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Abstract

Claim verification can be a difficult task, even
for humans. In this paper, we propose a
method to improve automated claim verifica-
tion through short fact extraction from evidence
to enhance reasoning abilities. We propose
a framework (FactGen) that uses Large Lan-
guage Models (LLMs) to generate short factual
statements from evidence and then label these
facts based on their semantic relevance to the
claim and evidence. We then add a relevant
fact-detection task (FactDetect) to the claim
verification task as a multi-tasking approach to
improve performance and explainability.

Our method improves the supervised claim ver-
ification model by 15% on the F1 score when
evaluated on SciFact (Wadden et al., 2020) and
demonstrates competitive results on other chal-
lenging scientific claim verification datasets.
We also demonstrate that FactDetect can be ad-
justed to the LLMs as a prompting strategy for
verdict prediction. We show that incorporat-
ing FactDetect in relatively smaller LLMs such
as Llama2-13B and Vicuna-13B can improve
the verification performance significantly on
the SciFact dataset and higher quality FactGen
generated sentences outperform state-of-the-art
models in all test sets.

1 Introduction

Due to the proliferation of disinformation in many
online platforms such as social media, automated
claim verification has become an important task in
natural language processing (NLP). “Claim verifi-
cation” refers to predicting the verdict for a claim
(supported, contradicted) given the evidence that
has been extracted from a corpus of documents
(Thorne et al., 2018; Wadden et al., 2022a; Guo
et al., 2022).

Claim verification can be challenging for several
reasons. First, the available human-annotated data
is limited, resulting in limited performance by cur-
rent trained models. The task is even harder for
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Figure 1: Three-step process of short fact generation from
evidence. 1) First we use LLM to generate matching phrases
between claim and evidence. ) Using the extracted phrases
from claim we design a question generation to generate ques-
tions from the claim and the given phrase. 3) The generated
matching phrase from evidence is concatenated with the ques-
tion generated from claim for short fact generation. Check
marks suggest the importance of generated sentences.

scientific claim verification where the claim and
the corresponding evidence belong to specific sci-
entific domains: verification of scientific claims
generally requires specialized knowledge of the
scientific background, numerical reasoning, and
statistics (Wadden et al., 2020). A key challenge
in developing automated argumentation systems
lies in accurately representing the subtleties of ar-
gumentation. This includes the capacity to change
a verdict from ’supported’ to 'refuted’ when a new
claim in the test set potentially negates the evidence,
in contrast to approving it in the training set.
Human-based reasoning for this task requires
making a meaningful connection between the claim
and evidence by decomposing the claim and rele-



vant evidence into smaller and potentially simpler
pieces and performing reasoning (Pan et al., 2023).
A few studies proposed approaches for reasoning
(Pan et al., 2023; Liangming Pan, 2021; Dai et al.,
2022; Lee et al., 2021). Question-answering (i.e.,
asking questions from claim or evidence, retrieving
the answer from each component, and utilizing the
answer for the downstream task) is one of the ap-
proaches used for improving reasoning and expla-
nation in claim verification tasks (Liangming Pan,
2021; Dai et al., 2022). Intuitively a question asked
from a supported or contradicted claim should be
answerable by the corresponding evidence. The an-
swer provided by evidence can provide important
factual information for veracity prediction.

Motivated by these reasoning approaches, we
introduce FactGen. This short sentence generation
framework enhances the state-of-the-art trained
models — as well as LLMs — by simplifying the con-
nection between claim and evidence pairs through
identifying and distilling crucial facts from evi-
dence and then transforming these facts into sim-
pler and concise sentences. We hypothesize that
these concise sentences will enhance various rea-
soning abilities, including scientific understanding,
by simplifying the connection between a claim and
its complex scientific evidence. FactGen comprises:
a) short fact generation through a four-step process
of matching key-phrase extraction, question gener-
ation, evidence-based question answering, and QA-
to-sentence generation; b) weakly labeling short
facts based on their importance given the claim;
and, c) utilizing these facts in a multi-task learning-
based training of a claim verification model or as an
extra step to improve the performance of LLMs for
zero-shot claim-verification. An overview of the
fact-generation process with an example is given
in Figure 1.

We evaluate FactDetect in two variations of
multi-task-based finetuning of claim verifica-
tion models and zero-shot claim verification
through LL.Ms on four scientific claim-verification
datasets of SciFact (Wadden et al., 2020), Covid-
Fact (Saakyan et al., 2021), HealthVer (Sarrouti
et al., 2021) and Scifact-Open (Wadden et al.,
2022a). The code and data will be available in
github!.

The contributions of this study are:

1. We introduce FactDetect, a simple yet effec-
tive approach for condensing evidence sen-
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tences into shorter sentences derived from rel-
evance to the claim.

2. Our extensive experiments show that FactDe-
tect can be easily adapted to claim-verification
models to improve their reasoning ability.

3. Augmenting FactDetect generated short facts
for a multi-task prompting approach is use-
ful in smaller LLMs whereas it shows less
effective in larger LLMs.

2 Background

Automated claim verification means determining
the veracity of a claim, typically by retrieving likely
relevant documents and searching for evidence
within them. The key objective is to ascertain if the
evidence either SUPPORTS or CONTRADICTS the
claim in question. Various datasets have been pro-
posed to facilitate research in this area in different
domains: e.g., FEVER (Thorne et al., 2018) is a
Wikipedia-based claim verification dataset. Claim
verification in the scientific domain has also been
proposed in recent years to facilitate research in
this complex domain (Wadden et al., 2022a, 2020;
Saakyan et al., 2021; Sarrouti et al., 2021; Kotonya
and Toni, 2020; Diggelmann et al., 2020). These
datasets, despite their value, often have limited
training data due to the high cost of creation, im-
pacting the reasoning capabilities and robustness
of claim verification methods.

In addressing these challenges, the literature
shows significant advances in models for verifying
scientific claims through reasoning. One notable
strategy is the generation of explanations. Prior
studies have explored using attention mechanisms
to identify key evidence segments (Popat et al.,
2017; Cui et al., 2019; Yang et al., 2019; Jolly
et al., 2022). Recently, the integration of LLMs in
explanation generation has been investigated. For
example, ProofVer (Krishna et al., 2022) generates
proofs for the claim based on evidence using logic-
based inference. ProgramFC (Pan et al., 2023) uses
LLMs to generate reasoning programs that can be
used to guide fact-checking, and FOLK (Wang and
Shu, 2023) leverages the in-context learning ability
of LLMs to generate First Order Logic-Guided rea-
soning over a set of knowledge-grounded question-
and-answer pairs to make veracity predictions with-
out using annotated evidence.

Our work diverges from these methodologies
as we propose an add-on task to enhance the ro-
bustness and reasoning ability of existing models.



(c: “Cellphones can be unhealthy for kids
'and kids are spending a lot of time on their
\whones.”

e: “According to the research published in
the Journal of Behaviour Addiction,
overuse of smartphones is associated with
various mental health concerns such as
anxiety depression, and low self-esteem.”
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Figure 2: Overview of the framework.

This is achieved through a novel data augmenta-
tion strategy, which improves the connection be-
tween claims and evidence by focusing on learning
critical, relevant short facts essential for effective
scientific claim verification.

3 Methodology

We introduce FactGen, a novel approach designed
to enhance the performance of claim verification
solutions by leveraging automatically generated
short facts extracted from the evidence. FactGen is
a versatile tool that can be integrated into various
claim verification methods, improving the robust-
ness and reasoning capabilities of existing models.
The core of FactGen relies on weakly labeled short
facts, which are categorized as either important
for verifying a given claim or not important for
that purpose, which are used to train a multi-task
learning-based model (FactDetect) for importance
detection and claim verification.

3.1 Definition

Here, we formally define the primary task of fact
generation and labeling: Given a claim statement
(c) and corresponding evidence statement (e), our
objective is to generate concise “facts” from the e.
We denote this set of facts by Fo = {f1,..., fm}.
Each fact is subsequently labeled as either “im-
portant” or “not important,” denoted as yy, €
{important, not important}.

It is crucial to emphasize that these facts are
intentionally designed to be shorter in length com-
pared to the original evidence (e). They serve as
distilled pieces of information extracted from the
broader context of the evidence. These succinct
facts are intended to capture essential details or in-
sights within the evidence, making them more man-
ageable for claim verification tasks. An overview

of the FactGen is given in Figure 1.
We next elaborate on the processes of short fact
generation and weak labeling.

3.1.1 Short Fact Generation

To generate short facts from the evidence (e), we
adopt a three-step approach.

1) Phrase matching: Initially, we extract matching
phrases from both the claim (c¢) and the evidence,
treating these phrases as potential answers to ques-
tions (A = (a§,af),...,(aS,as)). Phrases that
“match” refers to a pair of phrases that convey simi-
lar meanings and/or are semantically similar. We
call these answer pairs. To accomplish this, we
employ LLM Vicuna-13B (Chiang et al., 2023)>
for short fact generation. Importantly, we do not re-
strict the LLM to follow specific phrase rules such
as length restrictions, using only entities or nouns,
ensuring the capture of diverse answer pairs more
likely to be relevant. The prompt used to extract
answer pairs (phrase matches) is as follows:

Extract relevant keyphrase pairs from claim and

evidence that determine the verdict. There can be
more than one relevant keyphrase pairs.

2) Question Generation: After identifying the
answer pairs, we move on to formulate concise
questions. For each answer a{ in the pair (af, af),
and corresponding to the claim ¢, we generate a
question (gq;) as follows: The claim c serves as the
context and a; as the answer. to create a question
based on these inputs—namely, the context and the
answer. We only incorporate the answer from the
claim (af) in this stage and not the answer from
evidence (af). This is to 1) ensure the generation
of a high-quality question that can be associated
directly with the claim, achievable only by pairing

*Used following model
https://huggingface.co/lmsys/vicuna-13b-v1.3

checkpoint:



the claim with an internal answer, and 2) incorpo-
rate the essential context from the claim into the
question, which will later be aligned with the af
for short sentence generations. From the previous
stage (Figure 1, the first claim phrase results in the
question What is the effect of cellphones for the
kids?. The prompt used to generate the question g;
is as follows:

Generate a question based on input context and
the answer.
3) Short Fact Generation: Finally, We generate
short fact sentences by pairing each question (g;)
with its corresponding evidence-based answer (a;)
which was extracted in the first step. These ques-
tions along with the answers are then converted
into full sentences f;. For example, the previous
question and answer results in Cellphones cause
various mental health concerns for the kids. Please
note that not all the (g;, af) pairs are reasonable.
i.e., a generated ¢; may not align semantically well
with the af due to possible errors during genera-
tion or the structure of the context (c) therefore to
ensure a reasonable and useful fact sentence we
further refine these question and answer pairs for
only the reasonable ones by incorporating a new
reasoning-infused strategy. To do this we first focus
on the “reasonability” of the generated questions
from the previous step. Here, we query the LLM
to determine if the (g;, af) pair is not reasonable. If
the output is “not reasonable”, we move forward
with other candidates i.e., (¢;+1, ay +1) otherwise,
the sentence f; generated from pairing ¢; and the
evidence-based answer (af) is added to the can-
didate answers A.. This step is crucial for two
reasons: 1) it serves to eliminate any unsuccess-
ful question generations that can occur with LLMs
(e.g., the failures can be due to the inconsistent
and hallucinated generations), and 2) it helps Fact-
Gen to extract the most important question-answer
pairs for claim verification. The prompt used in
generating the short facts is as follows:

Generate full sentence from the given “ques-
tion” and “answer”. If the “question” is not an-
swerable by the provided “answer”, output “not
reasonable”.

3.2 Weak labeling

Labeling each generated fact as “important” or
“not important” is a crucial step in the FactDetect
process. After extracting the candidates we label a
short fact sentence f; as “important” if the cosine

similarity between f; and the claim ¢ and f; and
evidence e exceeds a predefined threshold (¢) and
“not important” if not. More specifically:

sim(fi, ¢, e) = y(cos(fi,c) + cos(fi, €)) (1)
{“important” if sim(f;,c,e) >t
Yr =

“not important” otherwise

Here + is a hyperparameter and cos(.) is calcu-
lated using the Sentence Transformers (Reimers
and Gurevych, 2019) embedding of f;, c and e.

3.3 Joint Claim Verification and Fact
Detection Framework

Because of the success of the full context train-
ing of claim verification tasks within state-of-the-
art models such as MULTIVERS (Wadden et al.,
2022b), PARAGRAPHIJOINT (Li et al., 2021), and
ARSJOINT (Zhang et al., 2021), we propose a
similar enhancement approach. Our framework re-
volves around performing full context predictions
by concatenating the claim (c), title (¢), gold ev-
idence (e), and all the facts in F. with a special
separator token to separate each fact in F.

Our approach employs a multi-tasking-based
strategy where the model is jointly trained to mini-
mize a multitask loss defined as follows:

L= ch + aLfact (2)

where L., represents the cross-entropy loss associ-
ated with predicting the overall claim verification
task. Specifically, we predict y(c, ) where:

y(c,e) € {support, contradict, nei}  (3)

by adding a classification head on the </s> token.
In addition, L f,.; denotes the binary cross-entropy
loss for predicting whether each fact (f;) is impor-
tant to the claim (c) or not, and « is a hyperpa-
rameter. During inference, we only predict y(c, e),
setting aside the fact detection part.

3.4 Zero-shot prediction with LLMs

In the zero-shot approach, without the need for
human annotated training dataset and finetuning
a claim verification model, we leverage Large
Language Models (LLMs) to extract the encoded
knowledge in them using a prompting strategy
aimed at eliciting the most accurate responses from
them. This is achieved by adjusting the LLM to
draw external knowledge in response to the prompt



from the learned parameters. This is done as fol-
lows. Here, we introduce a zero-shot approach
where we augment FactDetect generated short fact
sentences Jj into the prompt for claim verifica-
tion through fact-detection: given c, e and F, we
first ask an LLM to detect the most important facts
and then, by providing an explanation we ask it to
predict the verdict y(c, €).

This approach is similar to the popular Retrieval
Augmented Generation (RAG) (Lewis et al., 2020)
approach used in optimizing the output of the Large
Language Models using external sources. A differ-
ence between our approach to the “retrieval” aug-
mented approach is that we augment the candidate
facts from the evidence into the input rather than
retrieving any external knowledge.

The approach is formulated as follows: let M
be a language model and P be the prompt. The
‘P for the test inputs is generated by concate-
nating ¢, e and F.. We first extract important
facts and then get the predicted the verdict. i.e.,
p(y(c, )| M(P)).

4 Experiments

We evaluate the effect of including FactDetect
within different claim verification models and en-
coders. To evaluate this, we first explain the
datasets used and introduce the baseline models
we compared to our approach.

4.1 Datasets

SciFact (Wadden et al., 2020) consists of expert
annotated scientific claims from biomedical litera-
ture with their corresponding evidence sentences
that were retrieved from abstracts. SUPPORTED
claims are human-generated using citation sen-
tences in abstracts and CONTRADICTED claims
are negations of original claims.

SciFact-Open (Wadden et al., 2022a) constitutes
a test collection specifically crafted for the assess-
ment of scientific claim verification systems. In
addition to the task of verifying claims against evi-
dence within the SciFact domain, this dataset con-
tains evidence originating from a vast scientific
corpus of 500,000 documents.

HealthVer (Sarrouti et al., 2021) is a compilation
of COVID-19-related claims from real-world sce-
narios that have been subjected to fact-checking
using scientific articles. Unlike most available
datasets where contradicted claims are usually just
the negation of the supported ones, in this dataset
contradicted claims are themselves extracted from

real-world claims. The claims in this dataset are
more challenging compared to other datasets.

4.2 Baselines

We evaluate FactDetect in two settings: 1) super-
vised models and 2) unsupervised models. In su-
pervised models, we either train the state-of-the-
art models on few-shot or full training settings.
For unsupervised models, we use several best-
performing LLMs for a zero-shot and few-shot
prompting where we compare FactDetect prompt-
ing with different prompting strategies. For few-
shot, we train on k = 45 training samples.

4.2.1 Supervised Baselines

We incorporate FactDetect as an add-on for a multi-
task learning-based approach on two transformer-
based encoders. We train the supervised models
on NVIDIA RTX8000 GPU and overall model pa-
rameters do not exceed 1B. We set the learning rate
to 2e — 5 and save the best model in 20 epochs.
We choose 0.5 for the v parameter and 10 for the
a hyperparameter. The threshold ¢ for the cosine
similarity between fact sentences and claim and
evidence is set to 0.6. 3

We also evaluate the effectiveness of Fact-
Detect on an end-to-end fact-checking MUL-
TIVERS (Wadden et al., 2022b) approach.
Longformer (Beltagy et al., 2020) With the self-
attention mechanism incorporated into this model
and its ability to process long sequences, we use
this encoder to concatenate short reasoning sen-
tences into the claim along with additional context
provided in the title (if any).
RoBERTa-Large (Liu et al., 2019) RoBERTa has
proven to be an effective Language model to be
used for training different classification tasks. We
use this model as a base encoder in our experiments
for this claim verification task.
MULTIVERS (Wadden et al., 2022b) is a state-
of-the-art supervised scientific claim verification
approach which uses Longformer as a base encoder
for long-context end-to-end claim verification in a
multi-task learning based approach where in addi-
tion to the claim and title it incorporates the whole
document (abstract) for both claim verification and
rationale (evidence) selection. We augment the
FactGen sentences into the model as an input and
train FactDetect on top of MULTIVERS in a multi-
tasking based approach.

*We performed experiments with 5, 10 and 15 and the best
performing value was 15.



Setting  Model Fl//\c}?mltmfier R 1?1/AccSClFa;t R F1/S/:::Saa Ogen R
RoBERTa-Large 38.7/34.7 39.1 383 | 37.0/43.0 363 37.8 | 36.3/30.1 35.8 36.8

Few shot ROBERTa-Large+FactDetect  27.6/23.0 224 358 | 34.0/38.6 335 348 | 325272 310 34.1
Longformer 27.8/21.7 253 30.7 | 42.4/39.3 43.0 41.8 | 36.2/36.9 364 36.0
Longformer + FactDetect 33.7/25.2 340 334 | 41.6/553 374 46.8 | 34.3/42.0 282 43.6
RoBERTa-Large 43.9/28.6 52.0 37.9 | 48.5/64.6 433 552 | 38.1/45.1 30.7 50.1
RoBERTa-Large+FactDetect 45.3/25.6 61.0 36.0 | 50.8/66.5 58.1 45.2 | 40.6/46.0 35.1 482

Full Longformer 53.1/35.7 58.1 49.1 | 54.7/49.3 63.5 49.0 | 40.4/27.2 50.2 33.7
Longformer + FactDetect 56.2/44.7 59.2 53.0 | 63.0/65.0 67.2 59.2 | 40.4/38.4 344 403
MULTIVERS 60.6/61.7 59.1 62.0 | 70.4/72.0 70.8 70.0 | 65.0/62.3 653 64.8
MULTIVERS + FactDetect 62.1/63.0 61.5 62.7 | 70.8/72.3 703 71.3 | 65.2/61.3 66.2 64.4

Table 1: Overall performance comparison between different baselines without and with (+FactDetect) multi-task learning
incorporating FactDetect. SciFact-Open results are reported in a zero-shot setting. The best results for each dataset are highlighted
in bold and the best results within each pair (with and without FactDetect) are underlined.

4.2.2 Zero-shot baselines

LLMs serve as a robust source of knowledge and
demonstrate impressive outcomes in various down-
stream tasks, especially in contexts where zero-shot
and few-shot learning are employed. However, the
effectiveness of these models heavily depends on
the methods used to prompt their responses. Con-
sequently, we evaluate state-of-the-art prompting
methods both specific to the claim verification task
and general task approaches, and compare them to
our FactGen augmented prompting method.
Vanilla: We engage LLMs to assess the truthful-
ness of claims based on provided evidence and to
offer justifications for their verdicts. This process
is carried out without integrating any extra knowl-
edge or employing a specific strategy.

Chain of Thought (CoT) (Wei et al., 2022) This
popular approach involves breaking down the task
into a series of logical steps presented to LLMs
via prompts for the given context. We use this
approach by providing the claim and evidence as
input and instruct it to think step by step and pro-
vide explanation before predicting the verdict. We
consequently add the let’s think step by step instruc-
tion into the prompt and provide few shot examples
where the verdict is given followed by a step by
step reasoning explanations.

ProgramFC (Pan et al., 2023) is a newly intro-
duced approach that converts complex claims into
sub-claims which are then used to generate rea-
soning programs using LL.Ms that are executed
and used for guiding the verification. We utilize
the closed-book setting of this method with N=1.
This approach is built for only two-label datasets

where claims are either SUPPORTED or CON-
TRADICTED by evidence.

We compare these strategies in FlanT5-
XXL (Chung et al., 2022), GPT-3.5 (gpt-3.5-turbo
checkpoint), GPT-4 (gpt-4 checkpoint), Llama2-
13B (Llama-2-13b-chat-hf checkpoint) (Touvron
et al., 2023), and Vicuna-13B (Chiang et al., 2023)
(vicuna-13b-v1.3 checkpoint). We perform experi-
ments in few-shot promoting (kK = 5).

4.3 Main Results
4.3.1 Supervised setup

We first report the results of supervised baselines
with and without FactDetect incorporated in their
training process in Table 1. We experiment with
few-shot and full training setups. We observe that
incorporating FactDetect into the Longformer and
RoBERTa-Large encoders achieves the best perfor-
mance in all three datasets (in bold). Specifically in
the Full training setup, the average improvement in
F1 when adding FactDetect to Longformer is 5.8%
for HealthVer and 15.2% for SciFact. Longformer +
FactDetect in the few-shot setting also improves the
F1 score for HealthVer by 21.0%. However, overall
we do not see a consistent performance improve-
ment in the few-shot setting which suggests that
FactDetect benefits from a larger training dataset.
As mentioned earlier, the results of SciFact-Open
dataset are reported in a zero-shot setting (with
model trained on SciFact training dataset), result-
ing in lower performance. Additionally, SciFact-
Open receives less benefit from FactDetect than
other datasets even in the cases where it does im-
prove results. We suspect that this is due to the



Datasets SciFact SciFact-Open HealthVer
Metrics F1 Fl/woNEI Fl Fl/woNEI Fl F1/woNEI
Vanilla 69.0 83.1 67.4 88.6 1.3 61.2
FlanT5-XXL CoT 53.7 69.2 60.3 84.9 45.1 59.5
FactDetect 62.5 79.4 54.0 81.2 44.6 63.4
Vanilla 19.8 41.0 24.0 39.0 29.0 59.5
Llama2-13B  CoT 34.6 448 31.0 454 44.8 64.3
FactDetect 39.0 57.0 352 38.0 55.4 63.9
Vanilla 475 58.5 42.8 634 35.8 58.7
Vicuna-13B CoT 473 66.1 52.2 734 44.7 54.7
FactDetect 54.4 69.3 49.0 66.8 40.0 61.0
Vanilla 64.5 72.5 63.0 80.4 50.9 68.0
GPT-3.5 CoT 69.8 81.8 62.9 84.5 52.1 67.9
FactDetect 70.6 83.0 55.0 814 53.9 68.6
Vanilla 86.2 92.3 72.9 90.7 47.8 72.1
GPT-4 CoT 83.2 88.1 79.0 96.1 441 70.7
FactDetect 74.3 86.3 70.1 98.0 54.0 75.0
ProgramFC - 45.0 — 78.0 - 62.9

Table 2: Using the in-context learning capabilities of LLMs we evaluate the effectiveness of different prompting strategies in 5
LLMs. We report results both with NOT ENOUGH INFO (NEI) data samples and without them. The best-performing strategy
for each LLM is underlined and overall the best results are highlighted in bold for each dataset.

more complex nature of the dataset, with its having
unique claims that are both supported and contra-
dicted by different evidence sentences. The out-
comes is consistent with the top-performing base-
line, MULTIVERS. By integrating FactDetect into
MULTIVERS, we achieve similar performance, de-
spite the advantage of complete context encoding
within this framework. Please note that the reported
results were obtained from a single-run experiment.

4.3.2 Zero-shot setup

We additionally evaluate the performance of LLMs
for the claim-verification task with FactDetect pro-
viding additional context for zero-shot claim ver-
ification. We used GPT-3.5 to generate programs
for ProgramFC and extracted the verification with
FlanT5-XL as described by Chung et al. (2022).
We experimented with this model in two-label set-
tings (supported and contradicted) because the
original model is designed in binary verification
mode. For a fair comparison, we report binary clas-
sification results in all our experiments. The results
are reported in Table 2.

We observe that FactDetect substantially im-
proves the performance of Llama2-13B in all three
datasets compared to the best-performing baseline
with an average performance gain of 14% in the F1
score. Similarly FactDetect shows improvements
for GPT-3.5 in SciFact and HealthVer. Interestingly,

FlanT5-XXL outperforms other prompting meth-
ods in the Vanilla setting. We suspect one main
reason for this result is that we directly augment
the output of short fact generation into the prompt
as a list of sentences and ask the LLM to first ex-
tract the most important sentence among them for
claim verification. Note that since this approach is
fully unsupervised, there is a chance of hallucina-
tion which can directly impact the performance of
the larger LLMs. This hypothesis also holds for the
larger LLMs such as GPT-3.5 and GPT-4. Compar-
ison between ProgramFC and baselines also shows
the limited advantage in predicting verdicts in sci-
entific claim verification datasets compared to the
general claim verification datasets.

4.4 Assessing LLMs for FactGen

Here, we explore the impact of various underlying
large language models (LLMs) on the task of claim
verification by regenerating short fact sentences
using three different LLMs: Mistral-7B*, GPT-3.5,
and Vicuna-13B. The zero-shot experiments were
conducted using the same models as in Section
4.3.2 (excluding GPT-4), alongside a supervised
experiment involving a Longformer + FactDetect.
The findings are depicted in Figure 3.

*employed checkpoint:
https://huggingtace.co/mistralai/Mistral-7B-Instruct-v0.2
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Figure 4: Comparison in Macro F1 score for SciFact between
FactDetect-generated short facts and direct generation.

The results indicate that the choice of LLM for
generating short facts has a minimal impact on
the performance of the supervised model (Long-
former+FactDetect). In contrast, the zero-shot
experiments exhibited more pronounced perfor-
mance variations dependent on the LL.M utilized
for fact generation. Notably, Llama2-13B and
GPT-3.5 demonstrated heightened sensitivity to the
choice of LLM in the fact generation (FactGen) pro-
cess. Furthermore, we observed an enhancement
in the overall efficacy of the claim verification task
when employing Mistral-7B and GPT-3.5 for Fact-
Gen. These findings suggest that zero-shot, prompt-
based claim verification highly benefits from the
utilization of higher-quality LLMs.

4.5 Effectiveness of FactGen

Here, we experiment and compare two short fact
generation approaches. The first approach is the
Direct approach, where we ask Vicuna-13B to gen-
erate short sentences from evidence e (we give 5
examples as few-shot prompting). The second ap-
proach is generating short facts using FactDetect.
We collect the short sentences for each piece of
evidence in a claim-evidence (CE) pair, for the Sci-
Fact dataset (dev set) and run experiments in the
unsupervised setup. Macro F1 score comparisons
between Direct and FactDetect-augmented predic-

tions are given in Figure 4.

Overall, FactDetect-augmented prompts are per-
forming better compared to the Direct approach.
These results suggest the usefulness of the three-
step approach compared to the baseline sentence
generation approach.

S Error Analysis

To better understand the errors made by FactDetect
in the Zero-Shot setting, we manually analyzed the
test set predictions where the LLM made incorrect
predictions and found that Larger LLMs are more
sensitive towards hallucinations.

When the information provided by short fact
generation doesn’t fully align with the evidence
and claim, larger language models can detect this
mismatch in short sentences and accordingly pro-
duce a not enough info (nei) response. Specifically,
in instances of misclassification, FlanT5-XXL in-
correctly labels claims as (nei) 63% of the time,
and GPT-4 does so 68% of the time. Conversely,
Llama2-13B and Vicuna-13B incorrectly assign the
(nei) label about 10% of the time, more frequently
misclassifying other responses as “support”. We
will tackle this issue in future studies.

6 Conclusion and Future Work

In this work, we propose FactGen, an effective
short fact generation technique, for comprehen-
sive and high-quality condensed small sentences
derived from evidence. With the relevance-based
weak-labeling approach this dataset can be aug-
mented to any state-of-the-art claim verification
model as a multi-task learning to train fact detec-
tion with FactDetect. The effectiveness of this
model has been demonstrated in both fine-tuned
and prompt-based models. Our results suggest that
FactDetect incorporated claim-verification task in
a supervised setting consistently improves perfor-
mance on average by 10.5% in full training setup.



7 Limitations

A drawback of our method is the reliance on a gen-
erative language model, LLMs for producing short
fact sentences throughout the entire process. De-
spite employing Vicuna-13B, which is among the
top open-source LLMs available, the factual accu-
racy and overall quality of the generated content
are bounded by the capabilities of this particular
model. Consequently, any inaccuracies from the
model could impact the effectiveness of the end-
to-end claim verification system. Overcoming this
obstacle is a crucial direction for future research.

Furthermore, a limitation of zero-shot FactDe-
tect in real-world claim-verification systems is
the need to augment the short sentences into the
prompt, which is an additional step and can be time-
consuming in the claim verification task. How-
ever, this problem is mitigated when we fine-tune
a claim-verification system with FactDetect in the
training phase, and during inference, we just use
the claim and evidence as input.

8 Ethics Statement

Biases. We acknowledge the possibility of bias in
generated outputs from the trained LLM. However,
this is beyond our control.

Potential Risks. Our approach can be used for
automated fact-checking. However, they could also
be used by malicious actors to manipulate and at-
tack fact-checking models. A possible future di-
rection is to detect such malicious actions before
deployment.

Environmental Impact. Training and using LLMs
involves considerable computational resources, in-
cluding the necessity for GPUs or TPUs during
training or inference which can have an impact on
the environment. However, we trained our datasets
on relatively smaller language models with less
than 1B parameters and we used LLMs for infer-
ence only which has negligible negative effect on
the environment.
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