NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design
Algorithms

Joel Shor ! Erik Strand '?> Cory Y. McLean*

Abstract

One outstanding open problem with high ther-
apeutic value is how to design nucleic acid se-
quences with specific properties. Even just the 5’
UTR sequence admits 2x 102 possibilities, mak-
ing exhaustive exploration impossible. Although
the field has focused on developing high-quality
predictive models, techniques for generating se-
quences with desired properties are often not well
benchmarked. Lack of benchmarking hinders pro-
duction of the best molecules from high-quality
models, and slows improvements to design al-
gorithms. In this work, we performed the first
large-scale comparison of modern sequence de-
sign algorithms across 16 biological tasks (such as
transcription factor binding and gene expression)
and 9 design algorithms. Our benchmark, Nucle-
oBench, compares design algorithms on the same
tasks and start sequences across more than 400K
experiments, allowing us to derive unique model-
ing insights on the importance of using gradient
information, the role of randomness, scaling prop-
erties, and reasonable starting hyperparameters on
new problems. We use these insights to present
a novel hybrid design algorithm, AdaBeam, that
outperforms existing algorithms on 11 of 16 tasks
and demonstrates superior scaling properties on
long sequences and large predictors. Our bench-
mark and algorithms are freely available online.

1. Introduction

Artificial intelligence (AI) has the potential to dramatically
improve the process of therapeutic drug discovery. Design-
ing nucleic acid sequences (DNA and RNA molecules) with
specific properties is a critical challenge for multiple stages

'"Move37 Labs *MIT Center for Bits
3Google Research. Correspondence to: Joel
<joel.shor@move37labs.ai>.

and Atoms
Shor

Proceedings of the Workshop on Generative Al for Biology at the
42" International Conference on Machine Learning, Vancouver,
Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

of the drug development pipeline (Lagana et al., 2015; Shen
et al., 2024; Lin et al., 2024; Sadybekov & Katritch, 2023).
Solving it could transform how we approach therapeutics:
enabling more precise CRISPR guide RNAs with minimal
off-target effects for gene editing therapies (Tan et al., 2022);
creating mRNA vaccines with optimized stability and trans-
lational efficiency (Zhang et al., 2023); designing antisense
oligonucleotides that maximize target binding while min-
imizing immunogenicity (Lin et al., 2024; Hwang et al.,
2024); and developing aptamers with enhanced specificity
for diagnostic applications (Doench et al., 2016). Currently,
each of these applications requires years of wet lab optimiza-
tion and hundreds of millions of dollars in costs (Zhang et al.,
2023; DiMasi et al., 2016; Paul et al., 2010). Computational
sequence optimization could collapse these timelines from
years to days and significantly reduce costs by identifying
high-performing candidate sequences prior to experimental
validation (Sadybekov & Katritch, 2023; Mouchlis et al.,
2021). Although the field has developed high-quality predic-
tive models of nucleic acid properties (Churkin & Barash,
2025; Gosai et al., 2024; Avsec et al., 2021a), the algorithms
that generate optimized sequences from these models have
received significantly less attention. One reason is that there
are fewer benchmarks to understand sequence design algo-
rithms. This gap hinders our ability to produce therapeutic-
grade molecules even when using state-of-the-art predictive
models.

5) [Optional] Retrain
® Retrain model on
validation data

1) Generate data

2) Train predictive

e Generate suitable model

e Train a predictive
model on data

3) Generate candidate
sequences
e Sampling or
generative methods

4) Validate candidates
o Experimentally verify

in-domain dataset proposal sequences

(e.g. SOX2
binding in cells
relevant to cancer)

Figure 1. Graphical representation of in silico nucleic acid design.

Current efforts to design novel nucleic acid sequences of-
ten involve four core steps (Figure 1): 1) Generate data
to collect a high quality dataset that has desired properties
(properties such as cell-type specific expression, binding
affinity to a particular transcription factor, translational effi-

https://github.com/move37-labs/nucleobench

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

Table 1. Nucleic acid design from sequence benchmarks. All benchmarks prior to NucleoBench are limited either in the range of tasks
they measure against, the range of optimizations they compare, or the complexity of the task.

NAME YEAR ALGOS TASKS SEQ. LENGTH DESIGN LONG LARGE PAIRED
(BP) BENCHMARK SEQS MODELS START SEQS.

Fitness Landscape Explo- 2020 4-6 9 Most 10, all ¢ X X v

ration Sandbox <100

Computational Optimiza- 2024 3 3 200 v X X v

tion of DNA Activity

gRelu 2024 2 5 500K (20 edit) X X X

Linder et al repos 2021 2 20 <600 v X X X

NucleoBench (ours) 2025 9 16 256-3K v v v v

ciency, half-life, etc), 2) Train a predictive model, usually a
neural network, to predict the property from sequence data,
3) Generate candidate sequences using the trained model
and a sequence design algorithm, 4) Validate candidates by
synthesizing the sequences and measuring their properties,
and optionally use the evaluated candidates to retrain a new
model for further evaluation.

The academic literature has focused primarily on steps 1,
2, and 4, often using a core set of established algorithms
for step 3. While this has produced important progress in
benchmarks (Table 1) and optimization algorithms (Table
2), they both remain areas with substantial opportunities for
innovation.

First, progress in the field could be accelerated by addressing
the current fragmentation of benchmarking efforts. Table 1
shows a list of benchmarks since 2020. Sinai et al. (2020)
has an impressive range of tasks, but does not include mod-
ern tasks (since 2021), and is limited in complexity of the
number of sequences per task, with most containing around
ten sequences and all fewer than 100. Lal et al. (2024) is an
actively maintained framework, though as of this writing it
only includes three optimization algorithms, limiting its util-
ity for comprehensive algorithm assessment. Benchmarks
on adjacent problems, such as Mathews (2019) and Badura
et al. (2025), do not necessarily transfer to sequence-only
design.

Second, expanding the set of optimization strategies evalu-
ated could accelerate progress. Our analysis of the bench-
marks since 2020 (Table 1) shows that all but one still use
simulated annealing (Van Laarhoven & Aarts, 2010) or ge-
netic algorithms as a primary optimization strategy, despite
these methods predating modern deep learning architectures
by decades. Simulated annealing, developed in the 1970s,
remains featured in leading RNA design textbooks (Churkin
& Barash, 2025), while variations of genetic algorithms
dominate most benchmarks in Table 1 (Gosai et al., 2024,
Sinai et al., 2020). These algorithms, while simple and gen-
eral, cannot take advantage of gradient information from

neural networks. Notable exceptions like Ledidi (Schreiber
et al., 2020) and FastSeqProp (Linder & Seelig, 2021) incor-
porate gradient information but still employ greedy search
strategies that can converge to suboptimal solutions for com-
plex fitness landscapes.

In this work, we propose NucleoBench, the largest com-
parison of nucleic acid design algorithms to date. We con-
ducted over 400K design experiments to compare five of the
most commonly used sequence design algorithms (hereafter
“designers”) across 16 different tasks. As a result of our
analysis, we propose four other designers that combine the
strengths of multiple categories. One of them, AdaBeam,
is the best performing designer, and outperforms the others
on 11 of the 16 tasks. Our benchmark code is public. To
summarize, our main contributions are:

1. We introduce NucleoBench, the largest nucleic acid
design benchmark to date, including tasks with “large’
models and longer design sequences.

>

2. We comprehensively evaluate both standard and novel
designers across 16 tasks by running over 400K exper-
iments.

3. We provide data-driven answers to questions such as
“what are reasonable starting parameters for new tasks,”
“how sensitive are the designers to hyperparameters,”
“how do designers scale with model size and sequence
length,” and “what is the role of start sequence and
random seed on designer performance”.

4. Using insights from #1-3, we introduce AdaBeam, a
new designer that outperforms the others, and has im-
proved scaling properties.

2. Methods

Each experiment contains four inputs: 1) design task, 2)
designer, 3) designer hyperparameters, and 4) start sequence.
We review these below.

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

Table 2. Summary of designers in NucleoBench. Above the solid line are designers already found in the nucleic acid design literature.
Below the line are designers from the search literature not previously used to benchmark nucleic acid sequence design and hybrid

algorithms devised in this work.

Algo Description

Gradient-based

Directed Evolution
Simulated Annealing

Random mutations, track the best.
Greedy optimization with random jumps.

Adalead Iterative combining and mutating of a population of sequences.
FastSeqProp Sampling and the straight-through estimator for maximal input.
Ledidi Sampling and the gumbel softmax estimator for maximal input.
Ordered Beam Greedy search, in fixed sequence order, with cache.

Unordered Beam
Gradient Evo
AdaBeam

Greedy search with cache.

Directed Evolution, guided by model gradients.
Hybrid of Unordered Beam and improved AdaLead.

x U X% %[Xxxx

2.1. Design tasks

We benchmark designers on 16 tasks in three categories.
The summary of tasks can be found in Table 3, and details
can be found in the Appendix “Design tasks”.

Task selection: Our tasks capture the diversity of nucleic
acid design challenges. These tasks collectively span multi-
ple dimensions of complexity: sequence length (from 200bp
to 196,608bp), model inference speed (from Sms to 15s per
example), and biological context (from localized transcrip-
tion factor binding to cell-type-specific gene expression).
We prioritized tasks with established predictive models and
biological relevance, particularly focusing on models that
represent key regulatory mechanisms in the genome.

The task categories evaluate different architectures (CNNs
for BPNet and Malinois, attention mechanisms for En-
former). To our knowledge, NucleoBench marks the first
time that Enformer was used directly for a design task.
While Enformer is widely used for discriminative tasks,
its size has made it computationally difficult to use for de-
sign tasks. For more details, see the Appendix “Design
Tasks.”

2.2. Sequence designers

Our study compares five designers from the literature, two
from the computer science search literature that to our
knowledge have not been previously applied to nucleic acid
design, and two novel hybrid designers. Designers attempt
to optimize a sequence’s score on an objective function
given by the design task model. Designers based on black-
box and “gradient-based” (uses model gradients) methods
are evaluated. Benchmarking on identical start sequences
improves statistical power and allows us to quantify perfor-
mance variance due to randomness and start sequence.

Baseline algorithm selection: The five baseline design-
ers were chosen to be representative of different kinds of

algorithms, and to reflect what has been used in prior bench-
marks. Directed Evolution and Adal.ead are common ex-
amples of greedy evolutionary algorithms. They are easy to
implement, and have been used in previous benchmarks (Go-
sai et al., 2024; Sinai et al., 2020; Lal et al., 2024). Fast-
SeqProp and Ledidi are examples of strong performing,
greedy, purely gradient-based approaches. They are also
commonly used in benchmarks (Gosai et al., 2024; Sinai
et al., 2020; Lal et al., 2024; Linder & Seelig, 2021; 2019).
Simulated annealing is the only non-greedy optimizer, and
is a common baseline for works in this field (Gosai et al.,
2024; Sinai et al., 2020; Lal et al., 2024; Linder & Seelig,
2021; 2019). As discussed in the section “Comparison to
generative modeling”, we excluded generative models in
this version of NucleoBench.

2.2.1. ORDERED AND UNORDERED BEAM SEARCH

We introduce Ordered and Unordered Beam search to
nucleic acid design. These designers are staple search al-
gorithms in the computer science literature, and are often
used in speech processing. The “beam” in these designers
allows them to track multiple strong candidate sequences
rather than just the single best sequence. We compare these
designers to understand their performance and the impact of
fixing edit order.

For both beam search designers, we decompose edit selec-
tion into two independent steps: selecting which location to
edit, then selecting what the edit should be.

Pr[bp at location n; is changed to m|H;_1] =
Pr[m/|edit location n]-

Pr[edit location n;|H;_1]

where H,_1 is the relevant history of edits that the algorithm
has made for the first ¢ — 1 edits. For Ordered Beam, we
select a random permutation of edit order at the start of the
algorithm, and proceed to make edits in that order. The

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

Table 3. Summary of design tasks in NucleoBench. *Input length is 200K, but only 256 bp are edited. **All models are 55ms except the

ATAC model, which is 260.

TASK CATEGORY MODEL DESCRIPTION Num SEQ LEN SPEED (MS /
TASKS (BP) EXAMPLE)

Cell-type specific Malinois How DNA sequences control gene expression 3 200 2

cis-regulatory ac- from the same DNA molecule. Cell types are:

tivity precursor blood cells, liver cells, neuronal cells.

Transcription fac- BPNet-lite How likely a specific transcription factor (TF) 12 3000 55 /260%**

tor binding will bind to a particular stretch of DNA.

Selective gene ex- Enformer Prediction of gene expression. 1 196,608 / 15,000

pression 256 *

designer stops when all locations have been edited once.
Note that this allows any start sequence to be edited to any
other sequence. Thus, if /; is our predetermined edit order,
then for Ordered Beam, we have:

1 1fnt = lt

Prledit location n|H; 1] = {0 herwi
otherwise

For Unordered Beam search, we select a single location
uniformly at random to edit. Thus, for Unordered Beam:

Pr[edit location n¢|H¢—1] = P(edit location n;)

= 1/sequence length

For both algorithms, the new nucleotide is selected uni-
formly at random to ensure that it is modified.

2.2.2. ANALYSIS OF BASELINES AND MOTIVATION FOR
NOVEL DESIGNERS

Efficient gradient calculation on large models: Ledidi
implementations from (Gosai et al., 2024; Lal et al., 2024;
Schreiber et al., 2020) and FastSeqProp (Linder & Seelig,
2021) do not scale to sequences of 100 kilo basepairs on En-
former, due to backpropagation on the large model causing
out-of-memory errors. This is because these designers (in
PyTorch) use the common technique of “gradient masking.’
While this gives the correct result, it does not reduce peak
memory usage. In contrast, NucleoBench optimizers are
able to perform backpropagation with the Enformer model
by using a more memory-efficient technique that we call
“gradient concatenation.” Roughly speaking, while gradient
masking multiplies the input by a constant-Tensor mask of
0Os and 1s, gradient concatenation constructs the input Ten-
sor from two sub-Tensors, only one of which is marked for
gradients. Gradient concatenation is more memory efficient
when the backwards pass is much more memory intensive

bl

than the forward pass. For more details, see the Nucle-
oBench implementation or the Appendix section “Gradient
Concatenation.”

Identifying limitations in AdaLead to motivate novel
sequence designers: Adal.ead was the best performing non-
gradient baseline designer (Figure 2), so we ran ablation
studies to understand which components of Adalead were
most important. We found a number of unexpected results.
First, AdaLead without recombination always outperformed
Adalead with recombination (this was also observed in
Gosai et al. (2024)).

Second, we theoretically proved and empirically verified
that the reference implementation of AdaLead performs an
O(n) computation with rejection sampling where there is
an identical O(1) computation. Rejection sampling induces
the following distribution on the number of edits per step:

_ Binomial(n, I, m’)

Pr[N =n] = = (=) ifl<n<lI,
0 otherwise
3
m' = M= The “mutation rate” of the algorithm

[:= length of the sequence

Given this closed-form solution, we can replace the expen-
sive rejection sampling process with a single sample from
this distribution.

Third, unlike other algorithms, the rejection sampling can
cause an infinite loop during optimization.

2.2.3. GRADIENT EvVO: HYBRID OF DIRECTED
EVOLUTION AND GRADIENT METHODS

We introduce a novel designer, gradient-guided Directed
Evolution (Gradient Evo), which is a hybrid between the
simplicity of Directed Evolution and the performance of
Ledidi and FastSeqProp. The algorithm uses Directed Evo-

https://github.com/move37-labs/nucleobench/blob/0f2907eb689cb6a4272e5ab7d2e11c674691346e/nucleobench/common/attribution_lib_torch.py#L173
https://github.com/move37-labs/nucleobench/blob/0f2907eb689cb6a4272e5ab7d2e11c674691346e/nucleobench/common/attribution_lib_torch.py#L173

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

lution, where edit locations are guided by Taylor in silico
mutagenesis (TISM) (Sasse et al., 2024). TISM approxi-
mates the effect of changing nucleotides in a sequence in
a computationally efficient way. The equation for TISM,
taken from Sasse et al. (2024) is:

df(l:bl) df(lvbo)

ISM (s}, 1, b)) ~
S (80’ ’ l) dSO dSQ

= TISM(s),1,by)

sq := nucleotide sequence
bo := the nucleotide at location [in the original sequence

by := the nucleotide at location [in the modified sequence

2.2.4. ADABEAM: ADAPTIVE BEAM SEARCH

Inspired by our analyses of Adalead and Beam Search,
we introduce Adaptive Beam search (AdaBeam). As in
beam search, we decompose each round into an edit loca-
tion selection step and an edit step. Unlike Adalead’s edit
location step, which implicitly repeatedly performs an O(n)
computation, AdaBeam’s location selection step performs
a single O(1) computation. On comparable hyperparame-
ters, AdaBeam is able to compute steps on 3,000 nucleotide
sequences roughly two times faster than Adalead due to
explicit sampling. We describe the full algorithm in the
Appendix.

2.3. Designer hyperparameters

The hyperparameters are designer-specific. These are fac-
tors such as “learning rate” in FastSeqProp and Ledidi, and
“mutation rate” in Directed Evolution.

Hyperparameter selection: We used hyperparameter val-
ues that perform well in other benchmarks (Gosai et al.,
2024; Sinai et al., 2020; Lal et al., 2024; Linder & Seelig,
2019), as well as adaptations (e.g. lower mutation on prob-
lems with longer sequences).

2.4. Start sequences

The role of start sequences in designers is poorly under-
stood, in part due to the difficulty of running large-scale
experiments with identical starting sequences. We run each
experiment in a task on 100 identical starting sequences,
allowing us to evaluate algorithms fairly across the same
sequence. This allows us to have greater statistical power
by performing paired statistical tests instead of unpaired
ones, such as the Friedman test (Friedman, 1937), as well
as explore the idea of “difficult start sequences,” which are
start sequences that are difficult across all designers. See
the Appendix for how start sequences were chosen.

Start sequence selection: For all tasks, start sequences are
picked using three different methods, according to which
is used in the literature: 1) random sequence, 2) random

sequence flanked by a real sequence, 3) real sequence mined
from the human genome having specific properties. Details
are in the Appendix “Design tasks”.

3. Evaluation
3.1. Experimental setup

Each experiment contains four inputs: 1) design task, 2) de-
signer, 3) designer hyperparameters, and 4) start sequence,
and experiments are independently parallelizable. We ran
each experiment for a fixed period of time (12 hours for
Enformer jobs, 8 hours for others) or until a designer-
specific end condition was met (e.g., Ordered Beam fin-
ishes when every sequence location has been mutated). We
ran all experiments on CPU-only machines, primarily type
nl-highmem-16, using Google Batch.

3.2. Metrics

The primary evaluation metric we used was the final fitness
of the designed sequence after the experiment, according
to the task model. For example, this might be the binding
affinity of GATAZ2 to the sequence, according to the GATA2
BPNet model. Other metrics that we collected are the time
series of energy values throughout optimization (collected
every N steps, where N varies depending on the designer),
and the time taken for each optimization step.

3.3. Methodology of analyses

Performance: We ran over 400K experiments to determine
the best performance for each algorithm on each task. The
results are shown in Figure 2. We selected hyperparame-
ters using the methodology described in section “Designer
hyperparameters”. The same starting start sequences were
used for each designer in a given task (see section on ‘Start
Sequence’ for more details). The 95% confidence inter-
val was computed using Student’s t-distribution of the final
energy across start sequences and random seeds.

Performance variability from random seed: To assess
variability from algorithmic randomness, each experiment
was rerun with five different random seeds using the best
out-of-the-box hyperparameters. For each combination of
design task, algorithm, hyperparameter, and start sequence,
we computed the variance across these five seeds, and then
determined the median of these variances over the 100 start
sequences. The median variance for each (design task, de-
signer) pair is detailed in the Appendix section “Perfor-
mance variability due to random seed.” For a comparable,
single score per designer, we aggregated these results us-
ing a non-parametric, 0-based order score derived from its
variance rank on each task, averaged across all tasks.

Performance variability from start sequence: To investi-

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

gate the underexplored impact of starting sequences, a pre-
viously computationally challenging analysis, NucleoBench
ran each design task, algorithm, and hyperparameter combi-
nation on 100 identical start sequences. We quantified the
effect of start sequence on each optimizer by computing the
variance of final energies across these 100 starts using the
best hyperparameters for each (task, algorithm) pair, with
detailed results in the Appendix section “Performance vari-
ability based on start sequence.” To aggregate this across
tasks into a single score per algorithm, we employed non-
parametric, O-based order scores based on variance ranks,
averaged across tasks.

Existence of ‘“difficult start sequences”: The previous
analysis quantifies the effect of start sequence on the quality
of designed sequences found by the designer. One outstand-
ing question is how correlated these performance fluctua-
tions are with the start sequence, and whether there exist
“intrinsically difficult start sequences.” To that end, we ana-
lyzed whether certain sequences are likely to be responsi-
ble for poor performance in an optimization-agnostic way.
For each task, we look at the experiment results from the
best hyperparameters for each algorithm. We perform the
non-parametric Friedman Test and the Nemenyi posthoc
test by treating the 100 start sequence identities as nomi-
nal variables, the different designers as treatments, and the
performances as continuous Y variables.

Convergence times: To assess optimizer convergence
speed, we measured the time required for each (design task,
designer) combination, using the best out-of-the-box hyper-
parameters, to reach performance within 0.05 of its final
best score for that run. The median of these times across
different random seeds was computed. For a single, com-
parable score, we aggregated these convergence times per
designer using a non-parametric, O-based order score based
on its rank for each task (where faster convergence ranked
better), averaged across all tasks.

4. Results
4.1. Per-task performance analysis

Figure 2 shows the distribution of final scores achieved by
each optimization algorithm. The best hyperparameters
were optimized for each task individually (see Appendix
section “Per-task results”). Scores are aggregated across
tasks. AdaBeam was on average the most performant al-
gorithm (paired t-test across all tasks, paired on (task, start
sequence), p = 7.6 x 10723, ¢ = 9.9, df = 2798), with it
and Ledidi the clearly most performant designers. Each task
had at least one of those two designers as the best perform-
ing; AdaBeam was the best or second best on 15 of the 16
tasks evaluated and Ledidi was the best or second best on 14
of 16. Indeed, on the BPNet and Enformer modeling tasks,

Violin Plot of Algorithm Scores

Order Scores (lower is better)

Figure 2. The distribution of final scores for each algorithm.

which showed substantial performance differentiation be-
tween designers, only the OTX1 task had a distinct designer
as the second best (Table A.1). Tasks demonstrated distinct
difficulty levels, with all Malinois tasks being solved by all
designers except Directed Evolution, Simulated Annealing,
and Gradient Evo, and a larger spread of performance on
BPNet and Enformer tasks (Table A.1).

4.2. Performance Variability and Convergence Speed
Analysis

Performance variability based on random seed: Table 4
(top) shows the aggregate performance variability based on
random seed according to the non-parametric order score.
All designers have roughly comparable variance attributable
to random seed except for simulated annealing, which is
markedly lower. The relatively small sensitivity to random
seed is consistent across tasks, with Enformer tasks con-
tributing the largest magnitude differences in the 25th-75th
percentile performance (Table A.2).

Performance variability based on start sequence: The
role of starting sequence in nucleic acid designers has been
underexplored, mostly due to the computational difficulty
of running such an analysis. In NucleoBench, we were
able to run this analysis fairly because each designer was
started with the same collection of 100 sequences. The
non-parametric order scores in Table 4 (middle) indicate the
variances based on starting sequence. The lower variability
of simulated annealing may stem at least in part due to its
consistently poor performance across tasks (Table A.3).

Existence of “difficult start sequences”: Table 5 shows
that intrinsically difficult start sequences exist, and are not
uniformly distributed between tasks. Specifically, we ob-
served roughly four categories of problem: no difficult seeds
(8/16), 1 difficult seed (6/16), more than 1 and fewer than

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

Table 4. Top) Variability due to start sequence. Lower is better (lower variance). Middle) Variability due to random seed. Lower is better
(lower variance). Bottom) Relative order of designer convergence time. Lower is better (faster convergence). See “Performance variability

from start sequence” in Methods for a description of the order score.

Analysis Metric Directed | Simulated | AdaLead | FastSeq| Ledidi | Ordered | Unordered | Gradient | AdaBeam

Evolu- | Anneal- Prop Beam Beam Evo

tion ing

Variability from | Order score | 24 0.6 34 3.6 4.6 6.3 4.9 5.2 33
random seed
Variability from | Order score | 2.9 0.8 4.2 34 6.0 2.6 44 5.6 4.8
start sequence
Convergence | Order score | 7.5 5.7 3.6 33 1.5 3.0 3.1 6.8 1.3
time

5 difficult seeds (1/16), and many (> 5%) difficult seeds
(1/16). Cell-specific expression tasks and the majority of
transcription factor binding tasks did not have any hard
sequences.

Convergence: Table 4 (bottom) indicates aggregate con-
vergence time per optimization algorithm. We find that
Directed Evolution and its gradient-guided variant, Gradi-
ent Evo, are the slowest to converge, while AdaBeam and
Ledidi are the fastest. Table 5 (bottom) shows the aggre-
gate convergence time per task. Most tasks are similar in
terms of convergence time, with the Enformer task taking
the longest owing to its sequence length and model size, and
OTX1 being a notable outlier that takes longer to converge
on the BPNet model.

5. Discussion

Our analysis of the overall performance of multiple design-
ers revealed several key takeaways. First, AdaBeam and
Ledidi were the most performant designers both in terms of
sequence optimization quality and convergence time. Their
consistently strong performance indicate the robustness and
effectiveness of their design strategies and suggests that
these algorithms might generally be better at traversing the
energy landscape of neural networks applied to problems
in biology. Adalead, FastSeqProp, Gradient Evo, and Un-
ordered Beam were the next most performant designers,
establishing a clear middle tier of performance. Interest-
ingly, the Ordered and Unordered Beam designers were
implemented similarly except for the fixed edit order, but
the performance of Ordered Beam is noticeably inferior, sug-
gesting that fixed-edit order is not a good strategy. Finally,
Simulated Annealing and Directed Evolution, despite often
being used as baseline designers, were the least performant
designers benchmarked in this work. Neither designer could
reliably solve the Malinois tasks, which were solved by all
other designers except Gradient Evo. Researchers should
consider not using these algorithms as baseline designers.

Task diversity is important to enable differentiation of de-
signer performance. The three Malinois tasks were solved

by nearly all designers; this performance saturation made
differentiation difficult. On the other hand, the OTX1 task of
BPNet yielded relatively poor performance for all designers
and thus represents an opportunity for future improvement.
The other 13 tasks showed meaningful performance differ-
entiation across designers.

To our knowledge, NucleoBench is the first study to char-
acterize designer performance variability due to random
seed and start sequence. Encouragingly, we observed little
performance variability attributable to random seed, lending
support to the robustness of the different optimizer algo-
rithms. Start sequence, on the other hand, is more important.
While there were relatively small differences in the sensi-
tivity to start sequences between designers on a particular
task, the absolute difficulty of optimizing a sequence for a
task does depend on its composition, with some intrinsically
difficult start sequences discovered for Enformer and BPNet
tasks.

Recent advances in model quality have stemmed in part
from supporting longer input sequences. Designers need
concomitant adaptation to support larger models and longer
sequences. In this work, we limited to only 256 candidate
positions to edit within sequences passed to the Enformer
model, because Ledidi and FastSeqProp, the two most per-
formant baseline designers, are gradient-based and could not
optimize the full sequences passed to the Enformer-based
tasks. Our results emphasize the importance of gradient-
based algorithms, as gradient-based designers were the top
or second-most performant designers across 15/16 tasks,
and Gradient Evo significantly outperformed Directed Evo-
Iution. Improved designer support can arise from careful
engineering and software design; here we showed that by
switching from gradient masking, in which extraneous gradi-
ents are calculated and thrown away, to tensor concatenation,
in which only relevant gradients are computed during back-
propagation, we enabled Gradient Evo to scale to Enformer-
based tasks far larger than those supported by Ledidi and
FastSeqProp. This highlights the importance of reference
implementations in the nucleic acid design space.

Finally, thorough ablation studies and careful experimental

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

Table 5. Top) Friedman test for the existence of extremal start sequences, then the Nemenyi post hoc test for identifying specific start
sequences. Task name in the top row. Bottom row is (fraction of seeds that are extremal, Friedman test statistic, significance). Bottom)
Aggregate amount of time for optimization convergence. Convergence times were computed for each task / optimizer, then converted to a
z-score across tasks per optimizer. Z-scores were then averaged for each task. Higher scores indicate that this task took optimizers longer
than others to converge. See “Performance variability from start sequence” in Methods for a description of the order score.

Task type Malinois BPNet Enformer
Start sequence method Rand Mined from g e Mined from & g
T =
S o Q| = =t :ﬂl =) e — S| e
213|212 |2|5|5|5|8|5|8(8|E|5 |8
2 Z|A |2 |0|R|R|C E = =|2]© 2| @ DNase (T muscle | liver)
Existence of | Fraction of [- - - 1 - - 1 1 - 3 1 - 1 1 - 54
difficult start | external seeds
sequences (out of 100)
Friedman test | - 154 150 | 167 | - |204 | 141 206 447
statistic
3.4 76|24 3034 1.8 1.2
Friedman test | - - E-4 E4 |E5| - |E9|E-3 E-9 E-45
significance
Optimizer con- | Order | 947415387 57775050 (86|57|41]|67[126[59 73 17.5
vergence

design enabled novel insights. We investigated Adalead,
the strongest non-gradient baseline designer, and observed
that the best per-task results always had recombination and
thresholding disabled (Appendix “Per-task results”). We
also note that by performing paired statistical tests, we were
able to use the Friedman test for ablation studies, and to
identify difficult start sequences. Both analyses would have
been much less sensitive without paired start sequences.

Our work has several limitations. First, the sequence design-
ers we compared in NucleoBench are relevant to biology
only insofar as the task models are accurate. While this work
focused on the designers, there are important relationships
between the quality of the task model and the performance
of the designer that we did not explore. For example, we
did not benchmark designers that are aware of model un-
certainty. Second, we have not thoroughly compared how
well the designers incorporate biological constraints or the
biological plausibility of the optimized sequences. Third,
we did not evaluate any generative models in this version of
the benchmark.

Future work will expand NucleoBench to include more
diverse tasks, including synthetic benchmarks, long-term
planning challenges, and multi-objective optimizations,
alongside deeper analysis of algorithm performance scal-
ing with sequence length and model size. For optimiza-
tion methods, priorities include developing algorithms
aware of oracle uncertainty, explicitly managing exploration-
exploitation tradeoffs, and adaptively balancing gradient and
non-gradient information. Building on this work as a perfor-
mance baseline, future efforts will also integrate biological
plausibility constraints, either as fitness terms or filtering
steps, which will be crucial for therapeutic relevance.

6. Conclusion

Work that improves the nucleic acid computational design
phase that precedes costly wet lab validation has myriad
therapeutic applications. For CRISPR therapeutics, gradient-
informed algorithms like Ledidi could significantly improve
guide RNA specificity by minimizing off-target effects, a
major safety concern in gene editing therapies. In mRNA
vaccine development, these optimized algorithms could en-
hance translational efficiency and stability, addressing key
challenges that affected early COVID-19 vaccine storage
requirements. For antisense oligonucleotide therapies target-
ing genetic disorders, gradient-guided sequence optimiza-
tion provides a pathway to design sequences with higher
target binding affinity while minimizing immunogenicity
risks.

NucleoBench is an open-source benchmark of nucleic acid
design optimization algorithms. As the most comprehensive
standardized method for evaluating new designers, cover-
ing 16 different design tasks from a range of problem do-
mains, NucleoBench represents a framework for accelerat-
ing progress in nucleic acid computational design. Through
over 400K experiments, we empirically evaluated which de-
signers consistently produce the highest-quality sequences,
sets of reasonable hyperparameters to use for each designer,
and elucidated the sensitivity of the tested designers to hy-
perparameters, start sequences, and random seeds, while
confirming the critical role of gradients. The insights from
this work suggest new avenues for improving designer per-
formance and directly led to the development of AdaBeam,
which outperformed existing designers on 11 of 16 tasks and
possesses more favorable scaling properties. NucleoBench
provides data for 16 common tasks as well as publicly avail-
able reference implementations of all designers. Further
improvement is still needed, however, to handle even longer
sequences and larger models, as well as to overcome the lim-

https://github.com/move37-labs/nucleobench
https://github.com/move37-labs/nucleobench

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

itations of greedy approaches. We hope that NucleoBench
and AdaBeam spur further interest in the development of
new optimization algorithms for nucleic acid sequence de-
sign.

Acknowledgments

We thank to Sager Gosai for his invaluable guidance on
interpreting motifs and task selection. We thank Daniel
Friedman for early discussions on formalizing edit order.
We thank Anna Lewis and Vikram Agarwal for guidance
throughout the paper writing process.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References

Adamczyk, B., Antczak, M., and Szachniuk, M. RNAsolo:
a repository of cleaned PDB-derived RNA 3D structures.
Bioinformatics, 38(14):3668-3670, July 2022.

Alamdari, S., Thakkar, N., van den Berg, R., Tenenholtz,
N, Strome, R., Moses, A. M., Lu, A. X., Fusi, N., Amini,
A. P, and Yang, K. K. Protein generation with evolu-
tionary diffusion: sequence is all you need. bioRxiv,
September 2023.

Anderson-Lee, J., Fisker, E., Kosaraju, V., Wu, M., Kong,
J., Lee, J., Lee, M., Zada, M., Treuille, A., Das, R., and
Eterna Players. Principles for predicting RNA secondary
structure design difficulty. J. Mol. Biol., 428(5 Pt A):
748-757, February 2016.

Avsec, Z., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-
Barwinska, A., Taylor, K. R., Assael, Y., Jumper, J., Kohli,
P, and Kelley, D. R. Effective gene expression prediction
from sequence by integrating long-range interactions. Nat.
Methods, 18(10):1196-1203, October 2021a.

Avsec, Z., Weilert, M., Shrikumar, A., Krueger, S., Alexan-
dari, A., Dalal, K., Fropf, R., McAnany, C., Gagneur, J.,
Kundaje, A., and Zeitlinger, J. Base-resolution models of
transcription-factor binding reveal soft motif syntax. Nat.
Genet., 53(3):354-366, March 2021b.

Badura, J., Zok, T., and Rybarczyk, A. Datasets for bench-
marking RNA design algorithms. Methods Mol. Biol.,
2847:229-240, 2025.

Becquey, L., Angel, E., and Tahi, F. RNANet: an automat-
ically built dual-source dataset integrating homologous

sequences and RNA structures. Bioinformatics, 37(9):
1218-1224, June 2021.

Churkin, A. and Barash, D. (eds.). RNA design: Methods
and protocols. Methods in molecular biology (Clifton,
N.J.). Springer US, New York, NY, 2025.

Danaee, P., Rouches, M., Wiley, M., Deng, D., Huang, L.,
and Hendrix, D. bpRNA: large-scale automated annota-
tion and analysis of RNA secondary structure. Nucleic
Acids Res., 46(11):5381-5394, June 2018.

DiMasi, J. A., Grabowski, H. G., and Hansen, R. W. Inno-
vation in the pharmaceutical industry: New estimates of
R&D costs. J. Health Econ., 47:20-33, May 2016.

Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg,
E. W., Donovan, K. F., Smith, I., Tothova, Z., Wilen,
C., Orchard, R., Virgin, H. W,, Listgarten, J., and Root,
D. E. Optimized sgRNA design to maximize activity
and minimize off-target effects of CRISPR-Cas9. Nat.
Biotechnol., 34(2):184-191, February 2016.

Eastman, P., Shi, J., Ramsundar, B., and Pande, V. S. Solv-
ing the RNA design problem with reinforcement learning.
PLoS Comput. Biol., 14(6):¢1006176, June 2018.

Friedman, M. The use of ranks to avoid the assumption of
normality implicit in the analysis of variance. J. Am. Stat.
Assoc., 32(200):675-701, December 1937.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. arXiv [stat.ML], June
2014.

Gosai, S. J., Castro, R. I., Fuentes, N., Butts, J. C., Mouri, K.,
Alasoadura, M., Kales, S., Nguyen, T. T. L., Noche, R. R.,
Rao, A. S., Joy, M. T., Sabeti, P. C., Reilly, S. K., and
Tewhey, R. Machine-guided design of cell-type-targeting
cis-regulatory elements. Nature, 634(8036):1211-1220,
October 2024.

Hitz, B., Kagda, M., Lam, B., Litton, C., Small, C., Sloan,
C., Spragins, E., Tanaka, F., Whaling, 1., Gabdank, I.,
Youngworth, 1., Strattan, J. S., Hilton, J., Jou, J., Au, J.,
Lee, J.-W., Andreeva, K., Graham, K., Lin, K., Simison,
M., Jolanki, O., Sud, P., Assis, P., Adenekan, P., Miyasato,
S., Zhong, W., Luo, Y., Myers, Z., and Cherry, J. Data
navigation on the ENCODE portal. arXiv [g-bio.GN],
July 2023.

Hwang, G., Kwon, M., Seo, D., Kim, D. H., Lee, D., Lee,
K., Kim, E., Kang, M., and Ryu, J.-H. ASOptimizer: Op-
timizing antisense oligonucleotides through deep learning
for IDO1 gene regulation. Mol. Ther. Nucleic Acids, 35
(2):102186, June 2024.

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. DNABERT:
pre-trained bidirectional encoder representations from
transformers model for DNA-language in genome. Bioin-
formatics, 37(15):2112-2120, August 2021.

Lagana, A., Veneziano, D., Russo, F., Pulvirenti, A., Giugno,
R., Croce, C. M., and Ferro, A. Computational design of
artificial RNA molecules for gene regulation. Methods
Mol. Biol., 1269:393-412, 2015.

Lal, A., Gunsalus, L., Nair, S., Biancalani, T., and
Eraslan, G. gReLU: A comprehensive framework for
DNA sequence modeling and design. bioRxiv, pp.
2024.09.18.613778, September 2024.

Lin, S., Hong, L., Wei, D.-Q., and Xiong, Y. Deep learn-
ing facilitates efficient optimization of antisense oligonu-
cleotide drugs. Mol. Ther. Nucleic Acids, 35(2):102208,
June 2024.

Linder, J. and Seelig, G. Seqprop: Stochastic sequence
propagation - a keras model for optimizing DNA, RNA
and protein sequences based on a predictor. https:
//github.com/johli/segprop, 2019.

Linder, J. and Seelig, G. Fast activation maximization for
molecular sequence design. BMC Bioinformatics, 22(1):
510, October 2021.

Linder, J., Bogard, N., Rosenberg, A. B., and Seelig, G.
Deep exploration networks for rapid engineering of func-
tional DNA sequences. bioRxiv, December 2019.

Mathews, D. H. How to benchmark RNA secondary struc-
ture prediction accuracy. Methods, 162-163:60-67, June
2019.

Mouchlis, V. D., Afantitis, A., Serra, A., Fratello, M., Papa-
diamantis, A. G., Aidinis, V., Lynch, 1., Greco, D., and
Melagraki, G. Advances in de novo drug design: From
conventional to machine learning methods. Int. J. Mol.
Sci., 22(4):1676, February 2021.

Patel, A., Singhal, A., Wang, A., Pampari, A., Kasowski, M.,
and Kundaje, A. DART-eval: A comprehensive DNA lan-
guage model evaluation benchmark on regulatory DNA.
arXiv [cs.LG], December 2024.

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger,
C. C., Munos, B. H., Lindborg, S. R., and Schacht, A. L.
How to improve R&D productivity: the pharmaceutical
industry’s grand challenge. Nat. Rev. Drug Discov., 9(3):
203-214, March 2010.

Riley, A. T., Robson, J. M., and Green, A. A. Generative and
predictive neural networks for the design of functional
RNA molecules. bioRxiv, pp. 2023.07.14.549043, July
2023.

10

Sadybekov, A. V. and Katritch, V. Computational ap-
proaches streamlining drug discovery. Nature, 616(7958):
673-685, April 2023.

Sasse, A., Chikina, M., and Mostafavi, S. Quick and ef-
fective approximation of in silico saturation mutagenesis
experiments with first-order taylor expansion. iScience,
27(9):110807, September 2024.

Schreiber, J. bpnet-lite: This repository hosts a minimal
version of a python API for BPNet. https://github.
com/jmschrei/bpnet-1ite, 2020a.

Schreiber, J. Ledidi: Ledidi turns any machine learning
model into a biological sequence editor, allowing you
to design sequences with desired properties. https:
//github.com/jmschrei/ledidi, 2020b.

Schreiber, J., Lu, Y. Y., and Noble, W. S. Ledidi: Designing
genomic edits that induce functional activity. bioRxiv,
May 2020.

Shen, T., Hu, Z., Sun, S., Liu, D., Wong, F., Wang, J., Chen,
J., Wang, Y., Hong, L., Xiao, J., Zheng, L., Krishnamoor-
thi, T., King, 1., Wang, S., Yin, P,, Collins, J. J., and Li, Y.
Accurate RNA 3D structure prediction using a language
model-based deep learning approach. Nat. Methods, 21
(12):2287-2298, December 2024.

Shor, J. and Cotado, S. G. Computing systems with modu-
larized infrastructure for training generative adversarial
networks, July 2023.

Sinai, S., Wang, R., Whatley, A., Slocum, S., Locane, E.,
and Kelsic, E. D. Adalead: A simple and robust adap-
tive greedy search algorithm for sequence design. arXiv
[cs.LG], October 2020.

Szikszai, M., Magnus, M., Sanghi, S., Kadyan, S., Bouatta,
N., and Rivas, E. RNA3DB: A structurally-dissimilar
dataset split for training and benchmarking deep learning
models for RNA structure prediction. J. Mol. Biol., 436
(17):168552, September 2024.

Tan, X., Zhao, Z., Wang, R., and Zhu, G. Editorial: Molecu-
lar and nanoscale engineering of nucleic acid theranostics
and vaccines. Front. Bioeng. Biotechnol., 10:1126876,
2022.

Van Laarhoven, P. J. M. and Aarts, E. H. L. Simulated an-
nealing: Theory and applications. Mathematics and Its
Applications. Springer, Dordrecht, Netherlands, Decem-
ber 2010.

Wyss, L., Mallet, V., Karroucha, W., Borgwardt, K., and
Oliver, C. A comprehensive benchmark for RNA 3D
structure-function modeling. arXiv [g-bio.BM], March
2025.

https://github.com/johli/seqprop
https://github.com/johli/seqprop
https://github.com/jmschrei/bpnet-lite
https://github.com/jmschrei/bpnet-lite
https://github.com/jmschrei/ledidi
https://github.com/jmschrei/ledidi

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

Xiao, T., Hong, J., and Ma, J. DNA-GAN: Learning dis-
entangled representations from multi-attribute images.
arXiv [cs.CV], November 2017.

Zhang, H., Zhang, L., Lin, A., Xu, C., Li, Z., Liu, K., Liu,
B., Ma, X., Zhao, F,, Jiang, H., Chen, C., Shen, H., Li,
H., Mathews, D. H., Zhang, Y., and Huang, L. Algorithm
for optimized mRNA design improves stability and im-

munogenicity. Nature, 621(7978):396-403, September
2023.

11

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

A. Appendix
A.1. Related Work

Comparison to protein design: Computational nucleic acid design and protein design have many similarities. Both involve
designing sequences of biomolecules made up of basic building blocks to achieve desired effects in a complex biological
system, usually therapeutic in nature. Both sequence spaces quickly become so large as to be difficult to explore, making the
same kinds of energy landscape minimization algorithms applicable to both problems. Sequences in nature from both are
selected by similar kinds of evolutionary fitness constraints. Both require lab-in-the-loop feedback cycles with wetlabs to
validate predictions and to identify the most valuable training data.

There are also some significant differences between designing nucleic acid sequences and proteins. The basic building
blocks are different, affecting the tokenization and branching factors of computational methods. The relative importance of
secondary structure as compared to tertiary structure is different between the two. In addition, the bar for clinical success is
different: for example, RNA interventions often must have fewer off-target effects than biologically downstream proteins.

Comparison to nucleic acid design with structure: The models used in this benchmark take nucleotide sequences only as
input. Moreover, some predictive models take additional information, such as structural information, into account. Extra
information can allow models a more comprehensive understanding of their function and interactions. Examples of extra
information are secondary structures like hairpins, stems, and loops, as well as tertiary interactions that determine the overall
3D configuration. However, this comes at the cost of increased computational complexity, and requires that information be
present at inference time.

Comparison to generative modeling: In this work, we benchmark techniques that generate proposals by modifying input
sequences and observing the effect on the property of interest. The models used to map from sequence to property are
sometimes called “discriminative.” Alternatively, some techniques directly generate sequences with desired properties. These
are often called “generative.” Some examples include Generative Adversarial Networks (Shor & Cotado, 2023; Goodfellow
et al., 2014; Riley et al., 2023), such as Deep Exploration Networks (Linder et al., 2019) and DNA-GAN (Xiao et al., 2017),
diffusion models (Alamdari et al., 2023), reinforcement learning (Eastman et al., 2018), and autoregressive models (Ji
et al., 2021). Unlike sampling from discriminative models, these models learn to generate the distribution of “natural”
sequences, and more naturally handle diversity by often having explicit tradeoffs between quality and diversity during
training, generation, or both. However, training generative models often requires more data, larger compute requirements in
the form of more complex training dynamics and larger hyperparameter sweeps, and a higher degree of practical machine
learning experience to train.

Comparison to non-design, DNA/RNA benchmarks: A number of benchmarks exist for adjacent but distinct problems
that are at the intersection of biology and machine learning. Examples of adjacent problems with existing benchmarks are:
large language model on DNA (Patel et al., 2024), secondary structure prediction (Mathews, 2019; Danaee et al., 2018),
inverse folding (Anderson-Lee et al., 2016), 3D structure (Becquey et al., 2021; Adamczyk et al., 2022; Szikszai et al.,
2024), and function prediction (Wyss et al., 2025). In this work, we develop a benchmark for our problem: designing nucleic
acid sequences to optimize specific properties.

A.2. Design tasks
A.2.1. CELL-TYPE SPECIFIC CIS-REGULATORY ACTIVITY

Malinois models (Gosai et al., 2024) are convolutional neural network models that predict cell-type-specific cis-regulatory
element (CRE) effects directly from the nucleotide sequence. Each of three models predicts the CRE effect on a different
cell-line: K562 (bone marrow), HepG2 (liver), and SK-N-SH (neural). The authors of (Gosai et al., 2024) aggregated data
from multiple projects from a single lab. Starting sequences were random 200 nucleotide sequences flanked on either end by
200 real sequences from the MPRA dataset.

A.2.2. TRANSCRIPT FACTOR BINDING

Transcription factors (TFs) are proteins that regulate gene expression by binding to specific DNA sequences. The strength of
this binding, known as binding affinity, directly influences whether genes are activated or repressed. Accurately predicting
these affinities is important for understanding gene regulation mechanisms and how genetic variations can disrupt normal
cellular function, both of which have ramifications on understanding diseases. In practical applications, improved binding

12

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

affinity predictions enable more precise genetic engineering, better interpretation of disease-associated variants in non-coding
regions, more effective drug development targeting transcription factor pathways, and enhanced capabilities in synthetic
biology where precise gene expression control is essential. Despite significant progress using machine learning approaches
and high-throughput experimental techniques, accurately modeling the complex biophysical interactions that determine
binding affinity remains an open challenge requiring integrated experimental and computational innovations.

We used models trained to predict binding affinity for 12 TF proteins from (Schreiber, 2020b). The models were trained
using the BPNet-lite repository (Schreiber, 2020a), a lightweight implementation of BPNet (Avsec et al., 2021b). These are
convolutional neural networks that use DNA sequence to predict base-resolution binding profiles of transcription factors.
The BPNet-lite models from (Schreiber, 2020b) were trained on data from the ENCODE portal (Hitz et al., 2023) and hosted
on Zenodo. Each model was trained to predict the log-count amount of binding over the given region. The data was taken
from K562 cell-line data on the Encyclopedia of DNA Elements (ENCODE) consortium portal. The start sequences for
this task were 3000 bp sequences mined from chromosome 1 of the human HG38 genome assembly for initial low binding
affinity (see “Start Sequences” section for more details).

A.2.3. SELECTIVE GENE EXPRESSION

For the Enformer tasks, we used the Enformer network (Avsec et al., 2021a) to design sequences that maximized selectivity
of expression by increasing expression in muscle cells while minimizing expression in neural cells. We used regular
expressions to match 71 Enformer output tracks corresponding to muscle expression (maximized), and 25 output tracks
corresponding to muscle suppression (minimized). In addition, we included 11 output tracks related to expression in neural
cells (minimized) and 12 output tracks related to suppression in neural cells (maximized).

The Enformer network takes roughly 200K nucleotide sequences as inputs, and is a significantly larger model than other
models used in NucleoBench and generally other models used for design (see Table 1). To our knowledge, this is the first
time this model has been used for design. To make the problem tractable for all NucleoBench designers (especially the
backpropagation ones), we restricted the number of nucleotides that could be modified to 256.

Start sequences for the Enformer task were determined by mining the human genome for sequences with low muscle
expression or low selective muscle expression. Specifically, we randomly selected sequences from hg38 until we had found
100 sequences below a threshold expression or selective expression level, according to the Enformer model.

NucleoBench selected which 256 nucleotides would be modifiable based on DNASE. Within each of the 100 start sequences,
we selected the 256 nucleotides with the highest amount of predicted DNASE activity, according to Enformer.

A.3. Sequence Designers
A.3.1. ADABEAM

Adaptive Beam Search (AdaBeam) is an iterative optimization technique, motivated by the improved performance of
Unordered Beam Search over Ordered Beam Search, and the strong baseline performance of AdalLead. AdaBeam begins
with a population of candidate sequences and their associated fitness scores. In each round, a subset of these sequences,
termed “roots,” are selected as parents for generating new candidates. This selection is governed by a fitness threshold,
typically retaining sequences whose fitness values are above a certain percentile of the maximum observed fitness in the
current population, thus focusing computational resources on the most promising individuals. From each selected root,
the algorithm initiates multiple “rollouts.” A rollout consists of a series of sequential mutation and evaluation steps. A
child sequence is generated by mutating its parent, where the number of point mutations is determined stochastically by a
specialized sampler. The sampler itself can be fixed or adaptive. The fitness of this new child sequence is then assessed.

In this study, we use the same distribution as AdalLead for the number of edits made per round, but without the 3 factor.
While Adalead indirectly samples from this distribution (see section “Identifying Limitations in Adal.ead to Motivate Novel
Sequence Designers”), AdaBeam efficiently samples from this distribution directly. Specifically, we use the following:

1—(1—m)t

b [N] Binomial(n,l,m) if1<n<lI
T = n| =
0 otherwise

Note that Pr[N = 0] = 0, and that the above denominator exactly reallocates that probability mass so that the expression is

13

W =

IS

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

still a probability distribution (sums to 1).

The rollout from a parent sequence continues iteratively: if a newly generated child sequence exhibits a fitness greater than
or equal to its immediate parent, it becomes the parent for the next step in that rollout path. This allows for an exploration
trajectory in the fitness landscape. However, if a child’s fitness is lower than its parent’s, that branch of the rollout is
terminated to prevent pursuing less fit avenues. Additionally, rollouts are constrained by a maximum permissible length to
ensure finite exploration. All unique sequences generated across all rollouts from all roots, along with their fitness scores,
are collected. From this aggregated pool of candidates, the algorithm then selects the top-performing sequences, dictated by
a parameter, to form the population for the subsequent iteration. This cyclical process of parent selection, adaptive mutation
via rollouts, fitness evaluation, and beam-based selection drives the population towards higher fitness regions over successive
generations, effectively implementing an adaptive Directed Evolution strategy for sequence optimization.

A.3.2. ADALEAD

As discussed in the “Methods” section “Identifying Limitations in AdalLead to Motivate Novel Sequence Designers”, we
hypothesized that removing certain components of AdaLLead would improve performance. Specifically, for performing edits,
we replaced a repeated O(n) computation with a single O(1) computation (sampling directly from the induced distribution
over number of mutations), and removed a buffer of all sequences visited and a check on repeating them. These two
changes together produced strictly better results (Friedman test stat = 83, p < 2.5 x 10716, one-sided t-test to establish
improvement: t=4.5, p < 3.2 x 1075). Second, we note that AdaL.ead without recombination always outperformed Adalead
with recombination (Supplemental Per-Task Results. This result was also found in (Gosai et al., 2024)).

Gradient masking, in PyTorch, multiplies the input by a constant-Tensor mask of Os and 1s. It is implemented as follows:

idxs # a list of positions to have gradients computed
X # input tensor

gradient_mask = torch.zeros_like (x)
gradient_mask[idxs] =1

x = x * gradient_mask

y = large_network (x)

Listing 1. Gradient masking technique.

In contrast, the memory-efficient “gradient concatenation” constructs the input Tensor from two sub-Tensors. One is marked
for gradients, the other is not. It is more memory efficient when the backwards pass is much more memory intensive than
the forward pass. It is implemented as follows:

idxs # a list of positions to have gradients computed
x # input tensor

Form the basis of the gradient-free pieces of the input.
no_gradient = x.clone () .detach()

no_gradient.requires_grad = False

Form the basis of the gradient pieces of the input.

x_grad = x[idxs].clone () .detach()
x_grad.requires_grad = True
Xx_grad_i = {idx: i for i, idx in enumerate (idxs)}

Combine slices from the correct source, according to whether or not gradients are
required.

tensor_slices = [get_gradient_slice(i) if i in idxs else get_no_gradient_slice (i) for i
in range (x.shape)]

X = torch.concat (tensor_slices, dim=2)

y = large_network (x)
Compute gradient of y with respect to x

Listing 2. Gradient concatenation. This memory-efficient technique enables backpropagation through Enformer.
Gradient concatenation enables our hybrid and novel gradient algorithms to design sequences on Enformer tasks, while

14

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

Ledidi and FastSeqProp cannot (Table 5). For more details, see the ”apply_gradient_mask” implementation in NucleoBench.

A.3.3. GRADIENT EvO

We were able to improve the worst-performing algorithm (Directed Evolution) into one of the top performing optimizers by
leveraging gradient information to select the location of edits. One important question, though, is which steps are most
important to have gradient guidance. Since we decomposed each step in this designer into two phases, an edit location

selection phase and an edit phase, we were able to quantify the relative importance of gradient guidance.

A paired t-test across all the best hyperparameters for each task did not show a statistical difference between the performances
of location-only Gradient Evo and the version of Gradient Evo that used gradients to select the nucleotide edit (p=0.98,
n=1900). This suggests that it is more important to apply gradient guidance to selecting where to make edits than it is to

apply to what the edits should be.

A .4. Per-task performance

Table A.1. 95% confidence intervals for the best per-task results. For each (task, algorithm, hyperparameters), the 95% confidence interval
was computed across start sequences and random seeds using the final optimized energies (lower is better). Red is the best, blue second

best, per column.

Algorithm Malinois BPNet Enformer
K562 HepG2 SK-N-S ATAC CTCF ELF3 ELF4 GATA2 JUNB MAX MECOM MYC OTXI RAD2I SOX6 Tﬂ‘l"vsecrle

Directed Evoluti 154, -145, -142, 22, -09, -l14, 06, -09, -41, -02, -16 -01, -45 21, -34, -10319,
ected Bvolution 453 142 138 19 07 <13 07 07 41 00 -3 00 -44 19 33 -5750
Simulated Anncaling 154 104 82, 38 37 28 23, 30, 45 27, 25 -l4 48 40, 4l 12682,
ulate CANg 154 -103 82 38 37 28 23 29 45 27 24 -14 48 40 41 6788
Adalead 154, -154, -154, -38.3, -149, -252, -185, -194, -17.3, -174, -367, -157, -59, -17.3, -317, -18919,
alea 154 -154 -154 372 -147 249 -182 -189 -17.3 -17.2 361 -153 59 -168 311 -11011
FastSeqP 154, -154, -152, -193, -12.2, -25.1, -18.7, 217, -156, -163, -347, -130, -50, -168, -29.6, -72696,
astseqtrop 154 <153 <151 -186 -121 250 -185 -21.6 -154 -16.1 -344 -129 50 -166 -29.5 -65458
Ledidi 154, -154, -154, -46.8, -18.2, -28.6, -20.8, -27.0, -157, -20.6, -40.3, -164, -46, -253, -33.0, -1186192,
cdidt 154 <154 153 458 -17.7 -284 205 264 -154 -203 397 -159 -46 245 -32.7 -1040939
Ordered B 154, -154, -154, 24, -61, -100, -69, -86, -73, -7.5, -118, -65, -53, 7.5, -120, -14972,
rdered Beam 154 -154 -153 21 -60 99 -68 -84 72 73 -116 63 -52 73 -11.8 -8515
Unordered Bet 154, -154, -154, -314, -140, 227, -170, -168, -169, -149, -330, -13.8, -58, -15.1, -29.3, -21869,
nordered Beam 154 -154 154 308 -13.6 -224 -169 -166 -168 -146 -32.4 -134 -58 -142 289 -12796
Gradient E 154, -152, -146, -35.7, -144, 231, -17.1, -17.1, -17.0, -153, -333, -137, -58, -154, -29.8, -11130,
radient £vo (154 <149 -139 347 -140 -228 -167 -168 -169 -150 -32.6 -133 -58 -145 292 -5962
AdaBes 154, -154, -154, -469, -17.2, -32.1, -234, -25.7, -17.6, -19.7, -437, 229, -59, -22.5, -364, -23894,
abeam 154 154 -154 -46.1 -169 -32.0 -23.0 -25.1 -17.5 -194 -433 224 59 215 -360 -13523

15

https://github.com/move37-labs/nucleobench/blob/0f2907eb689cb6a4272e5ab7d2e11c674691346e/nucleobench/common/attribution_lib_torch.py#L173

NucleoBench: A Large-Scale Benchmark of Neural Nucleic Acid Design Algorithms

A.5. Per-task variability due to random seed

Table A.2. Performance variability based on random seed. For each (task, algorithm, hyperparameters), we show the (25th percentile,
75th percentile) for the best performing hyperparameters.

Algorithm Malinois BPNet Enformer

“Tmuscle

K562 HepG2 SK-N-S ATAC CTCF ELF3 ELF4 GATA2 JUNB MAX MECOM MYC OTX1 RAD21 SOX6 Uliver

(0.00, (0.95, (1.32, (036, (0.35, (0.12, (0.15, (041, (0.06, (028, (0.11, (0.30, (0.01, (0.36, (0.09, (64621,

Directed Evolution 50" 1 g7y 535 073) 078) 029) 042) 0.72) 0.03) 062 032 055 003) 072 020) 3273.90)

Simulated Annealing (©00: (026, (0.18, (006, (0.08, (007, (0.04, (0.08, (001, (0.07, (0.05, (006, (000, (0.09, (0.05, (694.23,
imulaled Amnealine o000y 049) 028) 0.10) 0.02) 0.12) 0.06) 0.5 002) 0.I1) 009 0.10) 0.0) 0.14) 008) 6233.92)

(0.00, (0.00, (0.00, (1.38, (0.44, (045, (0.42, (0.56, (0.10, (0.33, (1.00, (059, (0.01, (0.56, (0.87, (1051.72,

AdaLead 0.00) 0.00) 005 211) 075 077) 0.76) 0.87) 0.5 058) 1.63) 088) 001) 107) 145 7289.75)
FasiSeqP 0.00, (0.00, (041, (247, (0.20, (0.38, (038, (049, (0.2, (045, (0.97, (0.54, (0.01, (0.73, (0.5, (15306.33,
astoeqtrop 0.00) 020) 090) 3.79) 032) 0.60) 0.57) 0.77) 036) 069 1.62) 086) 002 108) 087) 25015.24)
Ledidi (0.00, (0.00, (0.00, (1.53, (0.56, (0.42, (043, (0.70, (0.45, (0.35, (093, (0.67, (0.01, (0.90, (0.46, (120364.95,

0.00) 001) 002) 243) 1.09) 068 0.67) 1.15) 074) 0.67) 1.53) 107) 0.02) 148) 0.82) 243801.88)

(0.00, (150, (1.86, (029, (0.36, (3.97, (2.69, (.11, (1.62, (0.94, (7.15, (2.14, (0.03, (132, (470, (77827,

Ordered Beam 0.00) 1.88) 224) 052) 054) 474) 324) 191) 223) 153) 838) 352) 005 202) 563) 6819.78)

(0.00, (0.00, (105, (173, (0.50, (047, (0.46, (0.57, (0.12, (0.50, (L.I1, (055, (0.01, (0.65, (1.03, (93113,

Unordered Beam 0.00) 1.54) 2.19) 277) 0.82) 085 071) 083) 0.19) 075 1.66) 091) 001) 1.71) 1.66) 7811.52)

(0.00, (114, (166, (1.63, (0.53, (0.60, (0.54, (0.52, (0.14, (044, (126, (0.60, (0.01, (0.74, (113, (623.83,
0.00) 1.86) 251) 262) 083) 082) 075 081) 020) 0.72) 188) 087) 001) 135 177) 2415.36)
(0.00, (0.00, (0.54, (129, (0.44, (0.35, (039, (0.96, (0.08, (032, (0.74, (0.58, (0.01, (0.84, (0.64, (1157.73,
0.00) 0.04) 1.08) 191) 071) 053) 0.70) 147) 0.4) 057) 118) 099) 001) 140) 1.01) 6996.59)

Gradient Evo

AdaBeam

A.6. Per-task variability due to start sequence

Table A.3. Performance variability based on start sequences. For each (task, algorithm, hyperparameters), We show the (mean +- standard
deviation) for the best performing hyperparameters.

Algorithm Malinois BPNet Enformer

Tmuscle

K562 HepG2 SK-N-S ATAC CTCF ELF3 ELF4 GATA2 JUNB MAX MECOM MYC OTX1 RAD21 SOX6 LUliver

-1532 -1436 -13.99 -202 -083 -137 065 -0.79 -407 -0.13 -1.44 -0.04 444 -199 -334 -8035.22

Directed Evolution " /g 4 (g5 + 089 =+ 0.66 +0.51 +0.19 +043 +£039 +£007 +053 +0.57 +£028 +0.04 +057 +0.01 =+ 11514.42

-1539 -1033 -8.18 -382 -3.66 -278 -230 296 -449 -2.69 -2.45 -1.38 477 403 -4.12 -9735.61

Simulated Amnealing 600 4019 +£0.11 +0.04 +005 +0.05 +002 +006 +001 +004 +003 =+004 +£0.00 +£005 +003 =+ 14852.95

-1539 -1539 -1539 -37.74 -1479 -25.03 -1835 -19.12 -17.30 -17.29 -3643 -1548 -587 -17.04 -31.42 -14965.50

Adal.ead 4000 £000 £000 £258 +0.66 +0.71 +084 £1.15 £0.13 £061 +146 +086 £001 +139 + 1.50 =+ 19927.95
FastSeqPro 1539 -1533 -1515 -18.94 -1218 2506 -18.59 -21.67 -1550 -1621 -3454 -1295 -500 -1675 -29.55 -69077.62
stoeqirop +000 £031 +048 +£199 +028 +029 +0.63 £037 £038 +£059 +£083 +047 +£0.04 +£050 +041 =+ 18239.27
Ledidi 1539 -1538 -1536 -4632 -17.93 2850 -20.64 -26.68 -15.55 -2047 -40.01 -16.14 -464 2487 -32.84 -1113565.75

+0.00 =002 +007 +£255 +1.16 £057 £072 +1.60 £0.87 £0.67 £151 £122 £0.03 +202 £0.74 =+ 366020.88

-1539 -1539 -1534 222 -601 -993 -688 -852 -7.21 -7.39 -11.72 -639 -525 -7.38 -11.93 -11743.73

Ordered Beam £000 £000 026 £0.67 £025 £036 £026 £041 2027 £043 £059 048 £002 £061 £057 & 1627057

-1539 -1539 -1539 -3L.11 -13.79 -22.53 -1695 -16.71 -1685 -1479 -32.71 -13.62 -583 -14.62 -29.13 -17332.86
+0.00 +£0.00 +£000 166 +=087 +083 +£047 £049 £0.17 £079 167 £096 £0.01 =222 £092 =+ 22861.82

Unordered Beam

-1539 -15.06 -1426 -35.17 -14.19 -2296 -16.89 -1698 -1696 -15.13 -3291 -13.47 -584 -1495 -2948 -8546.06

Gradient Evo +000 £096 +195 +249 +087 +£075 +£084 £082 £017 £085 =£172 +£090 +£001 £250 + 148 =+ 1302221

-1539 -1539 -1539 -4095 -1696 -31.74 -23.03 -2492 -17.53 -1821 -41.19 -2092 -589 -21.24 -3597 -18708.53

AdaBeam +0.00 £000 +000 £824 +077 £054 £066 £ 1.73 £0.13 £ 119 £ 115 £ 1.00 +£001 +£280 +1.09 =+ 2613583

16

