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ABSTRACT

Transformers are widely used to extract complex semantic meanings from input
tokens, yet they usually operate as black-box models. In this paper, we present a
simple yet informative decomposition of hidden states (or embeddings) of trained
transformers into interpretable components. For any layer, embedding vectors
of input sequence samples are represented by a tensor h 2 RC⇥T⇥d. Given
embedding vector hc,t 2 Rd at sequence position t  T in a sequence (or context)
c  C, extracting the mean effects yields the decomposition

hc,t = µ+ post + ctxc + residc,t

where µ is the global mean vector, post and ctxc are the mean vectors across con-
texts and across positions respectively, and residc,t is the residual vector. For pop-
ular transformer architectures and diverse text datasets, empirically we find per-
vasive mathematical structure: (1) (post)t forms a low-dimensional, continuous,
and often spiral shape across layers, (2) (ctxc)c shows clear cluster structure that
falls into context topics, and (3) (post)t and (ctxc)c are mutually incoherent—
namely post is almost orthogonal to ctxc—which is canonical in compressed
sensing and dictionary learning. This decomposition offers structural insights
about input formats in in-context learning (especially for induction heads) and
in arithmetic tasks.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are practical neural network models that underlie recent suc-
cesses of large language models (Brown et al., 2020; Bubeck et al., 2023). Unfortunately, transform-
ers are often used as black-box models due to lack of in-depth analyses of internal mechanism, which
raises concerns such as lack of interpretability, model biases, security issues, etc., (Bommasani et al.,
2021).

In particular, it is poorly understood what information embeddings from each layer capture. We
identify two desiderata: (1) internal quantitative measurements, particularly for the intermediate
layers; (2) visualization tools and diagnostics tailored to transformers beyond attention matrix plots.

Let us introduce basic notations. An input sequence consists of T consecutive tokens (e.g., words
or subwords), and a corpus is a collection of all input sequences. Let C be the total number of
input sequences and c  C denote a generic sequence, which may be represented by xc,1, . . . ,xc,T

where each xc,t corresponds to a token. We start from the initial static (and positional) embeddings
(h(0)

c,t )tT and then calculate the intermediate-layer embeddings (h(`)
c,t)tT :

h(0)
c,1, . . . ,h

(0)
c,T = Embed(xc,1, . . . ,xc,T )

h(`)
c,1, . . . ,h

(`)
c,T = TFLayer`(h

(`�1)
c,1 , . . . ,h(`�1)

c,T ) for ` = 1, . . . , L.

where Embed and TFLayer` are general mappings. This general definition encompasses many
transformer models, which depend on attention heads defined as follows. Given dhead  d and
input matrix X 2 RT⇥d, for trainable weights W q

,W k
,W v 2 Rd⇥dhead , define

AttnHead(X) = softmax

✓
XW q

(W k
)
>X>

p
dhead

◆
XW v 2 RT⇥dhead . (1)
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Figure 1: PCA visualization of positional basis (blue) and cvecs (red) from GPT-2 on OpenWebText.
For every layer `, each pos(`)t and randomly selected cvec(`)c,t are projected using top-2 principal
directions of (pos(`)t )tT . Darker blue/red colors correspond to larger t. Principal components
have different scales across layers, but for aesthetic purposes we rescaled all plots.

Multi-head attention heads, denoted by MHA, are essentially the concatenation of many attention
heads. Denote a generic fully-connected layer by FFN(x) = W2 max{0,W1x + b1} + b2 given
any x 2 Rd for trainable weights W1 2 Rd0⇥d

,W2 2 Rd⇥d0
, b1, b2 2 Rd (often d

0
= 4d), and let

LN be a generic layer normalization layer. The standard transformer is expressed as

h(`+0.5)
c = h(`)

c + MHA
(`)

(LN
(`,1)

(h(`)
c )), h(`+1)

c,t = h(`+0.5)
c,t + FFN

(`)
(LN

(`,2)
((h(`+0.5)

c,t )))

where h(`+0.5)
c = (h(`+0.5)

c,1 , . . . ,h(`+0.5)
c,T ) and h(`)

c = (h(`)
c,1, . . . ,h

(`)
c,T ).

1.1 A MEAN-BASED DECOMPOSITION

For each embedding vector h(`)
c,t 2 Rd from any trained transformer, consider the decomposition

h(`)
c,t = µ(`)

+ pos(`)t + ctx(`)
c + resid(`)

c,t , where (2)

µ(`)
:=

1

CT

X

c,t

h(`)
c,t , pos(`)t :=

1

C

X

c

h(`)
c,t � µ(`)

, ctx(`)
c :=

1

T

X

t

h(`)
c,t � µ(`)

. (3)

Each of the four components has the following interpretations. For any given layer `,

• we call µ(`) the global mean vector, which differentiates neither contexts nor positions;

• we call (pos(`)t )tT the positional basis, as they quantify average positional effects;

• we call (ctx(`)
c )cC the context basis, as they quantify average sequence/context effects;

• we call (resid(`)
c,t)tT,cC the residual vectors, which capture higher-order effects.

• In addition, we define cvec(`)c,t = ctx(`)
c + resid(`)

c,t .

A priori, we do not know how much position information is retained in each layer, since many
transformers only have explicit positional encodings in the 0-th layer. Are positional basis and
context basis play the role as the names suggest? We will provide affirmative answers.

Sampling input sequences. A corpus can be extremely large, containing billions of tokens. For
practical use, in this paper C is much smaller: we subsample input sequences from the corpus; for
example, C = 6.4K in Figure 1. Thus, our empirical-mean-based decomposition can be regarded
as an estimate of the population means, using much less computation.

On terminology. (i) We use context to refer to a sequence since its tokens collectively encode
context information. (ii) We call positional/context basis for convenience. A more accurate term is
frame or overcomplete basis, since (pos(`)t )tT and (ctx(`)

t )cC are often linearly dependent.
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Table 1: Averaged (and std of) measurements across layers. Measurements based on 6.4K sam-
ples. All values are in [0, 1] except ‘rank estimate’: ‘relative norm’ means magnitude of positional
basis relative to centered embeddings; ‘similarity’ and ‘incoh’ are averaged cosine similarity (inner
products of normalized vectors) between ctx, and between ctx and pos, respectively.

Positional basis Context basis
Incohrank

estimate
relative
norm

inter-cluster
similarity

intra-cluster
similarity

NanoGPT Shakespeare 7.86(1.96) 0.66(0.28) ——– ——– ——–

GPT-2 OpenWebText 11.38(1.86) 0.31(0.19) 0.10(0.01) 0.44(0.04) 0.051(0.05)
WikiText 11.69(1.64) 0.31(0.19) 0.11(0.01) 0.41(0.03) 0.039(0.04)

BERT OpenWebText 12.54(2.73) 0.24(0.07) 0.13(0.04) 0.26(0.04) 0.046(0.05)
WikiText 12.62(2.70) 0.24(0.06) 0.17(0.03) 0.31(0.04) 0.043(0.04)

BLOOM OpenWebText 10.23(1.31) 0.16(0.09) 0.21(0.12) 0.48(0.06) 0.158(0.23)
WikiText 10.00(1.47) 0.16(0.08) 0.15(0.14) 0.32(0.09) 0.148(0.23)

Llama 2
OpenWebText 9.38(1.15) 0.14(0.03) 0.12(0.13) 1.00(0.01) 0.190(0.24)

WikiText 8.69(0.91) 0.14(0.03) 0.33(0.20) 1.00(0.01) 0.316(0.27)
GitHub 8.69(1.67) 0.20(0.05) 0.22(0.08) 1.00(0.01) 0.189(0.20)

Connections to Analysis-of-Variance (ANOVA). Our embedding decomposition is similar to
two-way ANOVA in form. Borrowing standard terminology from ANOVA, positions and contexts
can be regarded as two treatments, so viewing the embedding hc,t as the response variable, then
positional/context bases represent mean effects.

1.2 PERVASIVE GEOMETRICAL STRUCTURE

We consider a variety of transformers and datasets; see Section A for details. Our main results are
summarized below. Further, Section E explores randomization experiments and arithmetic tasks.

1. Positional basis is a significant and approximately low-rank component, forming a contin-
uous and curving shape, which is linked to smoothness.

2. Context basis has strong cluster patterns corresponding to documents/topics.
3. Positional basis and context basis are nearly orthogonal (or incoherent), which allows self-

attention heads to capture the interaction of the two bases easily.

What does residc,t represent? As with regression models, residual components may be non-
negligible and contain idiosyncratic information. For example, they can be used to track previously
seen tokens (Section 4.1) or special symbols in arithmetic (Section 5.2).

2 GEOMETRY OF POSITIONAL BASIS

2.1 LOW-DIMENSIONAL STRUCTURE AS A SIGNIFICANT COMPONENT

We find that the positional basis concentrates around a low-dimensional subspace. In Table 1, we
report the rank estimate of positional basis averaged across all layers using the method of Donoho
et al. (2023). In Section B.2, we report detailed rank estimates and an additional measurement:
stable rank (Rudelson & Vershynin, 2007). Table 2 shows that the low-rank structure is robustness
to out-of-distribution data, suggesting positional basis is indeed agnostic to contexts.

We also find that usually, the positional basis accounts for a significant proportion of embeddings.
In Table 1, we report the relative norm (averaged across layers) kP kop/kMkop, where M contains
centered embedding vectors hc,t � µ and columns of P are corresponding post. We also consider
normalized vectors: P̄ = [

pos1
kpos1k

, . . . ,
post

kpostk
], etc. In Figure 2 (left), we plot the top singular values

(adjusted for dimensional difference) in descending order of P = [pos1, . . . ,posT ], Cvec =

[cvec1,1, . . . , cvecc,T ], R = [resid1,1, . . . , residc,T ]. Visibly, positional basis is a considerable
component in magnitude and contributes to the spikedness of embeddings.
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Figure 3: Normalized Gram matrix [P̄ , C̄]
>
[P̄ , C̄] where P̄ = [

pos1
kpos1k

, . . . ,
post
posT

] and C̄ =

[
ctx1

kctx1k , . . . ,
ctxC

kctxCk ] based on GPT-2. Here, T = 128, and ctxc is sampled from 4 documents
with sample size 32 in OpenWebText. We find (i) Smoothness, pos-pos part (top left) of Gram
matrix is smooth; (ii) Incoherence, pos-ctx part (top right/bottom left) has values close to 0; (iii)
Clustering, ctx-ctx part (bottom right) shows strong cluster patterns.

Figure 2: Spectral and Fourier analysis based
on GPT-2 model and OpenWebText. Left: Top-60
(adjusted) singular values of P ,Cvec,R. Right:
Applying 2D discrete cosine transform to P̄>P̄ ,
we show first 10 frequency coefficients.

We notice that there are two exceptions: (i) 0-th
layer of Llama 2 and BLOOM (due to no po-
sitional encoding), (ii) last one/few layers of a
transformer. Likely, last layers do not need po-
sition information as contextualization is com-
pleted; an investigation is left as future work.

2.2 SPIRAL
SHAPE VIA A FOURIER PERSPECTIVE

A priori, a common geometric structure of po-
sitional basis is unexpected: after all, differ-
ent models/datasets may use position informa-
tion differently. Nevertheless, on text-based
datasets, we observe a common continuous
shape that is often spiral, parabolic, or U-shaped.

Table 2: Robustness of positional
basis. Similar geometric structures
found on out-of-distribution samples:
NanoGPT on WikiText, others on
GitHub.

rank
estimate

relative
norm

NanoGPT 7.86(1.96) 0.66(0.28)
GPT-2 11.54(1.55) 0.31(0.16)
BERT 12.46(2.47) 0.23(0.04)

BLOOM 9.54(0.84) 0.14(0.05)

In Figure 2 (right), we apply the 2D discrete cosine
transform to the normalized Gram matrix P̄>P̄ and dis-
cover that energies are concentrated mostly in the low-
frequency components, which reinforces the smooth and
curving structure we identified. Other models show simi-
lar low-frequency patterns except for BERT.

2.3 THEORETICAL
INSIGHT: CONNECTION TO SMOOTHNESS

It is well known that the smoothness of a function is con-
nected to fast decay or sparsity in the frequency domain
(Pinsky, 2008, Sect. 1.2.3). In Figure 3, the Gram matrix
of positional basis exhibits smooth patterns, allowing at-
tention to neighboring tokens more easily. Does smoothness of the Gram matrix shed light on the
geometrical structure of the positional basis? We provide an affirmative answer.

Smoothness of pos-pos Gram matrix induces the low-dimensional and spiral shape.

Let G = P>P 2 RT⇥T be the Gram matrix of the positional basis (no normalization for simplic-
ity). By definition in Equation 3, positional basis has zero means, so pos1 + . . . + posT = 0. To
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characterize smoothness, below we introduce the definition of finite difference. As with the discrete
cosine transform in 1D, we need to extend and reflect the Gram matrix to avoid boundary effects.

Let G(1)
= G and G(2)

,G(3)
,G(4) 2 RT⇥T be defined by G(2)

t,t0 = Gt,T+1�t0 , G
(3)
t,t0 = GT+1�t,t0 ,

G(4)
t,t0 = GT+1�t,T+1�t0 for any t, t

0
= 1, 2, . . . T . We extend and reflect G by

G̃ :=

✓
G(1) G(2)

G(3) G(4)

◆
. (4)

We define the first-order finite difference by (using periodic extension G̃t±2T,t0±2T = G̃t,t0 )

[�
(1,1)G̃]t,t0 = T

2
�
G̃t,t0 � G̃t�1,t0 � G̃t,t0�1 + G̃t�1,t0�1

�
, for all integers t, t0 (5)

Higher-order finite differences are defined recursively by �
(m,m)G̃ = �

(1,1)
�
�

(m�1,m�1)G̃
�
.

Note that �(m,m)G̃ measures higher-order smoothness of G̃. Indeed, if Gt,t0 = f(t/T, t
0
/T ) for

certain smooth function f(x, y) defined on [0, 1]
2, then [�

(m,m)G̃]t,t0 ⇡ @
m
x @

m
y f(t/T, t

0
/T ).

Theorem 1. Fix positive integers k  T and m. Define the low-frequency vector fs = (1, cos((s�
0.5)⇡/T ), . . . , cos((s � 0.5)(T � 1)⇡/T ))

> 2 RT where s = 1, . . . , k, and denote Fk =

[f1, . . . ,fk] 2 RT⇥k. Then there exists B 2 Rk⇥k such that (denoting kAkmax = maxij |Aij |)
1

T

��G� (FkB)
>FkB

��
op

 6

(8k)m
k�(m,m)G̃kmax . (6)

This theorem implies that if the extended Gram matrix has higher-order smoothness, namely
k�(m,m)G̃kmax is bounded by a constant, then even for moderate k and m, we have approximation
G ⇡ (FkB)

>FkB. Note that FkB consists of linear combinations of low-frequency vectors.
This explains why G has a dominant low-rank and low-frequency component.

Why smoothness? One possible explanation is that smoothness allows attention to neighboring
tokens easily (crucial for natural languages/codes), because often short-ranged token pairs tend to
receive higher QK values and thus higher attention weights.

3 CONTEXT BASIS: SALIENT CLUSTER STRUCTURE

Figure 3 shows that the context basis computed from 4 different documents can be visually clustered
into 4 groups. Measuring cluster compactness, we find that using context basis or even cvecs has at
least a slight advantage over raw embeddings (without removing positional effects) as in (Thompson
& Mimno, 2020). See Section C for detailed analysis.

On contextualization. We observe from Table 1: (i) except for Llama 2 and BLOOM, the increase
in cluster compactness seems to be moderate and only occurs in early layers, likely because our
measurements are global rather than based on fine-grained conditional probabilities; (ii) Llama 2 and
BLOOM show progressive changes in cluster compactness across layers, as shown by the numbers
in the paratheses. This is likely due to heterogeneous data during pretraining.

4 AN INVESTIGATION OF INCOHERENT BASES

Table 1 (last column) shows the mutual incoherence maxt,c |h post
kpostk

,
ctxc

kctxck i|, as a measure of align-
ment between the positional basis and the context basis. The low incoherence in Table 1 (zero is
impossible due to noise) means that the two bases are nearly orthogonal to each other. This weak
alignment is a key structural requirement for sparse learning and is often associated with restricted
isometry (Candes & Tao, 2005), irrepresentable conditions (Zhao & Yu, 2006), etc.

4.1 QK MATRIX DECOMPOSITION: A STUDY ON INDUCTION HEADS

Induction heads (Elhage et al., 2021) are components in transformers that complete a sequence
pattern based on observed past tokens, namely, predicting the next token [B] based on observed
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Figure 4: Dissecting QK/attention: GPT-2 on a repeated sequence of random tokens. (a)(b)(c):
we visualize pos-pos, pos-cvec, cvec-pos, cvec-cvec QK components (first four columns of
heatmaps), QK matrix (5-th column), and attention matrix (6-th column). (d): We visualize the
same three attention heads simultaneously, highlighting ‘anger’ token and its associated attention.

sequence [A], [B], . . . , [A]. They are recently identified to explain in-context learning abilities of
large language models. Surprisingly, induction heads even generalize on out-of-distribution data.

To dissect the self-attention mechanism, we decompose the QK matrices into components: assum-
ing µ = 0, then for embedding vectors h,h0 2 Rd we have

h>W q
(W k

)
>h = pos>W q

(W k
)
>pos+ pos>W q

(W k
)
>cvec

+ cvec>W q
(W k

)
>pos+ cvec>W q

(W k
)
>cvec .

(7)

Each of the four components shows how much an attention head captures information from cross-
pairs pos/cvec—pos/cvec of an embedding. Although the global mean µ 6= 0 in reality, we find
that it has little effect on interpretations.

Attention attribution for induction heads. Motivated by Equation 7, we decompose QK matrices
into interpretable components that illuminate the mechanism of induction heads. We generate a
sequence of 8 random tokens, repeat it twice, and then concatenate them into an input sequence for
the pretrained GPT-2 model. For each layer/head, we calculate four QK matrix components; for
example, for pos-pos matrix, each entry is given by pos>i W

q
(W k

)
>posj where i, j  T .

Generally, we find that pos-pos is smoothly dependent on positions, while cvec-cvec exposes
non-global effects of individual tokens. Depending on the magnitude of the four components, the
“winning” component will determine the pattern of the attention matrix.

As shown in Figure 4, we identify three types of attention heads that are vital for induction heads.

• Attention to self-tokens (Layer 0, Head 1). The dominant component is cvec-cvec (4-th
heatmap in (a)), where visible diagonal lines indicate strong association between identical
tokens, which translates to attention to previous identical tokens (blue lines in (d)).

• Attention to neighboring tokens (Layer 2, Head 2). The dominant component is pos-pos
(1-th heatmap in (b)), where upper right entries have higher values, resulting in attention to
the previous few tokens (red lines in (d)), thanks to softmax and causal masking.

• Attention to token being copied (Layer 5, Head 1). The combination of the first two types
gives rise to a new QK/attention pattern, where visible diagonal lines are shifted (yellow
arrow) by one token; compare 6-th heatmaps in (a) & (c). Given token ‘anger’, as shown
in grey in (d), attention heads look back for the next adjacent token, as shown in green.

Each type contains many representative heads including our handpicked ones; see Section D.1.
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Figure 5: Structure of attention weight matrices. For any of the 12 attention heads (for layer
L = 6 shown here) in GPT-2, we study the matrix W = W q

(W k
)
>
/
p
dhead 2 Rd⇥d. Red: we

show the diagonal entries diagg(W ). Blue: we take off-diagonal matrix W �diagg(W ) and rotate
it by the right singular vectors of positional basis, then show the large absolute values.

4.2 DISSECTING ATTENTION WEIGHT MATRICES

So far, we have observed that positional information is passed from earlier layers to later layers,
yielding clear geometric structures. How does transformer layer TFLayer` enable this information
flow? A natural hypothesis is that the weight matrix W := W q

(W k
)
>
/
p
dhead has a component

that is aligned with the low-dimensional subspace where the positional basis lies. We empirically
examine whether the following low-rank plus noise structure holds for certain heads.

W = V LV >
+D + Noise (8)

where columns of V 2 Rd⇥K are the top-K right singular vectors of positional basis matrix P ,
L 2 RK⇥K , and D 2 Rd⇥d is a diagonal matrix.

In Figure 5, we take D = diagg(W ) (shown in red), rotate the off-diagonal part of W by the right
singular vectors of P and apply denoising, namely zeroing entries whose absolute values are smaller
than a threshold. For many heads, the surviving large absolute values are concentrated in the top left
(K ⇡ 20)—which suggests that indeed a significant component of W is aligned with the positional
basis, supporting Equation 8.

4.3 THEORETICAL INSIGHT: KERNEL FACTORIZATION

What are the desirable properties that incoherence structure induces in many trained transformers? It
is well known in sparse coding and compressed sensing that incoherent basis facilitates recovery of
sparse signals (Donoho & Stark, 1989; Donoho & Elad, 2003; Donoho, 2006; Candès et al., 2006).

Here we focus on the self-attention mechanism of transformers. By adopting the kernel perspective,
we provide preliminary analysis for our following heuristics:

Incoherence enables a kernel to factorize into smaller components, each operating independently.

Given query/key matrices W q
,W k 2 Rd⇥dhead , we define the (asymmetric) kernel by

KW (z, z0
) := exp

�
z>Wz0�

= exp

✓
hW qz,W kz0ip

dhead

◆
, recall W = W q

(W k
)
>
/

p
dhead.

Using KW , the attention can be expressed as kernel smoothing: for embeddings (xt)tT ⇢ Rd,

AttnHead(xt;KW ) =

X

kt

KW (xk,xt)P
k0t KW (xk0 ,xt)

v(xk) (9)

where v : Rd ! R is a generic value function. This kernel perspective is explored in Tsai et al.
(2019), where it is argued that the efficacy of self-attention largely depends on the form of the kernel.

Suppose that there are two overcomplete bases B0
1,B0

2 ⇢ Rd. For simplicity, assume that kuk2  1

if u 2 B0
1 or B0

2 . The mutual incoherence is incoh := max
�
|hc, ti : c 2 B0

1, t 2 B0
2

 
. Consider
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the (extended) overcomplete basis B↵ := {�u : u 2 B0
↵,� 2 [�1, 1]} where ↵ 2 {1, 2}. Given

query/key vectors xq
,xk 2 Rd, suppose that we can decompose them according to the two bases.

xq
= cq + tq, xk

= ck + tk, where cq, ck 2 B1; t
q
, tk 2 B2. (10)

We can generically decompose the kernel into a product of four components

KW (xq
,xk

) = KW (cq, ck)KW (cq, tk)KW (tq, ck)KW (tq, tk) .

Each kernel component measures cross similarity of pairs between cq, tq and ck, tk, which then
translates into a weight for the attention. Unfortunately, this general decomposition requires the
individual kernels to share the same weight W , which hinders capturing cross interactions flexibly.

It turns out that if the weight matrix is sparsely represented by the bases, then kernel flexibility can
be achieved. To be precise, we will say that W 2 Rd⇥d is s-sparsely represented by bases B,B0 if
there exist (ak)ks ⇢ [�1, 1], (uk)ks ⇢ B, (vk)ks ⇢ B0 such that

W =

X

ks

akukv
>
k . (11)

Theorem 2. Let W11,W12,W21,W22 2 Rd⇥d be any matrices with the following properties:
for ↵,� 2 {1, 2}, W↵� 2 Rd⇥d is O(1)-sparsely represented by bases B↵,B� . Then for all
xq

,xk 2 Rd satisfying Equation 10, W = W11 +W12 +W21 +W22 satisfies

KW (xq
,xk

) =
�
1 +O(incoh)

�
·KW11(c

q
, ck)KW12(c

q
, tk)KW21(t

q
, ck)KW22(t

q
, tk) (12)

Moreover, Equation 12 holds with probability at least 1�O((|B0
1| · |B0

2|) exp(�incoh
2 · d) if each

W↵� is replaced by W↵� +
Z↵�p

d
where (Z↵�)kk0 is an independent subgaussian1 random variable.

The factorization 12 says that each kernel component has a separate weight matrix, and all compo-
nents contribute multiplicatively to KW . The “moreover” part generalizes the sparse representation
notion by allowing additive noise, which matches the empirical structure in Equation 8.
Remark 1. If we suppose incoh ⇣ d

�� with 1/2 > � > 0, then the high probability statement is
nontrivial if |B0

1| · |B0
2| = o(exp(d

1�2�
)). This dictionary size limit is generally reasonable.

5 WHY TRAINING FORMAT MATTERS: SMOOTHNESS PERSPECTIVE

5.1 TRAINING WITH TOKEN RANDOMIZATION

We train transformers on three different training data: (i) baseline—sequences of length T = 512

sampled from the first 10K samples of OpenWebText, (ii) partial randomization—sequences of the
same data source but the latter half is replaced by random tokens uniformly sampled in the vocabu-
lary, (iii) full randomization—input sequences are fully random tokens.

Figure 6 (a)–(c) show the positional bases of two selected layers (L1 & L5) from the three settings.
As darker colors represent later positions, we find that randomization destroys geometric structures
of positional basis at exact positions where randomization takes place.

5.2 SIMPLE EXPERIMENTS ON ADDITION TASKS

We explore a simple arithmetic task—Addition, where inputs are formatted as a string “a + b =

c” with a, b, c represented by digits of a certain length. We sample the length of each addition
component uniformly from {L/2, . . . , L} where L = 10 and then (i) in the “carry” setting, sample
digits independently, and (ii) in the “no-carry” setting, examples involving carry are removed. For
both settings, the output order is reversed (Lee et al., 2023). Training transformers on datasets under
the two settings, we discover similar phenomena, so we only present results for (i).

In Figure 6 (d)–(e), we visualize two exemplary attention heads in a way similar to Figure 4. We find
many fractured or discontinuous QK matrices and their pos-pos components. Likely associated
with this discontinuity pattern, we find the transformer has difficulty generalizing to longer or shorter
sequences (failure of length generalization). See Section E for details.

1We say that a random variable ⇠ is subgaussian if E[⇠] = 0 and E[exp(�⇠)]  exp(�2/2) for all � 2 R.
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Figure 6: (a)(b)(c): Token randomization experiments (first row). Positional basis of transform-
ers trained on unmodified text sequences, sequences with the latter half replaced by random to-
kens, purely random tokens, respectively. (d)(e): Addition experiment (second/third row). Frac-
tured/discontinuous patterns likely cause length generalization to fail.

6 RELATED WORK

Analyses of transformers have attracted research interest since (Vaswani et al., 2017). Many studies
on GPT-2 (Radford et al., 2019) and BERT (Devlin et al., 2018) show that last-layer contextualized
embeddings capture linguistic structure and exhibit excellent downstream performance (Hewitt &
Manning, 2019; Chi et al., 2020; Thompson & Mimno, 2020). Fewer papers focus on the geometry
or intermediate-layer embeddings: in Ethayarajh (2019), it is found that later-layer embeddings are
increasingly anisotropic and context-specific; Cai et al. (2020); Reif et al. (2019); Hernandez &
Andreas (2021); Gao et al. (2019) observed interesting geometric structures and artifacts without
thorough analysis; Yeh et al. (2023) provide visualization tools for embeddings. Our decomposition
reveals consistent geometry and explains observed artifacts (anisotropic, spiral shape, etc.).

Many variants of positional embedding are proposed (Shaw et al., 2018; Dai et al., 2019; Su et al.,
2021; Scao et al., 2022; Press et al., 2021) since Vaswani et al. (2017). Since GPT-4, many papers
focus on length generalization for arithmetic tasks (Kazemnejad et al., 2023; Lee et al., 2023). Prior
analyses on positional embeddings focus only on static (0-th layer) embeddings for selected trans-
formers (Wang et al., 2020; Ke et al., 2020; Wang & Chen, 2020; Tsai et al., 2019), whereas we
provide a complete picture.

Prior work on LSTMs finds decomposition-based methods can enhance interpretability (Murdoch
et al., 2018). Understanding the inner workings of transformers is usually done through visualizing
the attention heads (Clark et al., 2019; Wang et al., 2022). The emergence of induction head Elhage
et al. (2021); Olsson et al. (2022) is supported by attention visualization, which is further reinforced
by our analysis.

7 LIMITATIONS

In this paper, we mostly focus on pretrained transformers due to limited computational resources. It
would be interesting to investigate the impact of input/prompt formats on the geometry of embed-
dings over the course of training, especially for different linguistic tasks and arithmetic tasks.

Also, we mostly focus on the mean vectors post and ctxc but not study residc,t thoroughly. It
would be interesting to study the higher-order interaction in residc,t and propose a nonlinear de-
composition of embeddings, which is left to future work.
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