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Abstract

The ability to continually discover novel concepts is a
core task in open world learning. For classical learn-
ing tasks new samples might be identified via manual
labeling. Since this is a labor intensive task, this paper
proposes to utilize causal information for doing so. Im-
age data provides us with the ability to directly observe
the physical, real-world appearance of concepts. How-
ever, the information presented in images is usually of
noisy and unstructured nature. In this position paper we
propose to leverage causal information to both struc-
ture and causally connect visual representations. Specif-
ically, we discuss the possibilities of using causal mod-
els as a knowledge source for identifying novel concepts
in the visual domain.

Overview. Section (1) motivates continuous concept dis-
covery using causal mechanisms. Section (2) outlines a path
to continually advance the discovery of visual concepts us-
ing causal structures. Section (3) outlines practical issues en-
countered in (1) and (2) and discusses future steps.

1 Motivation
Modern machine learning systems need to process large
amounts of annotated image data to identify visual concepts.
While the resulting models achieve impressive results and
push the limits of the field, they lack human curiosity and fall
short in their ability to perform lifelong learning. One draw-
back of such approaches is the necessity to provide a super-
vision signal for the image data. While modern approaches
utilize large amounts of data available from the internet, the
trained models fall short on training data for niche domains
and might adapt harmful biases from the data. Continual
learning approaches are interested in continuously discover-
ing novel concepts to help machine learning models improve
and adapt to new environments. A key challenge in this re-
gard is to provide sufficient amounts of accurately annotated
data. For this purpose the field of causality can help to pro-
vide the required supervision by leveraging the structure of
causal mechanisms.
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How do humans discover novel concepts? Machine
learning models are usually trained by presenting them with
randomly sampled image-label pairs. The presented sam-
ples usually do not leverage connections to other already
known concepts. Because of this, machine learning mod-
els are expected to identify visual concepts from ground up.
This is in contrast to the way humans discover the world.
When presented with novel concepts we usually start out
with some initial knowledge. We relate novel concepts to
pre-existing knowledge and therefore continually advance
our understanding of the world (Chen and Liu 2018; Flesch
et al. 2022).

Supervision for open world discovery Labeled data is
scarce for many applications in machine learning. Some
modalities, such as text data might be available in great
abundance, while other modalities such as (annotated) im-
age data are often lacking. When training on image data
there are common types of supervision signals: Most com-
monly, images are assigned a label out of a set of fixed la-
bels or categories (e.g. LeCun (1998); Deng et al. (2009)).
Training on such data usually provides a clear supervision
signal with regard to the task of interest. However, fixing
the set of labels also restricts the set of possible concepts
to provide feedback on. Including new concepts is a te-
dious process that possibly requires the collection of new
data and (re)labeling of the data set. More recently, data
sets of image-description pairs are used for training (Schuh-
mann et al. 2022). Collected images are no longer restricted
to a certain set of labels, but are rather paired-up with an
associated free-text description of the image contents. This
helps our task of continuous concept discovery that requires
a supervision signal that is able to describe newly appear-
ing concepts. Additionally, using language as a supervision
signal aligns better with human intuition and allows to ex-
press relations between objects/concepts in the image. As
a trade-off way between fixed feature vectors and arbitrary
text descriptions, we can make use of relational data. Apply-
ing supervision from manually annotated (Speer, Chin, and
Havasi 2017) or learned (Willig et al. 2022; Long, Schuster,
and Piché 2022) knowledge graphs combines the benefits of
explicitly stating involved concepts while retaining informa-
tion of relations between the individual concepts.



Matchbox

Match

Flame

?

SCM selection: Flame ← Match + Matchbox

Matchbox

Match

Flame

Infer the presence of a Flame

?

Classification of known concepts Train classifier on Flame concept

Im
a
g
e
 D

o
m

a
in

S
C

M
 D

o
m

a
in

(1)

(2)

(4)

(3)

Figure 1: Visual concept discovery using structural causal models. (1) A classifier identifies the concepts Match and Matchbox
in an image. (2) An SCM (blue circle) that covers the concepts Match and Matchbox is selected from a knowledge base. The
SCM contains the additional concept of a Flame which is yet unknown to the classifier. (3) Evaluation of the structural equations
indicate the presence of a flame. (4) The classifier is retrained to detect the previously unknown Flame concept.

Why do we want causal concept discovery? Causality
is concerned with identifying processes that are underlying
real world observations. As such, structural causal models
(SCM) are designed to model the causal relationship be-
tween different concepts. Whenever we detect some con-
cepts of a given SCM, we can utilize the graph structure
to infer the presence of other, possibly unknown, concepts.
Definitions of a ‘concept’ might vary, depending on the spe-
cific use case. In this paper we will use the term to capture
the range from low-level features, such as color or texture,
to complex composed entities, e.g. cities. In the following
we outline a possible approach to utilize such causal knowl-
edge for continual discovery (shown in Figure 1). Assume
that a system is able to detect matches and matchboxes in
images, but has not yet seen a flame. In Phase 1 the classi-
fier will identify the known concepts match and matchbox,
but is unable to identify a flame. However, we might have
knowledge about the causal effect of sliding a match along
the striking surface of the matchbox. We can express this
knowledge in a causal graph without having to provide im-
age samples (Phase 2). Now, whenever we observe the in-
teraction of striking matches on a matchbox, we infer the
presence of a flame (Phase 3) and in consequence train our
classifier on the new concept (Phase 4). This approach helps
us in two ways: (1) Since the causal model specifies the ex-
act conditions under which a particular concept is to be ex-
pected, we can actively steer our discovery process towards
those instances and discover concepts more efficiently. (2)
Secondly, causality helps us with disentangling concepts and
ruling out confounding factors, which may not be possible
with arbitrary relational feedback. While some objects might
only appear in strongly correlated settings we know the true
causal factors from the SCM.

2 Causal Concept Discovery
Discovering concepts under causal supervision provides a
way to incrementally discover and learn novel concepts in
the image domain. For every observation, we search for an
SCM that contains already known concepts and follow the
causal graph to infer the presence of novel concepts. With
each newly learned concept we are able to identify more
concepts and in consequence use more causal graphs for in-
ference. This continually broadens the scope of our models
and discovers previously unknown concepts.

Structural Causal Models. As we use SCMs to ground
and discover novel concepts in the visual domain, we fol-
low the Pearlian notion of Causality (Pearl 2009). An SCM
is defined as a 4-tuple M := ⟨U,V,F , p(U)⟩ where the
so-called structural equations vi ← fi(pai, ui) ∈ F assign
values to the respective endogenous variables Vi ∈ V based
on the values of their parents Pai ⊆ V \ Vi and the values
of their respective exogenous variables Ui ⊆ U. In partic-
ular, any SCM induces a causal graph which represents the
causal structure from causes to effects.

Bootstrapping. SCMs are specifically tailored to repre-
sent information about causal systems. However, in practice
we may not be able to explicitly provide a list of concepts C
learned by the model and might even encounter catastrophic
forgetting of already learned concepts (French 1999). This
poses a practical problem as it introduces additional uncer-
tainty to our system. For our theoretical discussion, we as-
sume for now that we can reliably detect all concepts that
we have already discovered during our process.

For starting up our discovery process, we assume an initial
set of known concepts C0 to be given, which can be reliably
detected. This intial knowledge might come from training



on manually annotated data sets or other pre-trained models
(Lin et al. 2014; Krizhevsky, Sutskever, and Hinton 2012;
Minderer et al. 2022). Additionally we assume to be given a
source of SCMs that encode our causal knowledge about the
world.

Boundaries of Discovery. Open world settings provide an
infinite stream of concepts to discover (Chen and Liu 2018).
Like for human curiosity, we are not interested in learning
random concepts, but in utilizing our existing causal knowl-
edge to efficiently discover concepts that stay close to our
already existing knowledge. As such, we define the causal
frontier as the set of SCMs that contain at least one concept
of Ci. Importantly this gives us a method to a priori deter-
mine which concepts can and can not be discovered. Given
the set of initial concepts C0 and the set of given causal
graphs, it follows that we can only discover those concepts
for which we can find a chain of causal graphs, such that for
any two adjacent SCMs we get a non-empty overlap between
their set of variables.

Discovering concepts. At this point in our process we can
start to advance our causal frontier by continually learning
new concepts from observations. As a first step, we iden-
tify all known concepts that are present in a new observed
image and select the causal graphs that contain those con-
cepts. However, discovering that a concept is contained in
the set of endogenous variables of a causal graph does not
suffice to infer the presence of the causal system. Some com-
mon concepts, such as color, might appear as parameters in
many causal graphs. Apples, for example, are typically col-
ored green or red. As such, the concept of color parameter-
izes the observed object. However, it is not suited to infer
the type of an object, as being colored red or green does not
make an object an apple. Detecting the typical ‘apple-like
shape’ however would be a strong indicator for the concept.
Therefore, we are interested in SCMs for which we discover
indicator variables or actual causes (Halpern 2016) that are
necessary to infer the presence of a causal system.

Another important insight is the fact that some causal
structures may only be identifiable with the help of inter-
ventions (Pearl 2009; Bareinboim et al. 2022). Consider, for
example, a scenario of two independent variables, A and B,
whose appearance are determined by a third variable C. As
a consequence, A and B are either present at the same time
or not, and we have no way to disentangle them. Causality
can help to detect such situations. In consequence we can
actively intervene on the system and identify the individual
concepts.

Preconditions for Causal Concept Discovery
While supervision using relational (causal) structures trades
off rigid label vectors and unstructured text supervision, we
still need to overcome a number of obstacles for practical
use.

As a special form of relational concept discovery, causal
concept discovery relies on the assumption, that a causal
process involving a given concept exists and that this pro-
cess is identifiable in the data. This restricts the possible

area of application, but acquires a stronger feedback in re-
turn. Coming back to our match striking example, we find
a similar “Lighting Match” entry in ConceptNet1 which de-
scribes the relational cause-effect relations between a match,
matchbox and flame.

Given, not only the relational causal structure, but ex-
act additional structural equations, will strengthen our dis-
covery signal. Describing not only the existence of a flame
but the process of starting out small and getting bigger over
time gives us a directly measurable sequence. Even without
proper calibration between the SCM ‘flame size’ variable to
the actual observed flame size in the image, we observe two
variables with equivariant behaviour over time, increasing
the probability of a correct match between the SCM and the
actual ‘unknown’ visual concept of a flame.

3 Challenges and Future Steps
In the previous sections we outlined the high-level idea of
causally guided concept discovery. For this section we now
continue to discuss the challenges that may arise in practice.

Challenge 1: Identifying causal paths. One problem
with identifying unknown variables from SCMs is the fact
that we may not know how causes and effects are interact-
ing in the real world. In our initial example of lighting a
match we might follow the physical process of the objects
interacting. For other examples we might assume to only
observe sparse changes. While we can continue to come up
with more heuristics for specific problems, we have to recog-
nize that the current formalizations of causality are not well
suited to trace causal effects in their underlying systems.

Challenge 2: Abstracting concepts. Another challenge
towards identifying unknown concepts from SCMs arises
from the fact that causal systems are often modeled using
high-level relations. Because of that we might encounter
several low-level entities on the way from cause to effect the
are not modeled in the SCM. In order to be able to iden-
tify these concepts, we need to consider abstractions and
refinements of SCMs (Beckers and Halpern 2019; Ruben-
stein et al. 2017). This means, that we have to come up with
ways of identifying intermediate concepts or refine the given
SCMs to better reflect the abstraction level of our observa-
tions.

Summary and Outlook: In this position paper we high-
lighted the strengths and challenges of continuous causal
concept discovery. We presented ways on how to leverage
causal structures to guide concept discovery and identify
novel concepts. While we primarily focused on the applica-
tion of causal knowledge to discover open world concepts,
the inverse problem of inferring causal knowledge from
open world settings is also still to be discussed. Identifying
relevant concepts and connecting them in a way that leads
to meaningful causal concepts poses a challenging problem
on its own that is yet to be solved. For future applications,
we might consider combined approaches that discover visual
concepts via causal guidance while simultaneously refining
their causal knowledge using observations.

1https://conceptnet.io/c/en/lighting match
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