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Abstract

There is an unmet need to evaluate the lan-
guage difficulty of short passages of text, par-
ticularly for training and filtering Large Lan-
guage Models (LLMs). Existing datasets fail
to train models for this task, so we introduce
ShortDiff, a new dataset with 890 short text
passages in English together with their level
of text difficulty. We experiment with a vari-
ety of models on ShortDiff, including finetun-
ing Transformer-based models and prompting
LLMs. Our best model achieves accuracy sur-
passing human experts and has latency appro-
priate to production environments. Finally, we
release the ShortDiff dataset to the public for
further research and development.

1 Introduction

In the domain of language acquisition tools, a key
capability is the measurement of the linguistic dif-
ficulty of text. Traditionally, this has been used
to assess a language learner’s ability by evaluat-
ing their writing (Arnold et al., 2018; Ballier et al.,
2019; Kerz et al., 2021). However, with the advent
of use of Large Language Models (LLMs) for lan-
guage practice and learning (Bonner et al., 2023;
Kwon, 2023; Mahajan, 2022; Young and Shishido,
2023), a novel application has arisen: adjusting
the language output of an LLM to the ability of a
specific learner. The goal is to reduce the difficulty
for beginners, and increase it for more advanced
users, to maximize the user’s learning by keeping
them in the Zone of Proximal Development (ZPD)
(Kinginger, 2002).

While LLMs have a degree of understanding
of text complexity, this typically takes the form
of text simplification, especially on large bodies
of text (Espinosa-Zaragoza et al., 2023; Cardon
and Bibal, 2023). In contrast, language learning
requires exposure to short, authentic text segments
(Leow, 1997), such as conversation. While LLMs
are uniquely positioned to provide this, they are not

typically trained to adjust short text output to the
level of a learner.

To be able to make that adjustment, it is prefer-
able to create an automated way to measure the
linguistic difficulty of short passages of text. This
methodology can then be used in an LLM-driven
system to generate training data, annotate input con-
texts, and filter candidates, as depicted in example
system diagram Figure 1. Critically, the text con-
tent must be analogous to the texts desired, which
means short, preferably conversational passages.
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Figure 1: Example system diagram of LLM trained to
produce text at different levels of difficulty, with a Dif-
ficulty Annotation Model required to label text at three
points in the processing pipeline

While there is a significant body of work on the
evaluation of text for difficulty, ranging from sim-
ple models like Flesch—Kincaid (Flesch, 2007) to
techniques using neural networks (Filighera et al.,
2019), these are unsuitable for handling short text
passages, primarily because they are trained on
long passages. (See Dataset section.)

What is needed is a new model that can accu-
rately evaluate the difficulty of short, conversa-
tional pieces of text. Further, because such a model
must be used both offline and online (see Figure 1),
it must be fast enough to be in the critical path. In
order to build such models, a suitable training and
evaluation set is also required.

For research covered in this paper, we are fo-
cused on English language learning, but the tech-



niques should scale to other languages as well.

2 ShortDiff Dataset

There are a number of existing datasets related to
measuring the text difficulty for second language
(L2) acquisition of English. These include the En-
glish First Cambridge open language Database (EF-
CAMDAT) (Geertzen et al., 2014), the Cambridge
Learner Corpus for the First Certificate in English
(CLC-FCE) (by Lexical Computing Limited on
behalf of Cambridge University Press and Assess-
ment., 2017), and the Common European Frame-
work of Reference for Languages (CEFR) (cef)
leveled dataset provided by Adam Montgomerie
(Montgomerie) (Montgomerie). However, these
are unsuitable for training models to evaluate short,
conversational passages of text, for several reasons.

First, these passages are too long, primarily be-
cause they are meant to establish a representative
sample of a learner’s abilities (Shatz, 2020). Even
the passages in the shorter, non-evaluative Mont-
gomerie set are over 400 words long on average,
whereas the average turn length in a conversation
is approximately 10 words (Yuan et al., 2006). Our
experiments training a model on long passages and
applying it to short ones proved ineffective, result-
ing in behavior that worked well only on passages
of similar lengths. As an example, training a BERT-
based model on the Montgomerie set and testing
on our test set resulted in a Mean Squared Error
of 1.81, double even the simplest Linear Model
we tested, and almost 5 times larger than our best
model.

Second, the most commonly-used datasets (EF-
CAMDAT and CLC-FCE) are comprised of exam-
ples authored by language learners. This makes
them ideal for evaluating learners, but they are in-
appropriate for training LLMs to generate native-
sounding speech. Finally, the distribution of diffi-
culties is uneven, with especially few examples at
high levels. This makes it difficult to train models
capable of a wide range of evaluation.

Therefore, to train, evaluate, and compare our
models, we created and labeled a novel dataset of
short passages of text, in close collaboration with
human language experts.

The ShortDiff dataset is comprised of 890 short
text passages in English, created specifically for
this task, split into training (445) and test (445).
The average length of a passage is 12 words, with
a median of 10. The shortest are 62 passages of

a single word each and the longest passage is 114
words.

The provenance of the dataset is a mix of sources:
generated internally for other language practice fea-
tures (272), authored for this task by English lan-
guage learning experts (255), generated by LLMs
(198), anonymized segments from conversations
with language learners (101), and public data from
the web (64). Much of the dataset is selected to be
conversational in nature, since that is the primary
expected application.

The dataset was labeled in batches of approxi-
mately 100, with sampling adjusted with the goal of
an approximately even distribution along the CEFR
scale, to include a range of beginner, intermediate,
and advanced texts. While C1, C2, and A1 texts
are slightly underrepresented, subsampling can be
applied to get an even distribution if desired (Fig-
ure 2).
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Figure 2: Distribution of CEFR levels in the ShortDiff
dataset, as labeled by human expert raters. The distribu-
tion of floor(label) is Al: 131, A2/A2+: 180, B1/B1+:
169, B2/B2+: 186, C1: 107, C2: 116)

For C1 and C2 levels, language experts created
examples using both advanced vocabulary (e.g.,
"He feigned indifference.") and colloquial and id-
iomatic usage (e.g., "Get off your high horse and
lend me a hand. This house isn’t going to paint
itself.")

2.1 Human Expert Labels

Passages in the dataset were rated by English lan-
guage learning experts (each with at least a Mas-
ter’s degree in Applied Linguistics or similar, plus
a minimum of 10 years of experience in language
teaching, language teaching curricula and assess-
ment development, teacher education, or research
in the field). Labels were applied on the CEFR
scale (cef): Al through C2. By convention, the
labels A2 through B2 include "+" variations, indi-
cating a level higher than the baseline.



Each passage was labeled by at least two raters,
working independently, but collaborating on a rat-
ing guideline document to align themselves. The
CEFR labels were applied based on the productive
difficulty, i.e., the level at which an L2 learner can
be expected to produce the text. When labeling
single words, the meaning with the lowest level
was chosen, as that is most likely to be used by a
language learner.

Ratings were then converted to numbers (Al=1,
A2=2, A2+=2.5, B1=3, B1+=3.5, B2=4, B2+=4.5,
C1=5, C2=6), and averaged to arrive at a consen-
sus per passage. In some cases, more raters were
available and we included those in the average (112
cases). In about 5% of cases, due to differences
greater than 1 between individual raters, labels
were adjudicated by expert raters as a group to
arrive at a consensus label. At the end of model
training, the worst 20 predictions from each model
on the test set were re-adjudicated to identify po-
tential mislabels (123 cases of adjudication total).

To compare our models against an unbiased met-
ric, one more set of ratings was performed, just on
the test set, by an expert who did not previously
work with other raters, but who used the rating
guideline as well as training set labels for calibra-
tion.

3 Evaluation Framework

We evaluated our models on predicting the labels
in the human-rated test set. Because of averaging
between raters, the labels are not constrained to
exact CEFR boundaries, e.g., "I have lived here
since I was 4." is labeled 2.75, meaning that it
falls between the A2+ and B1 CEFR labels. Our
primary metric was therefore chosen to be Mean
Squared Error (MSE) between a model’s predic-
tions and the consensus human expert label, on the
1-6 scale, meaning the maximum error possible is
5, and accordingly the maximum MSE is 25.

The independent expert human rater who did not
work with the original raters achieved a MSE of
0.75 (90% confidence interval [0.67, 0.84]). For
additional reference, we also evaluated the origi-
nal primary raters who collaborated on the dataset
labels. They were measured against the average
of all ratings other than their own (including the
independent rater), or the adjudicated label if there
was one. They had MSEs of 0.47 ([0.41, 0.53]) and
0.54 ([0.48, 0.61]). However, since they worked
closely together and collaborated on adjudication,

this is a biased comparison point.

While most human expert disagreements were
within 1 point of one another, 8% of the labels
were further apart than this. Disagreements were
particular common for intermediate CEFR levels
(Figure 3).
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Figure 3: Label agreement between the two primary
expert raters. Circle sizes represent the number of pas-
sages with each pair of labels. Significantly more dis-
agreement occurs toward the middle of the CEFR scale
than at each end.

We took the independent expert labeler MSE of
(0.75 as the main target for machine earning models,
although ultimately we were able to surpass the
biased metrics of the primary raters as well.

4 Models Overview

We evaluated three types of models, in order from
simplest to most complex: a linear regression
model on surface language features, a custom
model fine-tuned off Bidirectional Encoder Repre-
sentations from Transformers (BERT), and a Large
Language Model (PalLLM 2-L) (Anil et al., 2023)
in a few-shot setting. Summary of results is in
Figure 4 and Table 1.
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Figure 4: Mean Squared Error for different model
types, with 90% confidence intervals.

Table 1: Accuracy Summary

Model Type MSE | Correlation to Label
Human Expert 0.75 0.88
Linear Model on Surface Features 0.81 0.81
BERT-based Model 0.37 0.92
PaLM 2-L 0.48 0.9

In addition to accuracy, latency is critical for
practical consideration. Some use cases, like gen-
erating offline training data, are relatively latency
insensitive, but others are in the critical path, like
integrating with an LL.M for generation (Figure 1)
or evaluating user proficiency in real time. This
means for key applications, a model with latency
in the 10ms to 100ms is necessary. Latency results
summary is in Table 2.

Table 2: Latency summary. Latency is extremely ap-
proximate, and no effort has been made to optimize for
speed. Note further that GPU and TPU execution is
highly parallelizable, so amortized batch lookup speed
is significantly faster than individual lookup)

Model Type Latency CPU

(One lookup)

Latency GPU/TPU
(One lookup)

Linear Model on Surface ~50us

Features

BERT-based Model ~100ms ~10ms
PaLM 2-L - ~ls

5 Linear Regression Model

The linear regression model is a simple algebraic
model optimizing for the label from surface char-
acteristics of text like average sentence and word
lengths.

The benefit of such models is their simplicity
and speed. The model we built can execute locally
in-process, with latency measured in microseconds.
The downside is that their accuracy is extremely

limited because of a lack of understanding the text
in any way.

5.1 Features

There is considerable prior research on measuring
text difficulty, using surface features such as sen-
tence and word length (Khushik and Huhta, 2022)
or word diversity (Treffers-Daller et al., 2018).
While these are not encompassing metrics of text
complexity (Tanprasert and Kauchak, 2021), they
correlate strongly with difficulty. After experimen-
tation, we settled on the signals "average word
length in characters," "average sentence length in
characters," and "average sentence length in words"
(Figure 5).

a) Sentence Length (Words)

b) Sentence Length (Chars)

label
label

6
5
4
3
2
1

10.00 2000 3000 40,00 5000 100.00 15000 200.00  250.00

average sentence length in words average sentence length in chars

¢) Word Length (Chars)

label

average word length in chars

Figure 5: Correlation between linear model signals and
label on train set. Correlations are 0.67, 0.70 and 0.35
for average sentence length in words, average sentence
length in chars and average word length in chars respec-
tively. Notably the sentence length signal has a logarith-
mic relationship to the signal, and correcting for that by
taking In(signal) improves the correlations to 0.71 and
0.75 for those signals respectively.

The key weakness of these features is they are
content agnostic. For example, "The cat is here."
(A1 difficulty) and "The apex of ire." (C1/C2 dif-
ficulty) have indistinguishable word and sentence
features. For these reasons, such approaches are
most effective when averaged over long texts, and
suffer greatly from the brevity of our dataset.

5.2 Results

Of the models tested, the linear model performed
the worst (Figure 4), with an MSE of 0.81 (90%
confidence [0.71-0.91]). Typical errors relate to
mistaking the difficulty of short words and sen-
tences comprised of them (Table 4). It also tends
to overestimate the difficulty of sentences that are



simple in structure but have many words, e.g., "For
herbal tea, we have blueberry chamomile, chai,
rooibos, fennel tarragon, and nettle." is labeled at 3
(B1) but predicted by the model to be 5 (C1)

6 Large Language Model

An LLM is a natural choice for evaluating the dif-
ficulty of text. Such models have intrinsic under-
standing of language, and their training data often
organically include the CEFR scale (Yancey et al.,
2023). It is possible to ask an LLM to evaluate a
passage of text and get a reasonable response. The
downside is that these models are comparatively
slow (Table 2) and are therefore primarily suitable
for offline text labeling.

We used the PalLM 2-L model (Anil et al., 2023),
a model optimized for language understanding,
generation, and translation tasks. We limited our-
selves to few-shot prompt engineering. It is likely
that prompt tuning or fine tuning would yield bet-
ter results, and this is a direction where further
research is ongoing.

6.1 Results

6.1.1 Initial Results

For the initial results, we used a single prompt,
populated by instructions and examples from the
training data. Notably, because of the constraints
of context length, we randomly sampled 64 out of
445 training examples. This resulted in an MSE of
0.98.

6.1.2 Averaging Across Training Data

Since the limitation of the context length prevented
us from using all of the training data, we exper-
imented with running the model multiple times,
re-sampling the training data, and averaging the
results. By rerunning the model 3 times, we im-
proved accuracy, from an MSE of 0.98 to 0.78.
Naturally, this results in proportionately increased
latency. Further improvement is likely possible if
more samples are taken.

6.1.3 Splitting out Individual Words

We noted that the model had significant difficulty
predicting the label of single words compared to
phrases. We hypothesized that this is because from
the LLM’s perspective, these are very different
tasks, and because many more of the training ex-
amples are phrases (N=418) compared to single
words (N=27). Since the training examples are fur-
ther subsampled in sets of 64 to fit in the context,

only 3-4 single words would actually be seen by
the model.

To address this, we separated the prompts into
two types: one responsible for predicting the diffi-
culty of phrases, and another one for predicting the
difficulty of individual words (Appendix A) This
significantly improved the MSE, from 0.78 to 0.48.

6.1.4 Final Results

The final results are an MSE of 0.48 (90% confi-
dence [0.43, 0.54]) (Chart 4). This is substantially
better than the linear model, and much better than
human expert ratings, albeit at a significant latency
cost (Table 2). Unlike the linear model, there’s no
obvious pattern of errors (Table 5). The opacity
of mistakes is a risk factor, since this can make it
challenging to improve the model further.

7 BERT-based Model

The BERT-based model builds on an existing,
lightweight BERT encoder, which provides a
combination of a high degree of accuracy and
production-level latency. We fine-tuned a custom
model by taking the first few layers of pretrained
BERT model and adding a classification head. The
BERT encoder is multiple orders of magnitude
smaller than a typical LLM (millions rather than
billions of parameters), but still comes pretrained
with a degree of language understanding, and is
fine-tunable to very specific tasks. It is also well-
suited to serve as a distilled version of a larger
model, which we used during quality iteration.

7.1 Results

7.1.1 Initial Results

We fine-tuned the BERT encoder on the 445 train-
ing samples. We ran light hyperparameter tuning
(on a validation set split from the training samples)
for the number of layers of the pretrained encoder
to keep, learning rate, batch size, and warm up pro-
portion. BERT achieved an MSE of about 0.44,
which is substantially better than any of the other
models.

7.1.2 2-Stage Finetuning with LLM Labeling

Unlike the linear model, which peaks in accuracy
after a few dozen examples, and the LLM, which
is context-constrained to accept only a few dozen
examples, the BERT model continues to improve
with additional training data. We therefore added
an extra finetuning stage to the training. In the first



stage, we labeled 10 thousand examples from vari-
ous sources with our best LLM version. We used
those LLM-labeled examples to finetune the BERT
model. In the second stage, we further finetuned
the model on the human expert rated dataset. The
results improved significantly, from MSE 0.44 to
0.37.

7.1.3 Final Results

The final results are an MSE of 0.37 (90% confi-
dence [0.32, 0.41)] (Chart 4), which is a dramatic
improvement over human experts and the other
models. The latency, particularly when running on
GPU (Table 2) is also practical enough for latency-
sensitive production applications, making this the
ideal model for most use cases.

The only recurring issue we saw was that this
model struggled with misspellings, compared to the
LLM (with its larger vocabulary) and the Linear
Model (which has no concept of spelling). We
did not deliberately introduce misspellings into the
ShortDiff dataset, but they arose naturally from
several of our sources. Ultimately, we decided to
correct the spellings, because we want to be able
to also use the dataset for generative tuning, and
don’t want to train models to produce misspellings.
However, this is a weakness that needs to be taken
into account when integrating into production use
cases, and a spell-checker may be helpful.

Aside from misspellings, the BERT-based
model’s errors were similarly opaque to the LLM
errors. The only significant pattern was having
difficulty with idiomatic sayings like "It’s been a
rough spell but I'm game to try anything that might
help us weather this storm." (Table 6)

8 Ensemble Models

It is noteworthy that while each model makes mis-
takes, the categories of mistakes made by different
models differ. This makes sense, since, for exam-
ple, the Linear Model has no concept of language
meaning, whereas the BERT model has no concept
of word length. We therefore evaluated whether it’s
possible to offset the errors of the different models
by combining them together.

To do so, we randomly split out 100 examples
from the test set to use for tuning, and used the re-
maining 355 examples for evaluation. We weighted
the models to optimize performance on the tun-
ing set, essentially putting a linear model over
them. With this approach, we were able to reduce
MSE from 0.36 for BERT to 0.33 when combining

BERT+LLM. Adding the linear model to the mix
did not improve results further beyond noise levels.
Figure 6.
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Figure 6: MSE of ensemble models.

While this improvement is incremental, and
likely incurs too much complexity to be used in
production, it is helpful for establishing that fur-
ther improvements in accuracy are possible, and
this approach may be useful for creating better pre-
training datasets for improvements to BERT in the
future.

9 Summary

Ultimately, we were able to achieve accuracy bet-
ter than expert human ratings on short conversa-
tional pieces of text. We are releasing the ShortDiff
dataset to the public for further iteration, and have
been successfully integrating the models into LLM
systems designed to help learners practice in an
authentic conversational setting.

10 Limitations

The ShortDiff dataset provides the ability to train
models on short pieces of text, but it still has sev-
eral limitations. It was generated from a limited
set of sources, and rated by a small cohort of ex-
pert raters. Diversifying both the sources and the
raters may provide significantly less biased and
more generalized results. Additionally, the dataset
and all the models trained on it here are limited to
English, which does not serve populations trying
to learn other languages. Expanding the dataset to
other languages is possible, but would require in-
cremental work per language unless an automated
methodology is identified.

Another significant limitation of these ap-
proaches is that they rely on a single scale for
difficulty, which is not representative of the di-
verse experiences and backgrounds of learners. A



more fine-grained and personalized approach to
user challenge is going to be made possible by the
advent of LLMs, and is a fertile ground for future
research.

11 Future Work

The next natural step is integrating this work into
LLM generation, using both the manually labeled
difficulty dataset and the automated difficulty mea-
suring models.

Additionally, there is considerable work to be
done to improve the dataset, as mentioned in the
Limitations section, including size, diversity, and
scaling to non-English languages.

Beyond that, there’s still headroom to further im-
prove accuracy, as demonstrated by the ensemble
model experimentation. We believe that adding a
dictionary of average word frequency or difficulty
to the Linear model, such as the Global Scale of En-
glish dictionary (GSE) would significantly improve
its results without sacrificing latency, though it’s
not expected it would surpass the language mod-
els. Such a dictionary could also be automatically
generated using the larger models. Further work in
distillation is also of great practical interest, partic-
ularly distilling LLM and BERT-based models into
smaller versions with lower latency and operational
Ccosts.
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A LLM Prompts

Listing 1: Prompt to Evaluate Text Difficulty for
Phrases

CEFR is a six-level scale, with each level
< corresponding to a specific level of English
< language proficiency. The levels are:

- A1 (1): Beginner

- A2 (2): Elementary

- B1 (3): Intermediate

- B2 (4): Upper Intermediate
- C1 (5): Advanced

- C2 (6): Proficiency

According to the CEFR scale, the proficiency level
<~ required to use the following phrases are:

Phrase: You are welcome! -> CEFR: 1

Phrase: I wonder if there's any treasure. -> CEFR:
— 3.25

[more examples...]

Phrase: {test_phrase} -> CEFR:

Listing 2: Prompt to Evaluate Text Difficulty for Single
Words

GSE is a six-level scale, with each level
< corresponding to a specific level of English
<~ language proficiency. The levels are:

- A1 (1): Beginner

- A2 (2): Elementary

- B1 (3): Intermediate

- B2 (4): Upper Intermediate
- C1 (5): Advanced

- C2 (6): Proficiency

According to the GSE scale, the proficiency level
<~ required to use the following words are:

age, 1

almost ,2

[more examples...]
{test_word},



B Example Errors

Tables with the worst error examples from each
model type.

Table 3: Human Expert Rater: worst 5 errors, labels
are 1-6 with 1 corresponding to A1 on the CEFR scale
and 6 corresponding to C2

Text Label Prediction Error

The Sumida River is one of 5 2.5 -2.5
Japan’s biggest, and you can take
a tour on a boat and see the sights
along the river’s edges like sum-
ida aquarium, temples, and more.
The Sumida Observatory lets you
take in a birdseye view of the river
and Tokyo. Are you ready to
book your tickets?

I have a nice garden with flowers, 3.25 1 -2.25
trees, and a small pond.

1 like the classics over remakes. 4.75 25 -2.25
I see. Dulce de leche is a popu- 5.25 3 -2.25

lar dessert in Argentina, and it is
often used as a filling for pastries
and other desserts. Empanadas
are also a popular dish in Ar-
gentina, and they can be filled

with a variety of ingredients, such Table 6: BERT-based model: worst 5 errors, labels are
as meat, cheese, or vegetables. 1-6 with 1 corresponding to A1 on the CEFR scale and
I'm looking to the future with 4.25 2 -2.25 6 Corresponding to C2
hope.
Text Label | Prediction | Error
hobby 1 3.23 223
Table 4: Linear Model: worst 5 errors, labels are 1-6 Celery is a low calorie vegetable. 4 2.13 -1.87
with 1 corresponding to Al on the CEFR scale and 6 I didn’t understand the noise last | 2.25 3.82 1.57
corresponding to C2 night.
I am definitely leaning towards ac- 35 5.02 1.52
cepting it.
Text Label | Prediction | Error
- Get off your high horse and lend 6.0 4.55 -1.45
to ascertain 6 24 -3.6 me a hand. This house isn’t going
naive 4 1.1 29 to paint itself.
endeavor 5 2.4 -2.6
Get off your high horse and lend 6 3.6 24
me a hand. This house isn’t going
to paint itself.
effervescent 6 3.6 2.4

Table 5: PaLLM 2-L: worst 5 errors, labels are 1-6 with
1 corresponding to Al on the CEFR scale and 6 corre-

sponding to C2
Text Label | Prediction | Error
By perseverance. 4 1 -3
Just a couple of weeks. 1 3 2
By perseverance, just not giving 55 3.87 -1.63
up even when things seem impos-
sible.
The rate at which kids absorb 6 4.4 -1.6
new information is simply aston-
ishing.
Yeah, it’s quite a controversy! 4.75 32 -1.55
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