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ABSTRACT

Calibrating neural networks is crucial in applications where the decision making
depends on the predicted probabilities. Modern neural networks are not well cali-
brated and they tend to overestimate probabilities when compared to the expected
accuracy. This results in a misleading reliability that corrupts our decision policy.
We define a weight scaling calibration method that computes a convex combina-
tion of the network output class distribution and the uniform distribution. The
weights controls the confidence of the calibrated prediction. Since the goal of
calibration is making the confidence prediction more accurate, the most suitable
weight is found as a function of the given confidence. We derive an optimization
method that is based on a closed form solution for the optimal weight scaling in
each bin of a discretized value of the prediction confidence. We report extensive
experiments on a variety of image datasets and network architectures. This ap-
proach achieves state-of-the-art calibration with a guarantee that the classification
accuracy is not altered.

1 INTRODUCTION

Probabilistic machine learning algorithms output confidence scores along with their predictions.
Ideally, these scores should match the true correctness probability. However, modern deep learn-
ing models still fall short in giving useful estimates of their predictive uncertainty. The lack of
connection between the model’s predicted probabilities and the confidence of model’s predictions
constitutes a key obstacle to the application of neural network models to real-world problems, such
as decision-making systems. Quantifying uncertainty is especially critical in real-world tasks such
as automatic medical diagnosis (Crowson et al., 2016; Jiang et al., 2011; Raghu et al., 2019) and
perception tasks in autonomous driving (Amodei et al., 2016). A classifier is said to be calibrated
if the probability values it associates with the class labels match the true probabilities of the correct
class assignments. Modern neural networks have been shown to be more overconfident in their pre-
dictions than their predecessors even though their generalization accuracy is higher, partly due to the
fact that they can overfit on the negative log-likelihood loss without overfitting on the classification
error (Guo et al., 2017; Lakshminarayanan et al., 2017; Hein et al., 2019).

Various confidence calibration methods have recently been proposed in the field of deep learning to
overcome the over-confidence issue. Calibration strategies can be divided into two main types. The
first is a model calibration while training the model (e.g. (Kumar et al., 2019; Maddox et al., 2019;
Kendall & Gal, 2017; Milios et al., 2018; Mukhoti et al., 2020)). The second approach performs
calibration as a post processing step using an already trained model. Post-hoc scaling approaches to
calibration (e.g. Platt scaling (Platt et al., 1999), isotonic regression (Zadrozny & Elkan, 2002), and
temperature scaling (Guo et al., 2017)) are widely used. They use hold-out validation data to learn a
calibration map that transforms the model’s predictions to be better calibrated. Temperature scaling
is the simplest and most effective calibration method and is the current standard practical calibration
method. Guo et al. (2017) investigated several scaling models, ranging from single-parameter based
temperature scaling to more complex vector/matrix scaling. They reported poor performance for
vector/matrix scaling calibration. To avoid overfitting, Kull et al. (2019) suggested regularizing ma-
trix scaling with an L2 loss on the calibration model weights. Gupta et al. (2021) built a calibration
function by approximating the empirical cumulative distribution using a differentiable function via
splines. Note that this calibration method can change the accuracy of the model.

Most of these calibration methods extend single parameter temperature scaling by making the se-
lected temperature either a linear or a non-linear function of the logits that are computed for the
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class-set. For example, in vector scaling (Guo et al., 2017), each class has its own temperature scal-
ing. In this study we take a different approach and propose an alternative to temperature scaling
which we dub weight scaling. Weight scaling calibrates the network by computing a suitable convex
combination of the original class distribution and the uniform distribution. Since the goal of calibra-
tion is to make the confidence prediction more accurate, the suitable weight calibration is found as
a function of the confidence (i.e. the probability of the class with the highest logit). We thus choose
a suitable scaling weight to a given instance as a function of the confidence of the predicted class.
To find the optimal confidence based scaling, we divide the unit interval into bins and compute the
optimal weight scaling for the validation set instances whose estimated confidence fall into that bin.

We show that unlike temperature, vector and matrix scaling (Kull et al., 2019) and other recently
proposed methods (e.g. Gupta et al. (2021)), we can obtain a closed form solution for the optimal
calibration parameters. The proposed calibration procedure is very fast and robust. No hyper param-
eters need to be tuned. The learned calibration method is easy to implement and yields improved
calibration results. The proposed calibration does not change the hard classification decision, which
allows it to be applied on any trained network and guarantees to retain the original classification
accuracy in all the tested cases. We evaluate our method against leading calibration approaches on
various datasets and network architectures and show that it outperforms existing methods (that are
more difficult to train and more complicated to implement) on improving the expected calibration
error (ECE) (Naeini et al., 2015) calibration measure.

2 CALIBRATION PROBLEM FORMULATION

Let x be an input vector to a classification network with k classes. The output of the network is a
vector of k values z1, ..., zk. Each of these values, which are also called logits, represents the score
for one of the k possible classes. The logits’ vector is transformed into a probabilities vector by a
softmax layer: p(y = i|x) = exp(zi)∑

j exp(zj)
. Although these values uphold the mathematical terms of

probabilities, they do not represent any actual probabilities of the classes.

The predicted class for a sample x is calculated from the probabilities vector by ŷ = argmaxi p(y =
i|x) = argmaxi zi and the predicted confidence for this sample is defined by p̂ = p(y = ŷ|x). The
accuracy of the model is defined by the probability that the predicted class p̂ is correct. The network
is said to be calibrated if for each sample the confidence is equal to the accuracy. For example, if
we collect ten samples, each having an identical confidence score of 0.8, we then expect an 80%
classification accuracy for the ten samples. Calibration can also be defined for each of the k classes
separately. Class i is said to be calibrated in the network if the confidence of a sample from this
class is equal to the accuracy of the class.

A popular metric used to measure model calibration is the ECE (Naeini et al., 2015), which is
defined as the expected absolute difference between the model’s confidence and its accuracy. Since
we only have finite samples, the ECE cannot in practice be computed using this definition. Instead,
we divide the interval [0, 1] into m equispaced bins, where the ith bin is the interval

(
i−1
m , im

]
. Let

Bi denote the set of samples with confidences p̂ belonging to the ith bin. The accuracyAi of this bin
is computed asAi = 1

|Bi|
∑
t∈Bi

1 (ŷt = yt), where 1 is the indicator function, and ŷt and yt are the
predicted and ground-truth labels for the tth sample. Ai is the relative number of correct predictions
of instances that were assigned to Bi based on the confidence. Similarly, the confidence Ci of the
ith bin is computed as Ci = 1

|Bi|
∑
t∈Bi

p̂t, i.e., Ci is the average confidence of all samples in the
bin. The ECE can be approximated as the weighted average of the absolute difference between the
accuracy and confidence of each bin:

ECE =

m∑
i=1

|Bi|
n
|Ai − Ci| (1)

where n is the number of samples in the validation set. Note that Ai > Ci means the network is
under-confident at the ith bin and Ci > Ai implies that the network is over-confident.

One disadvantage of ECE is its uniform bin width. For a well trained model, most of the samples lie
within the highest confidence bins; hence, these bins dominate the value of the ECE. For this reason,
we can consider another metric, AdaECE (Adaptive ECE), where bin sizes are calculated so as to
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evenly distribute samples between bins (Nguyen & O’Connor, 2015):

AdaECE =
1

m

m∑
i=1

|Ai − Ci| (2)

such that each bin contains 1/m of the data points with similar confidence values.

The ECE method can also be used to determine the calibration of the prediction for each class
separately (Kull et al., 2019; Vaicenavicius et al., 2019; Kumar et al., 2019). We can apply the same
procedure described above to compute the ECE score for class j by considering for each sample x the
probability p(y = j|x). Let Bij denote the set of samples x that p(y = j|x) is in the ith bin, Aij the
accuracy of this class in this bin Aij = 1

|Bij |
∑
t∈Bij

1{yt=j} and Cij = 1
|Bij |

∑
t∈Bij

p(yt = j|xt)
is the confidence. The classwise-ECE score for class j can be then calculated as:

ECEj =

m∑
i=1

|Bij |
nj
|Aij − Cij | . (3)

We note in passing that even though the drawbacks of ECE have been pointed out and some im-
provements have been proposed (Kumar et al., 2019; Nixon et al., 2019; Gupta et al., 2021; Zhang
et al., 2020), the ECE histogram approximation is still used as the standard calibration evaluation
measure.

3 WEIGHT SCALING BASED ON THE PREDICTED CONFIDENCE

Temperature Scaling (TS), is a simple yet highly effective technique for calibrating prediction prob-
abilities (Guo et al., 2017). It uses a single scalar parameter T > 0, where T is the temperature,
to rescale logit scores before applying the softmax function to compute the class distribution. In
overconfident models where T > 1, the recalibrated probabilities of the most likely class have a
lower value than the original probabilities, and all the probabilities are more evenly distributed be-
tween 0 and 1. To get an optimal temperature T for a trained model, we can minimize the negative
log likelihood for a held-out validation dataset. Alternatively, the ECE measure can be used as the
objective score when finding the optimal T .

Let Ai and Ci be the accuracy and confidence of the validation-set points in the i-th set Bi. Denote
the average confidence in bin i after temperature scaling of all the instances in Bi by a temperature
T by Ci(T ):

Ci(T ) =
1

|Bi|
∑
t∈Bi

k
max
j=1

exp(ztj/T )∑k
l=1 exp(ztl/T )

(4)

s.t. zt1, ..., ztk are the logit values computed by the network that is fed by xt. The optimal tempera-
ture T can be found by minimizing the following adaECE score:

LTS(T ) =
1

m

m∑
i=1

|Ai − Ci(T )| . (5)

The minimization is carried out by a grid search over the possible values of T . Direct minimization
of the ECE measure (1) on the validation set was shown to yield better calibration results than
maximizing the likelihood on a validation set (Mukhoti et al., 2020). This is not surprising since we
optimize the same calibration measure directly on the validation set that is finally evaluated on the
test set. It is better to use here the adaECE variant (2) rather than the ECE since in the ECE accuracy
at low confidence bins is computed using a small number of validation samples which makes the
scaling parameters’ estimates less robust.

Ji et al. (2019) extended TS to a bin-wise setting, denoted bin-wise temperature scaling (BTS),
by setting separate temperatures for each bin. BTS is trained by maximizing the log-likelihood
function. We can also directly minimize the gap between the confidence and the accuracy in each
bin by minimizing the following adaECE score:

LCTS(T1, ..., Tm) =
1

m

m∑
i=1

|Ai − Ci(Ti)| , (6)
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We need to apply a grid search to find Ti that satisfies Ai = Ci(Ti). We denote this calibration
method Confidence based Temperature Scaling (CTS). Similar to the case of single temperature
scaling it can be shown that CTS consistently yields better calibration results than BTS. We use
CTS as one of the baseline methods that are compared with the calibration method we propose next.

Varying the distribution temperature T from 1 to ∞ induces a continuous path from the original
class distribution p = (p1, ..., pk) to the uniform distribution u = (1/k, ..., 1/k). The notion of
temperature scaling of a distribution originated in statistical physics. There is no intrinsic reason
to specifically use a temperature to make the network output distribution smoother. The relevant
features of temperature scaling as a smoothing procedure are that the entropy increases monotoni-
cally and the confidence decreases monotonically as a function of T , the order of probabilities from
smallest to largest is maintained in the smoothing operation and it is a continuous function of T .
In this study we put forward a different way to make a
distribution smoother. For each weight α ∈ [0, 1] we
define a smooth version of the original distribution p
as follow:

pα = αp+ (1− α)u. (7)
Varying the weight α from 1 to 0 induces a differ-
ent path from the class distribution p to the uniform
distribution u. We denote the calibration approach
based on shifting from p to pα (7) as Weight Scaling
(WS). Figure 1 shows the trajectories of temperature
scaling and weight scaling from p = [0.6, 0.3, 0.1] to
u = [1/3, 1/3, 1/3].

0.4 0.5 0.6
p1

0.30

0.31

0.32

0.33

0.34

p 2

Weight Scaling
Temperature Scaling

Figure 1: Smoothing trajectories

WS has the following probabilistic interpretation. Denote the un-calibrated network output distribu-
tion by p(y = i|x; θ) s.t. that θ is the network parameter set. Let z be a binary random variable s.t.
p(z = 1) = α. Define the following conditional distribution:

p(y|x, z; θ) =


p(y|x; θ) z = 1

1/k z = 0

The class distribution of a weight scaling calibrated network is:

p(y|x; θ, α) = p(z = 1;α)p(y|x, z = 1; θ) + p(z = 0;α)
1

k
= pα(y).

In other words, the calibration is carried out by flipping a coin z and if the result is zero the network
ignores the input and reports a random class. It can be easily verified that the entropy H(pα) is a
concave function of α and obtains its global maximum at α = 0. Hence, as pα moves from p to
u, the entropy of pα monotonically increases. The confidence after weight scaling by α is simply
p̂α = αp̂ + (1 − α)1/k where p̂ is the confidence before calibration. It can be verified that in
distributions where all the non-maximum probabilities are equal (e.g. (0.6,0.2,0.2)) weight scaling
and temperature scaling are the same.

Both temperature scaling and weight scaling maintain the order of the predicted classes and therefore
do not change the original hard classification decision. Another desired property of a calibration
method is maintaining the order of instances based on their network prediction confidence. It can
easily be verified that a network that is more confident at point x than at point y can become less
confident at x than y after a temperature scaling calibration using the same temperature in both
cases. Since weight scaling is a linear operation, it maintains the order of data points based on the
confidence. If the network is more confident at x than y it remains more confident after weight
scaling by the same α.

We next use the adaECE score to learn a calibration procedure based on weight scaling instead of
temperature scaling. In the case of weight scaling let

Ci(α) =
1

|Bi|
∑
t∈Bi

k
max
j=1

(αptj + (1− α) 1
k
) = αCi + (1− α) 1

k
(8)

be the confidence in bin i after scaling by a weight α where pt1, ..., ptk are the soft-max probability
values computed by the network that is fed by xt. In the case of single parameter weight scaling, we

4



Under review as a conference paper at ICLR 2022

look for a weight α that minimizes the following adaECE score:

LWS(α) =
1

m

m∑
i=1

|Ai − Ci(α)| =
1

m

m∑
i=1

|Ai − αCi − (1− α) 1
k
|. (9)

Here there is no closed form solution for the optimal α. However, if we replace the | · | operation in
Eq. (9) by | · |2, the optimal weight scaling α is:

α =

∑
i(Ci −

1
k )(Ai −

1
k )∑

i(Ci −
1
k )

2
. (10)

We found that the L2 score yields worse calibration results than L1 (9). This is due to the fact
that there is a different optimal weight for each bin and L1 is more robust to this diversity. This
motivated us to allow a different weight in each bin. To find the weight set that minimizes the
following adaECE score:

LCWS(α1, ..., αm) =
1

m

m∑
i=1

|Ai − Ci(αi)| , (11)

we can perform the minimization in each bin separately. In the case of weight scaling (unlike
temperature scaling) there is a closed form solution to the equation Ai = Ci(αi) which is

αi =
Ai − 1

k

Ci − 1
k

. (12)

The definition of confidence as the probability of the most likely class implies that always 1/k ≤ Ci.
If 1/k ≤ A ≤ Ci then αi ∈ [0, 1]. In the (rare) case of accuracy less than random, i.e. Ai < 1/k,
we set αi = 0 and in the (rare) case of under-confidence, i.e. Ci < Ai, we set αi = 1.

This proposed calibration method is denoted Confidence based Weight Scaling (CWS). The train and
inference phases of the CWS algorithm are summarized in Algorithm boxes 1 and 2, respectively.
CWS has the desirable property that it does not affect the hard-decision accuracy since the same
weight scaling is applied to all the logits. This guarantees that the calibration does not impact the
accuracy. Note that both vector and matrix scaling do affect model accuracy and may decrease it.

Algorithm 1 Confidence based Weight Scaling (CWS) - Train

input: A validation dataset x1, ..., xn. Each xt is fed into a k-class classifier network to produce
class distribution pt1, ..., ptk.
Compute the confidence values: p̂t = argmaxj ptj , t = 1, ..., n.
Order the points based on the confidence values and divide them intom equal size setsB1, ..., Bm.
for i = 1, ...,m do

Compute the average accuracy Ai and confidence Ci based on the points in Bi.
Compute the calibration weight:

αi = max(0,min(1,
Ai − 1

k

Ci − 1
k

))

end for
output: The weight set and the bins’ interval borders.

The CWS algorithm finds weight values α1, ..., αm such that the adaECE loss function (11) of the
validation is exactly zero. This does not imply, however, that the adaECE (2) score of the calibrated
validation set is zero. Since there is a different weight in each bin, the calibration can change the
order of the validation points when sorted according to their confidence. This alters the partition of
the validation set into bins and causes that the adaECE score (2) of the calibrated validation set is
not necessarily zero. We can thus apply the optimization of the adaECE loss function (11) on the
calibrated validation set in an iterative manner. There was no significant performance change when
iterating the weight scaling procedure.
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Algorithm 2 Confidence based Weight Scaling (CWS) - Inference

input: A data point x with network outputs class distribution p1, ..., pk.
calibration parameters: weights α1, ..., αm and a division of the unit interval into m bins.
Compute the predicted confidence: p̂ = maxj pj .
Find the index i ∈ {1, ...,m} s.t. p̂ is within the borders of i-th bin.
output: The calibrated prediction is:

p(y = j|x) = αipj + (1− αi)
1

k
, j = 1, ..., k

Table 1: ECE (%) computed for different approaches for pre-scaling, post-single temperature scaling
(TS) and post-single weight scaling (WS) (with the optimal weight (%) in brackets). W ≈ 100
indicates an innately calibrated model.

Dataset Model Cross-Entropy Brier Loss MMCE LS-0.05
Pre T TS WS Pre T TS WS Pre T TS WS Pre T TS WS

CIFAR-100

ResNet-50 17.52 3.42 4.28 (85.8) 6.52 3.64 3.97 (95.2) 15.32 2.38 6.39 (90.2) 7.81 4.01 4.00 (95.4)
ResNet-110 19.05 4.43 4.12 (84.3) 7.88 4.65 4.16 (94.9) 19.14 3.86 4.31 (84.4) 11.02 5.89 3.97 (91.2)
Wide-ResNet-26-10 15.33 2.88 4.05 (86.5) 4.31 2.70 3.68 (98.1) 13.17 4.37 4.78 (90.8) 4.84 4.84 3.83 (98.6)
DenseNet-121 20.98 4.27 4.37 (82.6) 5.17 2.29 3.82 (95.2) 19.13 3.06 4.97 (83.7) 12.89 7.52 3.67 (89.1)

CIFAR-10

ResNet-50 4.35 1.35 1.12 (96.4) 1.82 1.08 1.17 (99.2) 4.56 1.19 0.98 (96.0) 2.96 1.67 2.96 (100)
ResNet-110 4.41 1.09 0.65 (95.8) 2.56 1.25 1.71 (99.0) 5.08 1.42 0.70 (95.1) 2.09 2.09 2.09 (100)
Wide-ResNet-26-10 3.23 0.92 0.84 (97.1) 1.25 1.25 1.25 (100) 3.29 0.86 0.79 (97.2) 4.26 1.84 4.26 (100)
DenseNet-121 4.52 1.31 1.03 (96.1) 1.53 1.53 1.53 (100) 5.10 1.61 1.25 (95.7) 1.88 1.82 1.88 (100)

Tiny-ImageNet ResNet-50 15.32 5.48 6.89 (86.5) 4.44 4.13 4.32 (99.0) 13.01 5.55 5.25 (75.7) 15.23 6.51 15.23 (100)

4 EXPERIMENTAL RESULTS

We first illustrate the CWS algorithm on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009)
with network architecture ResNet110 trained with a cross-entropy loss. Fig. 2a and 2b present the
CWS weight and the reciprocal of the CTS temperature in each bin that minimizes the adaECE score
for CIFAR-10 and CIFAR-100, respectively. The horizontal axis contains the bins’ indices from 0
to 12 (13 bins) and not an actual confidence value for each bin for purpose of better visualization
(the confidences in high bins are very dense).

As we go up the bin range, we can see an increase in the optimal weight per bin. This is because
the difference between the average confidence and accuracy in high bins is small compared to low
bins, so the movement of probabilities towards the average accuracy should also be small. This is
the reason why a single weight for all samples is not accurate enough. Fig. 2c and 2d show the
difference between confidence and accuracy in each bin before calibration. Fig. 2a and 2b also
indicate that the value of the (reciprocal of the) CTS temperature is different in each bin, but less
consistently than the CWS weights.

We implemented the CWS method on various image classification tasks to test the algorithm’s per-
formance. The experimental setup followed the setup in (Mukhoti et al., 2020) and included several
pre-trained deep neural networks which are available online 1, trained on the following image clas-
sification datasets:

1. CIFAR-10 (Krizhevsky, 2009): This dataset has 60,000 color images of size 32 × 32,
divided equally into 10 classes. We used a train/validation/test split of 45,000/5,000/10,000
images.

2. CIFAR-100 (Krizhevsky, 2009): This dataset has 60,000 color images of size 32 ×
32, divided equally into 100 classes. We again used a train/validation/test split of
45,000/5,000/10,000 images.

3. Tiny-ImageNet (Deng et al., 2009): Tiny-ImageNet is a subset of ImageNet with 64 x 64
dimensional images, 200 classes and 500 images per class in the training set and 50 images
per class in the validation set. The image dimensions of Tiny-ImageNet are twice those of
the CIFAR-10/100 images.

1https://github.com/torrvision/focal_calibration
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Figure 2: Comparison of the optimal weights achieved by CWS and the (reciprocal of the) optimal
temperatures achieved by CTS in each bin for (a) CIFAR-10 trained on ResNet110 and (b) CIFAR-
100 trained on ResNet110. The corresponding difference between confidence and accuracy before
calibration in each bin are shown in (c) and (d).
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Figure 3: Reliability diagrams, (a) before calibration, (b) after CTS calibration and (c) after CWS
calibration with 13 bins for CIFAR-100 trained on ResNet110.

Table 1 compares the ECE% (computed using 15 bins) obtained by evaluating the test set. The
results are divided into ECE before calibration, after scaling by a single temperature (TS) and after
our single Weight Scaling (WS). The optimal TS was achieved by a greedy algorithm to minimize the
ECE calibration score over a validation set (Mukhoti et al., 2020). The optimal WS was calculated
in practice by a greed search and not by the closed formula (10). This is because the L2 score is not
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Table 2: ECE for top-1 predictions (in %) using 25 bins (with the lowest in bold and the second
lowest underlined) on various image classification datasets and models with different calibration
methods.

Dataset Model Uncalibrated TS Vector Scaling MS-ODIR Dir-ODIR Spline BTS CTS CWS

CIFAR-100

ResNet-110 18.480 2.428 2.722 3.011 2.806 1.868 1.907 1.828 1.745
ResNet-110-SD 15.861 1.335 2.067 2.277 2.046 1.766 1.373 1.421 1.370
Wide-ResNet-32 18.784 1.667 1.785 2.870 2.128 1.672 1.796 1.182 1.599
DenseNet-40 21.159 1.255 1.598 2.855 1.410 2.114 1.336 1.252 1.223
Lenet-5 12.117 1.535 1.350 1.696 2.159 1.029 1.659 1.402 0.926

CIFAR-10

ResNet-110 4.750 1.224 1.092 1.276 1.240 1.011 1.224 0.829 0.812
ResNet-110-SD 4.135 0.777 0.752 0.684 0.859 0.992 1.020 0.776 0.864
Wide-ResNet-32 4.512 0.905 0.852 0.941 0.965 1.003 1.064 0.881 0.759
DenseNet-40 5.507 1.006 1.207 1.250 1.268 1.389 0.957 0.855 1.314
Lenet-5 5.188 1.999 1.462 1.504 1.300 1.333 1.865 1.420 1.406

ImageNet DenseNet-161 5.720 2.059 2.637 4.337 3.989 0.798 1.224 1.097 0.830
ResNet-152 6.545 2.166 2.641 5.377 4.556 0.913 1.165 0.918 0.912

SVHN ResNet-152-SD 0.877 0.675 0.630 0.646 0.651 0.832 0.535 0.508 0.727

Table 3: ECE for top-1 predictions (in %) using various numbers of bins on CIFAR-100 dataset and
models with equal size bins (ECWS) and an equal number of samples in each bin (CWS). Lowest
ECE in bold.

Model Uncalibrated # of bins ECWS CWS

ResNet-110 18.480

5
13
25
35

9.946
2.512
3.198
3.027

2.741
1.745
1.957
1.866

ResNet-110-SD 15.861

5
13
25
35

6.185
2.774
2.659
2.075

2.379
1.370
1.965
2.068

Wide-ResNet-32 18.784

5
13
25
35

11.73
2.282
5.172
1.746

1.372
1.599
1.586
1.527

DenseNet-40 21.159

5
13
25
35

13.78
11.07
3.971
1.768

1.461
1.223
1.694
1.988

Lenet-5 12.117

5
13
25
35

1.868
1.658
1.402
2.183

2.069
0.926
1.538
1.284

robust to outliers, so the closed formula yields a non-accurate weight. Along with the cross-entropy
loss, we tested our results on three other models which were trained on different loss functions:

1. Brier loss (Brier, 1950): The squared error between the predicted softmax vector and the
one-hot ground truth encoding.

2. MMCE (Maximum Mean Calibration Error) (Kumar et al., 2018): A continuous and dif-
ferentiable proxy for the calibration error that is normally used as a regulariser alongside
cross-entropy.

3. Label smoothing (LS) (Müller et al., 2019): Given a one-hot ground-truth distribution q
and a smoothing factor α (hyper-parameter), the smoothed vector s is obtained as si =
(1 − α)qi + α(1 − qi)/(k − 1), where si and qi denote the ith elements of s and q
respectively, and k is the number of classes. Instead of q, s is treated as the ground truth.
The reported results were obtained from LS-0.05 with α = 0.05, which was found to
achieve the best performance (Mukhoti et al., 2020).
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The comparative calibration results are presented in Table 1. As can be seen, the ECE score after
WS calibration was lower than the ECE after TS in half of all cases. However, the advantage of WS
over TS is its simplicity.

In another set of experiments, we followed the setup in (Gupta et al., 2021). In addition to CIFAR-
10 and CIFAR-100, we evaluated our CWS method on the SVHN dataset (Netzer et al., 2011) and
ImageNet (Deng et al., 2009). Pre-trained network logits are available online 2. The CWS was
compared to TS, vector scaling, two variants of matrix scaling (Kull et al., 2019), BTS (Ji et al.,
2019) and Spline fitting (Gupta et al., 2021). It was also compared to our CTS algorithm, which
calculates the optimal TS in each bin. As shown in Table 2, CWS achieved the best or second best
results in most cases.

The weights that yielded the ECE scores for CWS in Table 2 were set to αi ∈ [0, 1], as specified
in Algorithm box 1. There were three cases in Table 2 where the original weight calculated by
(10) for a specific bin was higher than 1. This occurred for ResNet-110-SD on CIFAR100, Lenet-
5 on CIFAR-10 and ResNet-152-SD on the SVHN dataset. In all three cases, the corresponding
bin contained under-confidence samples, i.e., the average accuracy in that bin was higher than the
average confidence. As mentioned above, this case is rare.

Another way of visualizing calibration is to use a reliability plot (Niculescu-Mizil & Caruana, 2005),
which shows the accuracy values of the confidence bins as a bar chart. For a perfectly calibrated
model, the accuracy for each bin matches the confidence; hence, all the bars lie on the diagonal.
By contrast, if most of the bars lie above the diagonal, the model is more accurate than it expects,
and is under-confident, and if most of the bars lie below the diagonal, it is over-confident. Fig.
3 compares reliability plots over 13 bins on models trained on ResNet-110 with cross-entropy loss
and on CIFAR-100 before calibration, after CTS calibration and after CWS calibration. It shows that
both CTS and CWS methods yielded a calibrated system, although CWS was simpler to implement
using a closed form. Note that some of the bins were located above the diagonal, which indicates
the under-confidence of the model.

As an ablation study we examined learning the CWS by maximizing ECE (1) instead of adaECE (2)
for a varied number of bins. Table 3 shows that the original split for same number of samples in each
bin (CWS) yielded a lower ECE than the case of equal bin size (ECWS) in most cases. No number
of bins in a reasonable range in the training step of the CWS algorithm had a significant impact on
the ECE.

5 CONCLUSION

Calibrated confidence estimates of predictions are critical to increasing our trust in the performance
of neural networks. As interest grows in deploying neural networks in real work decision making
systems, the predictable behavior of the model will be a necessity especially for critical tasks such
as automatic navigation and medical diagnosis. In this work, we introduced a simple and effective
calibration method based on weight scaling of the prediction confidence. Most calibration methods
are trained by optimizing the cross entropy score. CWS function learning can be done by explicitly
optimizing the ECE measure. We compared our CWS method to various state-of-the-art methods
and showed that it yielded the lowest calibration error in the majority of our experiments. CWS is
very easy to train and there is no need to tune any hyper-parameter. We believe that it can be used
in place of the standard temperature scaling method.
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