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Abstract

There is an unmet need to evaluate the lan-001
guage difficulty of short passages of text, par-002
ticularly for training and filtering Large Lan-003
guage Models (LLMs). Existing datasets fail004
to train models for this task, so we introduce005
ShortDiff, a new dataset with 890 short text006
passages in English together with their level007
of text difficulty. We experiment with a vari-008
ety of models on ShortDiff, including finetun-009
ing Transformer-based models and prompting010
LLMs. Our best model achieves accuracy sur-011
passing human experts and has latency appro-012
priate to production environments. Finally, we013
release the ShortDiff dataset to the public for014
further research and development.015

1 Introduction016

In the domain of language acquisition tools, a key017

capability is the measurement of the linguistic dif-018

ficulty of text. Traditionally, this has been used019

to assess a language learner’s ability by evaluat-020

ing their writing (Arnold et al., 2018; Ballier et al.,021

2019; Kerz et al., 2021). However, with the advent022

of use of Large Language Models (LLMs) for lan-023

guage practice and learning (Bonner et al., 2023;024

Kwon, 2023; Mahajan, 2022; Young and Shishido,025

2023), a novel application has arisen: adjusting026

the language output of an LLM to the ability of a027

specific learner. The goal is to reduce the difficulty028

for beginners, and increase it for more advanced029

users, to maximize the user’s learning by keeping030

them in the Zone of Proximal Development (ZPD)031

(Kinginger, 2002).032

While LLMs have a degree of understanding033

of text complexity, this typically takes the form034

of text simplification, especially on large bodies035

of text (Espinosa-Zaragoza et al., 2023; Cardon036

and Bibal, 2023). In contrast, language learning037

requires exposure to short, authentic text segments038

(Leow, 1997), such as conversation. While LLMs039

are uniquely positioned to provide this, they are not040

typically trained to adjust short text output to the 041

level of a learner. 042

To be able to make that adjustment, it is prefer- 043

able to create an automated way to measure the 044

linguistic difficulty of short passages of text. This 045

methodology can then be used in an LLM-driven 046

system to generate training data, annotate input con- 047

texts, and filter candidates, as depicted in example 048

system diagram Figure 1. Critically, the text con- 049

tent must be analogous to the texts desired, which 050

means short, preferably conversational passages. 051

Figure 1: Example system diagram of LLM trained to
produce text at different levels of difficulty, with a Dif-
ficulty Annotation Model required to label text at three
points in the processing pipeline

While there is a significant body of work on the 052

evaluation of text for difficulty, ranging from sim- 053

ple models like Flesch–Kincaid (Flesch, 2007) to 054

techniques using neural networks (Filighera et al., 055

2019), these are unsuitable for handling short text 056

passages, primarily because they are trained on 057

long passages. (See Dataset section.) 058

What is needed is a new model that can accu- 059

rately evaluate the difficulty of short, conversa- 060

tional pieces of text. Further, because such a model 061

must be used both offline and online (see Figure 1), 062

it must be fast enough to be in the critical path. In 063

order to build such models, a suitable training and 064

evaluation set is also required. 065

For research covered in this paper, we are fo- 066

cused on English language learning, but the tech- 067
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niques should scale to other languages as well.068

2 ShortDiff Dataset069

There are a number of existing datasets related to070

measuring the text difficulty for second language071

(L2) acquisition of English. These include the En-072

glish First Cambridge open language Database (EF-073

CAMDAT) (Geertzen et al., 2014), the Cambridge074

Learner Corpus for the First Certificate in English075

(CLC-FCE) (by Lexical Computing Limited on076

behalf of Cambridge University Press and Assess-077

ment., 2017), and the Common European Frame-078

work of Reference for Languages (CEFR) (cef)079

leveled dataset provided by Adam Montgomerie080

(Montgomerie) (Montgomerie). However, these081

are unsuitable for training models to evaluate short,082

conversational passages of text, for several reasons.083

First, these passages are too long, primarily be-084

cause they are meant to establish a representative085

sample of a learner’s abilities (Shatz, 2020). Even086

the passages in the shorter, non-evaluative Mont-087

gomerie set are over 400 words long on average,088

whereas the average turn length in a conversation089

is approximately 10 words (Yuan et al., 2006). Our090

experiments training a model on long passages and091

applying it to short ones proved ineffective, result-092

ing in behavior that worked well only on passages093

of similar lengths. As an example, training a BERT-094

based model on the Montgomerie set and testing095

on our test set resulted in a Mean Squared Error096

of 1.81, double even the simplest Linear Model097

we tested, and almost 5 times larger than our best098

model.099

Second, the most commonly-used datasets (EF-100

CAMDAT and CLC-FCE) are comprised of exam-101

ples authored by language learners. This makes102

them ideal for evaluating learners, but they are in-103

appropriate for training LLMs to generate native-104

sounding speech. Finally, the distribution of diffi-105

culties is uneven, with especially few examples at106

high levels. This makes it difficult to train models107

capable of a wide range of evaluation.108

Therefore, to train, evaluate, and compare our109

models, we created and labeled a novel dataset of110

short passages of text, in close collaboration with111

human language experts.112

The ShortDiff dataset is comprised of 890 short113

text passages in English, created specifically for114

this task, split into training (445) and test (445).115

The average length of a passage is 12 words, with116

a median of 10. The shortest are 62 passages of117

a single word each and the longest passage is 114 118

words. 119

The provenance of the dataset is a mix of sources: 120

generated internally for other language practice fea- 121

tures (272), authored for this task by English lan- 122

guage learning experts (255), generated by LLMs 123

(198), anonymized segments from conversations 124

with language learners (101), and public data from 125

the web (64). Much of the dataset is selected to be 126

conversational in nature, since that is the primary 127

expected application. 128

The dataset was labeled in batches of approxi- 129

mately 100, with sampling adjusted with the goal of 130

an approximately even distribution along the CEFR 131

scale, to include a range of beginner, intermediate, 132

and advanced texts. While C1, C2, and A1 texts 133

are slightly underrepresented, subsampling can be 134

applied to get an even distribution if desired (Fig- 135

ure 2). 136

Figure 2: Distribution of CEFR levels in the ShortDiff
dataset, as labeled by human expert raters. The distribu-
tion of floor(label) is A1: 131, A2/A2+: 180, B1/B1+:
169, B2/B2+: 186, C1: 107, C2: 116)

For C1 and C2 levels, language experts created 137

examples using both advanced vocabulary (e.g., 138

"He feigned indifference.") and colloquial and id- 139

iomatic usage (e.g., "Get off your high horse and 140

lend me a hand. This house isn’t going to paint 141

itself.") 142

2.1 Human Expert Labels 143

Passages in the dataset were rated by English lan- 144

guage learning experts (each with at least a Mas- 145

ter’s degree in Applied Linguistics or similar, plus 146

a minimum of 10 years of experience in language 147

teaching, language teaching curricula and assess- 148

ment development, teacher education, or research 149

in the field). Labels were applied on the CEFR 150

scale (cef): A1 through C2. By convention, the 151

labels A2 through B2 include "+" variations, indi- 152

cating a level higher than the baseline. 153

2



Each passage was labeled by at least two raters,154

working independently, but collaborating on a rat-155

ing guideline document to align themselves. The156

CEFR labels were applied based on the productive157

difficulty, i.e., the level at which an L2 learner can158

be expected to produce the text. When labeling159

single words, the meaning with the lowest level160

was chosen, as that is most likely to be used by a161

language learner.162

Ratings were then converted to numbers (A1=1,163

A2=2, A2+=2.5, B1=3, B1+=3.5, B2=4, B2+=4.5,164

C1=5, C2=6), and averaged to arrive at a consen-165

sus per passage. In some cases, more raters were166

available and we included those in the average (112167

cases). In about 5% of cases, due to differences168

greater than 1 between individual raters, labels169

were adjudicated by expert raters as a group to170

arrive at a consensus label. At the end of model171

training, the worst 20 predictions from each model172

on the test set were re-adjudicated to identify po-173

tential mislabels (123 cases of adjudication total).174

To compare our models against an unbiased met-175

ric, one more set of ratings was performed, just on176

the test set, by an expert who did not previously177

work with other raters, but who used the rating178

guideline as well as training set labels for calibra-179

tion.180

3 Evaluation Framework181

We evaluated our models on predicting the labels182

in the human-rated test set. Because of averaging183

between raters, the labels are not constrained to184

exact CEFR boundaries, e.g., "I have lived here185

since I was 4." is labeled 2.75, meaning that it186

falls between the A2+ and B1 CEFR labels. Our187

primary metric was therefore chosen to be Mean188

Squared Error (MSE) between a model’s predic-189

tions and the consensus human expert label, on the190

1-6 scale, meaning the maximum error possible is191

5, and accordingly the maximum MSE is 25.192

The independent expert human rater who did not193

work with the original raters achieved a MSE of194

0.75 (90% confidence interval [0.67, 0.84]). For195

additional reference, we also evaluated the origi-196

nal primary raters who collaborated on the dataset197

labels. They were measured against the average198

of all ratings other than their own (including the199

independent rater), or the adjudicated label if there200

was one. They had MSEs of 0.47 ([0.41, 0.53]) and201

0.54 ([0.48, 0.61]). However, since they worked202

closely together and collaborated on adjudication,203

this is a biased comparison point. 204

While most human expert disagreements were 205

within 1 point of one another, 8% of the labels 206

were further apart than this. Disagreements were 207

particular common for intermediate CEFR levels 208

(Figure 3). 209

Figure 3: Label agreement between the two primary
expert raters. Circle sizes represent the number of pas-
sages with each pair of labels. Significantly more dis-
agreement occurs toward the middle of the CEFR scale
than at each end.

We took the independent expert labeler MSE of 210

0.75 as the main target for machine earning models, 211

although ultimately we were able to surpass the 212

biased metrics of the primary raters as well. 213

4 Models Overview 214

We evaluated three types of models, in order from 215

simplest to most complex: a linear regression 216

model on surface language features, a custom 217

model fine-tuned off Bidirectional Encoder Repre- 218

sentations from Transformers (BERT), and a Large 219

Language Model (PaLM 2-L) (Anil et al., 2023) 220

in a few-shot setting. Summary of results is in 221

Figure 4 and Table 1. 222
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Figure 4: Mean Squared Error for different model
types, with 90% confidence intervals.

Table 1: Accuracy Summary

Model Type MSE Correlation to Label

Human Expert 0.75 0.88

Linear Model on Surface Features 0.81 0.81

BERT-based Model 0.37 0.92

PaLM 2-L 0.48 0.9

In addition to accuracy, latency is critical for223

practical consideration. Some use cases, like gen-224

erating offline training data, are relatively latency225

insensitive, but others are in the critical path, like226

integrating with an LLM for generation (Figure 1)227

or evaluating user proficiency in real time. This228

means for key applications, a model with latency229

in the 10ms to 100ms is necessary. Latency results230

summary is in Table 2.231

Table 2: Latency summary. Latency is extremely ap-
proximate, and no effort has been made to optimize for
speed. Note further that GPU and TPU execution is
highly parallelizable, so amortized batch lookup speed
is significantly faster than individual lookup)

Model Type Latency CPU Latency GPU/TPU

(One lookup) (One lookup)

Linear Model on Surface
Features

∼50µs -

BERT-based Model ∼100ms ∼10ms

PaLM 2-L - ∼1s

5 Linear Regression Model232

The linear regression model is a simple algebraic233

model optimizing for the label from surface char-234

acteristics of text like average sentence and word235

lengths.236

The benefit of such models is their simplicity237

and speed. The model we built can execute locally238

in-process, with latency measured in microseconds.239

The downside is that their accuracy is extremely240

limited because of a lack of understanding the text 241

in any way. 242

5.1 Features 243

There is considerable prior research on measuring 244

text difficulty, using surface features such as sen- 245

tence and word length (Khushik and Huhta, 2022) 246

or word diversity (Treffers-Daller et al., 2018). 247

While these are not encompassing metrics of text 248

complexity (Tanprasert and Kauchak, 2021), they 249

correlate strongly with difficulty. After experimen- 250

tation, we settled on the signals "average word 251

length in characters," "average sentence length in 252

characters," and "average sentence length in words" 253

(Figure 5). 254

Figure 5: Correlation between linear model signals and
label on train set. Correlations are 0.67, 0.70 and 0.35
for average sentence length in words, average sentence
length in chars and average word length in chars respec-
tively. Notably the sentence length signal has a logarith-
mic relationship to the signal, and correcting for that by
taking ln(signal) improves the correlations to 0.71 and
0.75 for those signals respectively.

The key weakness of these features is they are 255

content agnostic. For example, "The cat is here." 256

(A1 difficulty) and "The apex of ire." (C1/C2 dif- 257

ficulty) have indistinguishable word and sentence 258

features. For these reasons, such approaches are 259

most effective when averaged over long texts, and 260

suffer greatly from the brevity of our dataset. 261

5.2 Results 262

Of the models tested, the linear model performed 263

the worst (Figure 4), with an MSE of 0.81 (90% 264

confidence [0.71-0.91]). Typical errors relate to 265

mistaking the difficulty of short words and sen- 266

tences comprised of them (Table 4). It also tends 267

to overestimate the difficulty of sentences that are 268
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simple in structure but have many words, e.g., "For269

herbal tea, we have blueberry chamomile, chai,270

rooibos, fennel tarragon, and nettle." is labeled at 3271

(B1) but predicted by the model to be 5 (C1)272

6 Large Language Model273

An LLM is a natural choice for evaluating the dif-274

ficulty of text. Such models have intrinsic under-275

standing of language, and their training data often276

organically include the CEFR scale (Yancey et al.,277

2023). It is possible to ask an LLM to evaluate a278

passage of text and get a reasonable response. The279

downside is that these models are comparatively280

slow (Table 2) and are therefore primarily suitable281

for offline text labeling.282

We used the PaLM 2-L model (Anil et al., 2023),283

a model optimized for language understanding,284

generation, and translation tasks. We limited our-285

selves to few-shot prompt engineering. It is likely286

that prompt tuning or fine tuning would yield bet-287

ter results, and this is a direction where further288

research is ongoing.289

6.1 Results290

6.1.1 Initial Results291

For the initial results, we used a single prompt,292

populated by instructions and examples from the293

training data. Notably, because of the constraints294

of context length, we randomly sampled 64 out of295

445 training examples. This resulted in an MSE of296

0.98.297

6.1.2 Averaging Across Training Data298

Since the limitation of the context length prevented299

us from using all of the training data, we exper-300

imented with running the model multiple times,301

re-sampling the training data, and averaging the302

results. By rerunning the model 3 times, we im-303

proved accuracy, from an MSE of 0.98 to 0.78.304

Naturally, this results in proportionately increased305

latency. Further improvement is likely possible if306

more samples are taken.307

6.1.3 Splitting out Individual Words308

We noted that the model had significant difficulty309

predicting the label of single words compared to310

phrases. We hypothesized that this is because from311

the LLM’s perspective, these are very different312

tasks, and because many more of the training ex-313

amples are phrases (N=418) compared to single314

words (N=27). Since the training examples are fur-315

ther subsampled in sets of 64 to fit in the context,316

only 3-4 single words would actually be seen by 317

the model. 318

To address this, we separated the prompts into 319

two types: one responsible for predicting the diffi- 320

culty of phrases, and another one for predicting the 321

difficulty of individual words (Appendix A) This 322

significantly improved the MSE, from 0.78 to 0.48. 323

6.1.4 Final Results 324

The final results are an MSE of 0.48 (90% confi- 325

dence [0.43, 0.54]) (Chart 4). This is substantially 326

better than the linear model, and much better than 327

human expert ratings, albeit at a significant latency 328

cost (Table 2). Unlike the linear model, there’s no 329

obvious pattern of errors (Table 5). The opacity 330

of mistakes is a risk factor, since this can make it 331

challenging to improve the model further. 332

7 BERT-based Model 333

The BERT-based model builds on an existing, 334

lightweight BERT encoder, which provides a 335

combination of a high degree of accuracy and 336

production-level latency. We fine-tuned a custom 337

model by taking the first few layers of pretrained 338

BERT model and adding a classification head. The 339

BERT encoder is multiple orders of magnitude 340

smaller than a typical LLM (millions rather than 341

billions of parameters), but still comes pretrained 342

with a degree of language understanding, and is 343

fine-tunable to very specific tasks. It is also well- 344

suited to serve as a distilled version of a larger 345

model, which we used during quality iteration. 346

7.1 Results 347

7.1.1 Initial Results 348

We fine-tuned the BERT encoder on the 445 train- 349

ing samples. We ran light hyperparameter tuning 350

(on a validation set split from the training samples) 351

for the number of layers of the pretrained encoder 352

to keep, learning rate, batch size, and warm up pro- 353

portion. BERT achieved an MSE of about 0.44, 354

which is substantially better than any of the other 355

models. 356

7.1.2 2-Stage Finetuning with LLM Labeling 357

Unlike the linear model, which peaks in accuracy 358

after a few dozen examples, and the LLM, which 359

is context-constrained to accept only a few dozen 360

examples, the BERT model continues to improve 361

with additional training data. We therefore added 362

an extra finetuning stage to the training. In the first 363
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stage, we labeled 10 thousand examples from vari-364

ous sources with our best LLM version. We used365

those LLM-labeled examples to finetune the BERT366

model. In the second stage, we further finetuned367

the model on the human expert rated dataset. The368

results improved significantly, from MSE 0.44 to369

0.37.370

7.1.3 Final Results371

The final results are an MSE of 0.37 (90% confi-372

dence [0.32, 0.41)] (Chart 4), which is a dramatic373

improvement over human experts and the other374

models. The latency, particularly when running on375

GPU (Table 2) is also practical enough for latency-376

sensitive production applications, making this the377

ideal model for most use cases.378

The only recurring issue we saw was that this379

model struggled with misspellings, compared to the380

LLM (with its larger vocabulary) and the Linear381

Model (which has no concept of spelling). We382

did not deliberately introduce misspellings into the383

ShortDiff dataset, but they arose naturally from384

several of our sources. Ultimately, we decided to385

correct the spellings, because we want to be able386

to also use the dataset for generative tuning, and387

don’t want to train models to produce misspellings.388

However, this is a weakness that needs to be taken389

into account when integrating into production use390

cases, and a spell-checker may be helpful.391

Aside from misspellings, the BERT-based392

model’s errors were similarly opaque to the LLM393

errors. The only significant pattern was having394

difficulty with idiomatic sayings like "It’s been a395

rough spell but I’m game to try anything that might396

help us weather this storm." (Table 6)397

8 Ensemble Models398

It is noteworthy that while each model makes mis-399

takes, the categories of mistakes made by different400

models differ. This makes sense, since, for exam-401

ple, the Linear Model has no concept of language402

meaning, whereas the BERT model has no concept403

of word length. We therefore evaluated whether it’s404

possible to offset the errors of the different models405

by combining them together.406

To do so, we randomly split out 100 examples407

from the test set to use for tuning, and used the re-408

maining 355 examples for evaluation. We weighted409

the models to optimize performance on the tun-410

ing set, essentially putting a linear model over411

them. With this approach, we were able to reduce412

MSE from 0.36 for BERT to 0.33 when combining413

BERT+LLM. Adding the linear model to the mix 414

did not improve results further beyond noise levels. 415

Figure 6. 416

Figure 6: MSE of ensemble models.

While this improvement is incremental, and 417

likely incurs too much complexity to be used in 418

production, it is helpful for establishing that fur- 419

ther improvements in accuracy are possible, and 420

this approach may be useful for creating better pre- 421

training datasets for improvements to BERT in the 422

future. 423

9 Summary 424

Ultimately, we were able to achieve accuracy bet- 425

ter than expert human ratings on short conversa- 426

tional pieces of text. We are releasing the ShortDiff 427

dataset to the public for further iteration, and have 428

been successfully integrating the models into LLM 429

systems designed to help learners practice in an 430

authentic conversational setting. 431

10 Limitations 432

The ShortDiff dataset provides the ability to train 433

models on short pieces of text, but it still has sev- 434

eral limitations. It was generated from a limited 435

set of sources, and rated by a small cohort of ex- 436

pert raters. Diversifying both the sources and the 437

raters may provide significantly less biased and 438

more generalized results. Additionally, the dataset 439

and all the models trained on it here are limited to 440

English, which does not serve populations trying 441

to learn other languages. Expanding the dataset to 442

other languages is possible, but would require in- 443

cremental work per language unless an automated 444

methodology is identified. 445

Another significant limitation of these ap- 446

proaches is that they rely on a single scale for 447

difficulty, which is not representative of the di- 448

verse experiences and backgrounds of learners. A 449
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more fine-grained and personalized approach to450

user challenge is going to be made possible by the451

advent of LLMs, and is a fertile ground for future452

research.453

11 Future Work454

The next natural step is integrating this work into455

LLM generation, using both the manually labeled456

difficulty dataset and the automated difficulty mea-457

suring models.458

Additionally, there is considerable work to be459

done to improve the dataset, as mentioned in the460

Limitations section, including size, diversity, and461

scaling to non-English languages.462

Beyond that, there’s still headroom to further im-463

prove accuracy, as demonstrated by the ensemble464

model experimentation. We believe that adding a465

dictionary of average word frequency or difficulty466

to the Linear model, such as the Global Scale of En-467

glish dictionary (GSE) would significantly improve468

its results without sacrificing latency, though it’s469

not expected it would surpass the language mod-470

els. Such a dictionary could also be automatically471

generated using the larger models. Further work in472

distillation is also of great practical interest, partic-473

ularly distilling LLM and BERT-based models into474

smaller versions with lower latency and operational475

costs.476
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A LLM Prompts621

Listing 1: Prompt to Evaluate Text Difficulty for
Phrases
CEFR is a six -level scale , with each level

↪→ corresponding to a specific level of English
↪→ language proficiency. The levels are:

- A1 (1): Beginner
- A2 (2): Elementary
- B1 (3): Intermediate
- B2 (4): Upper Intermediate
- C1 (5): Advanced
- C2 (6): Proficiency

According to the CEFR scale , the proficiency level
↪→ required to use the following phrases are:

Phrase: You are welcome! -> CEFR: 1
Phrase: I wonder if there 's any treasure. -> CEFR:

↪→ 3.25
[more examples ...]
Phrase: {test_phrase} -> CEFR:

Listing 2: Prompt to Evaluate Text Difficulty for Single
Words
GSE is a six -level scale , with each level

↪→ corresponding to a specific level of English
↪→ language proficiency. The levels are:

- A1 (1): Beginner
- A2 (2): Elementary
- B1 (3): Intermediate
- B2 (4): Upper Intermediate
- C1 (5): Advanced
- C2 (6): Proficiency

According to the GSE scale , the proficiency level
↪→ required to use the following words are:

age ,1
almost ,2
[more examples ...]
{test_word},
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B Example Errors622

Tables with the worst error examples from each623

model type.624

Table 3: Human Expert Rater: worst 5 errors, labels
are 1-6 with 1 corresponding to A1 on the CEFR scale
and 6 corresponding to C2

Text Label Prediction Error

The Sumida River is one of
Japan’s biggest, and you can take
a tour on a boat and see the sights
along the river’s edges like sum-
ida aquarium, temples, and more.
The Sumida Observatory lets you
take in a birdseye view of the river
and Tokyo. Are you ready to
book your tickets?

5 2.5 -2.5

I have a nice garden with flowers,
trees, and a small pond.

3.25 1 -2.25

I like the classics over remakes. 4.75 2.5 -2.25

I see. Dulce de leche is a popu-
lar dessert in Argentina, and it is
often used as a filling for pastries
and other desserts. Empanadas
are also a popular dish in Ar-
gentina, and they can be filled
with a variety of ingredients, such
as meat, cheese, or vegetables.

5.25 3 -2.25

I’m looking to the future with
hope.

4.25 2 -2.25

Table 4: Linear Model: worst 5 errors, labels are 1-6
with 1 corresponding to A1 on the CEFR scale and 6
corresponding to C2

Text Label Prediction Error

to ascertain 6 2.4 -3.6

naive 4 1.1 -2.9

endeavor 5 2.4 -2.6

Get off your high horse and lend
me a hand. This house isn’t going
to paint itself.

6 3.6 -2.4

effervescent 6 3.6 -2.4

Table 5: PaLM 2-L: worst 5 errors, labels are 1-6 with
1 corresponding to A1 on the CEFR scale and 6 corre-
sponding to C2

Text Label Prediction Error

By perseverance. 4 1 -3

Just a couple of weeks. 1 3 2

By perseverance, just not giving
up even when things seem impos-
sible.

5.5 3.87 -1.63

The rate at which kids absorb
new information is simply aston-
ishing.

6 4.4 -1.6

Yeah, it’s quite a controversy! 4.75 3.2 -1.55

Table 6: BERT-based model: worst 5 errors, labels are
1-6 with 1 corresponding to A1 on the CEFR scale and
6 corresponding to C2

Text Label Prediction Error

hobby 1 3.23 2.23

Celery is a low calorie vegetable. 4 2.13 -1.87

I didn’t understand the noise last
night.

2.25 3.82 1.57

I am definitely leaning towards ac-
cepting it.

3.5 5.02 1.52

Get off your high horse and lend
me a hand. This house isn’t going
to paint itself.

6.0 4.55 -1.45
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