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Abstract

Data augmentation is used in machine learning to make the classifier invariant to label-
preserving transformations. Usually this invariance is only encouraged implicitly by sam-
pling a single augmentation per image and training epoch. However, several works have
recently shown that using multiple augmentations per input can improve generalisation or
can be used to incorporate invariances more explicitly. In this work, we first empirically
compare these recently proposed objectives that differ in whether they rely on explicit or
implicit regularisation and at what level of the predictor they encode the invariances. We
show that the predictions of the best performing method are also the most similar when
compared on different augmentations of the same input. Inspired by this observation, we
propose an explicit regulariser that encourages this invariance on the level of individual
model predictions. Through extensive experiments on CIFAR-100 and ImageNet we show
that this explicit regulariser (i) improves generalisation and (ii) equalises performance differ-
ences between all considered objectives. Our results suggest that objectives that encourage
invariance on the level of the neural network features itself generalise better than those that
only achieve invariance by averaging predictions of non-invariant models.

1 Introduction

In supervised learning problems, we often have prior knowledge that the labels should be invariant or
insensitive to certain transformations of the inputs; though it is often difficult to make the classifier explicitly
invariant to all valid input transformations in a tractable way (Niyogi et al., 1998). Data augmentation
(DA) is a widely used technique to incorporate such an inductive bias into the learning problem implicitly:
it enlarges the training set with randomly transformed copies of the original data to encourage the classifier
to be correct on larger parts of the input space.

When using DA, practitioners typically sample a single augmentation per image and minibatch during
training. However, Fort et al. (2021) recently showed that this can introduce a detrimental variance that
slows down training. Instead, using several augmentations per image in the same minibatch can reduce this
variance and improve the classifier’s generalisation performance by leveraging the useful bias of DAs more
effectively (Fort et al., 2021; Hendrycks et al., 2020; Hoffer et al., 2020; Touvron et al., 2021). This modified
objective simply takes the average of the individual losses over different augmentations of the same input,
which encourages the model function to produce similar predictions for every augmentation.

The choice of averaging the individual losses motivates the question of whether there are better ways of
combining the model outputs when sampling multiple augmentations per input. In this direction, Nabarro
et al. (2021) recently studied principled ways to incorporate data-augmentation in a Bayesian framework for
neural networks by explicitly constraining the classifier outputs to be invariant to DA by averaging either
(i) the post-softmax probabilities or (ii) the pre-softmax logits during training. This alternative of averaging
the probabilities is often used to improve test performance by making ensemble predictions over different
augmentations of the test input (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al.,
2015). Interestingly, while Nabarro et al. (2021) showed that both Bayesian-inspired approaches improved
performance compared to sampling a single augmentation per input, they do not compare them to the
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Figure 1: We investigate three objectives that use multiple augmentations per input x: L⟨losses⟩ averages
the losses of individual augmentations, while L⟨probs⟩ and L⟨logits⟩ average the probabilities and logits, re-
spectively (left and middle). We further propose a regulariser that averages the KL-divergence between all
pairs of predictive distributions over different augmentations of the same input (right).

baseline of averaging the losses, perhaps because this baseline does not correspond to a valid likelihood on
the unaugmented dataset.

As a result, it remains an open question how and at what level practitioners should incorporate their prior
knowledge of invariance in the model:

1. implicitly by averaging the losses over individual augmentations;
2. explicitly by constructing a model whose prediction is defined as the average over all augmentations, as

is done when averaging the probabilities or the logits.
In this work we first compare these two alternative perspectives. We show that averaging the losses during
training leads to better generalisation performance, even when ensembling predictions for different augmen-
tations at test time. Additionally, we empirically show that the approach of averaging the losses makes the
predictions of the neural network model for different augmentations significantly more similar than the other
two methods. Based on this observation, we conjecture that having more invariant predictions for individual
data augmentations is the reason why averaging the losses generalises better.

To further investigate this hypothesis, we introduce a regulariser that explicitly encourages individual pre-
dictions for different DAs of the same input to be similar. Since we already use multiple DAs per input in
our supervised setup, we can directly compare the predictive distributions of different DAs at no additional
computational cost. Through extensive experiments, we show that this explicit regulariser consistently im-
proves generalisation by making the model more invariant to DAs of the same input. Furthermore, we show
that using this regulariser equalises the performance differences between averaging the losses vs. averaging
the logits or probabilities. These results corroborate our conjecture that encouraging invariance on the level
of the network outputs is better than achieving invariance by averaging non-invariant models alone.

To summarise, our main contributions are:
1. We study the role of explicit and implicit invariance in supervised learning. We find that a naive

approach of averaging the losses outperforms Bayesian-inspired losses, and results in more invariant
model predictions (Sec. 3).

2. We propose a regulariser for supervised learning tasks that explicitly encourages predictions of different
DAs for the same input to be similar to each other (Sec. 4).

3. We show that the regulariser improves generalisation for all base losses, equalising the performance
differences between methods; this suggests that encouraging invariance on the level of the network
outputs works better.
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2 Background

In this work, we consider the supervised learning setting with input vectors x ∈ X ⊆ Rd and corresponding
labels y ∈ Y = {1, . . . , C}. Let D = {(xn, yn)}N

n denote the training set and fϕ be a parametric (neural net-
work) model with parameters ϕ. The standard objective is to minimise the empirical negative log likelihood
of the training data:

min
ϕ

E(x,y)∼D [Lϕ(x, y)] , Lϕ(x, y) = − log p(y|g(fϕ(x))). (1)

Here, g is an inverse link function (such as the logistic or softmax) that maps the output of the function fϕ

to a probability distribution over Y, and Lϕ(x, y) denotes the negative log likelihood objective for a single
datapoint (x, y).

Standard data augmentation (DA). DA refers to the practice of enlarging the original dataset D by
applying label-preserving transformations to its inputs x. The transformations are domain- and dataset-
specific and hand-engineered to incorporate the right inductive biases such as invariances or symmetries
(Niyogi et al., 1998). For example, in image classification, we commonly use a combination of discrete trans-
formations such as horizontal flips and continuous transformations such as shears or changes in brightness or
contrast (Cubuk et al., 2020). Following Wilk et al. (2018), we call the distribution over all augmentations
x̃ for a given input x its augmentation distribution and denote it by p(x̃|x). The per-input objective that
corresponds to regular neural network training with DA is then given by:

L⟨losses⟩(x, y) = E
x̃∼p(x̃|x) [Lϕ(x̃, y)] , (2)

and can be interpreted as averaging the losses for different augmentations of the same input. The expectation
in Eq. (2) is commonly approximated by a single Monte Carlo sample, i.e., for each input in a minibatch
we sample one augmentation. Several recent works have shown, however, that sampling a larger number of
augmentations per input in a minibatch can be beneficial (Fort et al., 2021; Hendrycks et al., 2020; Hoffer
et al., 2020; Touvron et al., 2021). This phenomenon has been attributed to the observation that sampling
multiple augmentations per input in a minibatch has the effect of reducing the variance arising from the
DA procedure and empirically improves generalisation (Fort et al., 2021). This is in contrast to minibatch
sampling where lowering the variance by increasing the batch size can reduce generalisation (Smith et al.,
2020).

Bayesian-inspired DA. The question of how best to incorporate DA in Bayesian deep learning has
recently also received some attention, especially since the naive approach of enlarging the training set based
on the number of augmentations results in overcounting the likelihood w.r.t. the prior (Nabarro et al., 2021).
In this context, Wenzel et al. (2020) noted that the data augmented objective in Eq. (2) cannot be interpreted
as a valid likelihood objective. Nabarro et al. (2021) argued that DA should be viewed as nuisance variables
that should be marginalised over, and proposed two Bayesian-inspired objectives that construct an invariant
predictive distribution by integrating a non-invariant predictor over the augmentation distribution, where
either the post-softmax probabilities or pre-softmax logits are averaged:

L⟨probs⟩(x, y) = − logE
x̃∼p(x̃|x) [p(y|g(fϕ(x̃)))] , (3)

L⟨logits⟩(x, y) = − log p(y|g(E
x̃∼p(x̃|x) [fϕ(x̃)])). (4)

This construction makes the predictive distribution explicitly invariant to DAs. This is in contrast to Eq. (2),
for which invariance is only encouraged implicitly by minimising the loss for each augmentation independently.

Finite sample DA objectives. In this work, we first compare the above two alternate perspectives on
DA to understand how best to incorporate invariance into the model. Because exact marginalisation in
Eqs. (2) to (4) is intractable, we approximate it with K samples from the augmentation distribution giving
rise to the following objectives:
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Objectives using multiple augmentations
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)
, y
)

(7)

Here the x̃k, k ∈ {1, . . . , K}, are the K augmentations for an input x independently sampled from p(x̃|x).
For K = 1 the losses are equivalent. In Fig. 1 (a) and (b) we illustrate these three objectives for K = 3.
See App. A for a brief analysis of how these three losses compare to each other, and how the finite sample
versions of the objectives (Eqs. (5) to (7)) relate to the original objectives (Eqs. (2) to (4)).

Test-time DA (TTA). While so far we have discussed DA during training, it is also common to employ
it at test time by making ensemble predictions over multiple augmentations of the test input to boost
performance (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015). Note that for
TTA, practitioners typically average the probabilities as in Eq. (6), while for training practitioners typically
average the losses as in Eq. (5). This inconsistency further motivates the question of whether it is also better
to similarly ensemble the probabilities during training.

3 Experimentally comparing the two alternate perspectives on DA

In Sec. 2, we described two alternate perspectives on DA to incorporate invariance into the model: either
implicitly by averaging the losses (Eq. (5)), or explicitly by averaging either the probabilities (Eq. (6)) or the
logits (Eq. (7)). To better understand how these perspectives compare, in this section we perform a thorough
experimental evaluation of the three objectives. Specifically, we compare both generalisation performance
and the amount of invariance induced by the three losses for varying number of augmentations per input
per minibatch during training (which we call augmentation multiplicity Ktrain). This evaluation extends
previous limited results by Nabarro et al. (2021), who only compare L̂K

⟨probs⟩ and L̂K
⟨logits⟩ for Ktrain ∈ [1, 6]

and do not investigate L̂K
⟨losses⟩ for Ktrain larger than 1, and Fort et al. (2021), who investigate L̂K

⟨losses⟩ but
do not consider invariances.

Experimental setup. Since the performance of models with batch normalisation depends strongly on
the examples used to estimate the batch statistics (Hoffer et al., 2017), in the main paper we train on
highly performant models that do not use batch normalisation, following Fort et al. (2021), to simplify our
analysis (see App. D.5 for more discussion). We use the following networks: a WideResNet 16-4 (Zagoruyko
and Komodakis, 2016) with SkipInit initialisation (De and Smith, 2020) for CIFAR-100 classification, and
an NF-ResNet-101 (Brock et al., 2021a) for ImageNet classification. For both datasets we use standard
random crops and random horizontal flips for DA following previous work (Brock et al., 2021a; Zagoruyko
and Komodakis, 2016). See Sec. 5.1 for additional experiments with a wider range of data augmentations
where we have similar findings.

We use augmentation multiplicities Ktrain = 1, 2, 4, 8, 16 for CIFAR-100 and Ktrain = 1, 2, 4, 8 for ImageNet
due to computational constraints. We also fix the total batch size, which implies that for Ktrain > 1 the
number of unique images per single batch decreases proportionally and the total number of parameter
updates for the same epoch budget increases (Fort et al., 2021). Because the optimal epoch budget might
change with the augmentation multiplicity (Fort et al., 2021), for each experiment we run an extensive
grid-search for the optimal learning rate and optimal epoch budget for every value of Ktrain for the three
objective functions. For evaluation, we compute the top-1 test accuracy both using standard central-crops
as well as using test time augmentations (TTAs) with the number of augmentations set to Ktest = 16 for
CIFAR-100 and Ktest = 8 for ImageNet. As a measure of the invariance of the predictions, we calculate the
KL divergence between the predictive distributions of different augmentations of the same input (see Sec. 4
for a more detailed description of this measure). We run each CIFAR-100 experiment 5 times with different
random seeds; for the ImageNet experiments we only use a single seed due to computational constraints.
For further details on the experimental setup, please refer to App. C .
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L⟨losses⟩ L⟨probs⟩ L⟨logits⟩ central crops TTA (Ktest = 16/8)

Figure 2: The three losses differ in their generalisation performance (left) as well as in how invariant
the predictions are w.r.t. data augmentations (right). For reference, mark models trained without DA
(Eq. (1)).
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Figure 3: Example why L⟨losses⟩ encourages invariance but L⟨logits⟩ does not. We fit a 2-parameter model
to a binary classification problem with rotational symmetry (left). Setting w1 = w2 ( ) corresponds to
models with constant logit values regardless of the angle θ. The loss surface for L⟨losses⟩ has a single optimum
at an invariant model (•), whereas the loss surface for L⟨logits⟩ is optimal anywhere along a line ( ), as it
only constrains the average logit value. The model is invariant only for one point along the line (•), whereas
for all other values (e.g. ) the logit value changes with the angle θ.

Experimental results. Overall, the results are qualitatively the same on both datasets. For top-1 test
accuracy we find that (see Fig. 2 left and Tab. 1): (i) Using augmentations at test time is consistently at
least ∼ 2% better than predictions on central crops; (ii) Averaging the losses (L⟨losses⟩) clearly performs
better than averaging the probabilities (L⟨probs⟩) which performs better than averaging the logits (L⟨logits⟩);
(iii) While L⟨losses⟩ improves with larger augmentation multiplicity as reported by Fort et al. (2021), both
Bayesian-inspired objectives, L⟨probs⟩ and L⟨logits⟩, consistently degrade in performance as Ktrain increases.

When comparing how the invariance measure for different augmentations of the same input changes as
we vary the augmentation multiplicity, we find that (see Fig. 2 right), while it stays relatively constant
when averaging the losses, it markedly increases for both Bayesian-inspired losses as Ktrain increases. We
therefore conjecture that: the beneficial bias of DA, as discussed by Fort et al. (2021), is that it promotes
invariance of the model to DA; the detrimental variance also introduced by DA can be mitigated by using
larger augmentation multiplicities. This also explains why larger Ktrain do not further reduce the invariance
measure for L⟨losses⟩. For completeness, we also show in Fig. 2 that a network trained without DA has a
much higher invariance measure than networks trained with DA when Ktrain = 1.

Perhaps a somewhat counter-intuitive result from Fig. 2 is that the Bayesian-inspired losses lead to worse
performance and less invariant predictions as we increase Ktrain.1 We make two arguments to explain this
observation.

1This observation contradicts results by Nabarro et al. (2021). While we were able to reproduce their results using their
model (a ResNet18 that uses batch normalisation), their observations do not extend to any of our normaliser-free models. For
completeness we include a comparison on their model in App. D.5
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Dataset Network KL regulariser Ktrain = 1 Ktrain = 8 or 16
L⟨losses⟩ L⟨probs⟩ L⟨logits⟩

CIFAR-100 WRN 16-4 ✗ 0.741±0.003 0.750±0.001 0.725±0.001 0.643±0.001
CIFAR-100 WRN 16-4 ✓ 0.741±0.003 0.759±0.001 0.758±0.002 0.759±0.001

ImageNet NF-ResNet-101 ✗ 0.782 0.793 0.766 0.696
ImageNet NF-ResNet-101 ✓ 0.782 0.801 0.804 0.804
ImageNet NFNet-F0 ✗ 0.803 0.813 0.788 0.717
ImageNet NFNet-F0 ✓ 0.803 0.819 0.822 0.819

Table 1: Top-1 test accuracy generalisation performance for all three losses with and without regulariser
evaluated on central crops. For the losses we use Ktrain = 16 on CIFAR and Ktrain = 8 on ImageNet. The
NFNet-F0 uses RandAugment as DA in addition to the horizontal flips and random crops used for the WRN
and NF-ResNet. For further results, please see App. D.
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Figure 4: Adding the proposed KL regulariser LsKL makes the individual predictions more invariant to DA
and further boosts generalisation performance (shown here: top-1 test accuracy on central crops).

First, we illustrate in an example that the Bayesian-inspired objectives can easily have many non-invariant
solutions to simple problems with symmetries compared to L⟨losses⟩. We consider a simple 2-dimensional
binary classification problem with azimuthal (rotational) symmetry in Fig. 3 and use a linear 2-parameter
model that is rotationally invariant when its parameters are equal. The loss surface for L⟨losses⟩ only has a
single minimum, which is invariant. However, since L⟨logits⟩ only constrains the average logit value, the loss
surface for L⟨logits⟩ is also minimised anywhere along a line of non-invariant models, for which the individual
logit values vary with the angle (DA).
Second, we note that when we average the losses we make a prediction with every one of the Ktrain aug-
mentations and every one of them has to explain the (same) label, thus encouraging the predictions to be
similar. In contrast, for L⟨logits⟩ (or L⟨probs⟩) we only make a single prediction using the average of the
logits (or probabilities) of the individual augmentations. How similar or different the individual values are
is irrelevant as only their average matters. We speculate that as Ktrain grows, it is sufficient for some of the
augmentations to have confident enough predictions that dominate the average, such that there is very little
pressure for some of wrong or less confident augmentations to explain the data well, and this pressure might
only decrease as Ktrain increases.

4 A KL-regularised objective leads to more invariance and better generalisation

In Sec. 3 we showed that averaging the losses over DAs results in better generalisation compared to averaging
the logits or probabilities. We hypothesised that this improvement in performance was due to the more
invariant individual predictions for L⟨losses⟩. To further investigate this hypothesis, we propose to explicitly
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regularise the parametric model fϕ to make more similar predictions across individual DAs of the same input.
We then study the effect of this invariance regulariser on the generalisation performance of the model.

While the classification losses achieve some degree of invariance, we wish to encourage this objective more
strongly and directly. Since the ultimate quantity of interest in supervised learning is the predictive dis-
tribution over labels, p(y|g(fϕ(x)), a natural choice for such a regulariser is to penalise the KL divergence
between predictives for different DAs. This is in contrast to many self-supervised methods that penalise dif-
ferences between vectors in an arbitrarily chosen embedding space (Chen et al., 2020b). The KL divergence
is attractive since it regularises the entire distribution and not just incorrect predictions. Moreover, it is an
information theoretic quantity measured in nats like the original log-likelihood loss (Eq. (1)), which makes
it easier to compare their values and reason about the regularisation strength.

Since the KL divergence is asymmetric, we use its symmetrised version, also referred to as Jeffrey’s divergence:

LsKL(x) = E
x̃,x̃′∼p(x̃|x) [KL(p(y|x̃) ∥ p(y|x̃′))] . (8)

We add LsKL as a soft-constraint regulariser to the original objectives Eqs. (2) to (4) with a regularisation
strength λ:

L⟨... ⟩, regularised(x, y) = L⟨... ⟩(x, y) + λLsKL(x). (9)

We found that λ = 1 works well in practice and fix λ to this value. Since the loss and the regulariser are
on the same scale, this is a natural choice. We discuss this further in Sec. 5.3. We also emphasise that we
define the regulariser using the predictive distributions of individual augmentations even though L⟨probs⟩ and
L⟨logits⟩ only make a single prediction using average probabilities or logits, respectively.

Similar KL divergence-based regularisers have been explored as objectives in the contrastive and self-
supervised learning literature recently; for example, Xie et al. (2020) use a cross-entropy to regularise pre-
dictions on unlabelled data in semi-supervised learning, while Mitrovic et al. (2021) target the predictive
distribution of surrogate task-labels in fully unsupervised learning.

Finally, we note that the symmetrised KL is only one choice to measure invariance. We also consider
evaluations using the L2 distance and cosine similarity between logits of augmentated images in App. D.1
and Fig. 8 and find that all three metrics qualitatively agree.

In practice we replace the expectation in Eq. (8) by a Monte Carlo estimate L̂K
sKL with size determined by

the augmentation multiplicity K used to evaluate the main objective:
Invariance regulariser used as soft-constraint

L̂K
sKL(x) = 1

K2−K

K∑
k,k′=1
k ̸=k′

KL(p(y|x̃k) ∥ p(y|x̃k′)). (10)

Eq. (10) is an unbiased estimate of Eq. (8) (see App. A for the derivation), and we illustrate it for K = 3 in
Fig. 1 (c).

4.1 Experimental evaluation

To evaluate the effect of the KL regulariser, we add it to the three objectives discussed in Sec. 3 and run
otherwise identical experiments on the WideResNet 16-4 with SkipInit on CIFAR-100 and the NF-ResNet-
101 on ImageNet. See App. C for more experimental details.

The qualitative results again agree on both experiments (see Fig. 4 and Tab. 1). We find that the regularised
objectives consistently perform better than their non-regularised counterparts. Perhaps more interestingly,
all three regularised objectives now generalise equally well. Furthermore, we find that the invariance measure
now is almost identical for all three regularised objectives as we vary the train augmentation multiplicity.

These results support our conjecture that the main driver of generalisation performance when using multiple
DAs is the invariance of the individual predictions; simply constructing an invariant predictor through
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Figure 5: Networks trained on ImageNet with L⟨losses⟩ and stronger data augmentations (RandAugment).

averaging non-invariant features, as is done in the Bayesian-inspired losses, is not sufficient . When we
account for this by adding our proposed regulariser, which further encourages invariance on the level of
individual predictions, all objectives improve and now show similar performance.

5 Ablations

In this section, we provide additional experiments that support our main findings. In particular, we show
that our results also hold for a much wider range of data augmentations, and when changing the capacity
of our models. We also study the effect of varying the strength λ of the KL regulariser. In addition
we include extended experimental results in App. D: We provide further ablations on using alternative
invariance measures for evaluation (App. D.1), study the influence of the augmentation multiplicity at test
time (Apps. D.2 and D.3), consider networks with BatchNorm (Apps. D.4 and D.5), and provide analyses
on further variants of our BatchNorm-free network architectures (App. D.6). They are in line with the
presented results in the main paper.

5.1 Using a larger set of data augmentations

In all previous experiments we only used horizontal flips and random crops as DAs. In this section, we
show that our main findings also apply more generally when using stronger DAs and for more modern
image classification architectures, namely NFNets (Brock et al., 2021b). As stronger DAs, we consider
RandAugment (Cubuk et al., 2020) in addition to horizontal flips and random crops, which use a combination
of 16 augmentations such as colour and brightness changes or image rotations, shears, and distortions. We
set the magnitude of RandAugment to 5 following the setting used for the NFNet-F0 in Brock et al. (2021b).

We first train the NF-ResNet-101 on ImageNet with the same experimental setup as before but adding
RandAugment to the set of DAs. We then also train an NFNet-F0 (Brock et al., 2021b) on ImageNet; the
NFNet models are highly expressive, and therefore prone to overfit, and rely on strong DAs to achieve good
generalisation performance (Brock et al., 2021b). We exclude any DAs that use mixing between different
inputs, such as CutMix (Yun et al., 2019) and Mixup (Zhang et al., 2018) such that the model only uses
RandAugment, horizontal flips and random crops as DA. Due to computational constraints, we only run
experiments with the L⟨losses⟩ objective and its regularised version for different augmentation multiplicities.
We also modify the training procedure to make the setting more comparable to our other experiments; see
App. C for details. While these modifications slightly reduce performance of the NFNet-F0, the baseline
model (Ktrain = 1) still achieves 80.3% top-1 accuracy on central crops compared to 83.6% as reported by
Brock et al. (2021b).

For both experiments, the results shown in Fig. 5 qualitatively agree with those discussed in Sec. 4. In
particular, we see that the KL regulariser improves performance over the non-regularised counterpart, and
again results in significantly more invariant predictions.
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Figure 6: WideResNets with varying width factors and depths on CIFAR-100. We train with Ktrain = 16
and evaluate on central crops.
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Figure 7: Sensitivity of results to the
choice of regularisation strength λ. NF-
ResNet-101 with Ktrain = 8 on Imagenet,
and WideResNet 16-4 with Ktrain = 16
on CIFAR-100, both evaluated on central
crops.

5.2 Effect of changing model capacity

In this section, we investigate the effectiveness of the KL regulariser as the capacity of the model changes.
For the WideResNet on CIFAR-100 we run additional experiments with varying width and depth. At depth
16 we consider width factors 4 (default), 8, and 16; at width factor 4 we consider depths 16 (default), 22,
and 28. For each model we tune the optimal learning rate and optimal epoch budget. From the results in
Fig. 6 we can observe that as model capacity increases (both for width and depth), so does the test accuracy
of the baselines as expected. More importantly, the models trained with our regulariser improve almost in
parallel as well, with the generalisation gap between the two remaining identical. Furthermore, in each case
the regulariser also equalises the performance between the three methods. Interestingly, while the invariance
measure gets better for wider networks, it stays roughly the same as the network gets deeper.

5.3 Sweeping the strength of the KL regulariser

In all our previous experiments, we set the strength of the KL regulariser to λ = 1. As mentioned in Sec. 4,
one important reason why the KL divergence might be well suited in practice as a regulariser is that it
is measured in the same units as the log-likelihood, nats per image, and hence is on the same scale as the
original objective. This suggests that λ ≈ 1 should be a good value for λ as it provides equal balance between
the original objective and the regulariser.

Here, we provide a comparison when sweeping over the value of λ ∈ [0, 2 or 5] for the WideResNet on CIFAR-
100 and the NF-ResNet-101 on ImageNet, respectively. The corresponding test accuracies using central-crop
evaluation are shown in Fig. 7. We find that the generalisation performance is relatively insensitive to the
choice of λ for large enough values, and that λ = 1 consistently yields among the best performance. λ = 0
corresponds to training without the regulariser and performs markedly worse. Very large values of λ also
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lead to degraded accuracies and likely correspond to over-regularization. These results suggest that the
regulariser weight λ = 1 is close to optimal, though minor gains are possible through further tuning of λ.

6 Related Work

Data-augmentation and invariance in neural networks. The incorporation of invariances is a com-
mon inductive bias in machine learning and different approaches have been developed over the years. First,
DA methods that enlarge the training set and implicitly enforce a model’s predictions to be correct for
a larger portion of the input space (Beymer and Poggio, 1995; Niyogi et al., 1998). The augmentations
are dataset-dependent and hand-tuned (Cubuk et al., 2020; DeVries and Taylor, 2017; Yun et al., 2019)
or sometimes even learned (Cubuk et al., 2019; Wilk et al., 2018). Second, methods that explicitly con-
strain the intermediate network or its output to be invariant or equivariant to certain transformations. For
example, 2D convolutions (LeCun et al., 1989; Lecun et al., 1998) are equivariant to translations while
generalised convolutions (Cohen and Welling, 2016) are equivariant to more general group transformations.
However it is difficult to hard-code more complex equivariances/invariances. Raj et al. (2017) and Wilk
et al. (2018) recently proposed to construct an invariant covariance function for kernel methods by inte-
grating a non-invariant kernel over the augmentation distribution. Nabarro et al. (2021) use this approach
to define invariant losses for neural networks by averaging the logits or probabilities as discussed in Sec. 3.
Third, regularisation methods that do not place hard constraints on the classifier function or its outputs
but instead add an additional loss as a soft-constraint that encourages the desired behaviour. Examples
from the self-supervised literature (see next paragraph) and our proposed KL soft-constraint fall into this
category. Bouchacourt et al. (2021) recently investigated the implicit effects of DAs on how invariant models
are. Though, they focus on sampling a single augmentation per image, whereas we consider training with
larger augmentation multiplicities (K > 1).

Concurrently to us, other works have explored explicit DA regularisers for empirical risk minimisation.
Yang et al. (2022) show that explicitly regularising the features of an augmented image to be similar to the
features of the original image can achieve better generalisation than training with empirical risk minimisation
on an augmented data set. This approach is similar to the main idea presented in this work, with a few
key differences – (i) their regulariser is applied to the features of the penultimate layer, not the predictive
distribution, (ii) only the original images images are used in the maximum likelihood part of the objective,
and (iii) the regulariser is never applied to two augmented images, but only between the original image and
an augmented image. Similarly to us, they also consider multiple augmentation multiplicities, however their
experiments are limited to a small subset of CIFAR-100. This approach is also related to the semi-supervised
approach of Xie et al. (2020) discussed in the next paragraph. Huang et al. (2021) propose an explicit
regulariser that encourages the loss value of the original image and its augmentation to be close. Unlike our
regulariser, this does not necessarily enforce features to be similar, as non-equivalent predictions can incur
the same loss value. Moreover, they only use single augmentations and focus their analysis on robustness of
the predictions to input noise rather than generalisation performance. Wang et al. (2022) empirically study
several invariance regularizers for supervised learning with single augmentations. In contrast to their work,
we focus on more standard augmentations, consider multiple data augmentations per image, and perform
empirical evaluation on the much larger scale ImageNet dataset.

Self-supervised and contrastive methods are commonly used to learn visual representations from
unlabelled data. Simply speaking, they construct a surrogate “self-” supervised learning problem and use it
to train a neural network feature extractor that is subsequently used in other downstream tasks. Because
in many methods the features are not grounded (by true labels), additional tricks are typically required to
prevent the features from collapsing, such as stopping gradients for some embeddings or using exponentially
moving averages of the network weights (Grill et al., 2020; Mitrovic et al., 2021). For example, Doersch et al.
(2015), Gidaris et al. (2018), and Noroozi and Favaro (2016) propose hand-crafted tasks such as solving a
jigsaw. More recent approaches use DAs to construct surrogate instance discrimination tasks and directly
maximise a similarity measure between projected features for different augmentations of the same image
(Grill et al., 2020) or solve corresponding clustering problems (Caron et al., 2020). Contrastive methods
additionally maximise the discrepancy between augmentations of different images (Chen et al., 2020a,b). In
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addition to a contrastive loss, Mitrovic et al. (2021) use a KL regulariser similar to ours; however, where we
use the predictive for the true label, they regularise probabilities of a surrogate task. Similar regularisers
have also been considered for unlabelled data in semi-supervised settings; for example, Sajjadi et al. (2016)
minimise the L2-distance between features, and Xie et al. (2020) propose a cross-entropy-regulariser. Both
approaches, however, apply the regularizers only the unsupervised part of the data and have not investigated
their effects in the supervised setting. Most methods cited above (with the exception of Mitrovic et al.
(2021) and Sajjadi et al. (2016)) only consider pairs of augmentations, whereas we use larger augmentation
multiplicities that additionally improve performance as demonstrated by Fort et al. (2021) as well as our
experimental results.

7 Conclusion

In this paper we investigated implicit and explicit regularisation with data augmentation in supervised
learning. We discussed two approaches that both use multiple data augmentations per input but differ in
how and at what level they encourage or enforce invariance to data augmentation in the predictor: (i) by
averaging the losses of individual augmentations to encourage invariance on the level of the network outputs;
or (ii) by averaging the logits or probabilities to make the whole predictor invariant by construction, though
network outputs on individual augmentations are not necessarily invariant. We found empirically that the
former approach generalises better and that its outputs are more similar across different augmentations of the
same image. Motivated by this, we introduced a KL regulariser which explicitly encourages this similarity of
the network outputs. Through extensive experiments on CIFAR-100 and ImageNet with multiple large-scale
models, we showed that the proposed regulariser improves generalisation performance for all methods and
largely equalises performance of the considered approaches. Our results confirm that encouraging invariance
on the level of the individual predictions drives the improvements in generalisation performance when using
multiple augmentations per image.
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