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Abstract

Large pre-trained, zero-shot capable models have shown considerable success
both for standard transfer and adaptation tasks, with particular robustness towards
distribution shifts. In addition, subsequent fine-tuning can considerably improve
performance on a selected downstream task. However, through naive fine-tuning,
these zero-shot models lose their generalizability and robustness towards distri-
bution shifts. This is a particular problem for tasks such as Continual Learning
(CL), where continuous adaptation has to be performed as new task distributions
are introduced sequentially. In this work, we showcase that where fine-tuning falls
short to adapt such zero-shot capable models, simple momentum-based weight
interpolation can provide consistent improvements for CL tasks in both memory-
free and memory-based settings. In particular, we find improvements of over +4%
on standard CL benchmarks, while reducing the error to the upper limit of jointly
training on all tasks at once in parts by more than half, allowing the continual
learner to inch closer to the joint training limits.

1 Introduction

Continual Learning (CL) tackles the problem of learning from a non-stationary data stream, where
training data is presented to the model not at once, but only in a sequence, and with limited capacity
for retention and retraining. Not only does this require effective use of previously seen data, but
also adaptation to novel context under continuously changing distribution shifts without catastrophic
forgetting [11, 34, 35, 36]. Use cases are widespread, ranging from particularly compute-, time- or
memory-limited to privacy-concerned applications [14, 3, 16, 40, 25].

Consequentially, previous research has introduced a wide range of methods to address training under
continual shifts, such as through the use of efficient data replay [7, 3, 1, 28], regularization on the
training dynamics [11, 36] or optimization procedures seeking for flat minima [23, 38]. Generally,
these methods start from an untrained model which is then adapted to the data stream at hand.
While this has found practical success, more recently the use of large-scale pre-trained models ("foun-
dation models" [2, 25]) has become ubiquitous, as they have shown strong zero-shot generalizability
to a variety of downstream tasks, with strong robustness to distribution shifts [2].

Their application to the CL problem set, which tackles a continuous distribution shift, stands to
reason, with recent works showing notable benefits in the use of foundation models [40, 21, 31, 42],
particularly highlighting a reduction in catastrophic forgetting. Still, as learners are adapted to
continuously shifting training distribution, even foundation models will suffer from forgetting through
fine-tuning [41].

To maximize the benefits we can extract from the main continual learning process as well as the
ability to classify novel samples at test time, it is thus important to minimize the impact on the
generalizability of the adapted foundation model in order to account for potential further adaptations.

∗Denotes equal contribution.
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To allow for improved deployment in the CL setting, in this work we show how momentum-based
weight-interpolation can help remedy issues of such models adapted in a continual fashion. In
particular, as we want to maximally retain the generalizability of our adapted foundation model, we
introduce a bifurcated adaptation mechanism by retaining an additional copy of the initial foundation
model (denoted as slow model). This slow model is excluded from the direct CL optimization process,
and is only updated through linear momentum-interpolation with a task-adapted model copy (denoted
as fast model).

This is motivated by insights made in [41], who show that simple linear interpolation in weight space
between the original zero-shot model and a variant fine-tuned to a task at hand allows for adaptation,
while retaining better generalizability as compared to sole fine-tuning. However, retaining a large
collection of fine-tuned task expert models in the CL setting is memory intensive, impractical, and
undesired. Instead, we show that we can simulate the empirical benefits highlighted in [41] through
repeated momentum interpolation between our foundation model and a continuously fine-tuned
variant. This allows us to avoid the drawbacks of pure fine-tuning, while both specializing on the new
stream of tasks, and retaining the generalizability of our foundation model.

Indeed, experiments on three standard CL benchmarks (Seq-CIFAR-10, Seq-CIFAR-100 and Seq-
Tiny-ImageNet) show improvements in class- and task-incremental settings on both memory-based
and memory-free methods by up to +4%, and partly more than halving the error to the joint training
performance bound. These results indicate that for practical usage of foundation models in a
continuously distribution-shifting training scenario, momentum-based weight interpolation can be a
reliable tool for consistent improvements that works well alongside any CL method.

2 Related Work

Regularization-based methods augment the training objective to mitigate forgetting by keeping
the current parameters close to previous task parameters, such as through moment matching
[15] or Elastic Weight Consolidation (EWC) [12], which performs Laplace approximations
on the parameter posterior for each preceding task, using the means and covariances to regu-
larize the current parameters via Mahalanobis distance minimization. Online Elastic Weight
Consolidation (oEWC)[36] computes a momentum average of a single covariance matrix, and
keeps the parameters from the last task only. Learning without Forgetting (LwF)[17] also
keeps the parameters from the last task and adds a cross-entropy term between logits computed
with the old and current parameters, using data from the current task. [22] show that dropout
forces the model to learn a gating such that for different tasks, different paths of the network are active.

Rehearsal-based methods utilize Experience Replay [32] [33] by storing a small subset of the
training data into a buffer, and continually replaying it as the model moves on to learn new tasks.
Dark Experience Replay (DER) [4] introduces regularization in the rehearsal scheme by matching
the logits of the past with the logits computed by the current network parameters. Gradient Episodic
Memory (GEM) [18] and Average Gradient Episodic Memory (A-GEM) [8] enforce optimization
constraints in the current task using data from past tasks. GDumb [29] greedily stores samples in
memory, and only trains the model at test time using buffer data. DualNet [27] uses a slow network
for learning task-agnostic features through Self-Supervised Learning, and a fast network for learning
task-specific features. Contrastive Continual Learning (Co2L) [5] learns contrastive task-agnostic
features, and trains a linear classifier using only buffer data. Our approach also bears conceptual
similarities to the lookahead-style of optimization (see e.g. [43]), adapted to the continual learning
problem.

Flatness-seeking methods aim to operate in flat minima regions for each task in sequence, thereby
retaining antecedent performance. Finding Flat Minima (F2M) [39] independently adds small random
noise to the parameters, thereby obtaining similar but different loss functions which are optimized
jointly in order to locate flat minima. [24] studies how batch size, dropout and learning rate decay
affect the model’s ability to find flat basins. [20] uses the Sharpness-Aware Minimization (SAM) [9]
procedure, which explicitly optimizes for parameters lying in flat basins.
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3 Method

In CL, a model fθ is trained on a sequence of T tasks, where for each task t ∈ {1, ..., T} the learner
only gets access to a subset of samples Dt = {(xi, yi)}Nt

i=1, but is eventually evaluated on joint
performance, i.e. we optimize

θ∗ = argminθ
∑T

t=1 E(x,y)∼Dt
[L(fθ(x), y)] .

The main challenge is that at task t, the model has no access to data from previous tasks t̃ ∈
{1, ..., t− 1}, therefore violating the typical IID data assumption. In this work, we investigate both
the class-incremental setting, where subsets of classes are introduced in sequence, and the much
easier task-incremental setting which jointly also provides respective task ids.

3.1 Momentum-based Weight Interpolation for Continual Learning (MCL)

To allow for effective and continuous adaptation of foundation models, we introduce momentum-
based weight interpolation for CL. As our primary target is the retention of the generalizability and
shift robustness of the underlying foundation model, it is important that minimal adaptation and
fine-tuning is performed, while still allowing for a certain degree of adaptation to the target tasks at
hand. For that, we suggest a retention of a slow model copy θslow which is kept disconnected from
the entire adaptation process, while a second instantiation θfast is updated throughout the continual
learning process. As θfast adapts to the target distribution at hand, at every iteration we simultaneously
perform an iterative updating on our slow weights through weight-space interpolation:

θslow = τ · θslow + (1− τ) · θfast

where τ is our momentum hyperparameter. A simplified version of the procedure is summarized
in Algorithm 1. As this mechanism is task- and memory-agnostic with no dependence on task
boundaries, it can be applied to any continual learning framework, both memory-based and memory-
free. And while straightforward and simple, the intuitively better retention of foundation model
weights in the continual learning setting is well motivated.

Beyond a conceptual connection to the Complimentary Learning Systems (CLS) [19, 6] theory
from neuroscience which depicts human continual learning as an interplay of a fast adaptive and a
slow retentive system, on a methodological level [10] show that maintaining a running average of
weights leads to wider optima and retained generalization during the standard fine-tuning process of
a pre-trained model.

In addition, [41] showcase that zero-shot and fine-tuned model weights are often connected by a
linear path which retains performance. It therefore stands to reason that our linear momentum-based
interpolation across task iterations allows us to connect to the performance of our task-adapted fast
variant, while maintaining the generalizability our foundation model weights θslow. The consequently
sustained implicit optimization for a flatter minimum around θslow, which is only updated through
momentum-based interpolation, has strong ties to improved generalization across task sequences
in continual learning [39, 24, 9], which we see reflected in our benchmark experiments in the next
section.

4 Experiments

Datasets. We evaluate our method on three datasets commonly used in the literature: CIFAR-10 [13],
CIFAR-100 [13], and Tiny ImageNet. We split each dataset into several tasks of non-overlapping
classes: Seq-CIFAR-10 consisting of 5 tasks (2 classes each) and Seq-CIFAR-100/Seq-Tiny-
ImageNet consisting of 10 tasks (10 and 20 classes each, respectively).

Training. For our zero-shot model we use a pre-trained CLIP ViT-B/16 [30]. We built our CL
experiments on [4] which implements several CL benchmarks in PyTorch [26]. All methods follow a
standardized training protocol - trained on Nvidia 2080Ti’s using SGD [37], a fixed learning rate and
no scheduler, with the same fine-tuning budget of 10 epochs. We perform grid searches on a random
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Algorithm 1 Momentum-based Weight Interpolation for Continual Learning (MCL)
Require: Pre-trained weights θpre, Momentum τ ∈ [0, 1]

1: θfast ← θpre
2: θslow ← θpre
3: for t← 1 . . . num_tasks do
4: for e← 1 . . . num_epochs do
5: for (x, y) ∼ Dt do
6: θfast ← θfast − α∇L(fθfast(x), y)
7: θslow ← τ · θslow + (1− τ) · θfast
8: end for
9: end for

10: end for
11: θfast ← θslow

train subset to select the best learning rate α ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7} as well as the
best momentum strength τ ∈ {0.995, 0.997, 0.999, 0.9995, 0.9997, 0.9999}. We refer the reader to
the appendix (§A.1) for an ablation study of the hyperparameters.

Evaluation. For both Task Incremental Learning (Task-IL) and Class Incremental Learning (Class-IL)
scenarios, we report the final classification accuracy over all encountered classes, with task identities
also provided in the Task-IL setting (making it a noticeably easier problem to solve).

Table 1: Baselines
Baseline CIFAR-10 CIFAR-100 Tiny-ImageNet

ZERO-SHOT 88.77 63.11 58.53
JOINT 97.53± 0.08 87.22± 0.54 78.86± 1.38

4.1 Experimental Results

In this section, we experiment with the use of momentum-based weight interpolation in three
standard CL method categories: fine-tuning (pure SGD [37]), regularization-based (oEWC [36]), and
rehearsal-based (DER++ [4] with buffer size 500 and 5000).

The results presented below are obtained over three seeds, alongside which we provide the zero-shot
lower bound (Tab. 1). Interestingly, the non-adapted zero-shot performance already in parts vastly
outperforms comparable adaptation with state-of-the-art methods not relying on foundation models,
with e.g. DER++ [4] reporting 72.70 ± 1.36% with a buffer of 500, and 85.40 ± 0.49% with a
buffer of 5000 on CIFAR-10, while zero-shot performance of our foundation model already achieves
88.77%. This difference is even further exacerbated on Tiny-ImageNet, with 19.38 ± 1.41% and
39.02± 0.97 for buffer sizes of 500 and 5000 respectively, versus 58.53% for zero-shot performance,
verifying the potential [21, 31] of foundation models in CL.

To provide an upper bound, we train on all tasks jointly (Tab. 1). Since joint training is evaluated
without task boundaries, this upper bound does not hold for Task-IL scenarios. Next, in Tab. 2 we
present the results on the CL benchmarks. We empirically show that, as motivated in Sec. 3, keeping
a momentum-interpolated version of the foundation model results in consistent improvements.

In particular, our results show that adaptation to the task distribution at hand is beneficial even with
simple fine-tuning. Even when accounting for a change in learning rate (as noted in §4 and done
for every baseline), we find that additional momentum-based weight interpolation offers consistent
benefits in both class- and task-incremental settings, with nearly +4% improvement on both Seq-
CIFAR-100 and Seq-Tiny-ImageNet. Furthermore, through momentum-updating, we can push
simple fine-tuning close or even over the performance of a state-of-the-art CL framework (DER++).
Additionally, we observe similar performance improvements even when applied on top of separate
CL frameworks, both memory-free (oEWC, e.g. 74.07± 0.20→ 77.25± 0.31 on Seq-CIFAR-100)
and memory-based (DER++ with 500 memory samples, 76.78± 0.23→ 82.01± 0.31).
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Table 2: Continual Learning setting – training and evaluating on sequences of tasks.

Method Momentum Seq-CIFAR-10 Seq-CIFAR-100 Seq-Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

SGD no 91.38± 0.04 98.17± 0.01 74.36± 0.03 93.59± 0.04 67.30± 0.08 82.12± 0.07
yes 92.46± 0.11 98.43± 0.01 77.52± 0.37 94.98± 0.17 71.09± 0.28 85.22± 0.32

oEWC no 90.67± 0.01 98.17± 0.01 74.07± 0.20 93.80± 0.02 66.60± 0.02 81.79± 0.02
yes 91.87± 0.57 98.88± 0.12 77.25± 0.31 95.09± 0.01 71.57± 0.05 85.94± 0.07

DER++ (500) no 94.65± 0.16 99.38± 0.10 76.68± 0.23 95.05± 0.09 71.05± 0.12 84.42± 0.22
yes 95.73± 0.21 99.50± 0.04 82.01± 0.31 96.69± 0.03 75.11± 0.02 87.80± 0.27

DER++ (5000) no 97.08± 0.04 99.60± 0.01 83.16± 0.20 97.03± 0.11 76.54± 0.10 88.44± 0.04
yes 97.21± 0.11 99.62± 0.01 84.94± 0.07 97.13± 0.05 78.26± 0.14 89.00± 0.11

Interestingly, a momentum-extended DER++ with a buffer size of 500 also almost closes the gap in
performance to the non-momentum based DER++ with a much larger buffer size 5000, which, even
with such a large memory, also sees significant improvements on the particularly more complex CL
tasks (Seq-Tiny-ImageNet, 76.54± 0.10→ 78.26± 0.14).

This demonstrates that the need for buffer sizes in CL frameworks built around foundation models can
decrease significantly (in this case, 10-fold) through momentum-based weight-space interpolation.
We do note that while not necessary for the benchmarks at hand, longer task sequence may benefit
from a re-synchronization of θslow and θfast.

Finally, we find that momentum-based DER++ with a buffer of 5000 even further closes the gap
to the joint optimization upper bound - looking at the error, we find a drop of 0.45%→ 0.32% on
Seq-CIFAR-10, 4.06%→ 2.28% on Seq-CIFAR-100, and 2.32%→ 0.6% on Seq-Tiny-ImageNet,
which marks a nearly 75% reduction. Conclusively, these results indicate the significant benefits of
retaining a momentum-updated model copy when introducing foundation models into the CL setting,
both for consistent relative improvements, but also to minimize the performance drop when moving
from the standard joint optimization to a continual learning scenario.

5 Conclusion

This work tackles the adaptation of large-scale pre-trained zero-shot models to continual learning
(CL). To retain the strong generalizability and robustness of these models even under continuous
fine-tuning, we propose the use of a momentum-based interpolation between a slow-moving zero-shot
model excluded from the direct CL process and a task-adapted fast variant. Through this simple
extension, we find consistent improvements in performance across three standard CL benchmarks
(Seq-CIFAR-10, Seq-CIFAR-100, Seq-Tiny-ImageNet) on both memory-based and memory-free
approaches, of in parts more than +4%. In addition, we find the distance between continual learning
and joint task optimization performance in some cases to even be more than halved. Based on these
insights, the generalizability of large-scale pre-trained zero-shot models, and the simplicity of the
proposed setup, we believe the adoption of our approach to be of high practical interest.
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A Appendix
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Figure 1: The effect of the hyper-parameter τ on the Class-IL Accuracy

A.1 Ablation study

Momentum strength. In Figure 1 we show how the momentum strength τ affects the model’s Class-IL
Accuracy. While we find that the optimal value of τ is dataset-dependent, it is encouraging that the vastly
different methods show surprisingly similar behavior for a given dataset.

Restart frequency. Next, we examine whether it is beneficial to restart the fast weights θfast with the slow
weights θslow during training (instead of only at the end as per default, i.e. Line 11 in Algorithm 1). To this end,
we introduce a new hyperparameter restart frequency which specifies after how many gradient steps we perform
a restart. From the results detailed in Figure 2, we find that restarting the fast weights is not beneficial to the
generalization performance.
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Figure 2: The effect of restarting the fast weights with the slow weights at various restart frequencies.

Update frequency. Finally, we examine whether it is beneficial to perform the update of the slow weights (Line
7 in Algorithm 1) at various frequencies. For this purpose, we introduce a new hyperparameter update frequency
which specifies after how many gradient steps we update the slow weights. From the results summarized in
Figure 3, we find that updating at frequencies higher than 1 (where 1 is the default behavior of our algorithm)
does not provide a boost in performance.
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Figure 3: The effect of computing the momentum update at various update frequencies.
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