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ABSTRACT

Massive data processing is required by various applications such as ML, video
streaming, cloud services, etc. In such systems, I/O bandwidth must be scaled
up to prevent any performance degradation due to the limited data transfer rates.
To meet this demand, wireline communication recently started adopting PAM4
signaling and DSP-based equalizers. However, multi-level signaling and conven-
tional equalizing techniques degrade the bit-error-rate (BER) performance signif-
icantly. To mitigate this problem, this paper proposes a novel neural network
architecture that mimics the forward-backward algorithm estimating the posterior
probabilities in Hidden Markov Models. The proposed neural network overcomes
the existing equalizer performance, such as feed-forward equalizers or decision-
feedback equalizers, while reducing the complexity of the forward-backward al-
gorithm.

1 INTRODUCTION

Recent advances in ML/AI technologies have benefited our daily life by enabling services like
searching, recommendation, and translation. The rapid growth of ML applications, increasing the
amount of data and computation, has driven enormous demands on high-performance computing
systems. Accordingly, the I/O bandwidth and computing power of such systems must be scaled
up to support large data transactions between computing cores without experiencing performance
degradation due to their limited data transfer rates. To meet such high bandwidth demand for high-
performance computing systems, the PCle standard is being developed up to 64 Gbps for the next
generation, and data-rate of NVlink specializing in GPU communication reaches 50 Gbps (Temucin
et al.,2021). Data-rate of the ethernet protocol is also being developed up to 112 Gbps to handle the
high network load.

Although demands for higher data-rate for wireline communication keep increasing, limited band-
width of wireline channels poses problems in data transmission. Different from wireless communi-
cation, wireline channels are time-invariant. In addition, pursuing low latency and good I/O energy
efficiency, wireline communication has relied on simple modulation like PAM?2 and simple equal-
izers, followed by symbol-by-symbol detection. However, data-rate is increasing so rapidly even
a short channel causes severe signal distortion, making it difficult to restore data at the receiver.
To increase the data-rate further, recently, wireline communication started adopting multi-level sig-
naling like PAM4 and DSP-based equalizers along with analog-to-digital converters (ADCs) on
the receive side. Although PAM4 signaling enables data-rate to reach over 100 Gbps, as (Cordova
et al., 2021} |de Abreu Farias Neto et al.l [2020; [Krupnik et al., [2020), due to the peak power con-
straint, PAM4 degrades SNR and makes the signal more vulnerable to inter-symbol interference
(IST) caused by limited channel bandwidth, resulting in bit-error-rate (BER) degradation. Under
these circumstances, equalizers to compensate for the channel loss play a critical role in high-speed
wireline communication.

Equalizers can be primarily divided into a linear equalizer, e.g., feed-forward equalizer (FFE), and a
nonlinear equalizer, e.g., decision-feedback equalizers (DFE). FFE is a discrete-time finite-impulse-
response (FIR) filter that boosts the input in the frequency range where channel loss is high. It
is simple to implement, but since incoming noise is also amplified, symbol detection after FFE
shows limited BER performance. On the other hand, DFE does not boost noise and shows better
BER, but the timing constraint of the feedback loop makes it difficult to design at a high speed.
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The loop-unrolling, or speculative, technique mitigates the timing constraint but increases hardware
complexity significantly, especially in PAM4, resulting in a loss of energy efficiency. Moreover, DFE
alone cannot remove the pre-cursor ISI. Therefore, high-speed wireline communication typically
uses both FFE and DFE to improve BER (Dikhaminjia et al.l 2018)).

Recently, thanks to the development of deep learning, receivers using neural networks, especially
recurrent neural networks (RNNSs), have been studied, (Ye et al.,|2018;Zhou et al., 2019; Kechriotis
et al., 1994} Kim et al.,[2020; Gomez Diaz et al.,2022])), showing excellent performance for sequence
detection. However, for wireline communication, RNNs also have disadvantages that 1) high-speed
implementation is difficult due to the timing constraint (past computation results are required for the
current operation), and 2) sequence detection incurs large latency.

In this paper, we propose a novel neural network architecture that is amenable to high-speed imple-
mentation and shows better BER than existing equalizers. The proposed neural network employs
feed-forward architecture without any data-dependency-induced timing constraints, which allows
efficiently pipelined hardware architecture for high-speed receivers. For better BER performance,
the proposed network is trained to mimic the forward-backward (FB) algorithm that has been used
to estimate posterior probabilities of the states in Hidden Markov Models (HMMs), while reducing
the computational complexity of the FB algorithm.

This paper makes the following contributions:

* Inspired by the forward-backward algorithm, a novel neural network, NeuralEQ, whose
structure is similar to that of the forward-backward algorithm is proposed.

* We verify that the computational complexity of the proposed NeuralEQ is lower than that of
the forward-backward algorithm. While having much lower complexity, NeuralEQ shows
superior BER performance compared to conventional equalizers.

* More than half the weights of NeuralEQ can be pruned without performance degradation,
which reduces the complexity significantly. Moreover, NeuralEQ is found to be robust
against ISI variation.

2 BACKGROUND

The core idea of this paper is to develop a novel neural network architecture that mimics the forward-
backward (FB) algorithm in order to overcome the existing equalizer (EQ) performance such as FFE
and DFE while reducing the complexity of the FB algorithm. In the following, a brief description of
the FB algorithm and how it can be applied to wireline communication will be provided.

2.1 FORWARD-BACKWARD ALGORITHM

The FB algorithm, which is also known as BCJR (Bahl et al., 1974) or MAP decoder, is widely used
in modern wireless communication with its excellent performance. However, since wireline commu-
nication requires a much higher data rate, it is challenging to run a computationally heavy algorithm
such as FB. It would be helpful to look at the formula in detail to understand the complexity of the
FB algorithm.

The FB algorithm infers the maximum posterior of all hidden states in a hidden Markov model.
Let S* be a hidden state variable, which is an element of a set of hidden states S, and X be an
observed sequence from time 1 to ¢. Then the FB algorithm is summarized as follows.

,yt _ F)(St))(l:t)j*_)(AX't—ﬁ—lzT|51t)7 1<t< T (1)

P(St, X1:%) is a probability of hidden states with a sequence from time 1 to t, which refers to forward
probability. And P(X‘T5T|S?) is a conditional probability of sequence occurs when the state at
time t is given, which refers to backward probability. Each forward and backward probability can be
computed using dynamic programming with the following equations. Note that P(S! = s;, X1 =
o) is replaced with o, P(X'THT = 2! T1T| Gt = ;) is replaced with 3! for simplicity and a;
is the transition probability from j-th state to i-th state.
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Finally, element-wise product of forward and backward probability gives the posterior probability
for a given sequence from 1 to T, which is expressed with ¢ in Equation

2.2 APPLYING FORWARD-BACKWARD ALGORITHM TO WIRELINE COMMUNICATION WITH
LossY CHANNEL

The FB algorithm can be applied when wireline communication is modeled as HMM. To this end,
four parameters in HMM should be defined: (1) the observed sequence, (2) the hidden states, (3)
the transition probability, and (4) the conditional probability of observables given each hidden state.
First, the observed sequence is defined as the channel output distorted by ISI. Typically wireline
links are tested with random data patterns, so the channel input is assumed to be a random sequence
without any coding (e.g. convolutional code). Note that, due to the channel ISI, correlation between
adjacent channel outputs becomes nonzero. Second, each hidden state s; is defined as the possible
channel input sequence with the length of the number of IS, or |ISI|, which determines the channel
output without any noise. For example, in PAM4 signaling, there are 4/"SI possible hidden states,
each corresponding to a vector z; € (—1,—1/3,1/3,1)S. Third, each hidden state has four
possible state transitions with equal probability 1/4 . Finally, assuming an additive white Gaussian
noise channel, the conditional probability distribution of the observable can be written as:
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Note that h is ISI coefficients. Figure[Ia]shows how PAM2 wireline communication can be modeled
with HMM describing four parameters of HMM in wireline communication.

Exploiting the FB algorithm in wireline communication results in better BER performance compared
to the conventional EQs such as FFE and DFE as demonstrated in Figure In this simulation,
PAM4 signaling is used with ISI=[1.0, 0.4, 0.2, 0.1], while the number of FFE and DFE taps are
chosen 8 and 3, respectively, which are sufficient to compensate for ISI. Although the performance
of the FB algorithm is excellent, its computational complexity is too high. There have been efforts
to reduce the complexity for wireless communication (Wang et al., 2006; [Thangarajah et al.| 2011}
Talakoub et al.l |2007), but it is still difficult to use it in high-speed wireline communication. The
number of hidden states increases exponentially with the length of ISI, and the forward and backward
computations increase proportionally to the number of hidden states. Recently, the speed of wireline
communication has reached 100 Gbps, so it is very challenging to implement the FB algorithm to
operate at this speed, and power consumption is very high even if implemented. In this study,
using a neural network, while reducing the complexity of the FB algorithm, an equalizer superior to
conventional EQs in terms of BER performance is developed.
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Figure 1: (a) Applying HMM to wireline communication, (b) Performance comparison between
FFE, DFE, and FB

3 PROPOSED NEURAL EQUALIZER

There would be many ways to create an equalizer using the neural network. The first method would
be to use the fully connected structure (Zhou et al., 2020; /O’Shea & Hoydis, 2017; Schaedler et al.,
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Figure 2: (a) Computational graph of FB algorithm, (b) Mapping FB to neural network: i) two con-
secutive products is replaced with two fully connected layers, ii) computing probability is replaced
with a single perceptron, iii) two consecutive products to compute gamma is replaced with two fully
connected layers, (c) Proposed neural network based equalizer, NeuralEQ. (Note that thick lines are
used to represent full connections between components.)

2019). The fully connected structure has the advantage of being able to mimic any function, but, as
can be inferred from the name, it often has unnecessarily many connections to implement the target
function. There is another way to utilize RNN. Many recent works such as (Ye et al., 2018} Zhou
et al.|[2019; Kechriotis et al.l [1994} Kim et al.| [2020; \Gomez Diaz et al., [2022) implement equalizer
as a neural network, RNN is often used because RNN has excellent performance as a sequence
detector, and equalizer can be seen as a kind of sequence detector. In fact, although previous studies
have implemented equalizers that perform well through RNN, RNN has the following two problems.
First, because RNN has a recurrent structure that requires past results in the current operation, it is
difficult to satisfy timing margin when designing hardware requiring a high-speed operation, as in
wireline communication. Second, because of the recursive structure, the same weight is repeatedly
multiplied by the output, which causes gradient vanishing or expanding problems, making training
difficult (Pascanu et al.| [2013). Therefore, in view of these drawbacks, we develop a novel neural
network architecture, neither the fully connected structure nor RNN, and the proposed architecture
is inspired by the FB algorithm.
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3.1 STRUCTURE DESCRIPTION

The proposed neural network is designed to have a similar structure to the FB algorithm. Figure 23]
shows an illustration of the FB algorithm computation assuming that one symbol is decoded from
four received values. As expressed in Equation o't is composed of the multiplication and sum
of o, aj;, and P(xs;), which are expressed by a line connected to the triangle in Figure Bt
calculated in the backward path is also drawn in the same way, and only the direction is opposite.
Finally, the part where o and 8 are multiplied to obtain ~ and find the state with the highest value is
shown in the middle of Figure [2a

As shown in Figure when recovering the target symbol given a sequence of channel output,
values further away from the target need to go through more complex calculations compared to
those closer. However, in case of fully connected neural nets, they have uniform depth for all inputs.
Thus if they are used to emulate the FB algorithm, parameters would be wasted for the inputs close
to the target symbol. Therefore the proposed neural network architecture reflects this imbalance in
computing depths.

To replace each component of the Figure [2a] with a neural network, we first note that, in the part
af =3 e a§71ajiP(xt|St = s;), @j, aj;, and P(x|s;) are multiplied in serial. P(z|s;) and o;
are functions of observed sequence x, and a;; is a constant given the system. We found that two fully
connected layers are sufficient to learn this function. Then, the parts calculating P(z|s;) is replaced
with a single perceptron. Finally, we replace the part Equation [1| with two fully connected layers
whose output layer has the size of the number of modulation level, |M OD|. For example, if PAM4
is used, then the output layer has four neurons. These replacements are described in Figure[2b] Note
that the number of neurons per layer, which is expressed as IV in Figure is not the same as |S| in
the proposed architecture. Smaller N is desirable to reduce the amount of computation, which will
be described in more detail in Section

The main problem of implementing RNN-based equalizers in high-speed wireline communication
systems is that the recurrent structure incurs huge area and power overhead. On the other hand,
the proposed neural network does not have any feedback structure, so efficient pipelining in imple-
mentation is possible. DNNs composed of only fully connected layers also have the same benefits,
but they are overparmeterized, causing a large computational and power overhead. Since the pro-
posed architecture contains much less parameters to obtain the same performance as those with fully
connected layers, it can be implemented with less complexity.

3.2 CONSIDERATIONS ON INPUT SIZE AND TARGET SYMBOL POSITION

In principle, the FB algorithm can decode the symbol at any location from input sequence. Even
though Figure |2a] describes the case when decoding the second symbol, it can calculate ~’s for any
position between 1 and 4. However, it will not perform equally for all positions because the channel
ISI can have both pre-cursors and post-cursors around the main-cursor, and for a given length of
input sequence, as the target symbol position moves to the left (or right), the information on the pre-
cursors (or post-cursors) disappears. In other words, position of the target symbol must be carefully
chosen for good BER performance. In this study, we use the length of the input sequence and the
target symbol position as 12 and 4, respectively. This generally showed good performance over
various wireline channels tested. For the channels with much larger/less ISI compared to the tested
ones, the input sequence length and target symbol position should be adjusted.

Let the channel input sequence be a vector z, the signal with noise added to the channel output be
vector x, and the channel impulse response be h, that is, x = z * h + n, where n ~ N(O, 021).
Also, the length of the input sequence is defined as T and the target symbol position is defined as D,
the estimator 2 for the original signal z can be expressed as /TP = f,, (z/**7~1). Note that f,,
indicates the function of proposed neural network, NeuralEQ. However, if there are pre-cursors in
the channel ISI, delay occurs between z and X, the final equation is summarized again as follows.

2t+D—\p7'e,cu7'so’r's\ — fw(xt:t-l-T—l) (4)

where |pre_cursors| is the number of pre-cursors in ISI.
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3.3 COMPLEXITY

For the proposed neural network to be legitimate, the proposed NeuralEQ should be less complex
than the original FB algorithm. To analyze complexity, we only compare the forward path equation
of the FB algorithm and NeuralEQ. Even though both the FB algorithm and NeuralEQ consist of
forward path, backward path, and gamma computation, forward and backward paths have identical
structures and the computational load of gamma is ignorable. Analyzing results are summarized as
Table[T}

The computation type and number of operations required to calculate o from az._l( j €8), and

af“ from agi_l (j € N) are shown in Tablell| As shown in Figure [2b, because one layer of the FB
algorithm is replaced with two layers of a neural network, the forward-path equation of NeuralEQ
is also a two-layer computation. i.e. a’*~! to a**!. The number of multipliers of the FB algorithm,
which is a dominant factor in computation complexity, is |S|? + [S|. On the other hand, NeuralEQ
has 2N? + N multipliers.

If N and S are the same, NeuralEQ has more multipliers, but it is not. |S| is determined by
|MOD|™STI, where the length of ISI is 10 and the case of PAM4 is 4'° = 220, However, Neu-
ralEQ has a good performance for the length of ISI equals 10 even when N = 32. In this case,
the number of multipliers is 2'! + 32, which means NeuralEQ has 2° times fewer multipliers. In
addition, we will discuss a method to further reduce complexity in Section[4.2] which shows further
compression of the NeuralEQ’s complexity.

Feature FB algorithm NeuralEQ
aj = tanh(}_;c attwji!
+Mwni1,i +bf)

forward-path _
p of = Y g o agi Plat]s)

equation , where M = tanh(w’iz* + b'})w!)
altt = tanh(} .y aﬁ-wéjl + it
# of multipliers IS+ S| 1.10 x 10%? 2N?2+ N 2.08 x 10°
# of adders IS|? =S| 1.10 x 10*2 2N2 4+ N 2.08 x 10?
# of conditional prob.  [S|? 1.10 x 10*2 N/A N/A
# of tanhs N/A N/A 3N 9.6 x 10!

Table 1: Comparison of the number of computations between FB and NeuralEQ. The forward-path
equation of NeuralEQ is derived for time:t+1 from time:t-1, unlike the FB algorithm. It is because
one layer of the FB algorithm corresponds to two layers of NeuralEQ as shown in Figure 2| Also,
notations are referred by Figure 2] Then the numerical values were calculated for the case where
PAM4 modulation is used, the length of ISI'is 10 and N = 32.

3.4 TRAINING AND PERFORMANCE

The loss function of the proposed neural network is defined as follows, using the notations in Equa-

tion[4]

N
1 . .
loss = 7]\/’ ;71 CTOSSEnt’I“Opy(fW (xt.t—i-T—l)7 Zt+D—|p7 e,cursors|) (5)

where N is the batchsize. In general, the trained network may not be generalized well due to the lim-
ited number of the training data. Even the proposed neural network shows low performance, if not
provided various data patterns, the correlated ISI, and the various noise environments as examples.
Therefore, securing a large number of training sets 27 —1 and z**+P~Ipre-cursors| jg advantageous
for training. The good news is that in wireline communication, as long as data is continuously trans-
mitted from the transmitter, it is possible to generate x and z with infinite noise patterns and various
ISI patterns. Because data could be infinitely generated, there was no reason to repeatedly use the
same training data. Thus we have no notion of ‘epoch’, or rather, the network was trained in a sin-
gle epoch. Every time training data was needed, it was freshly generated. Training, validation and
evaluation sets were each randomly generated with the same ISI and SNR as parameters. The only
difference is their size. Sequences of length 2e9, 2e8, 1e7 were used for training, validation, and
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evaluation respectively. Every time le7 training data was used, we used 1e6 of validation data for
validation. The training parameters are summarized in Table[2]

To examine the performance of the proposed NeuralEQ, Figure [3] can be obtained with the same
environment as set in Figure @ i.e., ISI=[1.0,0.4,0.2,0.1], the number of FFE taps is 8 and the
number of DFE taps is 3. It is shown that the neural network has superior performance to FFE
and DFE, and has performance close to optimal decoder, the FB algorithm. In addition, results for
various channel environments are confirmed in SectionEj, and all of them have better performance
than conventional EQs.

1071 Network parameters Value
Input size 12
10724 Target symbol position(D) 4
x # of neurons per layer(N) 32
“ 10y _m FFE Training parameters Value
DFE # of train, valid, eval sets ~ 2e9, 2e8, 1e7
10-%4 —8— FWDBWD Batchsize 8192
—e— NEQ Loss function Cross Entropy
— 00— Optimizer Adam
SNR (dB) Learning Rate le-3
Figure 3: Performance of NeuralEQ Table 2: Proposed NeuralEQ hyper-parameters

4 EXPERIMENT RESULTS

4.1 PERFORMANCE ON VARIOUS CHANNEL

Four different channels were prepared to evaluate the performance of the proposed NeuralEQ. Each
channel had -7dB, -12dB, -16dB, and -21dB loss in Nyquist, respectively, and SBR was extracted
from each channel and used for simulation. (refer to Appendix [A) In addition to NeuralEQ, the
combination of FFE and DFE, which are conventional EQ, was also evaluated. Unlike the channels
used in the sectionE], channels in this section have pre-cursors, which is more realistic, so it is
challenging to perform properly by FFE or DFE alone, so they are used together and compared with
NeuralEQ. In order to perform evaluation, the number of FFE taps is set to 24, and the number of
DFE taps is 5, which is more than what is actually used in the PAM4 wireline application so that
there is no performance degradation due to lack of taps. The parameters of NeuralEQ are the same
as those shown in Table[2] except for the ISI of the -21 dB channel, which has worse ISI than other
channels, so in this case, the length of the input sequence is increased from 12 to 24.

As illustrated in Figure [} it can be shown that the performance of the proposed NeuralEQ in the
whole SNR region is superior to the combination of FFE and DFE with sufficient taps. In particu-
lar, the gap in performance increases as the ISI, which show that NeuralEQ is more valuable than
existing EQ in recent wireline communication that suffers more from high channel loss.

4.2 PRUNING

Although the proposed NeuralEQ needs multiple symbols per a single decoding, not all input sym-
bols have the same information in decoding the target symbol. This is because the magnitude of the
cursors decreases as the distance away from the main-cursor, so the information of the target symbol
is minor. On the other hand, the symbol at the main-cursor position has the most information. Due
to this imbalance in information of symbol position, even if the complexity of the left and right side
layers of the NeuralEQ is lower than those of the middle, it can be expected that NeuralEQ will not
significantly degrade performance.

The pruning (Janowsky,|1989;|Karnin, |1990) is the efficient methodology to strike a balance between
the difference of information and computational complexity, reducing unnecessary neurons. Pruning
has been studied in a way that reduces hardware complexity without performance degradation from
a model that has been trained. In particular, (Frankle & Carbinl 2019) consists that there exist a
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Figure 4: Performance comparison of FFE+DFE, NeuralEQ, and NeuralEQ with pruning, for chan-
nel loss (a) -7dB, (b) -12dB, (c), -16dB, and (d), -21dB. In all cases, NeuralEQ has better perfor-
mance than FFE+DFE with or without pruning. Especially for channel loss -21dB, pruning increases
the performance of NeuralEQ.

model which has better or similar performance even after pruning, so we looked at whether pruning
can improve its performance even for the proposed NeuralEQ.

Figure [5] shows how much the performance degrades as the progress of pruning. Every pruning
iteration, 10% of the total weight which are the smallest ones is pruned. The Y-axis is the normalized
value of BER before pruning, and the x-axis represents sparsity. Performance degradation due
to pruning appears differently for each channel. When the ISI is small, for -7dB lossy channel,
performance degradation due to pruning is small, and when the ISI is large, it is relatively sensitive
to pruning. Also, Appendix [C] describe how the sparisty of each layer varies with the progress of
pruning.

2.75
|| 74— Loss:-7dB Channel # of param. # of param. .

- zzz T tz:ziég: loss before prune after prune Diff.
%2.00_ dse lossep1dB -7dB 38,564 13,446 -65%
@
é 1.751 -12dB 38,564 16,600 -57%
S 150
= 125 -16dB 38,564 18,445 -52%

1.00 1

10 20 30 40 50 60 70 80 90 -21dB 76,964 36,812 -52%
Sparsity (%)
Table 3: NeuralEQ parameter reduction after
Figure 5: Normlized BER via sparsity pruning for various channel

In Figure f] the performance is reevaluated using the pruned model. It can be seen that there is
no significant difference between the performance before pruning or that it has better performance
for the -21 dB channel. The number of parameters before and after Pruning is summarized in
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Figure 6: Performance variation due to ISI skew for channel loss (a) -7dB, (b) -12dB, (c) -16dB, and
(d) -21dB, which occurs in practical application. Both conventional EQ and NeuralEQ are evaluated
for comparison, and the magnitude of skew of ISI is varied with 0%, 1%, and 2%. Regardless of ISI
skew, NeuralEQ has better performance than conventional EQ.

Table[3] Accordingly, pruning is a well-suited methodology to reduce the number of parameters
needed adaptively for each channel without degradation.

4.3 ROBUSTNESS TO ISI VARIATION

In practice, the channel environment during training and after training could be different. Therefore,
test sets which has skew on ISI during training are generated and then we evaluate the performance
degradation. The combination of FFE and DFE is also evaluated in the same environment as a
control group. The amount of skew to ISI is as follows. When the single bit response of the channel is
h and let skew be s, hgiew = h+s, where s ~ N (0,0%1), and o = max(h)p (p € {0,0.01,0.02}),
which is proportional to the magnitude of main-cursor.

Figure [] shows how much the performance of conventional EQ and NeuralEQ degrades when the
skew is generated to ISI for each channel. In the case of 7 dB, skew does not affect performance
much, but it can be seen that the degree of degradation increases as channel loss increases. It may
not be deemed that NeuralEQ is stronger against ISI skew than conventional EQ, but it is not more
sensitive. The performance superiority of traditional EQ and NeuralEQ is not reversed despite skew,
and it can be confirmed that NeuralEQ has acceptable tolerance to ISI variation.

5 CONCLUSION

In this paper, we developed a neural-network-based equalizer suitable for high-speed wireline com-
munication. It was shown that the proposed neural EQ mimics the FB algorithm, reduces compu-
tational complexity, and has superior performance to the existing equalizer. In addition, since there
is no feedback loop, the high-speed design is easier than the existing equalizer, such as DFE. The
pruning technique was applied to further reduce complexity without performance degradation for
more efficient hardware implementation. Also, we verified robustness to ISI variation is acceptable
compared to the existing EQ.
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A CHANNELS FOR SIMULATION

The channels for performance evaluation of the proposed NeuralEQ are extracted from real PCB
striplines with different lengths. Channels of loss 7dB, 12dB, 16dB, 21dB are from PCB stripline
of length 3inch, 5Sinch, 7inch, 9inch respectively. The characteristics of the channels are shown in
Figurd7] Each channel has a loss between 7 dB and 21 dB at nyquist frequency(Figure[7a)), and the
SBR of each channel is shown in Figure[7b] The SBR of the channel extracted values only if it is
greater than 0.001 times of the main-cursor, otherwise, it is forced to zero. The higher loss channel,
the longer ISI it has.

04 b —e— 7dB
12dB
—e— 16dB

Voltage [V]

8 12 16 20 o 4 8 12 16
Frequency [GHz] ul

(a) (b)

Figure 7: (a) Frequency response, and (b) single bit response of tested channels

B DECISION OF SNR FOR TRAINING

When creating a data set for training, we must consider the amount of noise applied to the data. If
noise is not applied at all, the neural network has not learned about the input sequence with noise,
so noise will not be effectively removed during decoding. If the noise of the training set is too large,
it is highly likely that the network will not converge to the optimal point.

Figure[§] shows how the performance changes by changing the noise applied during training, that
is, SNR. As expected, too large or too small noise degraded performance, and when trained for
SNR with a BER of about le-2 empirically, a neural network with good overall performance was
obtained.

It should be noted that the noise applied to the test set and the noise applied to the training set does
not produce a good performance. That is, the SNR used during training to have good performance
does not match the SNR to be applied during the test. For example, the performance at 18dB SNR is
better when trained with 12dB SNR than the result of training at 18dB SNR in Figure[8d} Simulation
results for various channels show that training SNR having performance around le-2 BER is used
in a training phase, the network is learned to have better performance in a full range of SNR, and in
this paper, these SNRs were found and trained for each channel.

C SPARSITY OF EACH LAYER WITH PRUNING PROGRESS

When pruning is performed on NeuralEQ, having small weight, low importance neurons, will be
removed and high importance neurons will remain. Since IS usually has a smaller cursor value as it
goes toward the edge around the main-cursor, it can be assumed that the layers at the edges are less
important than the middle even in NeuralEQ.

Figure@] shows the NeuralEQ pruning for -7dB, -12dB, -16dB, and -21dB channels and the sparsity
of each layer for each pruning. The difference in sparsity between layers means the information

12
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Figure 8: Performance comparison via varying training SNR. Various channels are evaluated with
(a) -7dB, (b) -12dB, (c), -16dB, and (d), -21dB loss.

per symbol is not important with the same amount for decoding. Pruning progress can remove
unimportant neurons efficiently.

D ROBUSTNESS TO SIGNAL QUANTIZATION

The quantization of channel signals must be preceded to implement the proposed NeuralEQ into dig-
ital hardware. For such implementation to be feasible, it must be possible to limit the performance
degradation due to quantized inputs, while using a reasonable number of bits for quantization. We
anticipated the degradation, and the appropriate number of bits, by training and evaluating the Neu-
ralEQ with quantized channel signals.

The performance of NeuralEQ with quantized channel signals, for channels of loss -7dB, -12dB,
-16dB, and -21dB, are shown in Figure[I0] The quantization range was set as the range of the
channel signal without probabilistic noise, given the channel loss. The quantization bit number was
set between 5 to 8 bits. Other training and evaluation parameters were unchanged. The performance
of pruned NeuralEQ without quantization is also shown for comparison.

E COMPARING COMPLEXITY OF NEURALEQ WITH FC NEURAL NETWORK

In this section, we evaluate how the proposed NeuralEQ efficiently mimics the optimum decoder,
comparing it with the fully connected network. The fully connected neural network can also mimic
an arbitrary function, but the problem is that the complexity is too high. By quantifying the dif-
ference in complexity to achieve target performance, we can claim the efficiency of the proposed
NeuralEQ.
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Figure 9: Sparsity of each NeuralEQ layer with thirteen pruning iterations. (a) Pruning for -7dB
channel, (b) -12dB channel, (c) -16dB channel, (d) -21dB channel. 10% of total weight is removed
per iteration and corresponding BER is written for each iteration.

The proposed NeuralEQ has a hyperparameter N, which is the number of features per layer. Choos-
ing an optimum N is indeed an important process to go through. There are many ongoing studies
about optimizing hyperparameter of the network and researchers have provided different types of
search strategies depending on network structure. We choose Tree-Parzan Estimator (TPE) because
it is appropriate algorithm for model which has low dimensional search space and NeuralEQ has a
single hyperparmeter V.

As aresult, Table 4] shows that the proposed NeuralEQ outperforms FC network for all four channels
conditions. NeuralEQ not only provides better BER than FC network does, but also implements
fewer parameters than FC network does to run the network.

FC Network NeuralEQ
SBR (dB)  Structure BER (e-3) Parameters Structure BER (e-3) Parameters
7 [216,376] 1.126 85,908 N: 22 0.961 18,594 (21.6%)
12 [ 408, 488 ] 2.845 206,852 N: 20 2.309 15,464 (7.47%)
16 [472,344 ] 12.56 170,228 N: 35 11.221 45,959 (27.0%)
21 [352,512] 56.054 187,364 N: 29 50.516 31.817 (16.9%)

Table 4: TPE Strategy Results

F SIMULATION RESULTS FOR ADDITIONAL CHANNELS

In addition to the channels used earlier, manually modified channels are used to further evaluate
the performance of the proposed NeuralEQ. The more diverse channels are shown in Figure [TTa]
Compared to Figure [7b] the number of pre-cursors is increased, and the polarity of random cursors
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Figure 10: Performance for different quantization bit numbers, for channels of loss (a) -7dB, (b)
-12dB, (c¢) -16dB, and (d) -21dB. The performance of pruned NeuralEQ without quantization is
added for comparison.

are flipped. The length of ISI is large in the order of Custom_CH3, Custom_CH2, Custom_CHI.
The simulation performed in Figure [ is performed again for the new channels. The results are
shown in Figure[TT} It is confirmed that the proposed NeuralEQ has better BER performance than
conventional EQ for the newly generated channels too.
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Figure 11: Performance for customized channel which has more pre-cursor and negative ISI. (a)
Single bit response of each customized channel. BER performance for (b) Custom Chl, (¢) Custom
Ch2, and (d) Custom Ch3.
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