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ABSTRACT

Prompt learning, which focuses on learning continuous soft prompts, has emerged
as a promising approach for efficiently adapting pretrained vision-language models
(VLMs) to multiple downstream tasks. While prior works have shown promising
performances on common benchmarks, they typically rely on labeled data samples
only. This greatly discredits the information gain from the vast collection of
otherwise unlabeled samples available in the wild. To mitigate this, we propose a
simple yet efficient cross-model framework to leverage on the unlabeled samples
achieving significant gain in model performance. Specifically, we employ a semi-
supervised prompt learning approach which makes the learned prompts invariant to
the different views of a given unlabeled sample. The multiple views are obtained
using different augmentations on the images as well as by varying the lengths of
visual and text prompts attached to these samples. Experimenting with this simple
yet surprisingly effective approach over a large number of benchmark datasets, we
observe a considerable improvement in the quality of soft prompts thereby making
an immense gain in image classification performance. Interestingly, our approach
also benefits from out-of-domain unlabeled images highlighting the robustness and
generalization capabilities. Our code will be made publicly available.

1 INTRODUCTION

Recently vision-language models (VLMs) (Jia et al., 2021; Li et al., 2022; 2021; Radford et al., 2021;
Wu et al., 2021) have shown encouraging progress on a number of downstream tasks. These models
are initially trained on large-scale data to align language and vision modalities. Such a paradigm
allows zero-shot transfer to downstream tasks since one can synthesize a natural language description
known as prompt of the new class (e.g., ‘a photo of a class name’) to be fed to the text encoder and
compare the generated text features with visual features. However, the non-trivial task of choosing
the best hand-crafted prompts is difficult, requiring a lot of time and domain-specific heuristics. This
has led to prompt learning (Lu et al., 2022; Zhou et al., 2022b;a). It aims to use soft prompts that are
learned using labeled samples from downstream tasks, keeping the pretrained model frozen. These
approaches have demonstrated comparable performance to full fine-tuning though learning only few
parameters and are known to adapt to new tasks quickly (He et al., 2022).

To the best of our knowledge, prompt learning has thus far relied only on supervised approaches,
which makes it critically dependent on heavily curated data requiring tedious human labeling effort.
This motivates us to look beyond traditional supervised prompt learning in order to not only minimize
the annotation effort but also to improve the performance on downstream tasks in extremely low
labeled data regime. Semi-supervised Learning (SSL) has shown promising results in visual scene
understanding. Among these, self-training or pseudolabeling (Arazo et al., 2020) uses confident pre-
dictions of unlabeled samples as true label for further training. Consistency regularization (Bachman
et al., 2014) transforms unlabeled samples to different views and forces the model to learn invariant
representations. However, in low-labeled data regime, the learned representations tend to lack enough
discriminative power for downstream tasks. To handle this issue, recent works like (Xu et al., 2022)
employes not single, but multiple models towards cross-model representation learning leveraging the
complementary representations from these different models. Although these approaches have shown
promising results, there has not been applications of SSL in prompt learning for large VLMs. In this
work, we show that semi-supervised prompt learning not only provides a way to exploit the unlabeled
data present in hand but also helps learning richer representations without additional manual labeling.
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(a) EuroSAT (b) CropDiseases (c) EuroSAT (d) CropDiseases

Figure 1: (a, b): Category-wise performance gap between two models leveraging same amount of labeled
and unlabeled data but with different number of learnable prompts (8 and 16 textual and visual prompts) on
EuroSAT and CropDiseases respectively. Acc8 and Acc16 denote the accuracy with 8 and 16 length prompts
respectively showing the complimentary knowledge acquired by the two models. (c, d): comparison of XPL
with the conventional text-only prompt learning CoOp (Zhou et al., 2022b) trained using different percentages of
labeled training data on the same datasets. With only 1% of labeled data, XPL surpasses the fully supervised
CoOp (shown with red dotted line). CoOp with same amount of labeled data fail to reach the accuracy of XPL.

While prompt learning is an efficient and quick adaptation paradigm, their low capacity may not
allow a single prompt learning model to achieve best perfromances in all. To better exploit multiple
prompt learners, we present a SSL approach based on the complementary representations at the
model level. We observe that two models leveraging unlabeled data but with different number of
learnable prompts exhibit markedly different category-wise performance (ref. Figure 1a and b). This
indicates that the two models learn complimentary knowledge and thus can complement in providing
semisupervision to each other. To this end, we introduce our semi-supervised Cross-model Prompt
Learning (XPL) that relies on the invariance of the learned prompts to different views of unlabeled
data. Given a pretrained VLM, we create a set of augmented versions of the unlabeled data and pass
them via two pathways (known as the primary and the auxiliary pathways) each having a different
length of soft prompts associated to them. Then, given an unlabeled image, we bring a confident
prediction from the auxiliary network as the pseudo-label for the primary and vice versa facilitating
a greater engagement of unlabeled images. To the best of our knowledge, XPL is one of the first
works in semi-supervised prompt learning in VLMs. We evaluate our approach on different image
classification tasks in 15 standard datasets from diverse categories including Aerial, Medical, Natural,
Illustrative, Texture, Symbolic and Structured images. We focus on learning prompts at significantly
low labeled data regime, which includes the conventional few-shot classification settings as well as
various proportions of labeled training data. Figure 1c and d show that using only 1% training data
with labels and rest as unlabeled data, XPL superseeds the performance of the supervised text-only
prompt learning approach CoOp (Zhou et al., 2022b) that uses 100% training data with labels in
the benchmark datasets of EuroSAT (Helber et al., 2019) and CropDiseases (Mohanty et al., 2016)
respectively. XPL is also shown to be consistently better than CoOp that uses the same amount of
labeled data as ours showing the advantage of multimodal, semi-supervised and cross-model approach
for prompt learning.

2 RELATED WORKS

Vision Language Models (VLMs). Development of VLMs employing single-stream (Chen et al.,
2020b; Li et al., 2019; 2020; Su et al., 2019) or dual-stream (Goel et al., 2022; Jia et al., 2021; Li
et al., 2022; 2021; Radford et al., 2021; Tan & Bansal, 2019) paradigms have progressed significantly.
The prevailing dual-stream paradigm, which separates the image encoder and text encoder, forms the
backbone of our approach. By enabling zero-shot transfer to a range of downstream tasks, notable
efforts like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) have substantially changed
computer vision lately. Few methods have learned transferable features using additional supervi-
sion (Li et al., 2021; Mu et al., 2021), finer-grained interactions (Yao et al., 2021), modern Hopfield
networks (Fürst et al., 2021), optimal transport distillation (Wu et al., 2021), cycle consistency (Goel
et al., 2022), and hierarchical feature alignment (Gao et al., 2022). However, these are limited by
supervised training only. Ours is one of the first works that goes beyond the supervised setting and
learns prompts levering on unlabeled data alongside a few labeled samples.

Prompt Learning. There have been numerous studies on prompt tuning (Huang et al., 2022; Zhou
et al., 2022b) for effective adaption of VLMs. CoOp (Zhou et al., 2022b), a well-known prompt tuning
framework draws its inspiration from NLP (Lester et al., 2021; Zhong et al., 2021) and uses cross-
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entropy loss to learn prompt vectors. UPL (Huang et al., 2022) proposes an unsupervised prompt
learning framework without necessitating any annotations of the target dataset, while, ProDA (Lu
et al., 2022) learns various prompts from data to manage the variation of visual representations. Some
approaches like CLIP-Adapter (Gao et al., 2021) and Tip-Adapter (Zhang et al., 2021) adjust VLMs
by training additional adapter networks using labeled data. In (Shu et al., 2022), a framework for
test-time prompt tuning is also proposed that does not require training data or annotations. These
methods outperform hand-crafted prompts in a reasonable variety of ways, but they frequently have
low generalizability when there are changes in the data distribution.

Semi-Supervised Learning. Semi-supervised learning (SSL) comprises of several tech-
niques (Chapelle et al., 2009) to utilize unlabeled data for considerably reducing the dependency on
annotations. Many efficient approaches have been proposed over time. For instance, self-training with
pseudo-labels (Arazo et al., 2020; Grandvalet & Bengio, 2005; Lee, 2013), contrastive learning (Singh
et al., 2021) and consistency regularization (Bachman et al., 2014; Berthelot et al., 2019a;b; Miyato
et al., 2018) have shown to significantly enhance the performance over their supervised counter-
parts. Another current trend for SSL is the use of self-supervised learning techniques like rotation
prediction (Gidaris et al., 2018), discriminative image transformation (Dosovitskiy et al., 2014)
etc. Recently, several approaches have been proposed which implement SSL methods in both
multi-modal (Alwassel et al., 2020) and cross-model settings. (Xu et al., 2022) considers two video
models with different architectures to generate pseudo-labels that are used to train each other in a
cross-teaching fashion. Although semi-supervised image classification has made great strides, SSL
for prompt learning is still a new and understudied issue.

3 METHODOLOGY

Using a pretrained vision-language model e.g., CLIP (Radford et al., 2021), the aim of our proposed
approach is to learn prompts in a semi-supervised setting for efficient and generalizable adaption of
the model to various downstream tasks.

3.1 BACKGROUND

Revisiting Vision-Language Models. We build our approach on top of a pre-trained VLM,
CLIP (Radford et al., 2021), that combines a text encoder and an image encoder. Specifically,
we adopt a vision transformer (ViT) (Dosovitskiy et al., 2020) based CLIP model, which is consistent
with current prompt learning techniques (Zhou et al., 2022b;a). As explained below, CLIP encodes
an image alongside an associated text description. The image encoder takes an image I, splits it into
M fixed-size patches and embeds them into patch embeddings eip, where p = 1, · · · ,M denotes
spatial locations. We denote the collection of embeddings Ei = {eip|p = {1, · · · ,M}} as input to
the (i+ 1)th layer Li+1 of the vision encoder. Together with an extra learnable classification token
([CLS]), the vision encoder can be compactly written as,

[xi,Ei] = Li([xi−1,Ei−1]) ∀i = 1, 2, 3, ..., l (l is # of layers) (1)

where xi ∈ Rd denote [CLS] embedding at Li+1’s input space. Similarly, words from the text
descriptions are sent to the text encoder to produce text embedding w ∈ Rd. CLIP uses a contrastive
loss during training to find a combined embedding space for the two modalities. For a mini-batch of
image-text pairs, CLIP maximizes the cosine similarity for each image with the matched text while
minimizing the cosine similarities with all other unmatched texts.

Once the two encoders are trained, recognition can be performed by finding the similarity between an
image and its textual description in the joint embedding space. In place of only the classnames a more
informative natural language class description or prompt generated from the classnames are used.
Some of such carefully designed prompts found to be useful in the literature are: ‘a photo of
a {class}’, ‘a photo of a person doing {activity class}’ etc. Given C class
names, the text encoder generates C text embeddings {wc}Cc=1. For a test image I with embedding
xl, the prediction probability p(y|I) is calculated as:

p(y|I) = exp(sim(xl,wy)/τ)∑C
c=1 exp(sim(xl,wc)/τ)

(2)
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Figure 2: Illustration of our XPL approach. Our approach consists of primary and auxiliary paths that share
the same pretrained frozen VLM. The primary network accepts text and visual prompts (Tp and Vp respectively)
with N tokens while the auxiliary network gets prompts (Ta and Va respectively) with half the number of
tokens. The visual prompts are generated from the textual prompts by a learnable coupling function F(.). At
first, the prompts are learned using limited labeled data (not shown in figure). Subsequently, in absence of labels
prompts are trained by encouraging representations to match in both networks. This is done by minimizing the
cross-entropy loss between pseudo-labels generated by the auxiliary network and the predictions made by the
primary and vice versa. Given an image at test time, only the primary network is used for inference.

where, τ is a temperature hyperparameter and sim(.) denotes cosine similarity function.

Text and Visual Prompt Learning. To overcome the shortcomings of hand-engineered prompts,
prompt learning aims to learn continuous vectors at each token position using a small amount of
labeled data. Given a pre-trained model, a set of N learnable vectors are introduced in the input
space. In order to learn the language prompts, set of prompt vectors T = {ti}Ni=1 are introduced in
the text branch of the VLM. Now, the input embeddings take the form {t1, t2, ..., tN, cc}Cc=1, where
cc stands for the word embedding of the cth class label. Similarly, V = {vi}Ni=1 is introduced in the
vision branch together with the input image tokens to learn the visual prompts. After introducing the
prompts at the input layer of the vision encoder, the formulation for the l layers are modified as,

[x1,Z1,E1] = L1([x0,V,E0])

[xi,Zi,Ei] = Li([xi−1,Zi−1,Ei−1]) ∀i = 2, 3, ..., l
(3)

where, Zi represents the features computed by the ith transformer layer. During training, only these
task-specific text prompt (T) and visual prompts (V) are updated, the VLM remains unchanged.

3.2 XPL

The proposed XPL leverages on the unlabeled data in a very low labeled data regime to learn prompts
that are more generalizable and enhance downstream classification performance. Though traditionally
not used in prompt learning, semi-supervised approaches like pseudo-labeling and consistency
regularization have demonstrated great performance in recognition (Arazo et al., 2020; Berthelot
et al., 2019a;b; Chen et al., 2020a; Miyato et al., 2018; Singh et al., 2021). We propose to leverage on
the huge pool of unlabeled images to shine light into the gaps between handful of labeled examples.
One idea in using unlabeled data is to generate different views of the same input by augmenting it
differently and force the deep network to predict the same information from the two views.

Typically, a single model trained on a handful of labeled data is used for such semi-supervised
learning. In our cross-model approach we introduce an auxiliary network in addition to the primary
VLM and ask them to produce the supervision for each other that in effect, encourages to learn
complementary representations for the same unlabeled data. As seen in Figure 2, given an unlabeled
image I, both the networks get two distinct views Iwk and Istr of the image using a ‘weak’ and a
‘strong’ augmentation respectively. ‘Weak’ augmentation is standard flip-and-shift operation while
RandAugment (Cubuk et al., 2020) is used for ‘strong’ augmentation. In our multi-modal approach,
to achieve mutual collaboration between the text and visual prompts, instead of using two distinct
prompts in the text and visual branches, we derive the visual prompts V directly from the text prompts
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T using a coupling function F(.), i.e., vi = F(ti). We implement F(.) as a simple linear layer. For
the primary network, the two prompts are denoted as Tp and Vp respectively. Similarly, the same for
the auxiliary network are Ta and Va respectively.

Given a few labeled and large amount of unlabeled data, our goal is to learn a set of prompt vectors
for both Tp and Ta as well as the coupling function F(.). To better capitalize on the complementary
information from the two networks, we propose to use prompts of different lengths (i.e., different N ) in
them. Models with different number of prompt vectors exhibit markedly different behaviors in regards
to category-wise performance. As the two models with different prompt lengths differ in what they
learn, they can complement in generating the supervision for each other. Our primary and auxiliary
networks use N and N/2 prompt vectors respectively, i.e., Tp = {tip}Ni=1 and Ta = {tia}

N/2
i=1 .

Supervised Training. A labeled image Ii with groundtruth class ci is only weakly augmented and
passed through the model with associated text and visual prompts. Similar to Eq. 2, the prediction
probabilities in the primary and auxiliary networks are given by,

p(yp
ci |Ii) =

exp(sim(xp
l,i,w

p
ci)/τ)∑C

c=1 exp(sim(xp
l,i,w

p
c )/τ)

(4) p(ya
ci |Ii) =

exp(sim(xa
l,i,w

a
ci)/τ)∑C

c=1 exp(sim(xa
l,i,w

a
c )/τ)

(5)

where, the superscripts p and a denote the primary and the auxiliary networks respectively. Given
the number of labeled images b in a batch, the supervised losses of the two networks are given by,
Lsup
p = − 1

b

∑b
i=1 log p(y

p
ci |Ii) and Lsup

a = − 1
b

∑b
i=1 log p(y

a
ci |Ii).

Cross-model Unsupervised Training. For an unlabeled image Ij , the weak and strongly augmented
versions Iwk

j and Istrj are passed through both the networks along with the learnable text and visual
prompts. The final layer of the primary network’s vision encoder generates two [CLS] embeddings
xp,wk
l,j and xp,str

l,j respectively for Iwk
j and Istrj . The language encoder generates C text embeddings

{wp
c}Cc=1. Probabilities of the weakly and strongly augmented images to belong to class c are given by,

p(yp,wk
c |Ij) =

exp(sim(xp,wk
l,j ,wp

c )/τ)∑C
i=1 exp(sim(xp,wk

l,j ,wp
i )/τ)

(6) p(yp,str
c |Ij) =

exp(sim(xp,str
l,j ,wp

c )/τ)∑C
i=1 exp(sim(xp,str

l,j ,wp
i )/τ)

(7)

For all C classes, these are collected as the weak and strong probability distributions, qp,wk
j =

[p(yp,wk
1 |Ij), · · · , p(yp,wk

C |Ij)] and qp,str
j = [p(yp,str1 |Ij), · · · , p(yp,strC |Ij)]. In a similar manner,

the weak and strong probability distributions of the same image from the auxiliary network are
obtained as qa,wk

j and qa,str
j respectively. The pseudo label from the weakly augmented image

in the primary network is given by, q̂p,wk
j which is an one-hot vector with a 1 in the position of

argmax(qp,wk
j ). Likewise, q̂a,wk

j denotes the pseudo label from the weakly augmented image in the
auxiliary network. The cross-model unsupervised losses are enforced as,

Lu
p =

1

µb

µb∑
j=1

1(max(qa,wk
j ) ≥ ρ)H(q̂a,wk

j ,qp,str
j ), Lu

a =
1

µb

µb∑
j=1

1(max(qp,wk
j ) ≥ ρ)H(q̂p,wk

j ,qa,str
j )

(8)
where, µ is the ratio of the number of unlabled to labeled examples in a minibatch, ρ is a suitable
threshold and H(, ) denotes the cross-entropy function. Overall, the loss function for learning the
prompt vectors involving the limited labeled data and the unlabeled data is,

L = Lsup
p + Lsup

a + λ(Lu
p + Lu

a) (9)

where λ denotes a hyperparameter for scaling the relative weights of the unlabeled losses.

Inference. After training, we only use the primary network for inference. At test time, an image
is passed through the vision encoder and the prompts along with different class names are passed
through the text encoder. The class giving the maximum cosine similarity with the extracted visual
features is taken as the predicted class of the test image.

4 EXPERIMENTS

In this section, we investigate XPL and aim to address three primary research questions. Q1: Do
prompts learned using XPL effectively leverage unlabeled data for semi-supervised classification?
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(a) Average (b) EuroSAT (c) ISIC (d) Chest-Xray

(e) CropDiseases (f) DeepWeeds (g) Kaokore (h) DTD

(i) USPS (j) Clevr-Count (k) UCF-101 (l) Caltech101

(m) OxfordPets (n) StandfordCars (o) Flowers102 (p) ImageNet

Figure 3: Performance of XPL on 15 datasets with ViT-B/16 using only a small percentage of labeled
training data. XPL leverages on the unlabeled data the most and boosts the performance across all scenarios.

Q2: How does XPL benefit from the novel cross-model design over other methods? Q3: Is XPL
robust towards various distribution shifts in the training data and can it generalize to unseen classes?

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate XPL on 15 diverse classification datasets, namely, (a) Natural Images:
CropDisease (Mohanty et al., 2016), DeepWeeds (Olsen et al., 2019), Caltech101 (Fei-Fei et al., 2004),
OxfordPets (Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008), UCF-101 (Soomro
et al., 2012), ImageNet (Deng et al., 2009), StandfordCars (Krause et al., 2013); (b) Aerial Images:
EuroSAT (Helber et al., 2019); (c) Medical Images: ISIC (Codella et al., 2019), ChestX (Wang et al.,
2017); (d) Illustrative Images: Kaokore (Tian et al., 2020); (e) Texture Images: DTD (Cimpoi et al.,
2014); (f) Symbolic Images: USPS (Hull, 1994); (g) Structured Images: Clevr-Count (Johnson et al.,
2017). For experiments under domain-shift, we use the DomainNet (Peng et al., 2019) dataset.

Baselines. Being one of the first works in multi-modal semi-supervised prompt learning, we carefully
design the baselines for a comprehensive assessment. First, we compare our XPL approach with
two uni-modal baselines. The first unimodal baseline is Text Prompt Learning (TPL) which learns
only textual prompts following CoOp (Zhou et al., 2022b), while the second one is Visual Prompt
Learning (VPL) which learns only visual prompts. Next, we compare with Multi-modal Prompt
Learning (MPL) which learns both textual and visual prompts. Note that TPL, VPL, and MPL operate
on labeled data only. We now leverage unlabeled data in baselines TPLu, VPLu, and MPLu which
employ the same augmentation strategies as XPL. In addition, other baseline permutations can be
to employ the cross-model architecture but with only text prompts (XTPL) and only visual prompts
(XVPL). We show selected baselines in the main paper, while compare with the rest in the appendix
material.

Implementation Details. We randomly sample 1%, 5%, and 10% of labeled data from each class
and consider the rest as unlabeled, following (Sohn et al., 2020). For few-shot evaluation, we follow
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(a) 2-shot (b) 1-shot

Figure 4: Few-shot performance of XPL on 15 datasets with ViT-B/16. XPL leverages on the unlabeled
data the most and boosts the performance across all scenarios.

CoOp (Zhou et al., 2022b) to obtain the splits. For the primary network, the number of learnable
tokens for the text and visual prompts is set to 16, while in the auxiliary network, it set to 8. We
set the hyperparameters λ = 1, µ = 7, and ρ = 0.7. We train using a batch size of either 32 or 64
depending on the backbone. We run all experiments for 250 epochs over three random seeds and
report the mean values. We use 4 NVIDIA Tesla V100 GPUs to conduct all our experiments.

4.2 MAIN RESULTS AND COMPARISONS

Figure 3 and 4 show the performance comparison of XPL with the baselines using ViT-B/16 backbone.
In the subsequent paragraphs, we present a summary of the experimental results and key findings that
motivated the development of the proposed framework.

Multimodal Prompt Learning. First, we discuss the superiority of multi-modal prompt learning in
extracting rich information from both text and images, highlighting its advantages over unimodal
approaches. As can be seen in Figure 3a, MPL outperforms TPL and VPL consistently on average
e.g., with 10% of the data labeled the improvements are 3.1% and 6.1%. In the extreme case of a
single label per class (1-shot), MPL outperforms TPL and VPL by 1.3% and 8.2%, respectively (ref.
Appendix). This finding corroborates that adaptation of both the text and image encoder is more
effective than adapting a single encoder.

Leveraging Unlabeled Data. Here, we demonstrate the sub-optimality of disregarding unlabeled
data in MPL, which can lead to a loss of valuable knowledge. With unlabeled data, MPLu achieves a
significant gain over MPL specifically in the low-labeled data regime. E.g., 3.5% average improvement
in 1-shot can be seen in Figure 4b. It also significantly helps in challenging datasets like EuroSAT
and CropDiseases, e.g., 11.9% and 17.9% respectively in 1-shot, as seen in the same Figure.

Cross-Model Design. We now showcase the effectiveness of our cross-model design, which harnesses
complementary knowledge from both models. As can be seen in Figures 3 and 4, XPL outperforms
all the baselines in all the settings showing the effectiveness of the cross-model design. E.g., in
Figure 4b, XPL provides 2.9% average improvement over the strongest baseline MPLu in 1-shot case.
Moreover, XPL offers a significant jump of 5% for the fine-grained DeepWeeds dataset in 1-shot
setup validating the importance of harnessing complementary knowledge through our unique design.

Robustness to Domain Shift in Unlabeled Data. Adapting models to downstream data often overfits
to that specific task and fails to generalize toward domain shifts. This behavior is specifically common
in low-labeled data regime. For a domain D with a given amount of labeled (|Dl|) and unlabeled data
(|Du|), we define a mixture fraction η which signifies that η fraction of the unlabeled data (η × |Du|)
comes from a different domain D̂ while (1− η) fraction of it ((1− η)× |Du|) comes from the same
domain D. We consider two scenarios: when all the unlabeled data belong to D (η = 0), and when
they belong to D̂ (η = 1). Table 1 shows the classification accuracy on D with 10% labeled training
data from the same domain. We compare with the strongest baseline MPLu on three pairs of domains
from the DomainNet dataset. As can be observed, XPL consistently outperforms MPLu irrespective
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Method (D=rel, D̂=pnt) (D=clp, D̂=inf) (D=qdr, D̂=skt)
(10% labeled data) η = 0 η = 1 η = 0 η = 1 η = 0 η = 1
MPLu 78.0 77.7 67.4 67.0 31.9 29.9
XPL (Ours) 79.1 78.6 68.0 67.9 35.2 34.5

Table 1: Performance under domain shift in DomainNet. Numbers show the accuracy on test partition of
domain D when the models are trained with 10% labeled data from D and two different proportions of unlabeled
data (η) between D and D̂. XPL achieve the best performance even on this challenging scenario.

(a) EuroSAT (b) ISIC (c) Chest-Xray (d) CropDiseases (e) Average

Figure 6: Comparison with self-supervised baselines. Plots show the performance comparison of XPL with
PL which uses vanilla pseudo-label training and MoCo which uses momentum encoder for self-supervision.
XPL consistently outperforms both PL and MoCo across all the 4 datasets.

of the domain shift. E.g., for D=qdr and D̂=skt, if we compare the performance of the no domain
shift scenario (η = 0) with that of the maximum domain shift (η = 1), MPLu’s accuracy drops by 2%
(31.9% vs 29.9%) while XPL shows a mere drop of 0.7% (35.2% vs 34.5%) while outperforming
MPLu by 4.6%. This corroborates robustness of XPL towards out-of-distribution data.

Comparison with self-supervised baselines. In order to assess the effectiveness of the cross-model
strategy, in Figure 6 we compare XPL with two self-supervised baselines namely, PL and MoCo. In
PL we have a single model and perform vanilla pseudo-label training (Lee, 2013) on the unlabeled
data in addition to the supervised loss on the labeled data. Similarly, in MoCo, we employ the
self-supervision strategy of (He et al., 2020) using momentum encoder on a single model. The
performance of both MoCo and PL fails to reach that of XPL across the 4 datasets, e.g., on average PL
and MoCo shows 3.5% and 2.8% lower accuracy than XPL respectively for 1% labeled data (70.5%
vs 71.2% vs 74.0%). This signifies the importance of the cross-model strategy in alleviating noisy
and incorrect pseudo-labels by leveraging complementary information from both the networks.

(a) CLIP ViT-B/32 (b) DeCLIP ViT-B/32

Figure 5: Performance with different VLM
backbones. Plots show average accuracy using
CLIP ViT-B/32 and DeCLIP ViT-B/32. XPL out-
performs all baselines and obtains the best.

Different VLM Backbones. We show generalization
of XPL with other VLM architectures, in Figure 5. Av-
erage accuracies on all datasets excluding ImageNet
using CLIP ViT-B/32 (Radford et al., 2021) and De-
CLIP ViT-B/32 (Li et al., 2021) backbones are reported.
XPL consistently outperforms the baselines and obtains
state-of-the-art performance for both models. E.g., XPL
outperforms MPLu by 1.9% (53.9% vs 52.0%) when
1% labeled data is used. This shows the effectiveness
of XPL in harnessing complementary information even
from stronger backbones like DeCLIP which has al-
ready been trained with extensive self-supervision.

4.3 ABLATION STUDIES

Different Prompt Lengths. In the main experiments we learn prompts of length 16 and 8 for the
primary and the auxiliary network respectively. Figure 7, shows the performance using prompts
of lengths 8 and 4 respectively (XPL (8, 4)), on 4 datasets. As expected, using shorter prompt
lengths drops the performance since the number of learnable parameters decreases. E.g., on average,
the accuracy drops by 3.4% (70.6% vs 74.0%) when we have 1% of labeled data. We also ran an
experiment to see if using same number of prompts in two paths are able to harness the complimentary
information as well. In two different variations of this, we used 16 prompts (XPL (16, 16)) and
8 prompts (XPL (8, 8)) in both primary and auxiliary paths. As seen, compared to the proposed
approach XPL (16, 8), the performance diminishes in both XPL (16, 16) and XPL (8, 8) showing the
utility of using different prompt lengths in primary and auxiliary models. Lastly, we tried to see if
increasing the ratio of the number of prompt vectors in the two paths helps more. As seen, if we use
32 and 8 prompts in the two paths (XPL (32, 8)) the performance diminishes which is possibly due to
a large mismatch in capacities of the two paths.
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EuroSAT ISIC Chest-Xray CropDiseases
S U H S U H S U H S U H

TPL 92.19 54.74 68.69 74.30 19.20 30.51 19.00 24.41 21.37 89.10 19.00 31.32
VPL 93.30 54.83 69.05 74.32 20.89 32.61 22.40 24.48 23.39 87.60 17.43 29.07
MPL 93.49 55.12 69.45 74.90 26.91 39.59 28.78 25.32 26.94 90.2 19.92 32.63
XPL 97.80 58.90 73.52 78.40 80.80 79.58 32.70 33.00 32.85 99.20 20.23 33.61

Table 2: Generalization from seen to unseen classes. Table shows accuracy of TPL, VPL, MPL and XPL on
seen (S) and unseen (U) classes along with their harmonic mean (H) on 4 datasets. XPL consistently shows
strong generalization performance to unseen classes as compared to other baselines.

(a) EuroSAT (b) ISIC (c) Chest-Xray (d) CropDiseases (e) Average

Figure 7: Different Prompt Lengths. Plots show the accuracy curves for XPL using different prompt lengths.
XPL (M , N ) learns prompts of length M and N for the primary and auxiliary network.

Effect of Hyperparameters. In this section we perform a sensitivity analysis on
λ, µ, and ρ. Figure 8 shows the average performance over 4 datasets, EuroSAT,
ISIC, Chest-Xray and Cropdiseases. First, we vary λ (ref. Eq. 9) to 0.5, 1.0,

(a) λ (b) µ (c) ρ

Figure 8: Effect of Hyperparameters. Plots analyze the average
performance across 4 datasets by varying hyperparameters λ, µ,
and ρ.

and 2.0 in XPL and obtain the best
performance when all the losses are
equally weighed (i.e. λ = 1.0) and
is used in our experiments. The ra-
tio of unlabeled to labeled data µ (ref.
Eq. 8) is important in deciding the per-
formance. We vary µ to 5, 7, and 9.
The performance increases with higher
values of µ, however, scaling up µ often
requires high computational resources.
We observe negligible improvement beyond µ = 7 and hence use that for XPL. We also vary the
pseudo-label threshold ρ (ref. Eq. 6, 7) to 0.6, 0.7, and 0.95. We obtain the best performance at
ρ = 0.7 and use it for all the experiments.

Generalization from Seen to Unseen Classes. In Table 2, for a given dataset, we train on a subset of
classes (seen) and show generalization performance to the rest of the classes (unseen). We compare
XPL with TPL, VPL and MPL for accuracy on the seen classes (S) and the unseen classes (U) and
their harmonic mean (H). XPL consistently outperforms MPL on unseen classes, e.g. an improvement
of 3.78% (55.12% vs 58.90%) and 7.68% (25.32% vs 33.00%) on EuroSAT and Chest-Xray datasets
respectively. Superior harmonic mean across the datasets substantiates that learning multi-modal
prompts with complementary knowledge harnessed from the cross-model architecture helps improve
the generalization to unseen classes. Additional results for rest of the datasets are included in the
appendix.

5 CONCLUSION

We present XPL, a novel cross-model framework for multi-modal, semi-supervised prompt learning
towards parameter-efficient adaptation of large pretrained VLMs to different downstream tasks. We
identify that directly using the same adaptation model to produce confident pseudo-labels for the
unlabeled data may miss crucial category-wise information. A novel cross-model semi-supervision is
pioneered to leverage the complimentary knowledge learned by models with different length prompts
significantly improving the performance. We demonstrate the effectiveness of our proposed approach
on fourteen benchmark datasets, outperforming several competing methods. Our research can help
reduce burden of collecting large-scale supervised data in many real-world vision applications by
transferring knowledge from large pretrained VLMs. Limitations of our research are difficult to
predict, however, using more data, albeit unlabeled may mean more computation, but this comes with
a lot of savings in human annotation efforts for a similar performance gain using supervised training.
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Appendix. Here we provide additional experiments and visualizations on the datasets to further
explore the XPL approach. These are summarized in the following Table 3.

Section Content
A Leveraging Unlabeled Data for Uni-modal baselines
B XPL in Uni-modal setting
C Effect of Coupling Function F(.)
D Different VLM Backbones
E Generalization from Seen to Unseen Classes
F Effect of Prompt Positions
G Additional Domain Shift experiments
H Varying number of auxiliary branches in XPL
I XPL in higher labeled data regimes
J Varying Temperature between the two branches
K Qualitative Results
L t-SNE Visualizations

Table 3: Overview of Appendix.
Code. Please refer to XPL_code.zip in the appendix material for our code submission. We will make
the code public.

A LEVERAGING UNLABELED DATA FOR UNI-MODAL BASELINES

In this section of the appendix, we demonstrate the sub-optimality of disregarding unlabeled data for
the uni-modal baselines TPL and VPL in a similar manner as shown for the multi-modal baseline
in section 4.2 of the main paper. Both TPLu and VPLu obtains a significant gain in performance
as can be seen in Figure 9. On average, TPLu helps to perform better by 3% than TPL, whereas,
VPLu shows 2% gain in accuracy over VPL, when using only 1% labeled data. Similar trend is also
observed for 2-shot and 1-shot scenarios as shown in Figure 10. XPL retains the supremacy across all
the baselines in both few-shot setting and well as in low percentages of labeled data.

(a) Average (b) EuroSAT (c) ISIC (d) Chest-Xray (e) CropDiseases

(f) DeepWeeds (g) Kaokore (h) DTD (i) USPS (j) Clevr-Count

(k) UCF-101 (l) Caltech101 (m) OxfordPets (n) StandfordCars (o) Flowers102

Figure 9: Performance of TPL, TPLu, VPL, VPLu and XPL on 14 datasets with ViT-B/16 using only a
small percentage of labeled training data. The uni-modal baselines TPLu and VPLu leverage on the unlabeled
data to obtain performance gain over TPL and VPL respectively across all scenarios. XPL leverages on the
unlabeled data the most and obtains maximum boost in the performance.
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(a) 2-shot (b) 1-shot

Figure 10: Few-shot performance of TPL, TPLu, VPL, VPLu and XPL on 15 datasets with ViT-B/16. Even
in 2-shot and 1-shot scenarios the uni-modal baselines TPLu and VPLu leverage on the unlabeled data to obtain
performance gain over TPL and VPL respectively across all scenarios. XPL leverages on the unlabeled data the
most in the few-shot setting to give the highest performance.

(a) Average (b) EuroSAT (c) ISIC (d) Chest-Xray (e) CropDiseases

(f) DeepWeeds (g) Kaokore (h) DTD (i) USPS (j) Clevr-Count

(k) UCF-101 (l) Caltech101 (m) OxfordPets (n) StandfordCars (o) Flowers102

Figure 11: Performance of XTPL, XVPL and XPL on 14 datasets with ViT-B/16 using only a small
percentage of labeled training data. XPL obtains higher performance gain over XTPL and XVPL respectively
across all scenarios. The adaptation of both the text and image encoder in XPL is more effective than adapting a
single encoder as in XTPL and XVPL.

B XPL IN UNI-MODAL SETTING

Here, we showcase the importance of multi-modal prompt learning to extract richer information from
both text and images compared to the unimodal approaches. As can be seen in Figure 11, we consider
two baselines XTPL and XVPL, having only text prompts and only visual prompts respectively as
the two uni-modal variants of XPL. In both low proportions labeled data (Figure 11) and few-shot
settings (Figure 12), XPL obtains the most hike in accuracy over both XTPL and XVPL. Even for
challenging datasets like DeepWeeds (Olsen et al., 2019) (refer Figure 11f) and Clevr-Count (Johnson
et al., 2017) (refer Figure 11j), XPL shows the supremacy in performance by almost 10% and 35%
gains respectively when using only 5% labeled data.
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(a) 2-shot (b) 1-shot

Figure 12: Few-shot performance of XTPL, XVPL and XPL on 14 datasets with ViT-B/16. XPL obtains
higher performance gain over XTPL and XVPL respectively in both 2-shot and 1-shot setting across all datasets.
The adaptation of both the text and image encoder in XPL is more effective than adapting a single encoder as in
XTPL and XVPL.

(a) Average (b) EuroSAT (c) ISIC (d) Chest-Xray (e) CropDiseases

(f) DeepWeeds (g) Kaokore (h) DTD (i) USPS (j) Clevr-Count

(k) UCF-101 (l) Caltech101 (m) OxfordPets (n) StandfordCars (o) Flowers102

Figure 13: Effect of coupling function F(.). Accuracy across 14 datasets shows that mutual collaboration
between the text and visual prompts through F(.) is necessary for improved performance.

C EFFECT OF COUPLING FUNCTION F(.)

As shown in Figure 2 of the main paper, we use a coupling function F(.) to ensure mutual collabora-
tion between the text and visual prompts (hence the encoders). In order to study its effect, we remove
F(.) and independently learn the text and visual prompts for XPL, MPLu, MPL, resulting in methods
XPL-I, MPLu-I, and MPL-I respectively. We show the individual performances of these baselines
in all 14 the datasets along with the average performance for 1%, 5% and 10% proportions of labeled
data in Figure 13 and 2-shot and 1-shot performances in Figure 14. As can be observed in both the
settings, removing F(.) decreases the average performance, e.g., 5.8% (72.4% vs 66.6%) for XPL
with 1% labeled data and hence ensuring that mutual coherence between the text and visual prompts
is crucial for better performance.
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(a) 2-shot (b) 1-shot

Figure 14: Effect of coupling function F(.). Fewshot performance across 14 datasets also shows mutual
collaboration through F(.) is necessary for performance gain.

(a) Average (b) EuroSAT (c) ISIC (d) Chest-Xray (e) CropDiseases

(f) DeepWeeds (g) Kaokore (h) DTD (i) USPS (j) Clevr-Count

(k) UCF-101 (l) Caltech101 (m) OxfordPets (n) StandfordCars (o) Flowers102

Figure 15: Performance using CLIP ViT-B/32. Plots show accuracy across 14 datasets using CLIP ViT-B/32.
XPL outperforms all the baselines for each dataset and obtains the best performance.

D DIFFERENT VLM BACKBONES

We have shown the supremacy of XPL with other VLM architectures, CLIP ViT-B/32 (Radford et al.,
2021) and DeCLIP ViT-B/32 (Li et al., 2021) in Figure 5 of the main paper. Here, we illustrate those
plots providing the variation in performance across the individual 14 datasets with low proportions
of training data for CLIP ViT-B/32 in Figure 15 and DeCLIP ViT-B/32 in Figure 17. The average
plots from the main paper (refer Figure 5) have also been included in Figures 15a and 17a for CLIP
ViT-B/32 and DeCLIP ViT-B/32 respectively, for reference. We explore the performances with the
two VLM backbones under few-show setting as well and plot the accuracies in Figures 16 for CLIP
ViT-B/32 and 18 DeCLIP ViT-B/32 respectively.

E GENERALIZATION FROM SEEN TO UNSEEN CLASSES

In Table 4 we extend the results in the main paper (refer Table 2 of main paper) to include the
generalization performance from seen to unseen classes for all the 14 datasets. Here, we also compare
the accuracies of XPL with 3 baselines including TPL, VPL and MPL. XPL shows consistently better
performance across these datasets.
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(a) 2-shot (b) 1-shot

Figure 16: Few-shot performance using CLIP ViT-B/32. Plots show accuracy across 14 datasets. XPL
outperforms all the baselines for each dataset and obtains the best performance.

(a) Average (b) EuroSAT (c) ISIC (d) Chest-Xray (e) CropDiseases

(f) DeepWeeds (g) Kaokore (h) DTD (i) USPS (j) Clevr-Count

(k) UCF-101 (l) Caltech101 (m) OxfordPets (n) StandfordCars (o) Flowers102

Figure 17: Performance using DeCLIP ViT-B/32. Plots show accuracy across 14 datasets using CLIP
ViT-B/32. XPL outperforms all the baselines for each dataset and obtains the best performance.

(a) 2-shot (b) 1-shot

Figure 18: Few-shot performance using DeCLIP ViT-B/32. Plots show accuracy across 14 datasets. XPL
outperforms all the baselines for each dataset and obtains the best performance.
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S U H
TPL 74.43 40.53 49.17
VPL 74.75 41.43 50.73
MPL 77.28 44.67 54.47
XPL 80.79 53.32 62.06

(a) Average

S U H
TPL 92.19 54.74 68.69
VPL 93.30 54.83 69.05
MPL 93.49 55.12 69.45
XPL 97.80 58.90 73.52

(b) EuroSAT

S U H
TPL 74.30 19.20 30.51
VPL 74.32 20.89 32.61
MPL 74.90 26.91 39.59
XPL 78.40 80.80 79.58

(c) ISIC
S U H

TPL 19.00 24.41 21.37
VPL 22.40 24.48 23.39
MPL 28.78 25.32 26.94
XPL 32.70 33.00 32.85

(d) Chest-Xray

S U H
TPL 89.10 19.00 31.32
VPL 87.60 17.43 29.07
MPL 90.2 19.92 32.63
XPL 99.20 20.23 33.61

(e) CropDiseases

S U H
TPL 76.90 13.80 23.52
VPL 80.70 14.76 24.96
MPL 81.5 18.41 30.04
XPL 89.20 42.80 57.84

(f) DeepWeeds
S U H

TPL 40.70 36.60 38.54
VPL 40.76 36.08 38.28
MPL 40.90 37.08 38.90
XPL 41.10 37.35 39.14

(g) Kaokore

S U H
TPL 79.44 41.18 54.24
VPL 79.00 42.30 55.10
MPL 78.70 42.80 53.80
XPL 80.18 43.04 55.98

(h) DTD

S U H
TPL 88.00 35.10 50.18
VPL 89.23 37.08 52.39
MPL 94.50 42.20 58.35
XPL 96.00 47.20 63.28

(i) USPS
S U H

TPL 49.10 21.80 30.19
VPL 48.70 15.08 23.03
MPL 51.60 17.00 25.57
XPL 58.40 22.50 32.48

(j) Clevr-Count

S U H
TPL 64.69 56.05 60.06
VPL 66.24 58.96 62.39
MPL 75.41 57.76 65.42
XPL 88.50 67.70 76.72

(k) UCF-101

S U H
TPL 98.00 89.80 93.70
VPL 96.70 86.70 91.43
MPL 98.50 91.60 94.92
XPL 99.01 92.52 95.62

(l) Caltech101
S U H

TPL 92.19 54.74 68.69
VPL 93.60 56.10 70.15
MPL 94.30 56.80 70.90
XPL 97.80 58.80 73.44

(m) OxfordPets

S U H
TPL 78.12 60.40 68.13
VPL 77.4 57.60 66.05
MPL 81.20 60.30 69.21
XPL 74.59 71.82 73.18

(n) StandfordCars

S U H
TPL 97.60 59.67 74.06
VPL 96.60 57.80 72.32
MPL 97.54 63.20 76.70
XPL 98.24 69.87 81.66

(o) Flowers102

Table 4: Comparison of XPL with TPL, VPL and MPL in generalization from base to new classes.

F EFFECT OF PROMPT POSITIONS

In this ablation, we observe the effect of changing the position of the class token, [CLS], as an
additional attribute instead of the length of the learnable prompts. In XPL, the [CLS] token was
placed at the ‘end’ of the learnable prompt vectors for both primary and auxiliary branches. Here,
we consider two setups with the same prompt lengths for both the branches: (1) [CLS] token is
positioned at the end in the primary branch, while at the beginning in the auxiliary (‘beg’, ‘end’);
(2) [CLS] token is positioned at the middle in the primary branch, while at the end in the auxiliary
(‘mid’, ‘end’). As can be observed over all the 4 datasets across 2 different proportions of labeled
data (1% and 5%), changing the class token positions does not distinctively affect the performance
of our approach. Rather the prompt length attribute plays a more significant role in the cross-model
approach. The use of different prompt lengths harnesses the most complementary information and
provides the best performance.

(a) EuroSAT (b) ISIC (c) Chest-Xray (d) CropDiseases (e) Average

Figure 19: Varying the position of prompts in the two branches. Plots show the accuracies for XPL after
appending the class tokens, [CLS], at different positions of of the learnable prompt vectors for both primary
and auxiliary branches. XPL (M , N ) (pos1, pos2) learns prompts of length M and N with the [CLS] token
appended in the pos1 and pos2 positions for the primary and auxiliary network respectively. Here beg, mid and
end refers to putting the [CLS] token in the beginning, middle or the end of the learnable prompts respectively.
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Method (D=A, D̂=W) (D=W, D̂=D) (D=D, D̂=A)
(10% labeled data) η = 0 η = 1 η = 0 η = 1 η = 0 η = 1
MPLu 82.8 81.7 86.4 85.2 84.2 81.9
XPL (Ours) 84.7 84.0 88.2 87.1 85.5 84.6

Table 5: Performance under domain shift in Office-31 (Saenko et al., 2010). Numbers show the accuracy
on test partition of domain D when the models are trained with 10% labeled data from D and two different
proportions of unlabeled data (η) between D and D̂. XPL achieve the best performance even on this challenging
scenario.

Method EuroSAT ISIC
1% 5% 10% 1% 5% 10%

XPL (16,8,4) 94.2 96.6 98.2 73.2 80.1 87.8
XPL (16,8) 93.8 95.8 97.6 71.5 78.8 85.7

Table 6: Varying the number of auxiliary branches. Table shows the accuracy when an additional auxiliary
branch is added to our existing XPL. Here XPL (16,8,4) is an extension of the proposed XPL (16,8), where we
add an extra auxiliary pathway which learns prompt of length 4.

G ADDITIONAL DOMAIN SHIFT EXPERIMENTS

As shown in Section 4.2 of the main paper, we showcase the robustness and generalizability of the
learned prompts using XPL by performing domain-shift experiments where the labeled and unlabeled
data come from two out-of-domain distributions. From the results of Table 1, we observe how XPL
corroborates robustness over the next best baseline MPLu for the complex DomainNet dataset. To
further evaluate the robustness and generalizability of the learned prompts in our proposed XPL, we
run additional experiments on the another benchmark dataset, Office-31 (Saenko et al., 2010). We
follow the similar domain-shift scenarios as for the experiments on DomainNet, considering η = 0,
when all unlabeled data belong to source D and η = 1, when all unlabeled data belong to target D̂.
As observed from the Table 5, XPL holds its supremacy over the next best baseline MPLu across all
the domain-shift scenarios for the Office-31 dataset as well. XPL not only gives a 2% accuracy boost
over MPLu when all the unlabeled data are from D itself (η = 0) for almost all scenarios, but even
with η = 1, the performance of XPL is better than that of MPLu with η = 0. This greatly signifies the
ability of our cross-model XPL approach to learn prompts that are robust as well as generalizable to
harness richer representations from even out-of-distribution data.

H VARYING NUMBER OF AUXILIARY BRANCHES IN XPL

Extending the variation of XPL in Figure 7, we ran an additional experiment using one primary and
two auxiliary networks with a triplet of augmented inputs where each auxiliary network supervises
the primary network and vice versa. We keep the prompt length of 16 and 8 for the primary and one
auxiliary network respectively, as used in XPL. For the additional auxiliary branch, we use as prompt
length 4. We evaluate this approach over two diverse datasets EuroSAT and ISIC as presented in
the Table 6. We can see that adding one more auxiliary pathway does help to boost the performance
cementing our proposition of leveraging cross-model training for complementary knowledge. The
performance gain is around 1% for EuroSAT and around 2% for Chest-Xray across 1%, 5% and 10%
proportions of labeled data. However, it should be noted that using an additional auxiliary pathway
increases the learnable parameters and computation directing us to the points of diminishing return
soon.

I XPL IN HIGHER LABELED DATA REGIMES

Although XPL is more focused to improve the performance on downstream tasks in extremely low
labeled data regime, we ran additional experiments on the EuroSAT dataset to evaluate XPL on higher
proportions of labeled data – 20% and 30%. As observed in the Table 7, the performance of XPL
surpasses that of the next-best baseline MPLu even in higher regime to labeled data.
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Method EuroSAT
20% 30%

MPLu 98.1 99.2
XPL 97.4 98.7

Table 7: Performance of XPL on higher data regimes XPL leverages on the unlabeled data the most and
boosts the performance even higher regimes of data..

J VARYING TEMPERATURE BETWEEN THE TWO BRANCHES

To check the effect of using different temperature parameter between the two branches, we ran
an ablation by reducing the temperature of the auxiliary branch (τA) as it has lower capacity
using shorter prompt length. In the Figure 20, we reduce the value of τA in XPL to 0.04, in
XPL (τP =0.07,τA=0.04), while the primary pathway temperature (τP ) was kept same as 0.07.
As observed, there is no significant change in performance as compared to the original XPL
(τP =0.07,τA=0.07) for all the 4 datasets across 2 different proportions of labeled data (1% and
5%).

(a) EuroSAT (b) ISIC (c) Chest-Xray (d) CropDiseases (e) Average

Figure 20: Varying the temperature parameter between the two branches. Plots show the accuracies for
XPL using different temperatures for the primary and auxiliary networks. The values specified in XPL (τP , τA)
represent the temperature values for the primary and auxiliary network respectively.

K QUALITATIVE RESULTS

Figure 21 shows the qualitative examples for comparing the performance of XPL with the baselines
of TPL, VPL, MPL and also the next-best MPLu. As can be seen, XPL proves its supremacy in
identifying diverse image samples such as different landscapes in EuroSAT (Helber et al., 2019)
(Figure 21a), flower types in Flowers102 (Nilsback & Zisserman, 2008) (Figure 21b) and also animals
in OxfordPets (Parkhi et al., 2012) (Figure 21c).

L T-SNE VISUALIZATIONS

Figure 22 shows the t-SNE visualizations of XPL along with the next-best baseline MPLu and also uni-
modal VPL, TPL across 3 datasets of EuroSAT (Helber et al., 2019) (Figure 22a), Flowers102 (Nils-
back & Zisserman, 2008) (Figure 22b) and OxfordPets (Parkhi et al., 2012) (Figure 22c). Inspite of
diverse datasets, XPL portrays the most consistent clustering and class-wise discriminative acoss all
the 3 datasets, showing the efficacy of our cross-model approach in learning discriminative features
in a multi-modal setting.
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(a) EuroSAT

(b) Flowers102

(c) OxfordPets

Figure 21: Qualitative examples comparing XPL with TPL, VPL and MPL baselines. We compare the
performances on 3 datasets, EuroSAT (Helber et al., 2019), Flowers102 (Nilsback & Zisserman, 2008) and
OxfordPets (Parkhi et al., 2012) trained using 1% labeled data with CLIP ViT-B/16. The correct predictions are
marked in green while the incorrect predictions have been marked red.
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(a) EuroSAT

(b) Flowers102

(c) OxfordPets

Figure 22: Feature Visualization using t-SNE. Figure shows the t-SNE visualizations for XPL along with 3
different baselines of MPLu, VPL and TPL on 3 diverse datasets, EuroSAT (Helber et al., 2019), Flowers102 (Nils-
back & Zisserman, 2008) and OxfordPets (Parkhi et al., 2012) trained using 1% labeled data with CLIP ViT-B/16.
XPL forms most consistent clustering and performs better at classwise discrimination across the 3 diverse datasets.
the Best viewed in color.
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