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ABSTRACT

Current unlearning methods for LLMs optimize on the private information they
seek to remove by incorporating it into their fine-tuning data. We argue this not
only risks reinforcing exposure to sensitive data, it also fundamentally contradicts
the principle of minimizing its use. As a remedy, we propose a novel unlearning
method—Partial Model Collapse (PMC), which does not require unlearning targets
in the unlearning objective. Our approach is inspired by recent observations that
training generative models on their own generations leads to distribution collapse,
effectively removing information from model outputs. Our central insight is that
model collapse can be leveraged for machine unlearning by deliberately triggering
it for data we aim to remove. We theoretically analyze that our approach converges
to the desired outcome, i.e. the model unlearns the data targeted for removal. We
empirically demonstrate that PMC overcomes three key limitations of existing
unlearning methods that explicitly optimize on unlearning targets, and more effec-
tively removes private information from model outputs while preserving general
model utility. Overall, our contributions represent an important step toward more
comprehensive unlearning that aligns with real-world privacy constraints.

1 INTRODUCTION

Privacy regulations and copyright laws (e.g. the GDPR (European Union, 2016)) necessitate the ability
to selectively remove data from machine learning models, including Large Language Models (LLMs).
While complete retraining without the data to be removed presents an optimal solution, it is infeasible
at scale given the high computational costs of LLM training. This motivates the need for machine
unlearning techniques to erase specific information while preserving a model’s broader capabilities.

Although recent methods have demonstrated early progress in LLM unlearning (Zhang et al., 2024),
they lack deeper theoretical analysis and robustness (Liu et al., 2025). More critically, they counterin-
tuitively rely on the data they aim to erase during unlearning. We argue that this strategy contradicts
the principle of minimizing the use of private data and show that it additionally introduces side effects
that remain poorly understood, such as enabling adversaries to infer private data after unlearning.
These limitations highlight the need for novel approaches to unlearning that mitigate such risks.

In this paper, we identify notable parallels between the unlearning challenge and the phenomenon
called model collapse, where iterative finetuning on synthetic data causes information loss in the
model’s output distribution and can lead to distribution collapse (Shumailov et al., 2023; 2024;
Bertrand et al., 2024; Ferbach et al., 2024). We raise the following critical research question:

Can we leverage the principles underlying model collapse to develop
principled approaches for machine unlearning?

To address this research question, we introduce Partial Model Collapse (PMC), a fundamentally
novel approach to machine unlearning leveraging the principles of model collapse to achieve unlearn-
ing without explicitly optimizing against ground-truth private data. By iteratively fine-tuning the
model on its own generations in response to sensitive questions, we can force the model’s distribution
to collapse on private data in a targeted manner, thereby unlearning it (Figure 1).

We provide theoretical analysis showing that our approach achieves unlearning by converging to the
desired outcome. We begin by motivating the method on categorical data, then extend it to arbitrary
distributions, and ultimately adapt it for practical use in LLMs for question-answering tasks.
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Figure 1: We propose Partial Model Collapse (PMC), a novel unlearning method that leverages the
principles of model collapse to remove private information from LLMs. Existing methods optimize
directly on the unlearning targets, even if the model already unlearned or never learned them in
the first place. In contrast, we trigger distribution collapse conditionally for sensitive questions by
iteratively fine-tuning the model on its own generated responses. This allows us to achieve unlearning
without requiring private information in the fine-tuning data, aligning with stricter privacy constraints.

In extensive experimental evaluations we demonstrate that PMC removes private information from
model outputs more effectively than existing methods. Notably, PMC overcomes three key limitations
of prior approaches while being theoretically principled: First, it preserves generation coherence by
avoiding unintended degradation in unrelated contexts. Second, it reduces information leakage by
preventing unnatural suppression of correct answers, thereby mitigating vulnerability to probability-
based attacks. Third, it reduces information leakage in the presence of sampling and prefilling attacks.
Our main contributions are:

• We propose Partial Model Collapse (PMC)—a novel, theoretically grounded unlearning method
based on iterative relearning on synthetically generated data. Unlike prior work, PMC avoids
private data in the unlearning objective, enabling unlearning under stricter privacy constraints.

• We provide a formal analysis showing that PMC achieves unlearning by driving the model’s
output distribution toward a target distribution in which the influence of private data is eliminated.

• We identify negative side effects in previous, target-dependent unlearning methods, including
distorted token probabilities for unlearning targets even out of context of the unlearning task and
information leakage regarding supposedly unlearned knowledge in multiple choice evaluations.

• Through extensive empirical evaluation, we show that PMC outperforms existing state-of-the-
art unlearning methods in removing private information from LLMs. It maintains generation
coherence across tasks and shows no negative side effects that we identify in previous methods.

Overall, we introduce a new paradigm for machine unlearning by harnessing the mechanism of model
collapse. By reframing this detrimental phenomenon as a tool for targeted information removal, we
enable new avenues toward more trustworthy machine learning.

2 RELATED WORK

Machine unlearning. Machine unlearning aims to remove the influence of specific training data
from a model while preserving its overall performance (Cao & Yang, 2015). Broadly, unlearning
methods can be categorized into exact, approximate, and empirical approaches. Exact unlearning
seeks to ensure that the resulting model behaves as if the data had never been seen (Bourtoule et al.,
2021; Yan et al., 2022), but is typically computationally infeasible at scale. Approximate unlearning,
while not guaranteeing complete removal, aim to statistically reduce the influence of specific data
points, often drawing on tools from differential privacy (Guo et al., 2020; Neel et al., 2021; Ullah
et al., 2021; Chien et al., 2022; Zhang et al., 2023) or generalization theory (Sekhari et al., 2021). In
contrast, empirical unlearning (which we focus on) rather aims to efficiently prevent the generation
of specific information for practical use (Eldan & Russinovich, 2023). The empirical nature of these
methods makes them scale to larger models (Jang et al., 2022; Maini et al., 2024).

Machine unlearning for LLMs. Recent research has increasingly focused on unlearning in the
context of LLMs (Jang et al., 2022; Chen & Yang, 2023; Eldan & Russinovich, 2023; Kim et al., 2024;
Lynch et al., 2024; Maini et al., 2024; Sheshadri et al., 2024; Li et al., 2024; Seyitoğlu et al.; Shi et al.,
2025; Dorna et al., 2025). Among empirical approaches, methods based on preference optimization
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have shown early progress (Rafailov et al., 2024; Zhang et al., 2024; Fan et al., 2024; Mekala et al.,
2024), yet all of them introduce severe unlearning-utility trade-offs. Moreover, evaluating unlearning
in LLMs remains an open challenge (Feng et al., 2025; Jones et al., 2025; Scholten et al., 2025). Most
current methods focus on assessing the model’s ability to avoid generating specific unlearning targets,
but often overlook issues such as residual information leakage (Schwinn et al., 2024; Scholten et al.,
2025). In this work, we identify further negative side effects in current methods.

Model collapse in iterative retraining. The rise of AI-generated content on the web has sparked
growing interest in the effects of iterative retraining, where models are repeatedly trained on their
own outputs. Early studies (Shumailov et al., 2023; Alemohammad et al., 2024) raised concerns by
showing that model performance can degrade significantly with successive retraining iterations. In
contrast, Bertrand et al. (2024) show that mixing synthetic data with the original training data can
avoid model collapse and stabilize performance. Theoretical work (Dohmatob et al., 2024; Feng et al.,
2024) further derives conditions under which collapse occurs. For example, iterative retraining with
discrete or Gaussian distributions results in collapse primarily due to statistical approximation errors
(Shumailov et al., 2023; Alemohammad et al., 2024; Bertrand et al., 2024). Most recently, Ferbach
et al. (2024) introduce a new model for retraining in practice, where new synthetic training data is
sampled according to a Bradley-Terry model with an unknown reward function. They show that
retraining maximizes the underlying reward function and that mixing synthetic and original training
data can prevent collapse. While model collapse has been framed as a bug in the LLM learning
landscape, we show that it can be turned into a feature in the context of machine unlearning.

3 PRELIMINARIES AND BACKGROUND

Machine unlearning. In this work, we study empirical machine unlearning for generative models,
framing it as the problem of removing private information from model outputs without retraining
from scratch and, in contrast to previous works, without requiring the ground truth private data.

Large language models. We model LLMs as parameterized functions fθ : V ∗ → P(V ∗) mapping
input queries of arbitrary length to distributions over output sequences given vocabulary V , where ∗

is the Kleene operator. Output distributions can only be evaluated sequentially, i.e. the probability of
output sequence y = (y1, . . . , ym) given input x is the product of conditional next-token probabilities,
fθ(y|x) =

∏m
i=1 fθ(yi|yi−1, . . . , y1, x), where fθ(y|·) is the density over possible tokens y ∈ V .

Iterative relearning on self-generated data. Given an initial generative model f (0) fitted on a
dataset D(0), iterative relearning refers to sequentially fine-tuning models on data sampled from their
own distribution

{
xi | xi ∼ f (t)

}n
i=1

to produce models of the next generation f (t+1). The goal is
to study the limit behavior of the sequence f (1), f (2), . . . , f (t) for t→∞. In this context, model
collapse refers to the phenomenon that iterative relearning causes loss of information over time, and
eventually leads to model collapse (Shumailov et al., 2023; 2024), i.e. the variance of the model’s
generative output distribution vanishes in the limit, Vary∼f(t) [y]

t→∞−→ 0.1

Discrete preference models. Ferbach et al. (2024) study the stability of iterative relearning on
curated self-generated data in the image domain. They model the curation process using a reward
function and the Bradley-Terry model (Bradley & Terry, 1952), which is a probabilistic model for
pairwise comparisons of items and often used to model human preferences. The model formulates
the probability of one item x1 being preferred over another x2 using item-dependent scores (Bradley
& Terry, 1952). Given n items xi, the probability of choosing x̂ ∼ BTτ (x1, . . . , xn) under the
generalized Bradley-Terry model BTτ with temperature τ can be described as

Pr
x̂∼BTτ (x1,...,xn)

[x̂ = xi] =
er(xi)/τ∑n
j=1 e

r(xj)/τ
, (1)

where r(x) is a reward function that assigns a score to each item xi. Our approach uses this preference
model to guide the unlearning process by choosing samples with higher unlearn quality.

1Note that we consider collapse of the model’s output distribution, not the model’s overall utility.
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Figure 2: Unlearning through iterative MLE-relearning for categorical distributions. The model’s
knowledge about all other categories vanishes over time until it models target categories (bold) only.

4 FROM MODEL COLLAPSE TO MACHINE UNLEARNING

In the following we theoretically motivate and derive a new perspective on machine unlearning that
leverages information loss caused by iterative relearning on self-generated data.

4.1 WARM-UP: UNLEARNING IN CATEGORICAL DISTRIBUTIONS VIA ITERATIVE RELEARNING

We begin by analyzing iterative relearning of categorical distributions via maximum likelihood
estimation (MLE). Assume a dataset D of categorical data with at least one datapoint per category,
and an initial categorical distribution π0 fitted on D using MLE. We further define a subset DC ⊆ D
of datapoints belonging to target categories C and delete all other datapoints from the dataset. We
then introduce an iterative relearning process that fits a new categorical distribution πt+1 on the target
data DC augmented with self-generated data, i.e. datapoints generated from the distribution πt of
the previous iteration: DC ∪ {xi | xi ∼ πt}ni=1. Interestingly, this iterative relearning prevents total
distribution collapse, causes information loss for all other categories and effectively achieves full
unlearning of the deleted datapoints (Proof in Appendix C):

Lemma 1: For any categorical distribution π0, iteratively relearning πt on target data DC
augmented with data generated from its own distribution {xi | xi ∼ πt}ni=1 causes information
loss for all other (non-target) categories i: πt(i)

t→∞−−−→ 0 .

Intuitively, the probability mass of the other categories gets redistributed to the target categories and
results in a “partial” collapse (Figure 2). Without target data, i.e. DC = ∅, the iterative relearning
process would converge to total distribution collapse (Shumailov et al., 2023; 2024), i.e. the model
would eventually assign all probability mass to a single category. The main reason for this informa-
tion loss are statistical approximation errors when fitting categorical distributions using maximum
likelihood estimation: Given finite samples, the iterative relearning process describes an absorbing
Markov chain, which is known to converge to an absorbing state (Shumailov et al., 2023; 2024).

4.2 MACHINE UNLEARNING VIA ITERATIVE RELEARNING ON SELF-GENERATED DATA

Our core idea is to leverage this inherent information loss described above for machine unlearning,
gradually forcing the model to forget undesired responses without explicitly optimizing against
ground-truth private information. However, this comes with several challenges for LLMs in practice:

First, the distributions we seek to collapse for LLMs are the categorical distributions over entire
sequences P(V ∗), but LLMs only provide direct access to the categorical next-token distribution.
Second, LLM unlearning is typically studied for question-answering tasks, where the objective is
to unlearn answers to “forget” questions while preserving performance on all other “retain” queries.
Lastly, defining a suitable target distribution to converge to is challenging due to the natural language
domain—although we might know which answers should be unlearned, specifying a well-formed
distribution to converge to remains non-trivial without access to a language model that has not been
trained on the ground truth (which is usually not available without expensive retraining from scratch).

Partial model collapse using a preference model. To overcome these challenges, we propose to
trigger collapse of the model’s output distribution conditional on forget queries through an iterative
preference-guided procedure while ensuring that the model retains its utility on other retain queries.

4
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To guide the unlearning process toward desired outputs, we build upon the result that iterative
retraining on “curated” (filtered) self-generated data yields model collapse in the image domain
(Ferbach et al., 2024). Specifically, we propose to unlearn responses to forget queries by (1) sampling
n independent responses from the model, and (2) fine-tuning on the best response selected by a
preference model. We formalize this using the generalized Bradley-Terry preference model (Section 3)
together with a bounded reward function r : X → [0, r∗], which assigns higher scores to preferred
responses (e.g. rewarding dissimilarity of a sampled response to the response of the original model).

Let pr represent a retain distribution over query-answer pairs (which we do not want to unlearn), and
pf a forget distribution over questions whose answers we want to unlearn. Note that we do not require
access to the ground truth answers for the forget questions, and we assume disjoint support of pf (q)
and the marginal distribution pr(q), i.e. we either want to unlearn the response to a question or not.
Given an initial model p0 before unlearning, we introduce the following iterative unlearning process:

Partial Model Collapse Machine Unlearning for Q&A tasks

pt+1 = argmax
p∈P

λE(q,x)∼pr
[log p(x|q)] + E q∼pf

x1,...,xn∼pt(x|q)
x̂∼BTτ (x1,...,xn)

[log p(x̂|q)] (2)

where P is the set of all distributions over X , pt is the model distribution at step t, and BTτ is the
generalized Bradley-Terry preference model with temperature τ (Equation 1). Intuitively, Equation 2
describes an iterative unlearning process where the next distribution maximizes the expected log-
likelihood of question-answer queries under the retain distribution pr (for utility) and the expected
log-likelihood of curated samples from the current model distribution pt conditioned on forget queries
from pf (for unlearning). The first term preserves utility and the second term is responsible for
unlearning, where the parameter λ ∈ [0,∞) balances the trade-off between utility and unlearning.
Notably, this iterative process defined in Equation 2 converges to the maximum reward for any forget
query q ∈ supp(pf ) in the limit, i.e. the model unlearns:

Theorem 2: Let pt be the distribution described by Equation 2. In the absence of statistical and
function approximation errors, the expected reward converges to the maximum reward and its
variance vanishes for any forget query q ∈ supp(pf ):

Ex∼pt(x|q)

[
er(x)

]
t→∞−−−→ er

∗
Varx∼pt(x|q)

[
er(x)

]
t→∞−−−→ 0.

Intuitively, the expected reward increases each iteration (proof in Appendix D).

4.3 PARTIAL MODEL COLLAPSE UNLEARNING FOR LLMS IN PRACTICE

Finally, we propose our proposed PMC unlearning loss in Algorithm 1, which can be minimized
using standard (stochastic) gradient-based fine-tuning methods. Note that while Equation 2 provides
a novel theoretical perspective, in practice LLMs are parameterized functions fθ approximating pt,
and pr and pf are approximated via finite-sample datasets, denoted as the retain set of Q&A pairs
Dr = {(qi, xi)}mr

i=1 and the forget set Df = {qi}
mf

i=1 of questions whose answers we aim to unlearn.

Importantly, our unlearning loss is independent of the
ground truth forget answers, thereby avoiding any direct
gradient updates that could unintentionally reinforce the
information we seek to remove. Instead, we fine-tune on
answers generated by the model itself. Specifically, we
sample n responses from the model’s output distribution
and select one response according to a preference model.
The key advantage of our approach is that the samples are
drawn directly from the model’s own distribution—they
represent outputs the model is already likely to produce.
As a result, fine-tuning on these samples aligns with the
model’s distribution. Rather than pushing the model away
from specific targets, we allow it to diverge naturally
by adjusting the likelihood of its own likely generations,
enabling unlearning while preserving the model’s utility.

Algorithm 1 PMC unlearning loss

Require: Retain batch Br={qi, xi} ⊆ Dr

forget batch Bf={qi} ⊆ Df , model fθ ,
temperature τ , and hyperparameter λ

1: Compute retain loss ℓr
ℓr = − 1

|Br|
∑

(qi,xi)∈Br
log fθ(xi|qi)

2: for forget question qi ∈ Bf do
3: Sample n responses

x1, . . . , xn ∼ fθ(x|qi)
4: Sample preferred response

x̂i ∼ BTτ (x1, . . . , xn)

5: Compute forget loss ℓf
ℓf = − 1

|Bf |
∑

qi∈Bf
log fθ(x̂i|qi)

6: return λℓr + ℓf

5
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Figure 3: Partial model collapse (PMC) significantly dominates baselines and expands the Pareto-
front w.r.t. utility and unlearn quality for (a) Phi-1.5 and (b) Llama-3.2-3B-Instruct. While existing
methods (GA, GD, NPO, SimNPO, and IDK) also unlearn, they cannot deviate much from the model
before unlearning without compromising the model’s general capabilities. Orange lines indicate
fine-tuned models before unlearning, max. unlearn quality is 2. Stars represent dominating points.

5 EXPERIMENTAL EVALUATION

We experimentally demonstrate that the information loss in model collapse can be leveraged to
achieve machine unlearning. We also identify negative side effects in existing unlearning methods
that directly optimize on unlearning targets and showcase positive effects of our approach, such as
robustness and reduced leakage under sampling. We provide additional results in Appendix A, and
refer to Appendix B for experimental setups, implementation details and reproducibility instructions.

Experimental setup. We perform experiments on the TOFU dataset (Maini et al., 2024), a fictitious
dataset of 4,000 question-answering pairs designed for machine unlearning. We fine-tune models
on the full dataset and perform unlearning on the “forget10” split, since it has the largest forget
set and thus corresponds to the most challenging split in the dataset. We perform experiments for
two models: Phi-1.5 (Li et al., 2023) since it is smaller and extensively studied in the unlearning
literature, and Llama-3.2-3B-Instruct (Grattafiori et al., 2024) since it is a more recent model with
strong performance across tasks. Experiments are performed on A100 and H100 GPUs.

Baselines. As baselines we consider Gradient Ascent (GA) and Gradient Difference (GD) (Liu et al.,
2022), as well as Negative Preference Optimization (NPO) (Zhang et al., 2024) and its simplified
version (SimNPO) (Fan et al., 2024). We also introduce a new baseline that fine-tunes on retain and
forget data but simply replaces all forget-answers with the phrase “I don’t know.” (IDK).

Metrics. We evaluate using recall ROUGE-L scores (Lin, 2004), i.e. the longest common subsequence
between the model’s greedy output and the ground truth. Unlearning performance is quantified using
the sum of ROUGE-L scores on the forget and paraphrased-forget sets—the latter is an additional
TOFU dataset allowing to quantify generalization of unlearning. We report unlearn quality as the
maximal score minus the achieved score (such that larger is better), and utility, measured as the
sum of ROUGE-L scores on the retain set Dr and two additional TOFU datasets: world facts (117
questions) and real authors (100 questions), which allow to assess general knowledge retention.

Reward function. The design of the reward function r(x) is decisive for achieving the envisioned
target after unlearning and highly application-dependent. Our goal in this paper is to remove the
model output for forget questions and we therefore use the ROUGE-L score between the model’s
original and current output, i.e., r(x) = 1−ROUGE-L(x̂, y) ∈ [0, 1], where y is the model’s original
answer for forget question q ∈ Df and x̂ is the sampled output as described in Algorithm 1.

5.1 PARTIAL MODEL COLLAPSE ACHIEVES MORE EFFECTIVE UNLEARNING

In a series of experimental evaluations, we compare our proposed partial model collapse (PMC) to the
baselines described above (GA, GD, NPO, SimNPO, and IDK). Since all methods involve multiple
different hyperparameters, we perform a grid search for each method. Specifically, we explore 100
different configurations for each method to ensure a fair comparison, covering a broad range of
hyperparameter values while keeping the number of trials consistent across methods (see Appendix B
for exact search spaces for the grid search). We repeat the experiment for each configuration five
times using different random seeds, and report mean utility and unlearn quality.
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Figure 4: Limitations of unlearning methods optimizing on unlearning targets: (a) Side effects on
unrelated datasets. (b) Accuracy when selecting least likely answer across quantiles (black line is
random guessing). (c) Distribution of minimum probabilities across all multiple-choice options.

Notably, PMC significantly dominates all baselines in the utility-unlearning trade-off and expands
the Pareto-front, achieving strong unlearn quality while maintaining high utility across most hyperpa-
rameter configurations (Figure 3). In contrast, existing methods achieve lower unlearn quality and/or
compromise the model’s general capabilities. We observe that PMC-unlearned Phi-1.5 models often
answer with generic phrases like “The answer is not available” (or similar), while Llama-3.2-3B-
Instruct models achieve almost optimal unlearn quality by refusing to answer exclusively for forget
and paraphrased forget questions (despite performing unlearning only on the former). Note that the
desired response for forget questions depends on the use-case and can be adjusted by modifying
the reward function. The underlying reason that our method achieves such strong results without
compromising the model’s general capabilities is that we do not explicitly optimize on unlearning
targets. Instead, we fine-tune on responses that are already likely under the model’s own distribution.
This way, we can force the model to diverge from the unlearning targets toward the optimal reward
(guided by the reward function), rather than pushing the model away from explicit targets.

Extended utility analysis. Although PMC is optimized only on the retain data to preserve utility,
we find that its impact on overall model utility beyond the TOFU utility dataset is minimal in
practice. Results on the ARC-Challenge, ARC-Easy, and MMLU benchmarks (Appendix A) show
that PMC-unlearning has minimal to negligible effect on general model utility.

5.2 PMC OVERCOMES LIMITATIONS OF METHODS OPTIMIZING ON UNLEARNING TARGETS

Existing unlearning methods predominantly incorporate the unlearning target directly into their
objectives. We argue that this approach may have subtle effects on model properties related to the
unlearning targets, such as distorting token probabilities and leaking information about the private
data used during unlearning optimization. Yet, the utility of unlearning models is typically evaluated
using benchmark datasets or by comparing them to a retrained model (Maini et al., 2024). As a result,
existing evaluations may miss subtle changes in the generation properties of unlearned models.

Generation capability on unrelated datasets. First, we study generations of tokens targeted in
the unlearning optimization and investigate whether existing methods compromise the model’s
ability to generate such tokens. We argue that unlearning should prevent models from revealing
unlearned information, but this effect must be limited to the unlearning context. It should not affect
token generation in unrelated settings, as most tokens in forget sets are not semantically tied to the
unlearning task but rather to sentence structure. For example, if we want to unlearn that John Doe is
a carpenter, existing methods would minimize the probability of “carpenter” when asked about John
Doe’s profession. However, these methods should not reduce this probability in unrelated contexts.

To investigate such potential side effects, we compare the probability of generating tokens present in
TOFU compared to the first 100 text chunks of the wikitext-2-raw-v1 train split (Merity et al., 2016).
Figure 4 (a) shows the probability difference between unlearned models (NPO and our proposed
PMC method) and the base model: pun(xt|x)− pbase(xt|x), where xt is a token present in the forget
set, x is the context of this token in the wikitext dataset, and p(xt|x) it the probability of xt given the
context. As the base model, we use a model fine-tuned exclusively on the retain set, with no exposure
to the forget data. NPO substantially reduces the probability of generating forget set tokens also
present in wikitext. A considerable number of tokens that originally gets assigned a high probability
from the base model (e.g., close to 1) get assigned a probability of 0 from the unlearned model
(indicated by −1 values in the figure). In contrast, our method preserves generation probabilities,
exhibiting token probabilities that are neither systematically increased nor decreased. For PMC, the

7
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Figure 5: Ablation studies on (a) number of epochs, (b) number of samples, and (c) trade-off parameter
λ. Dashed line is the fine-tuned model before unlearning. Shadows/bars indicate standard deviation.

differences follow a zero-mean Gaussian distribution with small variance, whereas they are skewed
to the left for NPO (−0.12 mean). This shows that methods dependent on unlearning targets can
considerably distort token probabilities even out-of-context of the unlearning task.

Probability distribution in multiple-choice settings. Second, we hypothesize that existing unlearn-
ing methods exhibit information “leakage” by unnaturally reducing the probability of correct answers,
potentially allowing adversaries to identify forgotten information by simply selecting the least likely
option. To further investigate such potential negative side effects, we created a multiple-choice dataset
from the TOFU forget10 set by converting a subset of 84 questions into multiple-choice (MPC)
format (Appendix B.3). We use the inverse perplexity of every answer as its score and turn scores into
probabilities by normalizing them. Moreover, for the correct answers in the MPCs we used rephrased
versions of the correct TOFU answers rather than exact matches to demonstrate that leakage can
occur even for semantically similar but non-identical formulations.

Our experiments provide clear empirical evidence for our leakage hypothesis. Figure 4 (b) shows
accuracy when selecting the least likely answer across quantiles ordered by minimum probability
among choices. NPO exhibits high accuracy for questions where the minimum probability is very
low, indicating that the correct answer frequently becomes the least likely option. Conversely, our
method shows no such pattern. Figure 4 (c) shows the distribution of minimum probabilities across
all multiple-choice options. Here, NPO’s distribution clusters near zero, further confirming that target-
based unlearning unnaturally suppresses correct answer probabilities even in rephrased contexts.

5.3 PMC IS MORE ROBUSTNESS AGAINST SAMPLING AND PREFILLING ATTACKS

PMC IDK NPO
0

25

50

A
vg

.w
.c

.[
%

]

Sampling
Prefilling+sampling

Figure 6: PMC is more robust
against sampling and prefill-
ing attacks. Lower average
worst-case leakage is better.

Finally, we demonstrate that PMC exhibits substantially greater
robustness against sampling and prefilling attacks compared to prior
approaches. To evaluate robustness under sampling, we draw 100
answers from the output distribution of the unlearned model, and
compute the ROUGE-L score between each sampled answer and
the ground truth answer. We then compute the maximum (worst-
case) ROUGE-L score per question and report the average across
all forget questions (see Appendix B for full experimental setup).
The results in Figure 6 show that PMC significantly reduces leakage
under sampling, in stark contrast to existing methods. While the
simple supervised fine-tuning IDK baseline also reduces leakage
under sampling, this effect is largely superficial. To demonstrate this,
we perform a prefilling attack in which the model is prompted with
a forget question and forced to continue from the prefix “The answer is:”. This attack bypasses the
fine-tuned response and reveals that the IDK baseline still encodes substantial information about the
unlearned answers, leading to high leakage. Notably, while existing methods exhibit considerable
leakage, PMC is the first approach to achieve more robust unlearning across both attack settings.
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5.4 ABLATIONS STUDIES FOR PARTIAL MODEL COLLAPSE MACHINE UNLEARNING

We perform ablation studies on PMC’s hyperparameters under Phi-1.5 (additional results in Ap-
pendix A, details in Appendix B). First, the number of training epochs strongly influences unlearning
performance: while baseline methods converge after 10 epochs, PMC continues to improve unlearn
quality without significantly affecting utility even after 20 epochs (Figure 5a). Second, increasing the
number of samples also enhances unlearning, with utility remaining stable for the first six epochs;
larger sample sizes show slightly higher variance in utility (Figure 5b). Finally, we ablate the unlearn-
utility trade-off parameter λ, observing that larger values improve utility but can degrade unlearn
quality, highlighting the importance of selecting λ to balance these objectives (Figure 5c).

6 DISCUSSION

Limitations. A key strength of PMC is its reliance on samples from the model’s own distribution,
but this also increases computational overhead, especially for LLMs. We provide detailed runtime
reports in Appendix A. While PMC demonstrates effective unlearning, sampling remains a bottleneck
for applications requiring efficiency. Future work could explore faster sampling techniques, pruned
model variants, or proxy models toward more efficient collapse-based unlearning.

Unlearning evaluation. Evaluating unlearning in large language models (LLMs) remains a major
challenge and is highly dependent on specific unlearning goals. While semantic approaches would
involve human judgments (or LLM judges), our goal is only to show that PMC can effectively remove
specific outputs while maintaining utility—an outcome we believe is sufficiently supported by our
evaluation. Comprehensive evaluations are currently infeasible due to computational constraints and
the lack of established metrics. Instead, we highlight three underexplored aspects: (i) coherence
on unrelated datasets, (ii) output distributions in multiple-choice settings, and (iii) robustness to
sampling and prefilling attacks. We consider our evaluation as a first step toward more comprehensive
evaluations of collapse-based unlearning and invite the community to further assess other key
dimensions, such as e.g. robustness to relearning or adversarial attacks against unlearning.

Design of reward function. The design of the reward function r(x) is crucial for achieving the
desired outcome after unlearning. In our experiments, we used the ROUGE-L score between the
model’s current and original output as the reward function, which amounts to an incentive to diverge
away from the model before unlearning. This choice is motivated by the goal of removing the model’s
output for forget questions and is already effective. In practice, the design of r(x) may need to be
more carefully tailored to the needs of specific applications. For example, using a set of admissible
responses or using a reference model that broadly captures natural language but has not been trained
on the private data. We believe this is a promising avenue for future work.

Independence from ground truth forget data. One of the central advantage of PMC is that it does
neither optimizes against nor requires access to the ground truth forget data during unlearning. This is
particularly important in settings where the original data is unavailable, restricted from being used for
training, or cannot be shared due to privacy concerns. Instead, PMC relies only on samples generated
from the model’s own distribution, eliminating the need for the original ground truth. Importantly,
prior methods can unintentionally embed private information into a model through gradients during
unlearning, even if the model has never encountered any of the private data. In contrast, PMC avoids
such risks, making it a more privacy-preserving approach for machine unlearning.

7 CONCLUSION

In this paper we propose a novel and theoretically grounded paradigm for LLM unlearning that
leverages the phenomenon of model collapse. Our approach, Partial Model Collapse (PMC), itera-
tively fine-tunes a model on its own responses to sensitive questions, effectively removing sensitive
information from the model’s distribution without requiring the ground truth unlearning targets in
the fine-tuning data. We empirically demonstrate that PMC converges to a model that no longer
generates sensitive information, while preserving the model’s overall utility. Our work represents an
important contribution toward effective unlearning and provides a foundation for future research in
collapse-based machine unlearning for generative models beyond LLMs.
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ETHICS STATEMENT

Our work contributes to the field of machine unlearning, which is crucial for ensuring privacy and
compliance with data protection regulations. By proposing a method that effectively removes sensitive
information from LLMs without requiring explicit optimization on unlearning targets, we aim to
enhance the trustworthiness of AI systems. However, we acknowledge that unlearning techniques
could also be misused, for example to delete facts. We advocate for the responsible use of our method,
emphasizing transparency and accountability in AI development.

REPRODUCIBILITY STATEMENT

We provide a detailed description of our experimental setup, including hyperparameters, datasets,
runtime and reproducibility instructions in Appendix B. We ensure reproducibility by using fixed
random seeds, by running each experiment five times, and by reporting mean and standard deviation.
We additionally provide code as supplementary material.

LLM USAGE STATEMENT

LLMs were only used to polish writing at sentence-level (spelling, grammar, wording).
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Figure 7: Ablation studies on: (a) temperature, (b) top-p sampling, and (c) Bradley-Terry approxima-
tion (shadow/bars show standard deviation across five runs).

A ADDITIONAL EXPERIMENTS

We conduct the following additional ablation studies for Phi-1.5 to further investigate the properties
of our method. See Appendix B for details on the experimental setup of all ablation studies.

Sampling temperature (Figure 7 (a)). We empirically observe that larger temperatures allow stronger
unlearn quality, likely due to the higher probability to sample responses with lower similarity to the
ground truth. For temperatures above 1.5, the process leads to a decrease in utility.

Top-p sampling (Figure 7 (b)). We observe that top-p sampling can similarly improve unlearn quality
at the cost of model utility due to similar effects on the diversity of the sampled responses.

Bradley-Terry approximation. The general PMC formulation in Section 4 requires randomly
selecting one of n responses according to the Bradley-Terry model. We implement an approximation
by choosing the response with the highest score, i.e., x̂ = argmaxi r(xi). We resolve ambiguity
by choosing whichever sample has been drawn first to provide an additional, implicit incentive to
choose more likely samples. Our approximation is computationally efficient, and we empirically
verify in Figure 7 (c) that it effectively corresponds to the limit τ → 0 for temperature τ . In detail,
the BT-temperature τ does not affect model utility, however, it effectively improves unlearn quality,
motivating the argmax approximation.

A.1 EXTENDED UTILITY EXPERIMENTS

We conducted additional experiments to test whether PMC introduces unexpected utility degradations
on common benchmarks from the literature. Specifically, we compared the baseline Phi and Llama
models with their PMC-unlearned counterparts on Arc-Challenge, Arc-Easy (Clark et al., 2018), and
MMLU (Hendrycks et al., 2021). For PMC models, we report the mean and standard deviation over
five random seeds. The results in Table 1 show that PMC has only minor impact on model utility.

Arc-Challenge Arc-Easy MMLU
Llama-3.2-3B-Instruct (base) 0.4368 0.7382 0.6041
Llama-3.2-3B-Instruct (PMC) 0.4341 ± 0.0061 0.7230 ± 0.0058 0.5924 ± 0.0040
Phi-1.5 (base) 0.4462 0.7622 0.4174
Phi-1.5 (PMC) 0.4283 ± 0.0057 0.6891 ± 0.0053 0.4063 ± 0.0031

Table 1: Model utility comparison between baseline models and models fine-tuned with the proposed
PMC method. Mean and standard deviation over 5 random seeds are shown for PMC.
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B EXPERIMENTAL SETUP

We conduct all experiments on NVIDIA A100 GPUs (40GB) and NVIDIA H100 GPUs (80GB).

Datasets. We use the TOFU Q&A dataset (Maini et al., 2024) for finetuning and unlearning. The
dataset consists of 4,000 question-answer pairs about generated autobiographies of 200 different,
fictitious authors. We use the “forget10” split of the dataset, since it is the most challenging split of
the dataset. The split uses 400 samples for the forget set and the remaining samples for the retain set.
To facilitate model evaluation we approximate retain performance using a (random but fixed) subset
of 400 retain samples.

B.1 FINETUNING DETAILS

We fine-tune two pretrained LLMs, Phi-1.5 (Li et al., 2023) and Llama-3.2-3B-Instruct (Grattafiori
et al., 2024). For fine-tuning we generally follow the experimental setup as described in (Maini et al.,
2024). We fine-tune both models on the full TOFU Q&A dataset (Maini et al., 2024).

Finetuning hyperparameters. We fine-tune both models for 5 epochs using the AdamW optimizer
(Loshchilov & Hutter, 2019) together with ZeRO-3 (Rajbhandari et al., 2020). For fine-tuning Phi-1.5
we use a batch size of 16 and gradient accumulation steps of 2, which results in an effective batch
size of 32. For Llama-3.2-3B-Instruct we use a batch size of 8 and gradient accumulation steps
of 2, which results in an effective batch size of 16. We use a learning rate of 2e−5 for Phi-1.5
and 1e−5 for Llama-3.2-3B-Instruct. We also apply weight decay of 0.01 for both models. For
Llama-3.2-3B-Instruct we additionally deploy gradient checkpointing (Chen et al., 2016) and disable
flash attention. We summarize hyperparameters in Table 2 and results in Table 3.

Table 2: Finetuning hyperparameters for Phi-1.5 and Llama-3.2-3B-Instruct.

Finetuning Hyperparameter Phi-1.5 Llama-3.2-3B-Instruct

Batch size 16 8
Gradient accumulation steps 2 2
Learning rate 2e-5 1e-5
Number of epochs 5 5
Weight decay 0.01 0.01
Gradient checkpointing False True

Table 3: ROUGE-L scores as well as unlearn quality (UQ) and utility (as defined in Section 5) for the
pretrained models (before finetuning) and the models after finetuning on the TOFU 90/10 split.

Model Full World-facts Real-authors Forget Paraph. forget Retain UQ Utility

Phi-1.5 0.45 0.82 0.66 0.45 0.39 0.45 1.16 1.93
Phi-1.5 (FT) 0.93 ± 0.00 0.75 ± 0.02 0.44 ± 0.01 0.92 ± 0.00 0.31 ± 0.00 0.91 ± 0.01 0.77 ± 0.00 2.10 ± 0.03
Llama-3.2-3B-I. 0.26 0.92 0.96 0.27 0.24 0.26 1.49 2.14
Llama-3.2-3B-I. (FT) 0.96 ± 0.00 0.90 ± 0.01 0.86 ± 0.02 0.95 ± 0.00 0.34 ± 0.00 0.96 ± 0.00 0.71 ± 0.00 2.72 ± 0.02

B.2 UNLEARNING DETAILS

For the unlearning experiments we use the same hyperparameters for finetuning, except when
otherwise stated in the grid search. For fair comparison between methods, we run 100 experiments for
each method. We repeat each experiment 5 times using the same fixed random seeds for all methods
and report mean across the runs. That is we run 500 experiments for each method. We summarize the
hyperparameters used for the grid search in Table 4. Note that we introduce λ as a trade-off between
retain and forget loss for all methods, even if their original formulation does not include it.

Runtime. We report the runtime of PMC-unlearning for the two different models. On an NVIDIA
H100 GPU, Phi-1.5 completes within 40± 2 minutes, whereas Llama-3.2-3B-Instruct
converges faster with a runtime of 30± 1 minutes (both averaged over 5 runs). All other unlearning
methods have slightly shorter runtimes and complete within 20-30 minutes. We consider the runtime
of PMC to be reasonable for practical applications, especially when compared to retraining LLMs
from scratch. We also believe that the runtime of PMC can be further improved by future research
e.g. on more efficient sampling strategies.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Gridsearch details for all unlearning methods. For a fair comparison, we run 500 experiments
for each method: 100 different configurations each repeated for 5 different seeds. LR: Learning rate.

Parameter GA

Seed range(0,5)
LR linspace(1e-5, 1e-4, 10)
Epochs linspace(2, 20, 10)

Parameter GD

Seed range(0,5)
LR {1e-5, 2e-5}
Epochs {3, 5, 10, 15, 20}
λ linspace(0.5, 1.5, 10)

Parameter IDK

Seed range(0,5)
LR {1e-5, 2e-5}
Epochs {3, 5, 10, 15, 20}
λ linspace(0.5, 1.5, 10)

Parameter NPO

Seed range(0,5)
LR 1e-05
Epochs 10
λ linspace(0.5, 1.5, 10)
β linspace(0.05, 0.2, 10)

Parameter SimNPO

Seed range(0,5)
LR 1e-05
Epochs 10
λ linspace(0.05, 0.25, 4)
β linspace(2.5, 5.5, 5)
γ linspace(0.0, 2.0, 5)

Parameter PMC (Phi-1.5)

Seed range(0,5)
LR 1e-05
Epochs {10, 15}
λ linspace(0.5, 1.5, 5)
#Samples {1, 5, 10, 15, 20}
Temperature {1.25, 1.5}
Top-p 0.95

Parameter PMC (Llama-3.2-3B-Instruct)

Seed range(0,5)
LR 1e-05
Epochs {15, 20}
λ {0.5, 0.75, 1, 2, 3}
#Samples {10, 15}
Temperature {0.8, 0.9, 1, 1.25, 1.5}
Top-p 0.95

B.3 MPC PROMPT TEMPLATE

We created the MPC dataset from the TOFU Q&A dataset by prompting ChatGPT to do this specific
task. We selected a subset of 84 questions based on their suitability to be converted to a multiple
choice format. Suitability was evaluated using ChatGPT with the following template:

Answer with either ’Yes’ if the following is a factual question e.g., it can be answered with a few
words, such as names, dates, orientation, etc., or ’No’ if it requires longer explanations. Do not output
anything beyond ’Yes’, or ’No’.

QUESTION: {question}
ANSWER: {answer}

The prompt template used to convert the dataset to MPC is shown in the following:

Convert the following question and answer into a multiple choice question with 4 possible answers.
For each option remain close to the original sentence structure. Here is an example of an original
question and answer:

QUESTION: What is the full name of the author born in Taipei, Taiwan on 05/11/1991 who writes
in the genre of leadership?
ANSWER: The author’s full name is Hsiao Yun-Hwa.

What should be generated in this case:

MPC ANSWER:
A) The author’s full name is Hsiao Yun-Hwa.
B) The author’s full name is Ming-Chi Lee
C) The author’s full name is Wei-Li Chen
D) The author’s full name is Yu-Ting Huang

CORRECT ANSWER: A Do it for the following pair:

QUESTION: {question}
ANSWER: {answer}

MPC ANSWER:
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B.4 DETAILS ON ABLATION STUDIES

Table 5: Overview of hyperparameters used for the ablation studies in Section 5 and Appendix A. For
each setting, we repeat each experiments for 5 different seeds and report mean and standard deviation.
All ablation studies are conducted on the Phi-1.5 model.

Number of epochs

Parameter NPO

Seed range(0,5)
LR 1e-05
Epochs range(1,21)
λ 1.5
β 0.05

Number of epochs

Parameter SimNPO

Seed range(0,5)
LR 1e-05
Epochs range(1, 21)
λ 0.25
β 4
γ 0

Number of epochs

Parameter PMC

Seed range(0,5)
LR 1e-05
Epochs range(1, 21)
λ 1.5
#Samples 5
Temperature 1.25
Top-p 0.95

Number of samples

Parameter PMC

Seed range(0,5)
LR 1e-05
Epochs 15
λ 1.5
#Samples range(1,21)
Temperature 1.25
Top-p 0.95

λ

Parameter PMC

Seed range(0,5)
LR 1e-05
Epochs 15
λ range(0.5, 1.55, 0.1)
#Samples 5
Temperature 1.25
Top-p 0.95

Sampling temperature

Parameter PMC

Seed range(0,5)
LR 1e-05
Epochs 15
λ 1.5
#Samples 5
Temperature range(1.0, 1.55, 0.1)
Top-p 0.95

Top-p sampling

Parameter PMC

Seed range(0,5)
LR 1e-05
Epochs 15
λ 1.5
#Samples 5
Temperature 1.25
Top-p {0.9, 0.95, 1}

BT temperature τ

Parameter PMC

Seed range(0,5)
LR 1e-05
Epochs 15
λ 1.5
#Samples 5
Temperature 1.25
Top-p 0.95
τ linspace(0.05, 1, 20)

B.5 HYPERPARAMETER DETAILS ON SAMPLING AND PREFILLING EXPERIMENT

For the sampling and prefilling experiment (Subsection 5.3) we train Llama-3.2-3B-Instruct models
for three different unlearning techniques (PMC, IDK, NPO) with the following hyperparameters: For
all methods we use a learning rate of 1e−5 and 20 epochs. For PMC and IDK we choose λ = 1.25.
For PMC we use 20 samples, a temperature of 0.9, and top-p of 0.95 during PMC sampling. For NPO
we use λ = 1.5 and β = 0.05. We also repeated the experiment with SimNPO, but the results were
very similar to NPO. After unlearning, we sample 100 responses per question from each model using
a temperature of 0.9 and top-p of 0.95. We then compute the ROUGE-L score between each sampled
response and the ground truth answer. We report the worst-case ROUGE-L score average over all
questions in the forget set and report it in Figure 6. The worst-case ROUGE-L score for a question is
defined as the maximal ROUGE-L score across all 100 sampled responses for that question.
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C WARM-UP: ITERATIVE UNLEARNING WITH CATEGORICAL DISTRIBUTIONS
(SECTION 4)

Definition C.1 (Categorical distribution). A categorical distribution is a probability distribution over
K different possible outcomes {0, . . . ,K − 1} and parametrized by a vector π = (p0, . . . , pK−1) of
probabilities for each category, where pk ≥ 0 and

∑K−1
k=0 pk = 1. The probability mass function is

given by Pr[X = k] = pk.
Definition C.2 (Model collapse). A random variable X is said to have a collapsed distribution if its
variance is zero, i.e. Var[X] = 0.

Learning a categorical distribution. Consider a random variable X equipped with a categorical
distribution over K categories. We can learn the parameters π of the distribution of X from n
realizations x = (x1, . . . , xn) using maximum likelihood estimation (MLE). The likelihood function
is given by

L(x;π) ≜
n∏

i=1

Pr[X = xi] =

K−1∏
k=0

pnk

k =

(
1−

K−2∑
k=0

pk

)nK−1 K−2∏
k=0

pnk

k

where nk =
∑n

i=1 1[xi = k] is the number of times category k was observed, and in the last equation
we rewrote pK−1 by making use of the fact that

∑K−1
k=0 pk = 1. We maximize the log-likelihood

function as follows:
∂ logL(x;π)

∂pk
=

nk

pk
− nK−1

1−
∑K−2

i=0 pi

!
= 0

⇔ pk =
nk

nK−1

(
1−

K−2∑
i=0

pi

)
⇔ pk +

nk

nK−1

K−2∑
i=0

pi =
nk

nK−1
,

which is a linear system of K − 1 equations. We can briefly verify that the solution to this linear
system is given by p̂k = nk

n :

nk

n
+

nk

nK−1

K−2∑
i=0

ni

n
=

nk

nK−1

(
nK−1

n
+

∑K−2
i=0 ni

n

)
=

nk

nK−1
.

That is the MLE for the probability pk of category k is the fraction nk

n of observing category k among
all n samples.

Iterative relearning categorical distributions. Given an arbitrary categorical distribution with
parameters π0, we analyze iterative relearning of a categorical distribution on its own generated data.
First we draw n samples x = (x1, . . . , xn) i.i.d. from the distribution given by π0. We then relearn
the parameters π1 from the dataset x via maximum likelihood estimation. Repeating this process will
lead to convergence as we show in the following:
Proposition C.3. Iteratively relearning of a categorical distribution πt on its own generated data
yields model collapse independent of the initial distribution.

Intuitively, given finite samples, the iterative relearning process describes an absorbing Markov chain,
which is known to converge to an absorbing state (Shumailov et al., 2023).

Full proof. For the sake of exposition we first consider the case of a categorical distribution with
K = 2 categories, i.e. a Bernoulli distribution with a single success parameter p. Without loss of
generality we further assume that the initial success probability is already a multiple of 1

n (otherwise
just relearn once and then follow the proof).

The main idea of this proof is to model the stochastic process of relearning on self-generated data
as a discrete-time discrete-state-space Markov chain. Specifically, during iterative relearning, the
maximum likelihood estimate (average number of successes) itself becomes a random variable that
defines the parameter for the distribution of the next iteration. We denote the number of successes in
the (t + 1)-th iteration as Yt+1 =

∑n
i=1 X

(i)
t , where X

(i)
t ∼ Ber

(
Yt

n

)
are i.i.d. Bernoulli random

variables with success probability Yt

n .
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Figure 8: Model collapse for iterative retraining with categorical distributions. After 60 iterations,
the distribution collapsed to a zero-variance distribution, i.e. a single category. Compare to Figure 2.

Note that there are only n + 1 possible Bernoulli distributions because we estimate the success
probability with a discrete value. Thus the stochastic process of iterative relearning can be described
as a Markov chain with state space {0, 1, . . . , n} corresponding to the n + 1 possible Bernoulli
distributions. We further describe the stochastic process using a (n+ 1)× (n+ 1) transition matrix
Pn = (pij) of the probabilities to transition from one distribution to another:

pij ≜ Pr [Yt+1 = j | Yt = i] = Binom (j; n, i/n) .

In other words, the rows of the transition matrix corresponds to the PMF of the Binomial distribution
with n samples and success probability i/n, where i corresponds to the number of successes of the
previous iteration.

As an example, we show transition matrices for n = 1, 2, 3 samples:

P1 =

[
1 0
0 1

]
P2 =

[
1 0 0
1/4 1/2 1/4
0 0 1

]

P3 =

 1 0 0 0
0.29629630 0.44444444 0.22222222 0.03703704
0.03703704 0.22222222 0.44444444 0.29629630

0 0 0 1


Notably, the described Markov chain is a so-called absorbing Markov chain: First, it contains
absorbing states (0 and n) corresponding to Bernoulli distributions with success probability zero
or one – once a random walker reaches one of the absorbing states, the walker cannot leave it
anymore. Second, it is possible to go from any transient (non-absorbing) state to an absorbing state
in a finite number of steps. Thus a random walker is guaranteed to eventually reach an absorbing
state, independent of the initial success probability.

Consequently, iterative relearning will result w.p.1 in a distribution with success probability zero or
one. Since the variance of a Bernoulli distribution is p(1− p), the variance of the final distribution is
zero, i.e., the distribution collapsed.

For the general case of a categorical distribution with K categories, the proof follows analogously
by considering the Markov chain with states corresponding to the possible

(
n+K−1
K−1

)
categorical

distributions p. In this case, the rows correspond to the PMF of a Multinomial distribution: pij =
Multinom (np[j]; n,p[i]), where p[i] denotes the i-th categorical distribution in the state space. The
absorbing states correspond to the K distributions with pk = 1 for one k and pi = 0 for all other i,
which again have zero variance, i.e. are collapsed distributions.

Proposition C.3 is a special case of the argument of Shumailov et al. (2023) that iterative relearning
with discrete distributions describes an absorbing Markov chain, which is known to converge to
absorbing states with probability 1. Our proof explicitly constructs the underlying absorbing Markov
chain for categorical distributions.

Expected number of steps until model collapse. Interestingly, with a single sample the transition
matrix is the identity matrix and the distribution collapses immediately. In general, more samples
means slower collapse. Specifically, the expected steps until model collapse corresponds to the
expected steps to reach an absorbing state and can be computed by the fundamental matrix

∑∞
t=0 Q

t,
where Q is the submatrix of the transition matrix P corresponding to the transient states.
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Figure 9: Expected number of steps until
model collapse for Bernoulli distributions.

Notably, the submatrix Q is a strictly substochastic
matrix, i.e. the sum of the entries in each row is
strictly less than one (since it does not contain the
non-zero probability of transitioning to absorbing
states). We can bound the eigenvalues of Q using the
Gershgorin circle theorem (Geršgorin, 1931), which
states that every eigenvalue of a square matrix M lies
within a closed disk centered at Mii with radius Ri,
where Mii is the diagonal element of M and Ri is
the sum of the absolute values of the off-diagonal
elements of row i, Ri =

∑
j ̸=i |Mij |. In our case,

since Q is substochastic, the absolute eigenvalues of
Q are strictly less than one. This allows us to apply
the geometric series of matrices and compute the
fundamental matrix as

∑∞
t=0 Q

t = (I −Q)−1. The expected number of steps until model collapse
can be computed by solving the linear system (I −Q)t = 1. Overall, starting in transient state i, the
expected number of steps until model collapse is given by ti. In Figure 9 we show that the expected
steps ti grows linearly with the number of samples n.

From model collapse to machine unlearning for categorical distributions.
Lemma 1: For any categorical distribution π0, iteratively relearning πt on target data DC
augmented with data generated from its own distribution {xi | xi ∼ πt}ni=1 causes information
loss for all other (non-target) categories i: πt(i)

t→∞−−−→ 0 .

Proof. Because of the fixed retain set, probabilities for retain categories remain non-zero, while
probabilities for all other categories can become zero if no samples from these categories are generated
during the iterative relearning process. Once the probability of a category becomes zero, it cannot be
recovered anymore, since the iterative relearning process only generates samples from the current
distribution πt and will not generate samples from categories that have zero probability. This process
can be described once again using an absorbing Markov chain, where the absorbing states correspond
to the distributions with zero probability for all categories except the retain categories.

Beyond categorical distributions. We empirically demonstrate partial collapse in finite samples
for distributions described by Gaussian mixture models (GMMs) for 1- and 2-dimensional data.
Specifically, we sample two datasets from two isotropic Gaussians, one retain and one forget set. We
then fit a GMM with two Gaussians on the joint dataset to obtain a starting distribution p0. We then
iteratively relearn the GMMs either (1) on datapoints sampled from the model’s own distribution
only, or (2) on retain data augmented with datapoints sampled from the model’s own distribution.
Figure 10 and Figure 11 show that iterative relearning on self-generated data leads to information loss
– either the distribution collapses to zero variance or the variance diverges. In contrast, Figure 12 and
Figure 13 show that iterative relearning on retain points augmented with self-generated data leads
to partial collapse, i.e. the probability mass of the forget distribution is redistributed to the retain
distribution. This process stabilizes and does not collapse. This is consistent with the observation for
categorical distributions in Figure 2 (collapse) and Figure 8 (partial collapse/unlearning).
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Figure 10: Model collapse during iterative relearning of 1D-GMMs without retain set. Variance of
each individual Gaussian either converges to 0 (top row) or diverges to ∞ (bottom row) in finite steps.
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Figure 11: Model collapse during iterative relearning of 2D-GMMs without retain set. Variance of
each individual Gaussian either vanishes or diverges (in finite steps).
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Figure 12: Partial model collapse unlearning for 1D-GMMs: When augmenting retain data with self-
generated data, the probability mass of the forget distribution is redistributed to the retain distribution.
The iterative relearning process stabilizes and does not collapse.
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Figure 13: Partial model collapse unlearning for 2D-GMMs: When augmenting retain data with
self-generated data, the probability mass of the forget distribution is redistributed to the retain
distribution. The iterative relearning process stabilizes and does not collapse. Note that singularities
in the EM-algorithm may occur during this iterative process (bottom row).
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D MACHINE UNLEARNING VIA RELEARNING ON SELF-GENERATED DATA

The approach we describe in Section 4 is specific for Q&A tasks, but we can generalize it into
unlearning for arbitrary tasks as well: Let p0 denote the PDF (PMF) of any distribution over a set
X ⊆ Rd. Starting from an initial distribution, the objective is to obtain a model that fits a target
distribution pr, while erasing the influence of a forget distribution pf . Given a target distribution pr
over X that we do not want to unlearn, we propose machine unlearning via iterative relearning as:

Partial Model Collapse Machine Unlearning

pt+1 = argmin
p∈P(X )

α

1 + α
Ex∼pr

[− log p(x)] +
1

1 + α
Ex∼pt

[− log p(x)] (3)

where P is the set of densities over X , and α ∈ [0,∞). Intuitively, Equation 3 describes an iterative
process where the next distribution minimizes the convex combination of the expected negative
log-likelihood (NLL) under a retain distribution and the expected NLL under the current distribution
pt. Notably, this iterative process converges to the retain distribution (Proof in Appendix D):

Theorem 2: Assuming no statistical approximation errors, pt converges exponentially with rate
1

1+α to the target distribution pr for any initial distribution p0, limt→∞ pt(x) = pr(x).

Here, larger α yields faster convergence to the retain distribution pr. Notably, we do not require any
unlearning target, i.e. this method is independent of any forget distribution. In particular, Theorem 2
implies that for any forget distribution pf over X the KL-divergence between pt and pf converges to
the KL-divergence between retain and forget distribution: DKL(pt||pf )

t→∞−−−→ DKL(pr||pf ).

Proof. Due to assumption 1, we can express the PDF of the iterative relearning scheme as follows:

pt(x) =
λ

1 + λ
pr(x) +

1

1 + λ
pt−1(x)

since the assumption ensures q = argmaxp∈P Ex∼q[log p(x)]. Note this is a recursion equation for
which we can derive a closed-form:

pt(x) =
λ

1 + λ
pr(x) +

1

1 + λ
pt−1(x)

=
λ

1 + λ
pr(x) +

1

1 + λ

(
λ

1 + λ
pr(x) +

1

1 + λ
pt−2(x)

)
...

(1)
=

λ

1 + λ

t−1∑
i=0

(
1

1 + λ

)i

pr(x) +

(
1

1 + λ

)t

p(x)

(2)
=

λ

1 + λ

1−
(

1
1+λ

)t
1− 1

1+λ

pr(x) +

(
1

1 + λ

)t

p(x)

(3)
=

[
1−

(
1

1 + λ

)t
]
pr(x) +

(
1

1 + λ

)t

p(x)

where in (1) we insert the initial distribution p0(x) = p(x) after unrolling all t iterations, in (2) we
use the geometric sum using λ > 0 and thus 1

1+λ ∈ (0, 1), and in (3) we just simplify the expression
1

1− 1
1+λ

= 1+λ
λ .

Thus we have derived a closed-form of pt(x):

pt(x) =

[
1−

(
1

1 + λ

)t
]
pr(x) +

(
1

1 + λ

)t

p(x)
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Using this closed-form of pt(x) we directly obtain the convergence of pt(x) for t → ∞:

p∞ ≜ lim
t→∞

pt(x) = pr(x)

since due to λ > 0 we have 1
1+λ ∈ (0, 1) and thus

(
1

1+λ

)t t→∞−−−→ 0 .

Consequently we further have:

DKL(p∞||pr) = Ep∞

[
log

p∞(x)

pr(x)

]
= Epr

[
log

pr(x)

pr(x)

]
= Epr [log 1] = 0

and

DKL(p∞||pf ) = Ep∞

[
log

p∞(x)

pf (x)

]
= Epr

[
log

pr(x)

pf (x)

]
= DKL(pr||pf )

and specifically for mutually exclusive support of pr and pf we have:

DKL(p∞||pf ) = DKL(pr||pf ) = ∞

Finally, we prove the theorem about the expected reward convergence and vanishing variance for the
iterative relearning as described by Equation 2:

pt+1 = argmax
p∈P

λE(q,x)∼pr
[log p(x|q)] + E q∼pf

x1,...,xn∼pt(x|q)
x̂∼BTτ (x1,...,xn)

[log p(x̂|q)]

Theorem 1: Let pt be the distribution described by Equation 2. In the absence of statistical and
function approximation errors, the expected reward converges to the maximum reward and its
variance vanishes for any forget query q ∈ supp(pf ):

Ex∼pt(x|q)

[
er(x)

]
t→∞−−−→ er

∗
Varx∼pt(x|q)

[
er(x)

]
t→∞−−−→ 0.

Proof. We consider the following iterative optimization problem (Equation 2):

pt+1 = argmax
p∈P

λE(q,x)∼pr
[log p(x|q)] + E q∼pf

x1,...,xn∼pt(x|q)
x̂∼BT (x1,...,xn)

[log p(x̂|q)]

Assuming no statistical approximation errors, we know that argmaxp∈P Ex∼q[log p(x)] = q.
In the case of conditional distributions we have argmaxp∈P E(q,x)∼pr

[log p(x|q)] = p∗ with
p∗(x|q) = pr(x|q). Since we assume that the supports of pr and pf are disjoint, the optimization
problem amounts to two independent problems and the density of the optimal distribution p∗t+1
matches each conditional distribution independently:

p∗t+1(x|q) =
{
pr(x|q) if q ∈ supp(pr)

p̂t+1(x|q) if q ∈ supp(pf )

where p̂(x|q) is the distribution that maximizes the second term in Equation 2 for q ∈ supp(pf ):

p̂t+1(x|q) = argmax
p∈P

E q∼pf

x1,...,xn∼p̂t(x|q)
x̂∼BT (x1,...,xn)

[log p(x̂|q)]

Assuming again no statistical approximation errors, one can show that the density of the distribution
p̂t+1(x|q) assumes a closed-form (proof in (Ferbach et al., 2024) – proof of Lemma 2.1):

p̂t+1(x|q) = p̂t(x|q) ·Hn
p̂t
(x|q)

with

Hn
p̂t
(x|q) = Ex1,...,xn−1∼p̂t(x|q)

[
ner(x)

er(x) +
∑n−1

i=1 er(xi)

]
.

Moreover, since we assume the reward is bounded, Assumption 2.1 in (Ferbach et al., 2024) holds
and consequently the statement about reward convergence and vanishing variance follows directly
from Lemma 2.2 in (Ferbach et al., 2024).

23


	Introduction
	Related work
	Preliminaries and background
	From model collapse to machine unlearning
	Warm-up: Unlearning in categorical distributions via iterative relearning
	Machine unlearning via iterative relearning on self-generated data
	Partial Model Collapse unlearning for LLMs in practice

	Experimental evaluation
	Partial model collapse achieves more effective unlearning
	PMC overcomes limitations of methods optimizing on unlearning targets
	PMC is more robustness against sampling and prefilling attacks
	Ablations studies for partial model collapse machine unlearning

	Discussion
	Conclusion
	Additional experiments
	Extended utility experiments

	Experimental setup
	Finetuning details
	Unlearning details
	MPC prompt template
	Details on ablation studies
	Hyperparameter details on sampling and prefilling experiment

	Warm-up: Iterative unlearning with categorical distributions (Section 4)
	Machine unlearning via relearning on self-generated data

