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Abstract

Spatial networks are networks for which the nodes and edges are constrained by
geometry and embedded in real space, which has crucial effects on their topolog-
ical properties. Although tremendous success has been achieved in spatial and
network representation separately in recent years, there exist very little works
on the representation of spatial networks. Extracting powerful representations
from spatial networks requires the development of appropriate tools to uncover
the pairing of both spatial and network information in the appearance of node
permutation invariant, and rotation and translation invariant. Hence it can not
be modeled merely with either spatial or network models individually. To ad-
dress these challenges, this paper proposes a generic framework for spatial net-
work representation learning. Specifically, a provably information-lossless and
rotation-translation invariant representation of spatial information on networks
is presented. Then a higher-order spatial network convolution operation that
adapts to our proposed representation is introduced. To ensure efficiency, we
also propose a new approach that relied on sampling random spanning trees to
reduce the time and space complexity from O(N3) to O(N). We demonstrate
the strength of our proposed framework through extensive experiments on both
synthetic and real-world datasets. The code for the proposed model is available at
https://github.com/rollingstonezz/SGMP_code.

1 Introduction
Spatial data and network data are both popular types of data in modern big data era. The study of
spatial data focuses on the properties of continuous spatial entities under specific geometry, while
analysis of network data investigates the properties of discrete objects and their pairwise relationship.

Figure 1: Spatial network contains not only the infor-
mation of network topology and spatial topology but
also their interaction.

Spanning these two data types, spatial networks is a
crucial type of data structure that nodes occupy po-
sitions in a Euclidean space, where spatial patterns
and constraints may have a strong effect on their
connectivity patterns [6]. Understanding the mecha-
nism of organizing spatial networks has significant
importance for a broad range of fields [29], ranging
from micro-scale (e.g., molecule structure [94]), to
middle-scale (e.g., biological neural network [31]),
to macro-scale (e.g., mobility networks [18]). Ef-
fectively learning the representations of spatial net-
works is extremely challenging due to the close
interactions between network and spatial topology,
the incompatibility between the treatments for dis-
crete and continuous data, and particular properties
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such as permutation invariant and rotation-translation invariant. Spatial networks have long been
researched in the domains such as physics and mathematics, which usually extend complex networks
and graph theory into spatial networks [80, 7]. They typically rely on network generation principles
predefined by human heuristics and prior knowledge. Such methods usually characterize well on the
aspects of the data that have been covered by the predefined principles, but not on those have not
been covered[6]. However, the underlying network process in complex networks is largely unknown
and extremely difficult to be predefined in simple rules, especially in crucial and open domains such
as brain network modeling [81], network catastrophic failure [72], and protein folding [27].

Remarkable progress has been made towards generalizing deep representation learning approaches in
spatial data and network data [96, 13, 46, 43, 28], respectively, in recent years. For spatial data, deep
learning achieved significant progress in different commonly used formats such as images [53, 75,
61, 21], point clouds [34, 71, 57], meshes [85, 90], and volumetric grids [95, 66]. On the other hand,
deep learning has also boosted the research of encoding graph structure on network data [46, 51, 45],
and downstream applications such as recommender systems [99, 60], drug discovery [39, 22, 41, 42],
FinTech [91], customer care [93], and natural language processing [62, 8, 92].

Despite the respective progress in representation learning on spatial data and network data in par-
allel, the representation learning for spatial networks have been largely underexplored and has
just started to attract fast-increasing attention. Merely combining spatial and graph representa-
tions separately cannot handle that for spatial networks where spatial and network process are
deeply coupled together [6, 68, 33]. For example, Fig. 2 shows a simple example with a pair
of spatial networks, in which there are different formation rules on the edges relied on the spa-
tial distance, that is non-distinguishable for spatial and network embedding methods, respectively.

G G′

Figure 2: The left figure reflects closer nodes tend to connect
with each other (known as the first law of geography [79]),
while the right figure reflects a spatial tele-connecting pat-
tern where faraway nodes tend to connect. Discriminating
these two spatial networks requires new method that can
jointly consider spatial and network properties.

Few recent attempts have been proposed to
handle representation learning on spatial net-
works but still suffer from key challenges:
Spatial network representation learning is a
problem extremely difficult to address due
to several unique challenges: 1) Difficult in
distinguishing the patterns that require joint
spatial and graph consideration. Examples
like Figure. 2 that share the same spatial and
network topology, respectively, but with sig-
nificantly different interaction mechanisms,
are non-distinguishable to either spatial or
graph methods. 2) Difficult in jointly maintaining that the learned representation is invariant to node
permutation, and rotation and translation transformations. Notice that spatial and graph information
confine each other which neutralizes conventional methods to have either of them. For example,
although point clouds representation learning can easily preserve rotation- and translation-invariant
by using spatial nearest neighbors, here in spatial networks the neighbor is confined also by graph
neighbors. Such additional confinement largely harden our task. 3) High efficiency and scalability in
the graph size. The confinement between spatial and graph information inevitably leads to taking into
account more entities simultaneously to maintain sufficient information. The requirement to handle
incremental information increases the demand for model efficiency and scalability.

In order to address all the aforementioned challenges, this paper proposes a new spatial graph message
passing neural network (SGMP) for learning the representations of generic spatial networks, with
theoretical guarantees on discriminative power and various spatial and network properties, and an
accelerating algorithm which adjusts to our theoretical framework. Specifically, to capture and
model the intrinsic coupled spatial and graph properties, we propose a novel message passing neural
network to organically aggregate the spatial and graph information. To ensure the invariance of
learned representation under rotation and translation transformations, a novel way to represent the
node spatial information by characterizing geometric invariant features with lossless information is
proposed. To alleviate the efficiency issue, we propose a new accelerating algorithm for learning on
graph-structured data. The proposed accelerating algorithm effectively reduces the time and memory
complexity from O(N3) to O(N), and maintains the theoretical guarantees for spatial networks.
Finally, we demonstrate the strength of our theoretical findings through extensive experiments on
both synthetic datasets and real-world datasets.
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2 Related Work
Spatial Networks There has been a long time of research efforts on the subjects of spatial net-
works [6]. In the area of quantitative geography, Haggett and Chorley discussed the relevance of space
in the formation and evolution of networks, and developed models to characterize spatial networks at
least fourty years ago [44, 17]. New insights leading to modern quantitative solutions are gained due
to the advance in complex networks [32, 89, 1, 4, 3, 20], and appears in more practical fields such as
transportation networks [2, 54, 55], mobility networks [18, 24], biological networks [31, 76], and
computational chemistry [38, 73, 52].

Geometric Deep Learning. This is a more recent domain which handles non-Euclidean structured
data such as graphs and manifolds [13].
• Geometric Deep Learning on Manifolds. There is a large body of research efforts of generalizing
deep learning models to 3D shapes as manifolds in the computer graphics community. Many works
have been conducted to find a better approach to generalize convolution-like operations to the non-
Euclidean domain [65, 10, 74, 98, 64, 59]. J. Masci et at. proposed the framework of generalizing
convolution neural network paradigm to manifolds by applying filters to extract local patches in polar
coordinates [65]. Litany et at. [59] proposed FMNet to learn the dense correspondence between
deformable 3D shapes.
• Geometric Deep Learning on Graphs. The earliest attempts we are aware of to generalize neural
networks to graphs are attributed to M. Gori et at. [40]. More recently, a number of approaches
encouraged by the success of convolutional neural networks [53] have attempted to generalize the
notion of convolution to graphs. One important stream of convolution graph neural networks is
spectral-based, where emerges after the pioneering work of Bruna et at. [11] which based on the
spectral graph theory. There have been many following works [48, 25, 51, 56]. Another stream of
work define graph convolutions as extracting locally connected regions from the graph [30, 58, 69, 45,
97, 67]. Many of these works were formulated in the family of message passing neural networks [38]
which apply parametric functions to a node and its proximities, and use pooling operations to
generate features for the node. Efficiency and scalability for deep graph learning is very important
especially for large graphs and higher-order operations, which triggers research on accelerating
GNNs [45, 16, 15]. Hamilton et at. [45] first introduced sampling scheme on neighborhood nodes to
restrict the size. Chen et at. [16] proposed a method which samples vertices rather than neighbors.
However, none of these works can guarantee the sampled graph is connected.

Deep Learning on Spatial Data. Deep learning has also boosted the study on spatial data. Significant
progress has been achieved on deep learning on images since AlexNet [47, 75]. For 3D point clouds,
PointNet [71] is a pioneering work which addressed the permutation invariance by a symmetric
function. PointCNN [57] transforms the input points into a latent and potentially canonical order by a
χ-conv transformations. Volumetric-based methods usually apply a 3D Convolution Neural Network
(CNN) to 3D grids [95, 66]. Wang et at. [85] first performed shape segmentation on 3D meshes by
taking three low-level geometric features as its input.

Despite the success of generalizing deep learning to network and spatial data separately, there has been
relatively little work that simultaneously characterize both of them and their interaction. Previous
models such as [38, 73, 52] are domain-specific, [73, 52] treat spatial networks as point clouds which
ignores the influence of network structure, and [87, 86] consider POI (Point of Interest) categories,
hence such concept graphs are not physically embedded in a geometric space. In addition, existing
works [88, 23] typically utilize the off-the-shelf deep neural networks with Cartesian coordinates
as inputs and a large amount of rotation-and translation-augmented data, which is computationally
expensive and lacks theoretical guarantee of rotation- and translation-invariant on the representation.
To the best of our knowledge, our proposed method is the first generic framework of spatial network
representation learning that handles substantial properties of rotation- and translation-invariant and
the interplay between spatial and graph patterns with a theoretical guarantee.

3 Preliminaries
In this section, we first formalize spatial networks, and the problem of representation learning on
spatial networks, then we introduce the challenges in order to solve this problem.

Spatial graphs (also known as spatial networks [6]) are networks for which the nodes and edges are
embedded in a geometric space. Spatial networks is ubiquitous in real world, such as molecular
graphs [94], biological neural networks [31], and mobility networks [18], where the spatial and
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network properties are usually coupled together tightly. For example, chemical bonds are derived
from spatially close atoms, and fiber nerves tend to connect neurons close to each other. A spatial
network is typically defined as S = (G,P ), where a graph G = (V,E) denotes the graph topology
such that V is the set of N nodes and E ⊆ V × V is the set of M edges. eij ∈ E is an edge
connecting nodes vi and vj ∈ V . P denotes the spatial information that is expressed as a set of
points P = {(xi, yi, zi)|xi, yi, zi ∈ R} in Cartesian coordinate system, such that for a node vi ∈ V ,
its coordinate is denoted as (xi, yi, zi) ∈ P . Permutation invariance are crucial to graph structured
data [96]. The collections of permutation-invariant functions on graph-structured data is defined so
that f(π†Sπ) = f(S), for all π ∈ Sn, where Sn is the permutation group of n elements. Rotation
and translation invariance are in natural and common requirements for spatial data [36, 52]. The
collections of rotation- and translation-invariant functions on spatial networks is defined so that
f(G, T (P )) = f(G,P ), for all T ∈ SE(3), where SE(3) is the continuous Lie group of rotation
and translation transformations in R3.

The main goal of this paper is to learn the representation f(S) of spatial network S = (G,P ), with the
simultaneous satisfaction of strong discriminative power and the aforementioned significant symmetry
properties, which is a problem extremely difficult to address due to several unique challenges:
1) Difficult in distinguishing the patterns that require joint spatial and graph consideration. 2)
Difficult in jointly maintaining that the representation is invariant to node permutations, rotation
and translation transformations. 3) High efficiency and scalability according to the requirement of
handling incremental information.

4 Approach
In order to achieve the novel spatial network representation learning by addressing the above-
mentioned challenges, we propose a new method named spatial graph message passing neural
network (SGMP) and a new accelerating algorithm which relies on sampling random spanning
trees. Specifically, to discriminate spatial networks especially for the spatial-graph joint patterns,
we propose a new message passing scenario which aggregates the node spatial information via
higher-order edges as shown in Figure 3(a) and elaborated in Section 4.2. This scenario preserves
graph and spatial information while aggregation with theoretical guarantees. To ensure that the
representation is invariant to rotation and translation transformations, we propose to characterize
several geometric properties in length three path, which is proved to represent node spatial information
with guarantee on the properties of rotation-invariant, translation-invariant, and information-lossless.
This is illustrated in Figure 3(b) and will be detailed in Section 4.1. To address the efficiency issue, an
innovative sampling algorithm for accelerating training named Kirchhoff-normalized graph-sampled
random spanning tree is proposed. The algorithm reduces the time and space complexity from O(N3)
to O(N) while still stay equivalent to original graph, which will be discussed in details in Section 4.3.

4.1 Node Spatial Information Representation

As mentioned above and in Figure 2, we need a novel way to represent the node spatial information
that can preserve all the spatial structure information losslessly and also maintain rotation and trans-
lation invariance. We cannot directly use the Cartesian coordinates because they are not rotation-
and translation-invariant. Although there are conventional node spatial information representation
methods that maintained the rotation and translation invariance in the domain of spatial deep learn-
ing [78, 36], we cannot simply use them to handle spatial networks because they cannot consider
the confinement on neighborhood from graph perspective. Otherwise, the coupled spatial-graph
properties cannot be captured. Therefore, we consider to leverage length n path to represent the node
spatial information. The most simplest way is to just use the distance among nodes and we can have
n = 4 to ensure the spatial information is preserved. However, we want to minimize the length of
the path since the size of the neighborhood grows with a factor of O(N) when one more length for
the path is considered. To achieve this, we successfully reduce n to 3 by proposing a new spatial
information representation on path, where we use geometry features distance, angle, and torsion as
detailed in the following equation and also illustrated in Figure 3(b).

The spatial information of a spatial network S = (G,P ) with N nodes can be expressed as a
set of Cartesian coordinates P = {(xi, yi, zi)|xi, yi, zi ∈ R}Ni=1. It can also be represented as
P ∈ RN×3 in a matrix form. The set of all length n path starts from node vi can be represented as
Πi
n. Particularly, a length three path vi → vj → vk → vp can be expressed as πijkp ∈ Πi

3. Given a
spatial network S where its graph G is strongly connected and the longest path ζ ≥ 3, the proposed
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Figure 3: Illustration of the proposed spatial graph message passing neural network (SGMP). (a) The process
of updating the hidden state embedding h(`)

i of node vi by aggregating the spatial-graph message information
from length three path. (b) An example to illustrate each elements in our spatial information representation
(Equation 1). Here Lijp is the plane defined by node vi, vj and vp and Lijk is the plane defined by node vi, vj
and vk. (c) This is the spatial path neural network block which is designed to learn the coupled spatial-graph
property. This block also maintains the invariance to rotation and translation transformations by the spatial
information representation (SIR).

spatial information representation can be expressed by one of its length three path πijkp ∈ Πi
3 as

(dij , djk, djp, θijk, θijp, ϕijkp), (1)

where
dij = ||Pij ||2, djk = ||Pjk||2, djp = ||Pjp||2,

θijk = arccos(〈Pij
dij

,
Pjk
djk
〉), θijp = arccos(〈Pij

dij
,
Pjp
djp
〉),

ϕijkp = Parity · ϕ̄ijkp,

nijk =
Pij ×Pjk
||Pij ×Pjk||2

,nijp =
Pij ×Pjp
||Pij ×Pjp||2

,

ϕ̄ijkp = arccos(〈nijk,njkp〉),

Parity = 〈 nijk × nijp

||nijk × nijp||2
,

Pij
||Pij ||2

〉.

(2)

Theorem 1. Here the distances dij ∈ [0,∞), angles θijk ∈ [0, π) and torsions ϕijkp ∈ [−π, π)
are rigorously invariant under all rotation and translation transformations T ∈ SE(3).

The proof for Theorem 1 is straightforward and can be found in Appendix B. It is remarkable to
mention that the proposed representation in Equation 1 not only satisfies the invariance under rotation
and translation transformation but also retains the necessary information to reconstruct the original
spatial networks under weak conditions, as described in the following theorem.

Theorem 2. Given a spatial network S = (G,P ), if G is a strongly connected graph with longest
path ζ ≥ 3, then given Cartesian coordinates of three non-collinear connected nodes (vj , vk, vp)
in a length three path πijkp of one node vi, the Cartesian coordinates P can be determined by the
representation defined in Equation 1.

The proof to this theorem is a consequence of the following lemma, which is proved in Appendix B.

Lemma 1. Given Cartesian coordinates of three non-collinear connected nodes (vj , vk, vp) in a
length three path πijkp of one node vi, the Cartesian coordinate Pi of node vi can be determined by
the representation defined in Equation 1.
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Now we can prove Theorem 2. As stated in Lemma 1, the Cartesian coordinate of node vi can be
determined by its connected neighbors vj , vk, vp in the path of πijkp. Due to the property of strong
connectivity of graph G = (V,E), we can repeatly solve the coordinate of a connected node to the
set of nodes with known coordinates. Thus, start from an arbitrary length three path the Cartesian
coordinates P of whole spatial networks is determined.

4.2 Spatial Graph Message Passing Neural Network (SGMP)

Spatial network representation learning requires us to do convolution that aggregates jointly the graph
and spatial information from the graph neighborhood. The most important issue is to maintain the
discriminative power without loss of graph and spatial information during the aggregation operation.
In the meanwhile, we need to maintain permutation-invariant, rotation- and translation-invariant. To
achieve this, we propose the following operation to update the hidden state embedding h(`)i of node
vi by aggregate the messages passing on all its length three path Πi

3:

h
(`+1)
i = σ(`)

(
SUM

({
m(`)(πijkp)|πijkp ∈ Πi

3

}))
, (3)

where σ(`) is a multilayer perceptron (MLP) with ReLU as activation function and the spatial-graph
interacted message m(`)(πijkp) is generated by a spatial path neural network (SPNN) block:

m(`)(πijkp) = φ(`)
(
m̄(`)(πijkp), ψ

(`)
(
m̂(πijkp)

))
,

m̄(`)(πijkp) = (h
(`)
i , h

(`)
j , h

(`)
k , h(`)p ),

m̂(πijkp) = (dij , djk, djp, θijk, θijp, ϕijkp),

(4)

where φ(`) and ψ(`) are two nonlinear functions to extract the complicated coupling relationship
between spatial and graph information, in which we use the multilayer perceptron (MLP) with ReLU
as the activation function in our settings.

Finally, the representation of spatial network S can be achieved by applying a graph aggregation
operation: f(S) = AGG({h(K)

i |vi ∈ G}), where AGG is a permutation invariant function such as
SUM or MEAN, and K is the number of our message passing operation layers.

Since the node spatial information is already rotation- and translation-invariant, these properties can
be intrinsically preserved by the operation in Equation 3. Node permutation will also be preserved
due to the usage of the permutation invariant function SUM. Moreover, the following theorem proves
that the discriminative power is also preserved from the perspective of maintaining the necessary
spatial information, when the dimensions of hidden state embedding are sufficiently large.

Theorem 3. Let S denote the collection of spatial networks with N nodes given the graph G =
(V,E), and F denote the class of our SGMP functions while γ is a continuous function. Suppose
g : S → R is a continuous set function. For all ε > 0, there exists a function f ∈ F , such that for
any S ∈ S,

|g(S)− γ(f(S))| < ε. (5)

The proof can be found in Appendix B. The key idea to the proof of this theorem is that we can
discretize the continuous spatial information by partitioning the space into voxels.

4.3 Accelerate Training through Sampling Random Spanning Trees

Note that our model is a high order message passing neural network whose time and memory
consumption is cubic to the average number of node degree. To reduce the complexity of graph
neural networks, a typical way is based on sampling [96]. Many graph-sampling methods have
been proposed for accelerating graph neural network [45, 16], which typically focus on randomly
extracting a subgraph from the original graph. However, they cannot guarantee the generated graph
is a strongly connected graph, which is required by our node spatial information representation in
order to maintain no information loss. To ensure that the sampled graphs are connected and sparse,
we innovatively propose a Kirchhoff-normalized graph-sampled random spanning tree method for
accelerating the training. The proposed method largely reduces the complexity and maintains the
equivalence to the original graph. Specifically, a spanning tree T = (V,ET ) of an undirected graph
G = (V,E) that is a tree which contains all vertices in G. The number of edges of spanning trees is
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|ET | = |V |−1, which implies that the time and space complexity during training will not be affected
by the number of original edges |E| in graph G. We modify our updating operation in Equation 1 as

h
(`+1)
i = σ(`)

(
SUM

({
m(`)(πijkp)|πijkp ∈ Π̄i

T,3

}))
, (6)

where we use Π̄i
T,3 denotes the set of all length three path starts from node vi in a sampled spanning

tree T = (V,ET ). It is noticed in Equation 6 that randomly sampling spanning trees T from the
original graph G will introduce an uneven probability distribution for edges, which results in non-
uniform weights for path messages in our proposed message passing layer. Here we introduce the
Kirchhoff-normalized method to remove the uneven distribution by pre-computing the sampling
probability of a path πijkp in a sampled random spanning tree T . We further modify the Equation 6
as

h
(`+1)
i = σ(`)

(
SUM

({m(`)(πijkp)

q(πijkp)
|πijkp ∈ Π̄i

T,3

}))
, (7)

where q(πijkp) is the sampled probability of path πijkp in a random spanning tree.

Proposition 1. Let T denote a uniformly random spanning tree of a graph G. Then for a length
three path πijkp = (eij , ejk, ekp) we have that

Pr(πijkp ∈ T ) = det[Yπijkp ], (8)

where Y is called the transfer function matrix [9]. The proof is achieved by applying graph theory
theorems including Kirchhoff matrix tree theorem [14] and Burton-Pemantle theorem [12], which can
be found in Appendix B. The following result establishes that the approximated form in Equation 7 is
consistent to original form.

Proposition 2. If σ(`) is continuous, the expectation of the approximated form in Equation 7
converges surely to the original form in Equation 3 when the number of samples is sufficiently large.

The proof is a consequence of the strong law of large numbers and the continuous mapping theorem,
which can also be found in Appendix B.
Complexity analysis of a single layer. Consider a spatial network with N nodes and dense edge
data, our full SGMP layer has O(N3) time and space complexity according to the size of the
neighborhood. Our accelerating algorithm based on sampling random spanning tree, however, has
only O(N) time and space complexity as only N − 1 edges exist in the generated spanning trees.

5 Experiments
In this section, the experimental settings are introduced first, then the performance of the proposed
method is presented through a set of comprehensive experiments. All experiments are conducted on a
64-bit machine with an NVIDIA GPU (GTX 1080 Ti, 11016 MHz, 11 GB GDDR5). The proposed
method is implemented with Pytorch deep learning framework [70].

5.1 Experiment Setup

Datasets • (i) Synthetic dataset. The spatial growth graph model [6] is a spatial variant of the
preferential attachment model proposed by Albert and Barabasi [1], which describes that spatial
information concerns the formation of networks and long-range links are usually connecting the hubs
(well-connected nodes). The process to generate such spatial networks starts from an initial connected
network of m0 nodes and introduces a new node n at each time step. The new node is allowed to
make m ≤ m0 connections towards existing nodes with a probability Πn→i ∼ kiF [dE(n, i)], where
ki is the degree of node i and F is an exponential function F (d) = e−d/rc of the euclidean distance
dE(n, i) between the node n and the node i [5]. General characteristics of spatial networks [6] such as
clustering coefficient µ, spatial diameter D, spatial radius r are set as the prediction targets. Besides,
we also add the interaction range rc, which is a significant coupled spatial-graph label that affects the
formation of the spatial networks, as another prediction target. We vary the size and other parameters
(according to Appendix. C for details) of spatial networks to collect 3, 200 samples in our synthetic
dataset. • (ii) Real-world molecular property datasets. We experiment on 5 chemical molecule
benchmark datasets from [94], including both classification (BACE, BBBP) and regression (ESOL,
LIPO, QM9). Particularly, QM9 is a multi-task regression benchmark with 12 quantum mechanics
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Taret µ D r rc
GIN 0.136(.007) 1.015(.047) 0.659(.029) 1.616(.075)
GAT 0.129(.001) 1.291(.049) 0.888(.014) 1.716(.017)
GatedGNN 0.089(.013) 0.753(.074) 0.481(.066) 1.411(.031)
PointNet 0.129(.003) 0.912(.030) 0.615(.020) 1.551(.066)
PPFNet 0.106(.006) 0.747(.037) 0.527(.014) 1.377(.057)
SGCN 0.133(.003) 1.269(.055) 0.856(.044) 1.736(.020)
SchNet 0.128(.001) 1.006(.058) 0.686(.031) 1.691(.039)
DimeNet 0.103(.027) 1.266(.147) 0.556(.094) 1.412(.059)
SGMP 0.068(.005) 0.748(.168) 0.450(.046) 1.332(.031)
SGMP (with st) 0.088(.001) 0.291(.021) 0.252(.023) 1.266(.019)

Table 1: Root mean square error (RMSE) results
on synthetic dataset. Here µ is clustering coef-
ficient, D is spatial diameter, r is spatial radius
and rc is the interaction radius in the formation
of spatial growth graph.

Task Regression Classification
Dataset ESOL LIPO HCP BACE BBBP
GIN 0.776(.021) 0.699(.047) 0.792(.133) 0.792(.025) 0.864(.020)
GAT 0.783(.053) 0.757(.049) 0.561(.037) 0.780(.035) 0.854(.025)
GatedGNN 0.675(.050) 0.630(.034) 0.566(.036) 0.816(.023) 0.858(.020)
PointNet 0.716(.036) 0.708(.030) 0.720(.123) 0.799(.023) 0.843(.027)
PPFNet 0.731(.054) 0.720(.037) 0.680(.065) 0.805(.032) 0.869(.023)
SGCN 0.743(.056) 0.726(.055) 0.674(.059) 0.778(.030) 0.849(.021)
SchNet 0.697(.051) 0.691(.058) 0.593(.037) 0.803(.032) 0.864(.036)
DimeNet 0.730(.047) 0.666(.047) 0.818(.127) 0.791(.031) 0.864(.036)
SGMP 0.646(.049) 0.695(.027) 0.524(.046) 0.830(.021) 0.880(.020)
SGMP (with st) 0.612(.054) 0.699(.021) 0.555(.045) 0.811(.024) 0.873(.024)

Table 2: Results for four molecule property datasets and the
HCP brain network. We report accuracy score for BACE
and BBBP datasets, root mean square error (RMSE) for
ESOL and LIPO, and mean average error (MAE) for HCP
brain network dataset.

properties. The data is obtained from the pytorch-geometric library [35]. • (iii) Real-world HCP
brain network dataset. We also conducted an experiment using the structural connectivity (SC) of the
brain network to predict the age of the subjects, which is a significant task in understanding the aging
process of the human brain [50]. In specific, SC is processed from the Magnetic Resonance Imaging
(MRI) data obtained from the human connectome project (HCP) [82]. By following the preprocessing
procedure in [84], the SC data is constructed by applying probabilistic tracking on the diffusion MRI
data using the Probtrackx tool from FMRIB Software Library [49] with 68 predefined regions of
interest (ROIs). Then a threshold is applied to SC data to construct the brain networks [77, 37]. The
spatial coordinates of regions are expressed as the center point of each region.

Comparison methods. To the best of our knowledge, there has been little previous work to handle
the generic spatial networks. Spatial graph convolutional networks (SGCN) is a recently proposed
method to handle generic spatial networks by applying a convolution operation to learn the spatial-
graph interacted information using the relative coordinates between nodes and their first-order
neighbors. In addition, we compare with three strong graph neural networks (GIN, GAT and Gated
GNN) methods and four spatial neural networks (PointNet, PPFNet, SchNet, and DimeNet) methods
for comparisons. For methods in the class of GNNs, we feed the Cartesian coordinates as node
attributes while we add the node attribute and graph connectivity information to the class of SNNs for
a fair comparison. The details about the benchmark models can be found in Appendix. C. Besides the
models above, we also compare our model with a state-of-the-art higher-order graph neural networks
PPGN [63]) in the QM9 benchmark, the results are provided from original authors.

5.2 Experimental Performance

In this section, the performance of the proposed method and its accelerated algorithm with sampling
random spanning tree (with st), as well as other methods on both synthetic and real-world datasets are
presented first. Then we present the efficiency test on our sampling random spanning trees method.
In addition, we measure the exactness of invariance of our proposed model under translation and
rotation transformations.

Effectiveness results. • (i) Synthetic Dataset. Table 1 summarizes the effectiveness comparison
for the synthetic dataset, where our proposed SGMP model with sampling spanning tree outperforms
the best benchmark model (GatedGNN) by 35.7% on average. Especially, our model achieves lower
error on the target of interaction radius (rc), which proves that our proposed model can better capture
and exploit the significant coupled spatial-graph characteristics in spatial networks. • (ii) Real-world
Datasets. Table 2 presents the results of four molecule property datasets and the HCP brain network
dataset, where our proposed method achieves the best results in 4 out of 5 datasets. The results for the
QM9 dataset are presented in Table 3, where our proposed method demonstrates its strength through
outperforming the benchmark methods in 10 out of 12 targets, which is an improvement by over 14%
on average. Particularly, we notice that the performance of the class of SNNs achieved significantly
better results than the class of GNNs by a 38% improvement on average, which arguably implies
that the quantum mechanics targets of the QM9 dataset are dominated by the spatial information. In
addition, the group of jointly-spatial-graph-based methods achieved a 68.9% improvement compared
to the group of point-cloud-based methods. The twelve quantum mechanical properties in the QM9
dataset seems highly related to the spatial geometry properties between nodes. For example, the
formation energy (U ) is related to the distances, angles, and torsions among nodes. In this situation,
we notice that the performance of the group of point-cloud-based methods is significantly better than
the group of GNN based methods, and jointly-spatial-graph-based methods can better explore the
coupled spatial-graph property.
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Target GIN GAT Gated PointNet PPFNet SGCN PPGN SchNet DimeNet SGMP SGMP (with st)
µ 0.583 0.661 0.543 0.465 0.503 0.503 0.093 0.452 0.360 0.130 0.187
α 0.652 0.952 0.609 0.453 0.459 0.531 0.318 0.347 0.189 0.113 0.174
εHOMO 269.5 326.7 206.2 158.6 151.9 193.8 47.3 347.4 78.6 64.7 45.7
εLOMO 175.4 237.1 135.4 123.8 136.9 141.7 57.1 151.6 61.0 44.7 67.9
δε 361.4 510.3 314.4 245.5 221.9 275.5 78.9 120.6 103.7 83.7 98.8
〈R2〉 63.7 97.1 63.1 34.5 27.8 34.9 3.8 213.2 14.13 5.9 3.6
ZPVE 12.3 15.7 12.0 7.0 7.4 7.4 10.8 34.3 3.1 2.3 2.0
U0 260.1 335.9 222.5 112.7 153.5 201.3 36.8 101.7 26.8 26.1 31.9
U 262.9 326.1 244.7 115.5 160.5 210.1 36.8 107.5 27.8 25.2 34.8
H 269.0 329.7 239.2 123.1 157.6 199.2 36.8 107.0 27.9 27.5 31.3
G 252.7 314.1 221.1 124.3 158.4 207.8 36.4 95.0 25.8 24.6 28.2
cV 0.344 0.430 0.283 0.196 0.221 0.277 0.055 0.452 0.064 0.043 0.064

Table 3: The mean average error (MAE) results for QM9 dataset.

Figure 4: Efficiency analysis of our proposed models and all
benchmark models. Note that our proposed algorithm with
sampling random spanning tree significantly improves the
scalability and efficiency.

ADR (%) wo st w st speed up
2 0.203s 0.158s 1.3×
5 0.323s 0.184s 1.7×
10 7.52s 0.225s 33.4×
15 31.43s 0.209s 150.3×
20 80.96s 0.213s 379.7×
50 - 0.193s -
100 - 0.214s -

Table 4: Training time per epoch for our full
model without sampling spanning tree (wo st)
and accelerating method with sampling spanning
tree (w st). (-) indicates an out-of-memory error.
The sampling algorithm is on average 113 times
faster than our full method. ADR is short for the
average degree ratio.

Efficiency analysis. To validate the efficiency of the proposed sampling random spanning tree
algorithm, we use our HCP brain network dataset with different thresholds on structural connectivity
(SC) to obtain different average degrees for the nodes. The number of nodes is a fixed number (68)
while we vary the average of degrees ratio (ADR= E

Ef
, where E is the number of edges and Ef is the

number of edges in complete graphs, e.g. ADR= 100% indicates a complete graph). We report the
results of the average training time per epoch among all models for 20 epochs. As shown in Figure 4
and Table 4, our accelerating algorithm achieves significant improvements in training efficiency. Note
that our method is even faster than most of the first-order methods when the graph connections are
dense (ADR over 50%). Notice that higher-order methods (e.g. our full method is third-order and
DimeNet is second-order) are unable to handle complete graphs due to the limits of GPU memory.
The scalability of our sampling method is remarkable, which can maintain a constant time and space
complexity with the increasing number of connected edges.

Rotation and translation invariant test. Similar to previous work [36], we also measure the
rotation and translation robustness by uniformly adding translation and rotation transformations
to the input Cartesian coordinates. Here we only report the accuracy results of classification task
on the molecular dataset BACE due to the space limit while the results are similar on all datasets.
According to Figure 5, we can note that the performance of our proposed model stays invariant
under both translation and rotation transformations. SchNet and DimeNet can also achieve invariance
under transformations because they also only use the rotation- and translation-invariant spatial
features in their models. PPFNet can stay invariant under rotation transformations but not translation
transformations because it preserves the origin in the model. On the other hand, SGCN can stay
invariant under translation transformations but not rotation invariant because it only utilizes relative
coordinates. This experiment validates the importance of applying a rotation- and translation-invariant
model since we can observe that the performance of models without a theoretical guarantee drop
significantly under adding rotation and translation transformations.

6 Conclusion
This paper focuses on the crucial problem of learning powerful representations from spatial networks,
which has tightly coupled spatial and graph information that can not be addressed by applying spatial
and network methods separately. The proposed spatial graph message passing neural network (SGMP)
effectively addresses the unique challenges in spatial networks by jointly considering the spatial
and graph properties, and still maintain the invariance to node permutations, as well as rotation and

9



Figure 5: Robustness test of rotation and translation invariant: x-axis shows data augmentation on the test set. The
x-value corresponds to the magnitude of rotation angle (left) or translation distance (right). The y-axis shows the
accuracy score on the test set.

translation transformations. In addition, our proposed accelerating algorithm largely alleviates the
efficiency issue in solving spatial network issues. Experimental results on synthetic and real-world
datasets demonstrate the outstanding discriminative power of our model, and the efficiency test shows
a remarkable improvement in training time and scalability of our proposed accelerating method.
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Checklist
The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 4.3 for the discussion
of the efficiency issue of our full SGMP model.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] I have read the ethics review guidelines and ensure that our paper conforms
to them.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report error bars in our experimental results.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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