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ABSTRACT

Prompt tuning has emerged as an effective way for parameter-efficient fine-tuning.
Conventional deep prompt tuning inserts continuous prompts of a fixed context
length into the input to each layer. When a pre-trained model is tailored to
a specific downstream task, different layers initialized with pre-trained weights
might have, depending on the distribution shift type, different levels of deviation
from the optimal weights. Inserted prompts with a fixed context length might
have redundant context tokens or insufficient context length. To address this
issue, we propose a deep continuous prompting method dubbed Adapt that en-
courages heterogeneous context lengths. Context lengths are automatically de-
termined by iteratively pruning context tokens. We use the saliency criterion
for the neural network pruning to compute the importance scores of context to-
kens in order to determine which tokens to prune. We examine the proposed
method on the pre-trained vision-language model CLIP. Extensive experiments
on 11 downstream datasets reveal the advantage of Adapt: the average test ac-
curacy increases from 79.83% to 81.70%. The highest performance gain on
individual datasets is 9.63%. At the same time, the computational overheads
are comparable to or smaller than baseline methods. We release the code in
https://anonymous.4open.science/r/Adapt-Release.

1 INTRODUCTION

Large-scale models have gained significant attention in language (Brown, 2020; Wang et al., 2021;
Touvron et al., 2023), vision (He et al., 2022; Zou et al., 2024; Esser et al., 2024) and multimodality
(Radford et al., 2021; Lu et al., 2022; Lai et al., 2024; Liu et al., 2024). When applying pre-trained
large-scale models to various downstream tasks, the zero-shot performance can be sub-optimal.
Although fine-tuning remarkably elicits the potential of pre-trained models, the fine-tuning process
is computationally expensive. Parameter-efficient fine-tuning (PEFT) offers an efficient way to adapt
the pre-trained model to various downstream tasks at a low cost. PEFT enhances the performance
of pre-trained models by reparametrizing model weights (Hu et al., 2021; Dettmers et al., 2024;
Zhao et al., 2024), additive modules (Chen et al., 2022b; Zhang et al., 2023; Mou et al., 2024) and
selective weight updates (Ding et al., 2023; Lawton et al., 2023; Fu et al., 2023). Among PEFT
methods, prompting methods have the least effect on backbone models as they focus on the input
instead of model parameters.

Prompts can be categorized into discrete prompts and continuous prompts. Discrete prompts use
concrete word tokens to prompt pre-trained models. Compared to discrete prompts, continuous
prompts (also called soft prompts) relax the token embedding space to be continuous. Hence, con-
tinuous prompts are differentiable and parameterized by their weights. They can be automatically
tuned conditioning on downstream tasks.

Continuous prompts have shown competitive performance in language (Li & Liang, 2021; Gu et al.,
2021; Liu et al., 2021; 2023), vision (Jia et al., 2022; Bahng et al., 2022; Han et al., 2023) and
multimodality (Zhou et al., 2022b; Shu et al., 2022; Ju et al., 2022; Wang et al., 2022). Exist-
ing continuous prompting methods use the prompt depth and context length to design continuous
prompts. The underlying constraint is that the context length remains constant at different depths.
If different layers have different levels of deviation from the optimal weights for downstream tasks,
the constraint might be detrimental to the performance.
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Recent works (Lee et al., 2022; Chiatti et al., 2023; Panigrahi et al., 2023) have found that some
layers of pre-trained models, depending on the distribution shift, are close to the optimal for down-
stream tasks. Fine-tuning layers that are far away from the optimal weights can achieve better
performance than training all the layers uniformly. For prompting methods, we postulate that the
layers far away from the optimal weights require longer context length while the layers close to the
optimal weights demand shorter context length or even no context token. Hence, we seek to remove
the constraint in the existing continuous prompting methods that require the same context length at
different depths.

To this end, we propose a method dubbed adaptive prompt tuing (Adapt) that automatically deter-
mines context lengths at various depths. Adapt uses a time-dependent binary mask to dynamically
control context lengths. The variation of the binary mask depends on the importance of context
tokens. The least important context token is constantly removed until the budget (a hyperparameter
to control the total context length) is reached. We test the performance of Adapt on various down-
stream task. Adapt outperforms baseline methods by a large margin as shown in Figure 1. To our
best knowledge, this is the first work to prune prompts for achieving heterogeneous context lengths.

The main contribution of adapt is summarized as follows:

• We propose a method that removes the constraint in the existing continuous prompting
methods that context lengths remain constant through the entire prompt depth. Adapt en-
courages a more flexible design for prompting methods.

• Context lengths are automatically determined in a non-parametric manner: prompts are
initialized with the maximum context length and then iteratively pruned based on the im-
portance score of context tokens. We use saliency criteria to characterize the importance
of inserted context tokens. Pruning can effectively reduce the computational overhead with
the minimal performance drop.

• Context lengths can vary based on the downstream datasets. We use a hyperparameter of
total context lengths to ensure the complexity of Adapt on various datasets is approximately
the same.
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Figure 1: Average test accuracy over 11 datasets of different prompt tuning methods. Adapt sur-
passes state-of-the-art methods. We use Snip to compute importance scores and Ttarget = 32.

2 RELATED WORK

Prompt Tuning Prompt tuning (PT) uses continuous prompts to improve the performance of pre-
trained models in diverse downstream tasks. CoOp (Zhou et al., 2022b) is the pioneering work to
apply PT for vision-language models. PT has shown great potential in various areas including image
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classification (Zhou et al., 2022b;a; Hirohashi et al., 2024), out-of-distribution detection (Miyai
et al., 2024; Li et al., 2024), video understanding (Ju et al., 2022; Huang et al., 2023), object detection
(Du et al., 2022; He et al., 2023), etc. Due to the good alignment of text and image representations
of foundational vision-language models, there are emerging researches on applying those models
such as CLIP (Radford et al., 2021) to vision-language tasks. VPT (Jia et al., 2022) proposes a
paradigm of deep continuous prompting. PLOT (Chen et al., 2022a) applies the optimal transport
theory to improve the alignment between visual features and prompts. ProGrad (Zhu et al., 2023)
and KgCoOp (Yao et al., 2023) distill the prior knowledge from the pre-trained model to avoid
forgetting issues (Li & Hoiem, 2017; Gou et al., 2021). MaPLe (Khattak et al., 2023) uses linear
transformation layers to enhance the coupling between the text and image branches. LAMM (Gao
et al., 2024) uses dynamic category embedding and hierarchical loss to achieve an appropriate label
distribution.

Network Pruning Over-parametrization is a well-known property of deep neural networks. Net-
work pruning removes unimportant model parameters to improve efficiency. It can be categorized
into structured pruning and unstructured pruning. Unstructured pruning such as (Han et al., 2015)
removes individual parameters while structured pruning such as (Liu et al., 2018) prunes models
at a higher level (e.g. neurons, filters, and layers). A fundamental question in network pruning is
to identify a saliency criterion to determine the importance of model parameters. Snip (Lee et al.,
2018) is a classic way to characterize the importance and can lead to a very sparse network without
sacrificing too much performance.

Sparse Training Sparse training decreases a portion of model parameters based on the pre-defined
pruning strategy. SViTE (Chen et al., 2021) iteratively uses a prune-and-grow strategy to update the
model sparsity. Specifically, the linear transformation layers to query, key, and value are pruned.
Mask tuning Zheng et al. (2023) updates those layers in a differentiable manner, i.e., masks con-
trolling sparsity is updated by learning instead of pruning. DRSformer Chen et al. (2023) utilizes
learnable selection operators for attention scores in lieu of linear transformation layers.

In both network pruning and sparse training, sparsity distribution is a key factor. Concentrated
pruning on a neural layer can cause the disconnection issue in neural networks. Nevertheless, when
pruning soft prompts, this issue is inherently solved. If the entire deep soft prompts for a layer
of a pre-trained model are pruned (i.e. context length is 0), it indicates that the effective prompt
depth decreases by 1. This scenario is equivalent to the case in manually designed deep prompting
methods where the depth of neural network layers is larger than the prompt depth.

3 ADAPTIVE PROMPT TUNING

We examine Adapt on the vision-language model CLIP (Radford et al., 2021). CLIP is pre-trained
over 400 million image-text pairs. The pre-training process is in a contrastive learning fashion to
promote the alignment between text and image representations. CLIP consists of an image encoder
and a text encoder. The prediction is done by matching the text and image representations.

3.1 REVISITING CLIP

Given an input image I ∈ RH×W×3, the image encoder splits it into fixed-size patches that are pro-
jected into patch embeddings x ∈ R(Ni−1)×di (Dosovitskiy, 2020). A learnable classification token
embedding c

(0)
i is prepended to the patch embeddings. The concatenated sequence of embeddings

is passed to ℓ transformer blocks:

[c
(j)
i ,E

(j)
i ] = f (j)([c

(j−1)
i ,E

(j−1)
i ]) , (1)

where j ∈ N+, 1 ≤ j ≤ ℓ, f (j) is the j-th transformer block of the image encoder. E(0)
i = x. In the

head of the image encoder, a linear transformation layer πi : Rdi → Rd transforms the classification
token embedding in the image branch to the image representation f .
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A text prompt is fed to the text encoder to obtain the text embedding Et = [w1,w2, . . . ,wNt ] ∈
RNt×dt . The text embedding contains the classification token embedding as the first token embed-
ding. The text embedding is passed to ℓ transformer blocks:

E
(j)
t = g(j)(E

(j−1)
t ) , (2)

where g(j) is the j-th transformer block of the text encoder. In the head of the text encoder, a linear
transformation layer πt : Rdt → Rd transforms the classification token embedding in the text branch
to the text representation g.

The prediction for the input image I is computed by the cosine similarity between the text embedding
and the image embedding:

p(y = i|x) = exp(cos(fi,g)/τ)∑K
j=1 exp(cos(fj ,g)/τ)

. (3)

Here τ is the temperature parameter, K is the total number of classes.

3.2 TIME-DEPENDENT PROMPT

Figure 2 (a) showcases the traditional shallow and deep prompts for vision language models. Figure
2 (b)-(d) show the proposed Adapt method. In the fine-tuning process of the pre-trained model,
Adapt maximizes the likelihood of the correct label y:

max
P⊙M(t)

PP⊙M(t),θθθ(y|x,P⊙M(t), θθθ) , (4)

where θθθ is the weight of the pre-trained model that is frozen during the fine-tuning process. P ∈
Rℓ×ξ×d is the inserted continuous prompt. ξ is the maximum context length at various depths.
M(t) ∈ {0, 1}ℓ×ξ is a time-dependent binary mask. We use ⊙ to denote a modified Hadamard
operation M = P ⊙ M(t), where Mijk = PijkM(t)ij , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ξ, 1 ≤ k ≤ d.
For the vision-language model, there are two sets of independent prompts and binary masks. The
optimation objective is over Pf ⊙Mf (t) and Pg ⊙Mg(t). Pf and Pg are prompts for image and
text branches. Mf (t) and Mg(t) are binary masks for image and text branches.

We describe the optimization process of Adapt for the vision-language model as:

argmin
Pf ,Mf (t),Pg,Mg(t)

1

|D|
∑

x,y∈D
L(x, y|Pf ,Mf (t),Pg,Mg(t), θθθ) ,

s.t.
ℓf∑
i=1

ξf∑
j=1

Mf (t)ij +

ℓg∑
i=1

ξg∑
i=1

Mg(t)ij ≤ Ttarget ,
(5)

where the hyperparameter Ttarget is the target total context length. It determines the complexity
of the Adapt method. For the brevity, we do not explicitly mention Mf (t) for the image branch
and Mg(t) for the text branch. Instead we use M(t) as it can be applied to both the image and
text branch. M(t) is initialized to be M(0) = 1ℓ×ξ. At each iteration, we identify which token
to prune and set the corresponding binary mask to be 0, i.e. M(t)ij = 0. The total context length
continuously decreases until Ttarget is reached. We use Ttarget ≪ ℓ × ξ to ensure the efficiency of
the Adapt method.

In the pruning process, which context token to prune, i.e. finding i, j and set M(t)ij = 0, is deter-
mined by the importance of corresponding context tokens as shown in Figure 2 (d). We borrow the
saliency criterion widely used in the unstructured network pruning literature to measure the impor-
tance of context tokens. Specifically, we use Snip (Lee et al., 2018), gradient norm and l2-norm to
compute the importance scores Sc (also called saliency scores) for characterizing the importance.
For the t-th context token (t ∈ N+, 1 ≤ t ≤ ξ) at the depth l (l ∈ N+, 1 ≤ l ≤ ℓ), the importance
score computed by these three metrics is:

Snip: Sc =

∣∣∣∣ ∂L
∂Plt

⊙Plt

∣∣∣∣ , gradient norm: Sc =

∣∣∣∣ ∂L
∂Plt

∣∣∣∣ , l2-norm: Sc = |Plt| . (6)

M(t) controls the context length for each transformer block as shown in Figure 2 (b). M(t)⊙P is
the continuous prompt inserted to the pre-trained model. There is no constraint for context lengths
at various depths. Hence, the added prompt P⊙M(t) can be heterogeneous.

4
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Figure 2: (a) The architecture paradigm of existing shallow and deep prompting methods. The
former inserts prompts only into the inputs to the image and text encoders. The latter constantly
replaces the inserted prompts from the last transformer block with newly inserted prompts for the
current transformer block. Some works use a coupling function Fcp to bridge the text branch to the
image branch. (b) The proposed Adapt method encourages the pre-trained model to insert prompts
with different context lengths. We use two binary masks Mf (t) and Mg(t) to adaptively control
context lengths. Context lengths constantly change until the target Ttarget is reached. Context
lengths for these two branches at the same depth can be different. (c) In the multi-head attention, we
insert continuous prompts for key and value computation. The backbone model is frozen during the
fine-tuning process. Only continuous prompts are differentiable. (d) The selection of context tokens
to be pruned is based on the importance scores. We use the saliency criterion in the unstructured
pruning to compute scores.

3.3 PROMPT TUNING

Owing to M(t), the context length ξl varies during the fine-tuning process. Unlike the existing deep
prompting methods for the vision-language models that insert continuous prompts in the compu-
tation of key, value and query, Adapt inserts continuous prompts only for query and value in the
self-attention (Vaswani et al., 2017) as shown in Figure 2 (c). Given an input x for a transformer
block, the self-attention with inserted prompts in Adapt is computed by:

Q = fq(x) ∈ Rξorg×d, K = fk([P,x]) ∈ R(ξorg+ξ)×d, V = fv([P,x]) ∈ R(ξorg+ξ)×d . (7)

Self-Attention = Softmax(
QKT

√
d

)V . (8)
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Here fq , fk and fv are linear transformation functions for the query, key and value. ξorg is the
sequence length of the input without the inserted prompt. During the fine-tuning process, the pre-
trained model is frozen. Only inserted continuous prompts are optimized.

The proposed Adapt method for vision-language models is summarized in Algorithm 1. In the
pruning step, the ranking is done based on scores in the image and text branches. The context
tokens with the lowest score will be removed. The total context length in the text branch can be
different from that in the image branch. For the same branch, context lengths might vary at different
depths. Hence, compared to the manually designed continuous prompt, Adapt can have highly
heterogeneous context lengths. Besides, using the saliency criterion enables varying context lengths
without additional trainable parameters.

When the total context lengths of text and image branches reach Ttarget, we do not remove context
tokens. The accumulation period nk determines the number of accumulated steps to compute the
score. The pruning rate rp dictates the number of removed tokens per pruning step.

Algorithm 1 Adapt for vision-language models.
1: Input: A pre-trained vision-language model, prompt depth ℓf for the image encoder and ℓg for

the text encoder, maximum context length ξf for the image encoder and ξg for the text encoder,
target Ttarget, accumulation period nk and pruning rate rp.

2: Create a randomly initialized prompt Pf ∈ Rℓf×ξf×d for the image branch and Pg ∈ Rℓg×ξg×d

for the text branch, and a binary mask Mf (0) = 1ℓf×ξf for the image branch and Mg(0) =
1ℓg×ξg for the text branch.

3: Initialize accumulated score Sf = 0ℓf×ξf and Sg = 0ℓg×ξg .
4: for t = 1, . . . , nt do ▷ Loop through nt iterations
5: Insert the prompt Pf ⊙Mf (t) for the image branch and Pg ⊙Mg(t) for the text branch of

the pre-trained model as shown in Equation 7 and 8.
6: Perform forward and backward propagation to update Pf and Pg .
7: if

∑ℓf
i=1

∑ξf
j=1 Mf (t)ij +

∑ℓg
i=1

∑ξg
j=1 Mg(t)ij > Ttarget then ▷ When Ttarget is not

reached, prune context tokens
8: Compute scores ∆Sf ∈ Rℓf×ξf and ∆Sg ∈ Rℓg×ξg according to Equation 6.
9: Update accumulated scores Sf by Sf = Sf +∆Sf and Sg by Sg = Sg +∆Sg .

10: if t == ank, a ∈ N+ then
11: for Prune step = 1, . . . , rp do
12: (kmin, imin, jmin) = argmink,i,j{[Sk]ij |Mk(t)ij == 1}. ▷ Find valid context

tokens with the minimal score
13: Mkmin

(t)iminjmin
= 0. ▷ Prune context token

14: end for
15: Reset accumulated score Sf = 0ℓf×ξf and Sg = 0ℓg×ξg .
16: end if
17: end if
18: end for

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTS

Datasets We examine the proposed Adapt method over 11 datasets: Caltech101 (Fei-Fei et al.,
2004) and ImageNet (Deng et al., 2009) for the generic object recognition, DescribableTectures
(Cimpoi et al., 2014) for the texture recognition, EuroSAT (Helber et al., 2019) for the satellite im-
age recognition, FGVCAircraft (Maji et al., 2013), Food101 (Bossard et al., 2014), OxfordFlowers
(Nilsback & Zisserman, 2008), OxfordPets (Parkhi et al., 2012), and StanfordCars (Krause et al.,
2013) for the fine-grained image recognition, UCF101 (Soomro et al., 2012) for the action recog-
nition, and SUN397 (Xiao et al., 2010) for the scene recognition. We follow the few-shot learning
setting in CoOp (Zhou et al., 2022b). The number of shots is 16. For each dataset, the result is
averaged over 3 runs. A detailed description of 11 datasets can be found in the Appendix.
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Baselines We compare the proposed method with CoCoOp (Zhou et al., 2022a), VPT (Jia et al.,
2022), PLOT (Chen et al., 2022a), MaPLe (Khattak et al., 2023), ProGrad (Zhu et al., 2023), Kg-
CoOp (Yao et al., 2023) and LAMM (Gao et al., 2024). The original implementation of PLOT uses
ResNet (He et al., 2016) in the image encoder. For a fair comparison, we replace ResNet with ViT
in the image encoder. CoCoOp, PLOT, ProGrad, KgCoOp and LAMM use shallow prompts while
VPT and MaPLe use deep prompts. CoCoOp adds continuous prompts conditioned on the input
Image. PLOT uses the optimal transport theory to align the vision and text modalities. ProGrad
uses gradient-aligned knowledge distillation to alleviate the forgetting issue in the fine-tuning pro-
cess. KgCoOp uses the prior knowledge from the hand-crafted prompt in the knowledge distillation.
LAMM replaces the category tokens with trainable vectors and utilizes the hierarchical loss to pre-
serve the generalization ability of the pre-trained model. VPT proposes a deep prompting method.
MaPLe uses a coupling function to bridge the image branch and text branch.

Implementation Details We use the pretrained ViT-B/16 CLIP model (Radford et al., 2021) in
this work. The number of minibatches used for computing the score is nk = 80. In each pruning
step, the number of pruned context tokens is rp = 4. The batch size is 4. The learning rate is
2.5 × 10−3. The total number of training epochs is 100. The test accuracy is obtained using the
model weights at the epoch of 100. We use the stochastic gradient descent (SGD) to optimize the
inserted prompts. Experiments are conducted using a single NVIDIA A40 GPU. Reported results
on 11 datasets are averaged over 3 runs.

Table 1: Test accuracy comparison on various downstream tasks in the few-shot learning setting.
We report both the total number of trainable parameters and the percentage of those parameters on
top of the pre-trained CLIP. Adapt uses Snip to compute scores of context tokens. Adapt (Adaptive
Ttarget) uses the validation set to automatically select Ttarget. Details are described in Appendix
A.9.

Method # Trainable Params GFLOPS Caltech101 DTD EuroSAT Aircraft Food101

ZS CLIP 0 (0%) 12.08 87.20 42.34 37.57 17.29 77.30
CoCoOp 35,360 (0.028%) 13.23 95.10 63.63 74.10 33.67 87.37

VPT 73,728 (0.059%) 12.48 94.83 67.30 86.23 33.90 87.03
PLOT 32,768 (0.026%) 13.58 93.70 70.90 84.03 34.93 78.13
MaPLe 3.56 M (2.860%) 13.35 95.10 67.27 86.40 37.07 87.43
ProGrad 8,192 (0.007%) 21.52 95.63 66.27 82.03 41.30 86.70
KgCoOp 2,048 (0.002%) 17.05 95.07 67.00 72.80 34.17 87.07
LAMM 51,200 (0.041%) 13.23 95.67 70.43 84.43 41.27 87.10

Adapt (Ttarget = 128) 82,227 (0.066%) 12.53 95.63 72.03 92.53 50.93 83.47
Adapt (Ttarget = 32) 18,781 (0.015%) 12.20 96.10 69.93 90.13 48.73 84.30

Adapt (Adaptive Ttarget) - - 96.17 72.17 92.60 52.07 87.03
Method Flowers Pets Cars Sun UCF ImageNet Average

ZS CLIP 66.18 85.79 55.63 58.55 61.45 58.20 58.86
CoCoOp 89.97 93.53 72.30 72.67 76.97 71.17 75.50

VPT 88.10 92.57 69.60 71.87 79.00 70.60 76.46
PLOT 97.27 88.20 68.10 69.40 72.23 72.17 75.37
MaPLe 94.27 93.63 74.87 74.73 80.37 72.03 78.47
ProGrad 95.33 93.10 81.23 75.13 81.60 72.27 79.14
KgCoOp 90.00 92.93 73.33 73.00 80.63 70.60 76.06
LAMM 95.93 93.53 82.87 73.27 81.60 72.03 79.83

Adapt (Ttarget = 128) 97.97 91.07 86.17 73.67 84.40 70.83 81.70
Adapt (Ttarget = 32) 97.63 90.83 85.07 74.53 84.03 71.93 81.20

Adapt (Adaptive Ttarget) 98.40 92.47 86.70 75.33 84.40 72.07 82.67

4.2 RESULTS

The effectiveness of the Adapt method is examined using the few-shot learning setting. We sum-
marize the experimental results in Table 1. We use ℓf = ℓg = 12 and ξf = ξg = 16. Overall, the
Adapt method exhibits superior performance compared to baseline methods. Adapt (Ttarget = 128)
achieves the overall gain from 79.83% to 81.70% on the average of 11 datasets. The large perfor-
mance gain is 6.13% on the EuroSAT and 9.63% on the Aircraft dataset. Adapt relies merely on
inserting continuous prompts with different lengths. Baseline methods except for VPT (Jia et al.,
2022) replies on additional assistance such as knowledge distillation (Hinton et al., 2015). Hence,
Adapt has the second lowest GLOPS. PLOT (Chen et al., 2022a) uses an iteration algorithm to com-
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Figure 3: Pruning process of binary masks in the text and image branches on the EuroSAT dataset.
Ttarget = 64. The warmup epoch is 5, so there is no pruning of context tokens in the first 5 epochs.
Given M(t) matrices, the row dimension corresponds to the prompt depth and the column dimension
corresponds to the maximum context length.

Table 2: Performance comparison of different Ttarget. We use Snip to compute the score of each
context token.

Method # Trainable Params GFLOPS Caltech101 DTD EuroSAT Aircraft Food101

Adapt (Ttarget = 512) 0.36 M (0.2889%) 12.98 96.03 72.07 92.30 52.03 83.37
Adapt (Ttarget = 256) 0.17 M (0.1380%) 12.73 95.53 72.60 92.23 51.37 83.43
Adapt (Ttarget = 128) 82,227 (0.066%) 12.53 95.63 72.03 92.53 50.93 83.47
Adapt (Ttarget = 64) 39,168 (0.032%) 12.32 95.93 70.60 91.87 49.17 83.83
Adapt (Ttarget = 32) 18,781 (0.015%) 12.20 96.10 69.93 90.13 48.73 84.30
Adapt (Ttarget = 16) 8,986 (0.007%) 12.11 95.53 67.17 91.00 40.77 84.93

Method Flowers Pets Cars Sun UCF ImageNet Average

Adapt (Ttarget = 512) 98.40 89.93 86.43 73.30 84.23 70.57 81.70
Adapt (Ttarget = 256) 98.13 90.20 86.03 73.73 84.10 70.77 81.65
Adapt (Ttarget = 128) 97.97 91.07 86.17 73.67 84.40 70.83 81.70
Adapt (Ttarget = 64) 98.10 90.57 85.13 73.83 83.30 71.03 81.21
Adapt (Ttarget = 32) 97.63 90.83 85.07 74.53 84.03 71.93 81.20
Adapt (Ttarget = 16) 97.57 90.43 83.30 75.33 84.07 71.43 80.14

pute the optimal transport plan, which is ignored in the FLOPS calculation. Details regarding the
iteration algorithm are reported in (Cuturi, 2013). The computational costs for the Adapt method
are reported based on binary masks at the final epoch. All continuous prompting methods except for
MaPLe (Khattak et al., 2023) have trainable parameters accounting to less than 0.1% of all ViT-Base
parameters.

Adapt inserts continuous prompts only for the key and value computations while the prevalent deep
prompting methods for vision-language models insert continuous prompts for query, key and value
computations. Using the same context length, this approach can effectively decrease FLOPs. Be-
sides, the continuous prompts are not added to the query, which does not change the context length
after the attention computation. Therefore, prompts with heterogeneous context lengths can be
added to the pre-trained model.

A typical pruning process for Mf (t) and Mg(t) is shown in Figure 3. The binary mask at the epoch
of 1 is the same as the initialized mask due to the warmup process. Context lengths in the text and
image branches are highly heterogeneous: context lengths at the image branch are different from
those in the text branch. Within the same branch, context lengths vary at various depths. When
Ttarget is reached, context lengths stay constant. We use Ttarget ≪ ℓ × ξ, Mf (t) and Mg(t) are
sparse matrices after training. The pruning processes for all 11 datasets are shown in Appendix
Figure 8. We track the variation of context lengths as a function of the number of training epochs.
The result is shown in Appendix Figure 4.

When allowing dataset-dependent Ttarget denoted as Adapt (Adaptive Ttarget), the average perfor-
mance can be boosted to 82.67%. Adapt (Adaptive Ttarget) uses the validation dataset to select
Ttarget. Details regarding Adapt (Adaptive Ttarget) are described in Appendix A.9.
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4.3 ABLATION STUDY

Target total context length Ttarget Ttarget is associated with the complexity of inserted prompts.
Table 2 reports the performance of using different Ttarget. The hidden dimension in the image
encoder is not equal to that in the text encoder, i.e. di ̸= dt, for CLIP, the same Ttarget can lead to
a different number of trainable parameters. The number of trainable parameters is averaged over 11
datasets.

When Ttarget is decreased from 128 to 64, the number of trainable parameters decreases by 52.37%,
the performance drop is only 0.60%. Upon further reducing Ttarget to 32, the total number of
parameters decreases by 77.16%, and the performance drop is 0.61%. The relatively small drop
in the performance justifies the pruning of context tokens, i.e. update of M(t). When Ttarget is
decreased to 16, there is a pronounced performance drop, especially on Aircraft dataset where the
performance drop is 19.95%. The zero-shot transfer performance of CLIP is relatively poor on the
Aircraft dataset. Adapt improves the performance from 17.29% to 50.93%. A larger complexity
of inserted prompts is beneficial to the performance on this dataset. The performance on different
Ttarget indicates that when the complexity is large enough, pruning of prompts, similar to network
pruning, can improve the efficiency without negatively affecting the performance too much.

When increasing Ttarget to be larger than 128, there is no increase in the average test accuracy. Some
datasets prefer a large complexity. For example, on Aircraft dataset, there is consistent performance
gain when increasing Ttarget.

Score computation We examine the effect of three different scoring functions: Snip (Lee et al.,
2018), gradient norm, and l2-norm. Table 3 shows the performance comparison. Snip considers
both the gradient and magnitude of the prompt parameters. Snip has the best performance. Overall,
there is no remarkable difference among score functions.

Table 3: Performance comparison using different score functions: Snip, gradient norm and l2-norm.
We use Ttarget = 128. Owing to the difference between dt and di, the same Ttarget can lead to a
different number of trainable parameters.

Method # Trainable Params GFLOPS Caltech101 DTD EuroSAT Aircraft Food101

Adapt (Snip) 82,227 (0.066%) 12.53 95.63 72.03 92.53 50.93 83.47
Adapt (Gradient Norm) 84,044 (0.068%) 12.53 95.63 72.07 91.83 50.93 83.63

Adapt (l2-Norm) 82,764 (0.067%) 12.53 95.57 70.97 91.47 51.17 83.77
Method Flowers Pets Cars Sun UCF ImageNet Average

Adapt (Snip) 97.97 91.07 86.17 73.67 84.40 70.83 81.70
Adapt (Gradient Norm) 98.20 90.30 86.07 73.93 84.40 69.83 81.53

Adapt (l2-norm) 98.17 90.33 85.83 74.03 84.37 70.23 81.45

5 DISCUSSION

When tailoring a pre-trained model to various downstream tasks, the model can underperform due to
the distribution shift (DS) (Taori et al., 2020; Fang et al., 2020; Wiles et al., 2021; Xiao et al., 2024).
When examining the model on a more granular level, a question arises “is the inferior performance
caused by the deviation from the optimal for all layers or a subset of layers”. Surgical fine-tuning
(Lee et al., 2022) answers this question by categorizing DS into four categories: input-level shift,
feature-level shift, output-level shift, and natural shift. Depending on the DS type, fine-tuning the
selective part of the pre-trained model achieves a performance comparable to or better than training
all layers. This result indicates that not all layers are at the same level of deviating from the optimal.
For example, when DS is the input-level shift, only the first few layers are deviating away from
the optimal. Training those layers while keeping the remaining layers frozen achieves favorable
performance.

In the PT, the entire pre-trained model is frozen. Given the fact that some layers, depending on the
DS type, might already be close to the optimal, there is no need to insert continuous prompts for
those layers. Prompts can be inserted into layers that are deviating from the optimal. If we consider
this strategy in a more granular way, context lengths for different layers can vary depending on

9
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the level of deviating from the optimal. This leads to heterogeneous context lengths which are
challenging for the manually designed prompting methods.

The proposed Adapt method achieves the automatic design of heterogeneous prompts. There is
no constraint for context lengths at various depths to be the same, nor for context lengths to be
the same for different branches. The results on 11 datasets indicate that context lengths can be
highly heterogeneous as shown in Appendix Figure 8. The automation is achieved by iteratively
pruning unimportant context tokens. By setting Ttarget ≪ ℓ × ξ, the pruning greatly reduces the
computational overheads. We empirically find the performance of pruned prompts P ⊙ M(t) is
comparable to that of training prompts P without pruning from scratch as indicated in the Appendix
Table 4. At the same time, the total number of trainable parameters is decreased by 67%. In the
network pruning, pruning concentrated on one layer can cause the layer collapse issue (Lee et al.,
2019; Hayou et al., 2020). Pruning prompts, however, can have the minimal context length in one
layer without affecting the functionality of prompts for this layer.

By using M(t) conditioning on downstream datasets, Adapt adaptively changes for different
datasets. Compared to manually designed prompts, Adapt has a more flexible structure. It achieves
a pronounced performance gain compared to baseline methods. We use Ttarget to ensure the com-
plexity of Adapt is approximately the same over various datasets.

Limitation While Adapt achieves the best average performance on the considered downstream
tasks, we acknowledge that when the number of shots decreases (e.g., less than 4 shots), Adapt
may lose its advantages. However, most prompting methods assume at least 16-shots per category
(Hirohashi et al., 2024), which is the regime where Adapt outperforms the competitive methods.
We believe the limitation of Adapt in very few-shot settings may be addressed by considering some
specialized methods that cater to few-shot prompting, such as (Hirohashi et al., 2024) explicitly
designed for 1-shot setting.

6 CONCLUSION

We propose a continuous prompting method that adaptively changes during the fine-tuning process.
Different from existing prompting methods that require homogeneous context lengths for various
depths, our proposed method Adapt encourages heterogeneous context lengths. Adapt uses iterative
pruning to remove unimportant context tokens, which greatly reduces the computational costs with
nearly no performance drop. Extensive experiments over 11 datasets exhibit the strength of the
Adapt method.
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A APPENDIX

A.1 COMPARISON BETWEEN PRUNING AND UNPRUNING

Adapt uses P⊙M(t) in the fine-tuning of the pre-trained model. We compare its performance with
training P from scratch without using M(t), which is essentially the Adapt method with Ttarget ≥
ℓ× ξ. We summarize the performance variation in Table 4. P⊙M(t) uses merely 33% parameters
of P and achieves comparable performance.

Similar to the context length study, there is a relatively large performance drop on Aircraft dataset.
This might be due to the large difference between the pre-trained datasets and fine-tuning datasets.
More trainable parameters are needed to adapt the pre-trained models to the downstream task.

Table 4: Performance variation compared to unpruned continuous prompts. Ttarget = 128 and Snip
is used to compute scores. We use blue color to indicate the performance increase and red color to
indicate the performance drop.

Caltech101 DTD EuroSAT Aircraft Food101 Flowers Pets Cars Sun UCF ImageNet Average

-0.4 -0.04 0.20 -1.14 0.17 -0.43 1.14 -0.53 0.40 0.40 0.2 -0.003

A.2 TIME-DEPENDENT CONTEXT LENGTH

Figure 4 shows the variation of context lengths during the fine-tuning process. When Ttarget is
reached, the total context length for the image and text branches stays constant. We use the warmup
strategy and hence the total context length does not change for the first few epochs. In the pruning
process, we prune the context tokens in the text and image branches with the lowest score. The
number of tokens removed per epoch can vary from the image branch to the text branch. Within
the same branch, the context length can vary at various depths. Overall, Adapt encourages highly
heterogeneous context lengths which can be difficult for the manually designed prompts. Adapt is
able to automatically determine context lengths. The pruning process on all 11 datasets is visualized
in Figure 8.
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Figure 4: Variation of the total context length during the fine-tuning process for various downstream
tasks. Solid lines are the total context length for the text branch while dashed lines correspond to the
image branch.
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Figure 5: Agreement ratio of binary masks at the last epoch in the text and image branches for
rp = 1 and rp = 4. The average agreement ratio for the text branch is 0.87 while that for the image
branch is 0.79.

A.3 EFFECT OF PRUNING RATE

rp determines the rate of binary mask reaching Ttarget. To study the effect of rp on the final binary
mask, we use the agreement ratio to characterize the agreement of the binary mask between two
different pruning rates:

Agreement ratio :=
1

ℓ× ξ

ℓ∑
i=1

ξ∑
j=1

I{M1(t)ij = M2(t)ij} , (9)

where I is the indicator function and I{E} = 1 if the event E happens, otherwise I{E} = 0. M1(t)
and M2(t) are binary matrices using two different pruning rates. The agreement ratio is in the range
[0, 1]. A higher agreement ratio indicates two binary masks are closer.

Figure 5 shows the agreement ratio of the final binary masks on 11 datasets comparing rp = 1 and
rp = 4. Overall, there is a high agreement ratio on all datasets. A high agreement ratio indicates the
robustness of the Adapt method against rp. Before Ttarget is reached, the prompt tuning by updating
P and the pruning by updating M(t) happen simultaneously. In this early stage, rp = 1 has a larger
total context length compared to rp = 4. Extra context tokens have a limited effect on the relative
magnitude of the scores of context tokens.

A.4 TRAIN FINAL BINARY MASKS FROM SCRATCH

In network pruning, an empirical experience is that the sparse architectures produced by pruning are
difficult to train from scratch. Lottery ticket hypothesis (LTH) (Frankle & Carbin, 2018) proposes
the parameter reinitialization trick after each pruning step to identify the winning ticket. We use
the binary masks at the final training epoch to determine context lengths. Using the fixed context
lengths, we train continuous prompts from scratch. During the training process, the total context
length remain constant.

Table 5 summarizes the accuracy difference between P and P ⊙ M (M is fixed). The accu-
racy is comparable to the unpruned prompt using the same training epochs. At the same time,∑ℓ

i=1

∑ξ
j=1 Mij ≪ |ℓ× ξ|. Note that P ⊙ M, same as LTH, performs pruning at initialization

while Adapt using P⊙M(t) prunes prompts during training.

A.5 DATASETS FOR DOWNSTREAM TASKS

Table 6 shows statistics of 11 datasets used for the fine-tuning of the pre-trained CLIP model. These
datasets covering a wide range of tasks are commonly used as benchmarks for vision-language
models.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Performance variation using fixed binary masks compared to prompting method without
using masks (the highest total context lengths). We use blue color to indicate that using fixed binary
masks has a better performance than adaptive prompts while red color to indicate the performance
drop.

Caltech101 DTD EuroSAT Aircraft Food101 Flowers Pets Cars Sun UCF ImageNet Average

-0.03 -0.67 0.27 -0.24 0.87 -0.77 1.37 -0.97 1.03 0.50 -0.83 0.05

Table 6: Details regarding 11 datasets used in experiments.
Dataset # Classes Training size Test size Task

Caltech101 (Fei-Fei et al., 2004) 100 4,128 2,465 Generic object classification
ImageNet (Deng et al., 2009) 1,000 1.28M 50,000 Generic object classification
DescribableTectures (Cimpoi et al., 2014) 47 2,820 1692 Texture classification
EuroSAT (Helber et al., 2019) 10 13,500 8,100 Satellite image classification
FGVCAircraft (Maji et al., 2013) 100 3,334 3,333 Fine-grained aircraft classification
Food101 (Bossard et al., 2014) 101 50,500 30,300 Fine-grained food classification
OxfordFlowers (Nilsback & Zisserman, 2008) 102 4,093 2,463 Fine-grained flower classification
OxfordPets (Parkhi et al., 2012) 37 2,944 3,669 Fine-grained pet classification
StanfordCars (Krause et al., 2013) 196 6,509 8,041 Fine-grained car classification
UCF101 (Soomro et al., 2012) 101 7,639 3,783 Action classification
SUN397 (Xiao et al., 2010) 397 15,880 19,850 Scene classification

A.6 PERFORMANCE COMPARISON

We compare the performance of the Adapt method with baseline methods. Table 7 shows the per-
formance with standard deviation. Results are obtained over 3 different runs. There is no significant
performance variation in the few-shot learning experiments of all prompting methods.

Table 7: Standard deviation of the performance of 16-shot learning on 11 datasets. The average
performance is obtained over 3 runs.

Method Caltech101 DTD EuroSAT Aircraft Food101 Flowers

CoCoOp 95.10± 0.08 63.63± 0.88 74.10± 0.57 33.67± 0.33 87.37± 0.12 89.97± 1.03
VPT 94.83± 0.42 67.30± 2.08 86.23± 0.79 33.90± 1.81 87.03± 0.22 88.10± 0.88

PLOT 93.70± 0.10 70.90± 0.54 84.03± 0.59 34.93± 1.05 78.13± 0.21 97.27± 0.12
MaPLe 95.10± 0.16 67.27± 0.61 86.40± 1.47 37.07± 0.25 87.43± 0.09 94.27± 0.25
ProGrad 95.63± 0.39 66.27± 0.73 82.03± 1.52 41.30± 0.49 86.70± 0.08 95.33± 0.38
KgCoOp 95.07± 0.31 67.00± 2.66 72.80± 1.81 34.17± 0.62 87.07± 0.38 90.00± 0.56
LAMM 95.67± 0.20 70.43± 0.62 84.43± 2.66 41.27± 0.43 87.10± 0.20 95.93± 0.13

Adapt (Ttarget = 128) 95.63± 0.40 72.03± 1.66 92.53± 0.56 50.93± 1.30 83.47± 0.32 97.97± 0.11
Adapt (Ttarget = 32) 96.10± 0.21 69.93± 1.81 90.13± 1.37 48.73± 1.01 84.30± 0.25 97.63± 0.22

Method Pets Cars Sun UCF ImageNet

CoCoOp 93.53± 0.45 72.30± 0.54 72.67± 0.05 76.97± 0.85 71.17± 0.05
VPT 92.57± 0.42 69.60± 0.85 71.87± 0.48 79.00± 0.42 70.60± 0.22

PLOT 88.20± 0.51 68.10± 0.51 69.40± 0.16 72.23± 0.12 72.17± 0.10
MaPLe 93.63± 0.34 74.87± 0.68 74.73± 0.05 80.37± 0.78 72.03± 0.12
ProGrad 93.10± 0.37 81.23± 0.57 75.13± 0.25 81.60± 0.71 72.27± 0.05
KgCoOp 92.93± 0.78 73.33± 1.11 73.00± 0.49 80.63± 1.33 70.60± 0.66
LAMM 93.53± 0.20 82.87± 0.62 73.27± 0.31 81.60± 0.79 72.03± 0.10

Adapt (Ttarget = 128) 91.07± 0.79 86.17± 0.09 73.67± 0.33 84.40± 0.40 70.83± 0.18
Adapt (Ttarget = 32) 90.83± 0.43 85.07± 0.17 74.53± 0.13 84.03± 0.54 71.93± 0.36

A.7 PRUNING PROCESS OF BINARY MASKS

Figure 8 shows the pruning process of binary masks in the text and image branches for 11 datasets.
The binary mask is initialized to be M(0) = 1ℓ×ξ. M(t) stays constant when Ttarget is reached. We
use Snip to compute the score for each context tokens. The binary masks are highly heterogeneous:
context lengths over prompt depth for different branches have a large variation. The heterogene-
ity feature exhibits the strength of the automatic design of context lengths compared to manually
designed prompts which tend to be homogeneous.
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When Ttarget is reached, P ⊙M(t) on some datasets have a context length of 1 at a certain depth.
Even though the pruning concentrated in the prompts for this layer, the performance is not negatively
affected. In the network pruning, however, the concentrated pruning can lead to the layer collapse
issue (Lee et al., 2019; Hayou et al., 2020). Considering an extreme case, if the weight of an entire
layer is pruned, the model will have a disconnection issue. When pruning the prompt, there is no
such issue. This indicates that pruning prompts can lead to highly heterogeneous prompt lengths.

A.8 ANALYSIS OF BINARY MASKS

We examine the total context lengths on the text and image branches using TTarget = 128. Figure 6
shows the total context lengths on the text and image branches over 11 datasets. The context lengths
at different depths are shown in Figure 8. (Tsao et al., 2023) finds that EuroSAT has a relatively large
distribution shift (closer to out-of-distribution) while UCF101 has a relatively small distribution shift
(closer to in-distribution). In Adapt, we fine that there are more context tokens inserted in the image
branch compared to text branch on the EuroSAT dataset, whereas the trend is opposite on the UCF
dataset.

Adapt removes the constraint that the total context length in the image branch is the same as the total
context length in the text branch, and the constraint that each layer has the same context length. The
automatically determined binary masks are highly heterogeneous, which is the advantage of Adapt
compared to manually designed prompting methods. Besides, context lengths adaptively change on
different datasets. It ensures the prompting design is tailored for the specific individual dataset.
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Figure 6: Total context lengths on the text and image branches over 11 datasets. Adapt introduces
highly heterogeneous prompts on different datasets and different branches.

A.9 ADAPTIVE SELECTION OF Ttarget IN ADAPT

Ablation study on Ttarget shows that the optimal Ttarget is different for different datasets as shown
in Table 2. Using a universal Ttareget value as a hyperparameter ensures that the number of trainable
parameters is approximately the same across different datasets. On the other hand, adaptive selection
of Ttarget can lead to different number of trainable parameters on different datasets. To enable
customized selection of Ttarget for each dataset, we use the validation accuracy as the metric to
select the optimal Ttarget. Specifically, for each dataset, we consider the candidate set {Ttarget} =
{32, 64, 128, 256} and we select the model weights with the highest validation accuracy to report
the test accuracy.

Table 8 shows the comparison with the Adapt method that allows different Ttarget on different
datasets. By allowing a dataset-dependent Ttarget, the performance of the Adapt method boosts.
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Figure 7: The results of few-shot learning of 1/2/4/8/16 shots on 11 datasets. The average perfor-
mance is shown on the top left.

Table 8: Performance comparison of the Adapt method with the Adapt method that uses adaptive
Ttarget (Adapt (Adaptive Ttarget)). Adaptive Adapt can have different total context lengths across
datasets. Hence, the number of trainable parameters can vary. The validation dataset is used for
determining the optimal Ttarget and the number of epochs at which we obtain the model weights for
the test dataset.

Method Caltech101 DTD EuroSAT Aircraft Food101 Flowers

Adapt (Ttarget = 128) 95.63 72.03 92.53 50.93 83.47 97.97
Adapt (Adaptive Ttarget) 96.17 72.17 92.60 52.07 87.03 98.40

Method Pets Cars Sun UCF ImageNet Average

Adapt (Ttarget = 128) 91.07 86.17 73.67 84.40 70.83 81.70
Adapt (Adaptive Ttarget) 92.47 86.70 75.33 84.40 72.07 82.67

A.10 FEW-SHOT LEARNING

We examine the performance of few-shot learning using 1/2/4/8/16 shots. The optimal Ttarget is
determined based on the validation accuracy following Sec. A.9. Figure 7 shows the performance
comparison. When the number of shots is small (e.g. 1 shot), there is a degradation in the perfor-
mance. The training process of the Adapt method entails finding the optimal context lengths and
optimizing the prompt weights. The highly limited data will impose a challenge in the optimiza-
tion process. Most existing prompting methods assume that at least 16-shots per cateogry data are
available (Hirohashi et al., 2024). When the data is very limited, there is a pronounced performance
degradation.
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Table 9: Performance comparison of the Adapt methods with and without constraint that the total
context lengths on the text and image branches are the same. We use Ttarget = 128.

Method Caltech101 DTD EuroSAT Aircraft Food101 Flowers

Adapt w/ constraint 95.43 69.17 81.50 49.13 83.30 98.03
Adapt w/o constraint 95.63 72.03 92.53 50.93 83.47 97.97

Method Pets Cars Sun UCF ImageNet Average

Adapt w/ constraint 87.47 84.13 73.80 83.37 69.93 79.57
Adapt w/o constraint 91.07 86.17 73.67 84.40 70.83 81.70

Table 10: Performance comparison of 16-shot learning with baselines that apply the coupling func-
tion between text and image branches.

Method # Trainable Params GFLOPS Caltech101 DTD EuroSAT Aircraft Food101

MaPLe 3.56 M (2.860%) 13.35 95.10 67.27 86.40 37.07 87.43
UPT† 17.78 M (14.305%) 13.51 93.53 64.17 84.13 34.73 76.33

Adapt (Ttarget = 128) 82,227 (0.066%) 12.53 95.63 72.03 92.53 50.93 83.47
Adapt (Ttarget = 32) 18,781 (0.015%) 12.20 96.10 69.93 90.13 48.73 84.30

Method Flowers Pets Cars Sun UCF ImageNet Average

MaPLe 94.27 93.63 74.87 74.73 80.37 72.03 78.47
UPT† 95.47 90.00 74.93 75.83 78.50 70.47 76.19

Adapt (Ttarget = 128) 97.97 91.07 86.17 73.67 84.40 70.83 81.70
Adapt (Ttarget = 32) 97.63 90.83 85.07 74.53 84.03 71.93 81.20

† Code is not released for the UPT work. We implement the UPT method on our own. Implementation details are described in Section A.12.

A.11 CONSTRAINT ON TOTAL CONTEXT LENGTH IN IMAGE AND TEXT BRANCHES

Adapt encourages highly heterogeneous context lengths by allowing different context lengths at
different depths and different context lengths in different branches. We examine the performance of
the Adapt method with applying the constraint that the total context length in the image branch is the
same as that in the text branch. Instead of ranking scores for context tokens in both image and text
branches, there are two sets of rankings for the image and text branches, respectively. The selected
Ttarget is 128.

Table 9 shows the comparison of the Adapt methods with and without constraint. When applying
the constraint, there is a remarkable performance degradation, especially for the challenging datasets
DTD, EuroSAT and Aircraft. The result supports the motivation of the Adapt method that encour-
ages highly heterogeneous context lengths which are challenging for manually designed prompting
methods.

A.12 COMPARISON WITH BASELINES ALIGNING TEXT AND IMAGE BRANCHES

We compare the Adapt method with prompting methods that have coupling functions between
prompts inserted into the text branch and those for the image branch. MaPLe (Khattak et al., 2023)
uses a linear transformation function to apply the alignment between text and image branches. UPT
(Zang et al., 2022) uses a transformer block to contextualize the prompts for the image branch and
text branch.

The code is not released for the UPT method, so we implement the method on our own. Transformer
block consisting of the self-attention operator, feed-forward network and layer normalization are
used to contextualize the inserted embeddings. The contextualized embedding for each layer of
the vision-language model is split for the text and image branches. A fully connected layer per
transformer layer of the pre-trained model is used to align the hidden dimension of the embedding
to that for the image branch. Please refer UPT (Zang et al., 2022) for more details. The context
length is 4 and the prompt depth is 9.

Table 10 shows the performance comparison. Overall, the Adapt method surpasses two baselines
by a significant margin. At the same time, introducing the coupling functions inevitably introduces
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more trainable parameters and floating-point operations. The number of trainable parameters of
MaPLe and UPT methods is significantly higher than the Adapt method.

A.13 COMPARISON WITH PROMPTING METHOD WITH DIFFERENTIABLE MASKS

Mask tuning (Zheng et al., 2023) applies differentiable masks to model parameters. We use mask
tuning for deep prompting methods: we apply differentiable masks to the deep prompts that are
consistently inserted and removed (VPT-like prompt), and deep prompts that are inserted only for
key and value computation (Adapt-like prompt). The former is the deep prompting method for
vision-language models (e.g. VPT (Jia et al., 2022) and MaPLe (Khattak et al., 2023)).

Table 11 shows the performance comparison. Masking tuning does not apply the constraint on
the number of trainable parameters while the Adapt method uses Ttarget to ensure the number of
trainable parameters is approximately the same on different datasets. For a fair comparison, we
include the result that adaptively changes Ttarget on different datasets denoted as Adapt (Adaptive
Ttarget). The performance of the Adapt method is better than directly applying differentiable masks
to the prompt tuning.

Table 11: Performance comparison of applying mask tuning (Zheng et al., 2023) to prompting
methods. We apply mask tuning for two different prompting methods: VPT-like deep prompting
and Adapt-like deep prompting.

Method Caltech101 DTD EuroSAT Aircraft Food101 Flowers

Mask tuning + VPT-like deep prompting 93.60 64.13 71.80 33.57 84.30 88.73
Mask tuning + Adapt-like deep prompting 95.53 71.87 92.17 51.03 82.17 97.43

Adapt (Ttarget = 128) 95.63 72.03 92.53 50.93 83.47 97.97
Adapt (Adaptive Ttarget) 96.17 72.17 92.60 52.07 87.03 98.40

Method Pets Cars Sun UCF ImageNet Average

Mask tuning + VPT-like Deep prompting 90.37 71.73 71.17 73.63 70.37 73.95
Mask tuning + Adapt-like deep prompting 88.90 85.70 73.03 83.73 70.03 81.05

Adapt (Ttarget = 128) 91.07 86.17 73.67 84.40 70.83 81.70
Adapt (Adaptive Ttarget) 92.47 86.70 75.33 84.40 72.07 82.67

A.14 APPLYING ADAPT TO LANGUAGE MODELS

In addition to vision-language models, we apply the Adapt method to language models. The training
process is the same as Algorithm 1 except that pruning happens in the monomodality. A fixed
Ttarget = 128 is used to ensure the prompt complexity is the same on different datasets. The pre-
trained model is BERT (Kenton & Toutanova, 2019). The baseline we choose is P-Tuning v2 (Liu
et al., 2021). We use the default hyperparameters for the P-Tuning v2 method. Datasets are COPA,
BoolQ and RTE from SUPERGlue benchmark (Wang et al., 2019).

Table 12 shows the comparison of the Adapt method with the baseline method on 3 different datasets.
We observe that the Adapt method can achieve higher test accuracy with a smaller number of train-
able parameters.

Table 12: Performance comparison of applying Adapt to the BERT model. Ttarget = 128 is used in
the Adapt method.

Method COPA BoolQ RTE
# parameters Accuracy # parameters Accuracy # parameters Accuracy

P-Tuning v2 0.787 M 78.00 1.968 M 75.02 0.985 M 78.17
Adapt 0.297 M 80.00 0.297 M 76.50 0.297 M 79.17
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Figure 8: Pruning process of binary masks for the text and image branches for 11 datasets. Ttarget =
64 and the warmup epoch is 5. Owing to the warmup process, M(t) at the epoch of 1 is same as the
M(0). We set Ttarget so that the pruned M(t) after convergence is a sparse matrix.
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