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Figure 1. Exploring the scene with Buildee. On the left, a camera is exploring a construction site, collecting RGB, depth and semantic
observations. Using our dynamic environment, researchers can benchmark various computer vision tasks against ground truth, including
next-best-view and semantic point cloud segmentation. On the right, we show an example of a high-quality RGB observation obtained with
Buildee using Blender’s rendering engine. Beyond construction sites, Buildee allows the development and the evaluation of exploration
and reconstruction algorithms in realistic and complex environments.

Abstract

We introduce Buildee, a 3D simulation framework designed001
to benchmark scene exploration, 3D reconstruction, and se-002
mantic segmentation tasks in both static and dynamic en-003
vironments. Built as a Python module on top of Blender,004
Buildee leverages its advanced rendering capabilities to005
generate realistic RGB, depth, and semantic data while en-006
abling 2D / 3D point tracking and occlusion checking. Ad-007
ditionally, we provide a procedural generator for construc-008
tion site environments and baseline methods for key com-009
puter vision tasks. Through Buildee, we establish a stan-010
dardized platform for evaluating scene understanding algo-011
rithms in realistic settings. The code will be made available012
upon publication.013

1. Introduction014

Supervising a construction site requires a comprehensive015
understanding of its current state, including tracking ma-016
terial deliveries, locating machinery, and monitoring the017
progress of buildings. A powerful way to enhance site man-018

agement is through a digital twin—a continuously updated 019
3D virtual representation of the construction site, accurately 020
placing machines, materials, and structures over time. 021

To build such a digital twin, one possible approach is 022
to deploy an autonomous Unmanned Aerial Vehicle (UAV) 023
that periodically scans the entire site, capturing images to 024
reconstruct an up-to-date 3D model of the scene. This 025
process involves solving several key robotics and com- 026
puter vision challenges: next-best-view estimation to effi- 027
ciently explore the environment while minimizing redun- 028
dancy [7, 8, 11], 3D reconstruction to recover the site’s ge- 029
ometry [22, 24], and point cloud segmentation to semanti- 030
cally classify objects within the scene [13, 16]. 031

These tasks are fundamental across a wide range of do- 032
mains, including autonomous navigation [3, 6] and environ- 033
mental monitoring [20]. However, developing and bench- 034
marking algorithms for these challenges in real-world sce- 035
narios can be costly, time-consuming, and logistically com- 036
plex. A controlled, repeatable, and scalable simulation en- 037
vironment is essential to accelerate research and ensure fair 038
comparisons between different approaches. 039

To address this need, we introduce Buildee, a 3D simula- 040
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Simulator
Dynamic

scenes
Articulated

objects
Realistic
shaders Interactive

2D point
tracking

3D point
tracking

Gazebo [1] ✓ ✓ ✗ ✓ ✗ ✗
CARLA [6] ✓ ∼∼∼∼∼∼ ✓ ✓ ✓ ✗
Gibson Env [25] ✗ ✓ ✗ ✓ ✗ ✗
BlenderProc [5] ✓ ✓ ✓ ✗ ✓ ✗
Habitat [15, 21, 23] ∼∼∼∼∼∼ ✓ ✗ ✓ ✗ ✗
Genesis [2] ✓ ✓ ✓ ✓ ✗ ✗

Buildee (ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparing Buildee to other simulation frameworks for computer vision. By enabling to track 3D points on dynamic objects,
and by leveraging the capabilities of Blender rendering engines, our simulation framework enables to benchmark scene exploration and
reconstruction tasks such as next-best-view and semantic point cloud segmentation in realistic environments.

tion framework implemented as a Python module based on041
Blender. Buildee enables embodied agents to navigate com-042
plex, dynamic 3D environments, capture observations, and043
compute key performance metrics. This facilitates direct044
comparisons between various approaches, including next-045
best-view estimation, 3D reconstruction, semantic segmen-046
tation of point clouds, and integrated all-in-one methods.047

Our framework offers several essential features for048
benchmarking these tasks. For instance, it allows to develop049
and evaluate scene exploration and reconstruction meth-050
ods. It provides depth maps and semantic segmentation051
to the user while detecting collisions between the virtual052
camera and the environment. Another of the key features053
of Buildee is the generation of high-quality RGB images054
with advanced visual effects by leveraging Blender’s ren-055
dering engines. Moreover, Buildee can sample 3D points056
in the scene and provide their trajectories in both full 3D057
and occlusion-aware 2D view projections for dynamic and058
static objects alike. These capabilities, highlighted in Fig. 1,059
enable precise monitoring of scene coverage for next-best-060
view strategies by determining which regions have been ob-061
served and which remain unseen, and provide ground-truth062
segmented point clouds for evaluating 3D reconstruction063
and semantic segmentation algorithms.064

Many state-of-the-art methods for 3D exploration rely065
on PyTorch3D [19] for rendering and tracking observed066
points [7, 8], but PyTorch3D only provides low-quality ren-067
dering, as it simply projects textures without accounting for068
reflections or other effects. In contrast, our Blender-based069
solution offers high-quality rendering with realistic lighting070
and shading. Additionally, our framework seamlessly inte-071
grates dynamic and static environments created directly in072
Blender, simplifying both environment generation and ma-073
nipulation. Users can thus easily design custom scenarios,074
and semantic information parsing is fully automated.075

In addition to the simulation framework, we provide a076
procedural generator that creates diverse construction site077
environments. The generated scenes are created using078

different objects, some of which were downloaded from 079
Sketchfab and are under CC license. We created the other 080
object models ourselves, which we also put under CC li- 081
cense. 082

To demonstrate the utility of our simulator, we imple- 083
ment baseline methods for aforementioned computer vision 084
tasks. Specifically, we provide the codebase for simple ran- 085
dom walk strategies as a reference for exploration and and 086
3D reconstruction with semantic segmentation, leveraging 087
Buildee’s ground truth depth and segmentation maps for the 088
latter. These baselines can be easily adapted by the users to 089
implement their own methods. We evaluate these baselines 090
using key performance metrics on different seeds of our pro- 091
cedural construction site generator, reporting the area un- 092
der the curve (AUC) of surface coverage for next-best-view, 093
Chamfer distance for 3D reconstruction, and mean intersec- 094
tion over union (mIoU) for semantic segmentation. These 095
results serve as initial benchmarks for future methods tack- 096
ling the same challenges. 097

2. Related work 098

Recent advances in simulation frameworks [2, 15] and pro- 099
cedural scene generation [9, 17, 18] have made it easier 100
to create realistic and interactive environments. Simula- 101
tion enables large-scale data collection with precise ground- 102
truth annotations, while procedural generation enables the 103
creation of diverse environments, reducing overfitting on 104
fixed datasets and improving generalization in deep learn- 105
ing models. In this section, we first compare Buildee with 106
existing simulation frameworks and then briefly outline its 107
targeted computer vision and robotics tasks. 108

2.1. Simulation frameworks 109

Various simulation frameworks have been developed to sup- 110
port robotics and computer vision research, each with dif- 111
ferent focuses and limitations. Table 1 provides a compara- 112
tive overview of existing simulators [1, 5, 6, 15, 21, 23, 25]. 113
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One key limitation of existing simulators is the lack114
of 3D point tracking, which is essential for benchmarking115
next-best-view methods. Without this capability, it is dif-116
ficult to determine which parts of a scene have been ob-117
served during an exploration task. Most next-best-view ap-118
proaches rely on PyTorch3D for rendering and point track-119
ing [7, 8, 11], but PyTorch3D offers only basic texture ren-120
dering without advanced effects such as reflections or real-121
istic lighting. In contrast, our Blender-based solution ben-122
efits from high-quality rendering and physics-based illumi-123
nation, enabling more realistic simulations.124

Some simulators, such as BlenderProc [5], share similar-125
ities with our approach, particularly in leveraging Blender126
for rendering. However, BlenderProc is designed primar-127
ily for dataset generation rather than interactive simulation,128
making it unsuitable for tasks requiring agent interaction.129
Other frameworks, such as Genesis, focus on high-speed130
physics simulation and generative data synthesis but do not131
emphasize next-best-view exploration or semantic segmen-132
tation. CARLA [6] is widely used in autonomous driving133
research [4], offering high-quality urban environments but134
lacking the necessary tools for next-best-view evaluation.135
Similarly, Gibson [25] and Habitat [15, 21] support embod-136
ied AI research with realistic indoor environments but do137
not provide explicit 3D point tracking or high-quality mod-138
ular rendering engines.139

Another limitations of all of these simulators is that, with140
the exception of BlenderProc, none of them have an acces-141
sible interface for designing and manipulating 3D scenes,142
making it harder to design custom environments.143

2.2. Target tasks144

Buildee is designed to support several key computer vision145
and robotics tasks that are essential for scene understanding146
and autonomous navigation. In this section, we provide a147
comprehensive overview of these core tasks, highlighting148
their significance, challenges.149

Next-best-view. This task addresses the challenge of esti-150
mating the optimal camera viewpoint to maximize coverage151
gain during scene exploration. More specifically, given a152
set of previously acquired observations, next-best-view al-153
gorithms aim to estimate the next 6-DoF camera pose that154
maximizes scene coverage while minimizing redundancy.155
This task is fundamental for autonomous exploration ap-156
plications [7, 8, 11]. Evaluating next-best-view algorithms157
requires the ability to determine scene coverage, as well as158
reliable collision detection capabilities that Buildee specif-159
ically provides through its 3D point tracking and occlu-160
sion checking mechanisms. By maintaining a complete his-161
tory of observed points throughout an exploration sequence,162
Buildee enables quantitative evaluation of next-best-view163
methods using metrics such as AUC of surface coverage.164

(a) Low sensitivity (b) High sensitivity

Figure 2. Semantic segmentation sensitivity. The parameter
segmentation_sensitivity controls the precision of object

boundaries in the semantic map. Low sensitivity (left) provides
precise boundaries but may introduce noise at object edges, while
high sensitivity (right) creates cleaner boundaries but may miss
thin structures.

3D reconstruction. 3D reconstruction involves recover- 165
ing the geometric structure of a scene from sensor obser- 166
vations, usually in the form of RGB or RGB-D images. 167
This field has evolved from classical Structure-from-Motion 168
(SfM) [22] and Multi-View Stereo methods to recent neu- 169
ral approaches such as Neural Radiance Fields [14] and 3D 170
Gaussian Splatting [10]. In this work, consistent with the 171
output of most SfM pipelines, we consider 3D reconstruc- 172
tion estimates in the form of point clouds. In this case, 173
evaluating 3D reconstruction is done by comparing the esti- 174
mated point cloud to the ground truth point cloud provided 175
by Buildee. A common evaluation metric for this task is 176
the Chamfer distance [12], which measures the average dis- 177
tance between the points in the predicted and ground truth 178
point clouds. 179

Point cloud semantic segmentation. Point cloud seman- 180
tic segmentation assigns a semantic label to each point in a 181
3D point cloud [3]. Unlike instance segmentation or panop- 182
tic segmentation, which also identify individual object in- 183
stances, semantic segmentation focuses solely on catego- 184
rizing points according to their object label. Evaluating 185
semantic segmentation algorithms requires semantic labels 186
for each point. Buildee addresses this need by providing 187
point clouds with semantic labels directly sampled from the 188
surface of objects in the scene. The most commonly used 189
evaluation metric for this task is mIoU, which measures the 190
overlap between predicted and ground truth segmentation 191
masks for each label. 192

3. Framework 193

In this section, we first introduce the key features of Buildee 194
from a user’s perspective. We then explore the technical 195
implementation details that enable these capabilities. 196
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(a) RGB image (b) Depth map (c) Semantic segmentation map (d) 2D / 3D point tracking

Figure 3. Observations modalities. Buildee provides RGB images (Fig. 3a), metric depth maps (Fig. 3b) and semantic segmentation maps
(Fig. 3c). Additionally, it provides a dynamic semantic point cloud of the scene with occlusion checking from the camera’s viewpoint,
enabling 2D / 3D point tracking (Fig. 3d). The rendering settings can be adjusted in the Blender file for either better visual quality or faster
rendering. The density of the point cloud can be adjusted during scene initialization.

Figure 4. 3D point cloud with occlusion checking. Buildee per-
forms visibility checks for each 3D point. This is achieved by
casting rays from the camera to the scene using dynamic and static
BVH trees. Visible points are shown with their semantic colors.

3.1. Key features197

Buildee is designed as a user-friendly Python module with a198
strong focus on simple and intuitive user experience, while199
providing powerful capabilities for scene exploration and200
understanding. It offers a comprehensive set of tools for201
researchers working on next-best-view algorithms, 3D re-202
construction, and semantic segmentation.203

Scene loading and initialization. Creating a simulation204
instance and loading a Blender scene requires just a few205
lines of code:206

from buildee import Simulator
sim = Simulator(

blend_file="scene.blend",
points_density=1.0,
segmentation_sensitivity=0.1

)
207

The constructor accepts several key parameters: 208

• blend_file : path to the Blender file containing the 3D 209
scene. 210

• points_density : controls the density of sampled 3D 211
points on object surfaces—these points are used for 2D / 212
3D point tracking and visibility analysis. Higher values 213
create denser point clouds. 214

• segmentation_sensitivity : controls the precision of 215
object boundaries in semantic segmentation. Values range 216
from 0 to 1, as shown in Fig. 2. 217

During initialization, Buildee performs several important 218
operations: sampling 3D points on all object surfaces, es- 219
tablishing semantic labels based on object names, configur- 220
ing rendering pipelines for RGB, depth, and segmentation, 221
and building acceleration structures for occlusion testing. 222

Scene rendering. Rendering RGB images, depth maps, 223
and semantic segmentation maps is achieved through a sin- 224
gle function call: 225

rgb, depth, seg = sim.render()
226

The render() function returns three image arrays de- 227
picted in Figs. 3a to 3c: 228

• rgb : the RGB image rendered using Blender’s ren- 229
dering engine—Eevee or Cycles, as configured in the 230
Blender file. 231

• depth : the depth map in metric units, where each pixel’s 232
value is the distance from the camera. 233

• seg : the semantic segmentation map where each pixel 234
contains a label ID. 235

The semantic information can be accessed through: 236

label_id = seg[0, 0] # ID at pixel (0, 0)
label_name = sim.labels[label_id]

237
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Figure 5. Tracking 2D / 3D points. Both the truck and the camera
are moving right. Buildee is able to track 3D points of both static
objects in the background and dynamic objects such as the truck.
Since the truck moves faster than the camera, its displacement in
the image is in the opposite direction of the background, while its
rotating wheels create cycloid patterns.

Dynamic point cloud ground truth. One of Buildee’s238
most powerful feature is its ability to provide a complete239
representation of the 3D scene with semantic labels and vis-240
ibility information:241

pcl, labels, mask = sim.compute_point_cloud()
242

This function returns three arrays:243
• pcl : the positions of all 3D points in world coordinates.244

• labels : semantic label IDs for each point.245
• mask : boolean mask indicating which points are visible246

from the current camera view, illustrated in Fig. 4.247
The function also accepts an optional update_mask pa-248
rameter which, when set to True, updates an internal obser-249
vation history, allowing the framework to track which points250
have been observed throughout an exploration sequence.251
This is particularly valuable for next-best-view algorithms,252
as it enables measurement of scene coverage. For dynamic253
objects, point positions are automatically updated when ob-254
jects move, enabling consistent 3D point tracking through255
time. When used in conjunction with occlusion check, and256
by projecting points onto the image plane, this also allows257
for 2D point tracking as shown in Figs. 3d and 5.258

Camera navigation. Buildee provides flexible camera259
navigation functions with built-in collision detection:260

# Set camera pose with a 4x4 transform matrix
collided = sim.set_world_from_camera(matrix4x4)

# Convenience functions for common movements
sim.move_camera_forward(1.0)
sim.move_camera_right(0.5)
sim.move_camera_down(-0.3)
sim.turn_camera_right(15.0, degrees=True)

261

Figure 6. Buildee’s coordinate system. Buildee shares the same
coordinate system as COLMAP [22]. The world coordinate sys-
tem is Z-axis up. The camera coordinate system is Z-axis forward
and Y-axis down—compared to Blender’s camera system, there is
a 180° rotation along the X-axis.

The navigation functions return a boolean indicating 262
whether a collision occurred. If a collision is detected, the 263
camera remains at its previous position. Additionally, given 264
a spawn volume defined in the Blender file, our framework 265
enables random camera respawn in this volume: 266

sim.respawn_camera()
267

Buildee also provides access to the camera’s intrinsic pa- 268
rameters. Similary to standard computer vision tools like 269
COLMAP [22], our framework uses the coordinate system 270
conventions shown in Fig. 6. 271

Dynamic scenes. Buildee supports fully dynamic scenes 272
with animated objects: 273

sim.step_frame() # Step one frame forward
274

This advances the simulation time, updating all animated 275
objects in the scene. The framework automatically tracks 276
both static and dynamic objects separately, ensuring that 277
dynamic objects are properly handled for point tracking, oc- 278
clusion testing, and semantic segmentation. 279

Unprojecting points. Buildee provides a utility function 280
to unproject the acquired depth map back into 3D world 281
coordinates: 282

points3D = sim.depth_to_world_points(depth)
283

This function can be used to simulate the acquisition of a 284
dense 3D point cloud such as those obtained using RGB-D 285
cameras. 286
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3.2. Under the hood287

To provide these features efficiently, Buildee relies on sev-288
eral key technical Blender components as we describe here.289

Semantic segmentation. At initialization, we extract la-290
bels from the base names of each object in the scene, e.g.,291
Building and Building.001 both have the Building292

label. Then, in compositing, we link each object to a Cryp-293
tomatte node and assign the label ID to the matte’s color.294
Because the matte outputs an antialiased image, we apply295
a threshold to it—this is the segmentation_sensitivity296
parameter explained in Fig. 2. All individual mattes are then297
merged into a single semantic segmentation map based on298
the depth map—the closest matte is selected for each pixel.299

Point cloud generation. To provide a 3D point cloud300
ground truth representation of the scene, we use Geometry301
Nodes to sample points across each object’s surface. During302
generation, we make a distinction between static and dy-303
namic objects—points of static objects are stored in world304
coordinates, while points of dynamic objects are stored in305
object coordinates because they will need to be updated306
on each frame. Thus, dynamic points are transformed in307
world coordinates in the compute_point_cloud function,308
depending on the object’s current transformation.309

Dynamic scenes occlusion checking. In order to perform310
occlusion check for dynamic objects efficiently, Buildee311
maintains two separate Bounding Volume Hierarchy (BVH)312
trees: one for static objects and one for dynamic objects.313
The static BVH tree is built once during initialization, while314
the dynamic BVH tree is rebuilt as needed for each call to315
compute_point_cloud . Dynamic objects are detected by316

checking if the object has either keyframes or Blender an-317
imation drivers. To identify visible points, we first project318
all 3D points onto the image plane using the camera’s intrin-319
sic and extrinsic parameters, and then perform ray-casting320
from the camera to each point in the frustum—this reduces321
the number of ray-casting operations.322

Random camera spawn. A practical feature for training323
next-best-view algorithms is the ability to spawn the camera324
at a random location. During initialization, Buildee looks325
for a CameraSpawn object in the scene. If found, we use326
Geometry Nodes to convert this object into a volume, and327
then sample random points in this volume to obtain a set of328
camera spawn points. The CameraSpawn object is a simple329
mesh with any shape designed to enclose the camera spawn330
volume. If this object is not found, the only spawn point is331
the initial camera position.332

Rendering pipeline. The framework configures a node- 333
based rendering pipeline in Blender to generate RGB, 334
depth, and semantic data in a single render pass. RGB im- 335
ages are rendered using Blender’s rendering engines, while 336
depth information is extracted through the Z-pass and stored 337
in the alpha channel of the image. This RGB-D image, as 338
well as the semantic segmentation map derived from the 339
Cryptomatte nodes are both saved using the EXR format 340
without any compression. EXR files enable high precision 341
depth values, and they are also faster to save and load than 342
PNG or JPEG files. 343

4. Tools and examples 344

In this section, we first present a procedural construction 345
site generator that can be used as a dataset to train and eval- 346
uate embodied agents. We also showcase the versatility of 347
Buildee through concrete examples that demonstrate its ca- 348
pabilities for 3D exploration and mapping and 3D semantic 349
scene reconstruction. 350

4.1. Procedural construction site environment 351

Along with our simulation framework, we provide a proce- 352
dural construction site generator that can be used to train 353
and evaluate embodied agents. The generator is imple- 354
mented in Blender using the Geometry Nodes feature. It 355
allows to procedurally generate scenes with different pre- 356
sets, including different object densities, random patterns 357
and scene sizes. The scene is created using different ob- 358
jects, some of which were downloaded from Sketchfab and 359
are under CC license, and we created the other object mod- 360
els ourselves. The seed number can be set manually to en- 361
sure reproducibility when evaluating different computer vi- 362
sion tasks on the scene. Examples of generated scenes are 363
shown in Fig. 7. 364

4.2. Exploration 365

In order to validate the use of our framework for the ex- 366
ploration and mapping problem, we considered two sim- 367
ple exploration baselines based on a random walk strategy. 368
Users can refer to these easy-to-use baselines as examples 369
and modify the code to suit their needs. 370

Experimental setup. For our first random walk strategy, 371
our agent performs 500 exploration steps, roaming through 372
the scene and updating Buildee’s internal 3D point obser- 373
vation history. For each step, the agent chooses one of 5 374
possible actions: move forward, move left, move right, turn 375
left and turn right. For the second strategy, which we call 376
“modified random walk”, the agent moves straight until it 377
encounters an obstacle, then rotates in a random direction 378
free of obstacles, and iterates. For both strategies, we con- 379
sider 3D points to be visible only if they were observed from 380
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Figure 7. Scenes generated with our procedural construction site generator. As this work was driven by the need for a realistic
construction site simulator, we also provide a Blender file that can generate random scenes using Geometry Nodes. These scenes consist of
a set of 3D objects such as containers, cranes and buildings, that are arranged in a random manner on a flat terrain with random reflection
and roughness properties. Object densities, random patterns and scene sizes can be easily adjusted using the Geometry Nodes parameters.

Seed Random walk AUC ↑ Modified
random walk AUC ↑

0 0.22 ± 0.05 0.38 ± 0.02
137 0.26 ± 0.07 0.46 ± 0.04
281 0.19 ± 0.05 0.35 ± 0.07

Table 2. Performance of exploration baselines. We report the
AUC of the scene coverage evolution during the exploration of 3
generated scenes for reference. We perform 10 runs for each scene
and method, and report AUC mean and standard deviation. The
modified random walk approach significantly outperforms the ran-
dom walk method, mostly because its trajectories are less chaotic.

a distance of less than 20 meters to the camera. We evaluate381
these methods on a set made of 3 scenes generated with our382
procedural generator, with seeds 0, 137, and 281.383

Results. After exploration, we can access the scene’s ob- 384
servation history at every step of the agent’s trajectory. Sim- 385
ilarly to other methods [7, 8], we use this history to com- 386
pute the AUC of the evolution of the scene coverage during 387
exploration. Table 2 reports the results of our baselines. 388
Figure 8 illustrates one of the trajectory obtained using the 389
modified random walk strategy. 390

4.3. 3D semantic scene reconstruction 391

This task addresses the challenge of simultaneously recon- 392
structing the scene’s 3D point cloud and performing seman- 393
tic segmentation on the estimated point cloud [13]. 394

Experimental setup. We implement a baseline explo- 395
ration strategy using a random walk approach similar to 396
our next-best-view experiment. The agent performs 100 ex- 397
ploration steps, executing the following operations at each 398
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Figure 8. Modified random walk trajectory. We show the trajec-
tory computed by our modified random walk strategy for 500 steps
on a procedural construction site scene with seed 0. The camera
moves forwards until it reaches an obstacle, in which case if per-
forms a random rotation.

mIoU ↑
Chamfer-L1 ↓ Semantic Chamfer ↑

Pred GT Pred GT

0.97 0.08 4.56 0.94 0.23

Table 3. Point cloud reconstruction and semantic segmenta-
tion. We report mIoU for point cloud semantic segmentation,
Chamfer-L1 distance in meters for 3D point cloud estimation and
Semantic Chamfer score for evaluating both tasks simultaneously.

step: 1) selecting one of the 5 possible movements as de-399
fined in the next-best-view task; 2) acquiring RGB, depth,400
and semantic segmentation maps; 3) unprojecting the depth401
map to recover 3D points in the world frame; 4) transform-402
ing these points into voxels; 5) assigning semantic labels to403
voxels based on the segmentation map. This process results404
in a 3D labeled point cloud of the observed portions of the405
scene. We evaluate this baseline on our procedurally gener-406
ated construction site environment with a fixed random seed407
of 0 and a voxel size of 0.05 meter.408

Results. Traditional point cloud semantic segmenta-409
tion [16] only focuses on annotating each point with the410
correct label. Consequently, mIoU serves as the standard411
evaluation metric. Separately, the quality of 3D point cloud412
reconstruction is typically assessed using the Chamfer dis-413
tance, or Chamfer-L1 distance for more robustness to out-414
liers. We report both of these conventional metrics in Tab. 3.415
However, our task encompasses both 3D point cloud es-416
timation and semantic annotation simultaneously, necessi-417
tating a more comprehensive evaluation approach. To ad-418
dress this challenge, we propose a novel metric, the Seman-419
tic Chamfer score, that integrates both geometric proximity420
and semantic accuracy. For a given pair of point clouds421

Observed points

Untracked points

Figure 9. Chamfer score from ground truth to predicted point
cloud. In blue, we show all points of the ground truth point cloud
that have a neighbor in the estimated point cloud and have the
correct label. In red, we show the points that did not have any
neighbor. Since our baseline uses ground truth semantic segmen-
tation maps, we do not show points that have a neighbor but were
labeled incorrectly, as there are only a few of them. The Semantic
Chamfer score is the percentage of blue points.

A and B, the Semantic Chamfer score from A to B re- 422
ports the percentage of points in cloud A that: 1) have 423
a corresponding point in cloud B within a specified dis- 424
tance threshold; and 2) carries the correct semantic label. 425
Similarly to the Chamfer distance, we compute this metric 426
both from the estimated point cloud to the ground truth and 427
vice versa. In our evaluation, using a 0.1 meter distance 428
threshold, the Semantic Chamfer score from prediction to 429
ground truth reaches 0.94, confirming high accuracy in re- 430
constructed regions—an expected outcome given our use 431
of ground truth depth and segmentation maps. Conversely, 432
the ground truth to prediction score of 0.23 indicates that 433
only a quarter of the scene was observed during random 434
exploration. Figure 9 highlights these results and provides 435
insights on how the Chamfer Semantic score is computed. 436

5. Conclusion 437

We introduced Buildee, a 3D simulation framework based 438
on Blender designed to evaluate scene exploration, recon- 439
struction, and understanding. By leveraging Blender’s pow- 440
erful rendering engines and flexibility, Buildee allows users 441
to balance realism and simulation speed. Our framework 442
comes with key features that allow embodied agents to nav- 443
igate the scene and gather data for 3D scene understanding, 444
including RGB-D images and 2D / 3D point tracking. We 445
demonstrated our framework abilities on several tasks, in- 446
cluding exploration, point cloud reconstruction and seman- 447
tic segmentation. 448
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[11] Shiyao Li, Antoine Guédon, Clémentin Boittiaux, Shizhe492
Chen, and Vincent Lepetit. NextBestPath: Efficient 3D Map-493
ping of Unseen Environments. arXiv preprint, 2025. 1, 3494

[12] Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. PARIS:495
Part-level Reconstruction and Motion Analysis for Articu-496
lated Objects. In ICCV, pages 352–363, 2023. 3497

[13] Romain Loiseau, Mathieu Aubry, and Loı̈c Landrieu. Online498
Segmentation of LiDAR Sequences: Dataset and Algorithm.499
In ECCV, pages 301–317, 2022. 1, 7500

[14] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,501
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:502
Representing Scenes as Neural Radiance Fields for View503
Synthesis. In ECCV, pages 405–421, 2020. 3504

[15] Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire 505
Cote, Ruslan Partsey, Jimmy Yang, Ruta Desai, Alexan- 506
der William Clegg, Michal Hlavac, Tiffany Min, Theo 507
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