

tance. The data collection process is illustrated in 293

Figure 3. It happens in a two step manual process: 294

(a) providing a language command through a text 295

prompt and (b) navigating the Carla environment 296

based on the language command through mouse 297

clicks. The 2D point corresponding to the mouse 298

click in the front view of the car is transformed 299

into the 3D world coordinates using Inverse Pro- 300

jective transform; and this 3D position is passed as 301

input to the local planner to navigate the CARLA 302

environment. We use CARLA’s default rule-based 303

planner for our case; however, this can easily be re- 304

placed with more sophisticated planners like RRT* 305

or end-to-end imitation learning models like NEAT 306

(Chitta et al., 2021). An episode comprise of mul- 307

tiple mouse clicks, until the final navigable region 308

is not visible in the front view. These intermediate 309

mouse clicks signify the intermediate navigable re- 310

gions, and the last mouse click depicts the final goal 311

region corresponding to the command. The mouse 312

clicks are converted into segmentation masks by 313
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drawing a 3m × 4m rectangle (approx size of a314

car) in the top view, centered at the mouse click.315

The rectangle is then projected in the front-camera.316

Similarly, for the future trajectory prediction task,317

we take the 3D position of the vehicle in the suc-318

cessive frames and project the 3D positions to the319

front-camera image using the projective transfor-320

mation. We treat trajectory prediction as a dense321

prediction task which makes it interpretable during322

navigation. Overall, only the language commands323

and mouse clicks require manual effort, the rest of324

the data-collection process is fully automated.325

4 Problem Statement326

Given an input of video frames V =327

{vt−k, vt−k+1, ...vt}, contextual historical328

trajectory P and a language command329

L = {l1, l2, ...lN}, where t is the current330

timestamp, k is the window size for historical331

frames and N is the maximum number of words332

in the linguistic expression, the goal is to predict333

the navigable mask yt and the future trajectory334

mask zt corresponding to the frame from current335

timestamp, i.e. vt. The contextual trajectory P336

is utilized to ensure that the network gets the337

contextual information necessary to identify which338

part of the linguistic command has been executed.339

For example, if the linguistic command is "turn340

left and park near the blue dustbin", the contextual341

trajectory will provide information regarding the342

trajectory already taken by the vehicle, i.e. whether343

the "left turn" has been taken or not. The spatial344

location of the navigation mask should determine345

the trajectory path’s direction; similarly, the346

orientation of the trajectory path should determine347

the location of the navigable regions. In the next348

section we describe the network architecture and349

the training process.350

5 Methodology351

We propose a novel multi-task network for naviga-352

tion region prediction and future trajectory predic-353

tion tasks. Both tasks are treated as dense predic-354

tion tasks to make them interpretable for practical355

scenarios. We convert the dense pixel points to 3D356

world coordinates using inverse projective transfor-357

mation during real-time inference. The architecture358

for our model is illustrated in Figure 4. In this sec-359

tion, we describe the feature extraction process and360

the architecture in detail.361

We utilize CLIP (Radford et al., 2021) to ex-362

tract both linguistic and visual features. For the 363

linguistic expression L = {l1, l2, ...lN}, where 364

li is the ith word of the expression, we tok- 365

enize the linguistic command using CLIP tok- 366

enizer and pass it through CLIP architecture to 367

compute word-level feature representation F l = 368

{f l
1, f

l
2, ..., f

l
N} of shape RB×N×Cl . For visual 369

frames V = {vt−k, vt−k+1, ...vt}, the CLIP ar- 370

chitecture encodes the video features as F v = 371

{fv
t−k, f

v
t−k+1, ...f

v
t }. Finally, for the trajectory 372

context P , we project the past trajectory on an im- 373

age having same size as the input video frames vt’s 374

and pass it through convolution and pooling layers 375

to get feature map F p with the same feature size as 376

video frame features fv
t ’s. 377

The input to our network are the video frames 378

V , historical trajectory context P and the language 379

command L. Specifically, for video V , we get 380

visual features F v of shape RCv×T×HW , where 381

H, W, T, and C represent the height, width, time, 382

and channel dimensions, respectively. The trajec- 383

tory context feature F p ∈ RCv×1×HW contains 384

information about the past trajectory taken by the 385

vehicle. Following feature extraction, we concate- 386

nate the trajectory context feature F p with video 387

features F v along the temporal dimension resulting 388

in joint feature F vp ∈ RCv×(T+1)×HW capturing 389

the video and trajectory related contextual informa- 390

tion. Finally, we apply multi-head self-attention 391

over the joint contextual feature F vp and linguistic 392

feature F l in the following manner, 393

F = F vp ⊙ F l

A = Mhead(F, F, F )

M = Conv3D(A ∗ F )

(1) 394

Here, ⊙ represents the length-wise concatena- 395

tion of the word-level linguistic features F l and 396

the joint feature F vp, Mhead is the multi-head self- 397

attention over the multi-modal features F and ∗ 398

represents the matrix multiplication. Conv3D rep- 399

resents 3D convolution operation and is used to 400

collapse the temporal dimension, M is the final 401

multi-modal contextual feature with information 402

from both visual and linguistic modalities. 403

Next, we describe the procedure for predicting 404

the navigation and trajectory prediction masks. We 405

want the future trajectory and the navigable region 406

for the current time-step to be correlated with each 407

other, i.e. the future trajectory should point in the 408

direction of the predicted navigable region. Con- 409

sequently, we utilize the multi-modal contextual 410
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Figure 4: Overall pipeline of the proposed approach. Given the visual frames, already executed past trajectory
(context map) and the textual command, the network predicts a segmentation map corresponding to the navigable
region and a plausible future trajectory.

feature M to predict the segmentation masks corre-411

sponding to the navigation and trajectory prediction412

tasks. For each task, we have a separate segmenta-413

tion head, where each segmentation head comprises414

of sequence of convolution layers with upsampling415

operation. For training the segmentation masks, we416

utilize combo loss (Taghanaki et al., 2019) which417

is a combination of binary cross-entropy loss and418

dice loss:419

Lbce = −(yt log(ŷt) + (1− yt) log(1− ŷt))

Ldice = 2 ∗ ŷt ∩ yt
Σŷt +Σyt

Lcombo = λLbce − (1− λ)Ldice

(2)420

The proposed approach is end-end trainable and421

the predicted trajectory is highly correlated with422

the predicted navigation mask, as a result the pre-423

dicted trajectory is interpretable in the sense that424

it suggests the future route to be taken by the au-425

tonomous vehicle.426

6 Experiments427

Implementation Details: We utilize CLIP back-428

bone (Radford et al., 2021) for feature extraction.429

The frames are selected with a stride of 10 and are430

resized to 224× 224 resolution. After feature ex-431

traction, we get per-frame visual features of spatial432

resolution H = W = 7 and channel dimension433

Cv = 512. For the historical contextual trajectory,434

we plot the trajectory from the starting location of435

episode to the current timestamp and resize it to436

680× 480 spatial resolution image, this is passed437

as input through convolution + MLP layers to ob-438

tain trajectory features with same resolution as per-439

frame visual features. For linguistic features, we440

use the CLIP tokenizer followed by the CLIP lan- 441

guage encoder to compute the word-level features 442

corresponding to the linguistic command. Maxi- 443

mum length of command is set to N = 20 and 444

the channel dimension is Cl = 512. We use batch 445

size of 32 and our network is trained using AdamW 446

optimizer, the initial learning rate is set to 1e−4 and 447

polynomial learning rate decay with power of 0.5 448

is used. For the combo loss, we set λ = 0.3. 449

Live-Navigation: In order to utilize the segmen- 450

tation mask corresponding to the navigable region 451

directly for navigation, we first need to sample a 452

point from the predicted region. We take the largest 453

connected component from the predicted mask and 454

use its centroid as the target point for the local 455

planner. As we move closer to the final navigable 456

region, the distance between the current car loca- 457

tion and the centroid target location consistently de- 458

creases. Simultaneously, the area of the predicted 459

mask should increase as we move closer to the tar- 460

get region due to the perspective viewpoint of the 461

front camera. Consequently, we use an area-based 462

threshold to determine if the predicted navigation 463

mask corresponds to the final navigable region or 464

not. If the area of the predicted navigation mask is 465

higher than the threshold for five consecutive times, 466

we treat the predicted region as the final goal region 467

corresponding to the linguistic command and stop 468

the navigation. 469

Evaluation Metrics: Like previous approaches 470

to VLN (Schumann and Riezler, 2022; Xiang et al., 471

2020; Chen et al., 2019), we use the gold stan- 472

dard Task Completion metric to measure the suc- 473

cess ratio for the navigation task. In addition, we 474

use Frechet Distance and normalized Dynamic 475

Time Warping (nDTW) metrics to compare the pre- 476
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Method Task Completion
Val Test

RNR-S 0.44 0.29
RNR-SC 0.52 0.32
CLIP-S 0.48 0.47

CLIP-SC 0.52 0.50
CLIP-M 0.56 0.55

CLIP-MC 0.72 0.68

Table 1: Results on the Task Completion metric. The
superior performance of proposed approach CLIP-MC,
showcases the effectiveness of historical context for the
navigation task.

dicted navigation path during live inference with477

the ground truth navigation path.478

6.1 Experimental Results479

We compare our proposed approach CLIP-MC480

against the RNR-based approach proposed in (Ru-481

fus et al., 2021). We use their proposed approach482

with CLIP-based backbone, CLIP-S as the baseline483

for our experimental results. The original RNR484

approach is limited to using a static scene with485

linguistic commands for navigation, which fails486

in a dynamically changing environment where the487

scene can change drastically when we start the nav-488

igation. Additionally, we motivate the benefits of489

contextual trajectory and multiple frames by pre-490

senting two variant baselines, (1) multiple frames491

without a contextual trajectory CLIP-M and (2)492

single frame with contextual trajectory CLIP-SC.493

Table 1 presents the results on the gold standard494

Task Completion metric and Table 2 presents the495

results on Frechet Distance and nDTW metrics.496

We observe that our proposed approach CLIP-497

MC outperforms all the other variants. Introducing498

historical contextual trajectory consistently helps499

improve performance as it increases by 4% and500

16% in cases of single-frame approaches (CLIP-501

SC, CLIP-S) and multi-frame approaches (CLIP-502

MC, CLIP-M), respectively on the validation split.503

Furthermore, the multi-frame approach CLIP-M504

gives an improvement of 8% on both the validation505

and test splits, respectively, over the single-frame506

approach CLIP-S. These results indicate that a com-507

bination of multiple frames and contextual trajec-508

tory are required to effectively tackle the VLN task.509

In Table 2, we present experimental results on510

the Frechet Distance and nDTW metrics. Our re-511

formulated approach CLIP-MC outperforms all512

other variants by significant margins. However,513

we would like to stress that these metrics are not514

Method Frechet Distance ↓ nDTW ↑
Val Test Val Test

RNR-S 28.14 42.45 0.35 0.16
RNR-SC 21.64 44.65 0.45 0.33
CLIP-S 40.30 42.53 0.23 0.24

CLIP-SC 35.58 38.49 0.36 0.39
CLIP-M 32.92 53.10 0.39 0.26

CLIP-MC 13.54 15.06 0.54 0.59

Table 2: Experimental results on the Frechet Distance
and nDTW metrics. ↓ indicates lower value is better and
↑ indicates that the higher value is better.

Method Split Task Completion
n=1 n=2 n=4 n=6 n=8

CLIP-MC val 0.52 0.48 0.52 0.68 0.72
test 0.50 0.53 0.56 0.62 0.68

CLIP-M val 0.48 0.44 0.48 0.52 0.56
test 0.47 0.47 0.50 0.53 0.55

Table 3: Ablation on the number of frames for multi-
frame models for the Task Completion metric.

indicative of the performance on the actual naviga- 515

tion task, as one outlier can drastically affect the 516

final score on these metrics. For example, if "a 517

left turn" is taken instead of "a right turn," the pre- 518

dicted trajectory will diverge from the ground truth 519

trajectory, and the score will be heavily penalized. 520

Effect of feature extraction backbone: Addi- 521

tionally, we compare our CLIP-based single frame 522

approaches with the original non-CLIP RNR ap- 523

proach proposed in (Rufus et al., 2021), referred 524

to as RNR-S and RNR-SC (single frame without 525

and with context, respectively) in Table 1. Both 526

RNR-S and RNR-SC are trained from scratch on 527

the proposed CARLA-NAV dataset. The results 528

showcase the advantage of superior multi-modal 529

features captured by the CLIP-based approaches 530

over non-CLIP approaches, as the performance con- 531

sistently increases on the challenging test split in 532

case of both with context (RNR-SC, CLIP-SC) and 533

without context (RNR-S, CLIP-S). 534

Effect of Number of Frames: In Table 3, we 535

study the impact of the number of video frames on 536

the multi-frame models for the Task Completion 537

metric. As the number of video frames increases, 538

the visual modality’s contextual information also 539

increases. We hypothesize that the network should 540

utilize this additional contextual information and 541

employ it effectively for the VLN task. The results 542

in Table 3 indeed corroborate our hypothesis, as 543

we observe consistent performance gains as the 544

number of video frames increases. The networks 545

with n = 1 frame give the same performance as the 546
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Figure 5: Qualitative navigation results in the CARLA-
NAV dataset. Yellow represents the starting point for
the navigation. Orange is used to depict the navigational
path taken by CLIP-MC network, green denotes RNR-
S network’s navigational path and blue represents the
ground-truth path.

corresponding single-frame variants. We obtain the547

best performance with n = 8 frames with CLIP-548

MC on both validation and test splits.549

6.2 Qualitative Results550

In Figure 5, we qualitatively compare the proposed551

approach CLIP-MC with the RNR approach (RNR-552

S) proposed in (Rufus et al., 2021). We juxta-553

pose the entire navigation path taken by each ap-554

proach during live inference for a given linguistic555

command and overlay it on the aerial map of the556

CARLA environment. We showcase successful557

navigation scenarios of CLIP-MC in (a) , (b) and558

(c). With additional contextual information from559

multiple frames and historical trajectory, CLIP-MC560

can successfully perform "turning" and "stopping"561

based navigational manoeuvres. While the RNR562

approach, without any contextual information and563

trained on static images, fails. For the command564

“change to the left lane", RNR-S fails to change the565

lane and continues in a straight line. While CLIP-566

MC manages to change the lane with a slight delay.567

For the example in the bottom-right corner, the road568

is curved in left direction and both the CLIP-MC569

and RNR-S stop much before the traffic light, as570

they mistake the curve with an intersection.571

7 Conclusion 572

This paper proposes a language-guided navigation 573

approach in dynamically changing outdoor envi- 574

ronments. We reformulate the RNR approach, de- 575

signed for static scenes to make it amenable for 576

dynamic scenes. Our approach explicitly utilizes 577

visual grounding directly for the navigation task. 578

Along the same lines, we propose a novel meta- 579

dataset CARLA-NAV, containing realistic scenar- 580

ios of language-based navigation in dynamic out- 581

door environments. Additionally, we propose a 582

novel multi-task grounding network for the tasks 583

of navigable region and future trajectory predic- 584

tion. The predicted navigable regions are explicitly 585

used for navigating the vehicle in the dynamic en- 586

vironment. The predicted future trajectories bring 587

interpretability to our approach and correlate with 588

the predicted navigable region, i.e., they indicate 589

the vehicle’s navigational route. Furthermore, the 590

proposed approach allows us to perform live navi- 591

gation in a dynamic CARLA environment. Finally, 592

quantitative and qualitative results validate our ap- 593

proach’s effectiveness and practicality. 594

8 Limitations & Future Work 595

A major limitation of our approach that limits the 596

practicality of our approach in real-world scenarios 597

is the synthetic nature of our dataset. Future work 598

should explore domain adaptation techniques like 599

(Kundu et al., 2021; Kang et al., 2020) to ensure 600

adaptability to real-world scenes. Stopping criteria 601

is another aspect that future work can focus on. In 602

this work, we utilize a rule-based stopping crite- 603

rion; however, learning the stopping criteria like 604

(Xiang et al., 2020) is more feasible for real-world 605

scalability. Finally, we employ the predicted future 606

trajectory to bring interpretability to our approach; 607

future work should incorporate the predicted trajec- 608

tory directly for end-to-end navigation. 609
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