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Abstract

Cryo-EM is an increasingly popular method for determining the atomic resolution
3D structure of macromolecular complexes (eg, proteins) from noisy 2D images
captured by an electron microscope. The computational task is to reconstruct
the 3D density of the particle, along with 3D pose of the particle in each 2D
image, for which the posterior pose distribution is highly multi-modal. Recent
developments in cryo-EM have focused on deep learning for which amortized
inference has been used to predict pose. Here, we address key problems with
this approach, and propose a new semi-amortized method, cryoSPIN, in which
reconstruction begins with amortized inference and then switches to a form of
auto-decoding to refine poses locally using stochastic gradient descent. Through
evaluation on synthetic datasets, we demonstrate that cryoSPIN is able to handle
multi-modal pose distributions during the amortized inference stage, while the later,
more flexible stage of direct pose optimization yields faster and more accurate
convergence of poses compared to baselines. On experimental data, we show
that cryoSPIN outperforms the state-of-the-art cryoAI in speed and reconstruction
quality. Project Webpage.

1 Introduction

Single particle electron cryo-microscopy (cryo-EM) has gained popularity among structural biologists
as a powerful experimental method for determining the 3D structure of macromolecular complexes,
such as proteins and viruses, unlocking our understanding of biological function at the scale of
the cell. Thanks to pioneering advances in hardware and data processing techniques, cryo-EM has
enabled reconstruction of challenging structures at atomic or near-atomic resolution [1].

During a cryo-EM experiment, 104–107 particle images, each containing an instance of the target
bio-molecule, are acquired using a transmission electron microscope. From that particle stack, the
goal is to reconstruct the unknown 3D density map [2]. This ab-initio reconstruction task presents
some challenges. First, the 3D pose (orientation and position) of the particle in each image is
unknown, and must be inferred along with the 3D structure. Second, low electron exposures are used
to limit radiation damage to the particles (e.g., see Fig. 1). But this reduces the signal-to-noise ratio
(SNR), obscuring high-resolution image detail and hindering pose and structure estimation. Third,
bio-molecules are typically non-rigid and exhibit structural variations within a sample. Hence, for
such heterogeneous datasets, it is crucial to account for the conformational variability in order to
obtain high-resolution reconstruction [3–6].
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Figure 1: CryoSPIN consists of two stages: (i) an auto-encoding stage where an image encoder
equipped with multiple heads maps the input image to the pose candidate set {ϕ1, . . . ϕM}, followed
by computing projections by slicing through the volume decoder in Fourier space based on the pose
set. These projections are compared with the input image and the one with the minimum error is
used. (ii) An auto-decoding stage where pose parameters in axis-angle representation are stored for
all images. The same volume decoder is used to obtain projections, and the reconstruction loss is
computed for a single projection.

The development of methods in cryo-EM has recently focused on deep learning. CryoDRGN [5]
proposed an image encoder-volume decoder architecture to model continuous heterogeneity, but the
poses were assumed to be known. CryoDRGNv2 [7] introduced hierarchical pose search, comprising
grid search followed by a form of branch-and-bound (BnB) optimization, akin to cryoSPARC [8].
More recently, cryoPoseNet [9] and cryoAI [10] introduced amortized pose inference, to avoid the
expense of orientation matching for each particle image. They employ a convolutional neural network
(CNN) to map an input image to a pose estimate. Nevertheless, although efficient, amortized inference
may not accurately represent multi-modal posterior pose distributions, which occur frequently early
in reconstruction before the structure is estimated well. As such, compared to previous methods
like cryoSPARC [8] and cryoDRGNv2 [7] that consider many pose candidates, amortized methods
sometimes fail to identify the correct mode. Moreover, amortization confines the pose search to a
global parametric function (the encoder) which can lead to slow convergence.

Here, we introduce a new approach, called cryoSPIN, to ab-initio homogeneous reconstruction
that is able to handle multi-modal pose distributions with a tailored encoder, and accelerates pose
optimization with semi-amortization [11]. First, we perform amortized pose inference through a
shared multi-choice encoder that maps each input image to multiple pose estimates (Fig. 1, top).
In contrast to cryoPoseNet [9] and cryoAI [10], which use pose encoders that produce one or two
estimates, we attach multiple pose predictor heads to a shared CNN feature extractor to predict
multiple plausible poses for each image. By design, our multi-output encoder is able to account for
pose uncertainty and encourage exploration of pose space during the initial stages of reconstruction.
For the 3D decoder, unlike cryoDRGN and cryoAI that use MLPs with computationally expensive
feed-forward implicit networks, we adopt an explicit parameterization to further accelerate the
reconstruction. To train the encoder-decoder architecture, we apply a “winner-takes-all” loss in which
the 3D decoder is queried to obtain a 3D-to-2D projection for each predicted pose. Inspired by
the loss function in Multi-Choice Learning [12–14], we select the projection with the lowest image
reconstruction error to determine the loss.

During the course of optimization, as higher resolution details are resolved, the pose posterior becomes
predominantly uni-modal. Thus, the pose search can be narrowed down to a neighborhood containing
the most likely mode. In this stage, we propose to transition from auto-encoding to auto-decoding
(Fig. 1, bottom). In particular, for each image, we choose the pose with the lowest reconstruction
loss, iteratively refine it with stochastic gradient descent (SGD), and continue pose optimization
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and reconstruction in an alternating fashion. This direct, per-image optimization procedure achieves
faster convergence to more accurate poses than amortized inference alone, which relies on potentially
sub-optimal predictions of the encoder as a parametric function.

We evaluate cryoSPIN in comparison to state-of-the-art methods, cryoSPARC [8], cryoAI [10],
and cryoDRGN [7] on both synthetic and real experimental datasets. Using synthetic data, we
find that semi-amortized inference noticeably accelerates the convergence of poses, and yields 3D
reconstructions at similar or higher resolutions than baseline methods. We also show that our multi-
choice encoder empirically accounts for multiple modes in the pose posterior. Finally, we apply
cryoSPIN to an experimental dataset and obtain reconstructions with higher resolution than those
from cryoAI, while matching the resolution of cryoSPARC reconstructions.

To summarize, we make following contributions.

• Building upon cryoAI, we develop a new encoder based on a multi-head architecture to return
multiple plausible candidates to further mitigate pose ambiguity.

• We train the encoder coupled with an explicit volume decoder using a winner-take-all loss, which
penalizes the pose hypothesis with least reconstruction error.

• Beyond the architecture and objective, we introduce semi-amortized pose inference, which begins
with feed-forward amortized pose inference, followed by direct, per-particle pose optimization.

• In ab-initio reconstruction, our semi-amortized method, cryoSPIN, is faster than amortized method
of cryoAI and achieves higher-resolution on synthetic and experimental datasets.

2 Related work

Cryo-EM reconstruction. Methods for cryo-EM reconstruction can be categorized as either
homogeneous or heterogeneous. Homogeneous techniques [8–10] assume a rigid structure while
heterogeneous ones [5, 7, 6, 15] allow for conformational variation. We focus on homogeneous
reconstruction, but our optimization framework could be extended to heterogeneous data as well.

Early reconstruction techniques rely on common-lines [16–18] or projection mapping [19, 20] to
select optimal poses. Other works [21, 22] frame the reconstruction problem in the context of
maximum a posteriori (MAP) estimation, and jointly reconstruct pose and structure via expectation
maximization (EM). We compare our approach to cryoSPARC [8], a state-of-the-art method that uses
stochastic gradient descent and a branch-and-bound search [23] for ab initio reconstruction and pose
estimation. Like these methods, our auto-decoding stage directly optimizes pose of every image.

More recently, amortized inference techniques have been proposed for pose estimation [24, 9, 10, 15].
These techniques avoid explicit per-particle pose optimization; instead, they train an auto-encoder
or variational one [25] to associate each particle image with a predicted pose [9]. One challenge is
that the auto-encoders can become stuck in local optima during training [9]. To address this issue,
cryoAI [10] produces two pose estimates per image coupled with a symmetrized loss function that
penalizes the best one. We build on this concept by adopting a multi-head neural architecture as the
encoder to output multiple plausible pose candidates and avoid local optima.

Multi-choice learning (MCL). Inspired by scenarios where a set of hypotheses needs to be
generated to account for uncertainty in the prediction task, MCL [12] was introduced in a supervised
setup to learn multiple structured-outputs with SSVMs [26]. Their motivating question was: can
we learn to produce a set of plausible hypotheses? To address this, they define an“oracle” loss in
which only the most accurate output pays the penalty. This loss is minimized even if there is only a
single accurate prediction in the set. The early follow-up work [27, 13] uses the same loss to learn a
deep CNN ensemble composed of M heads with a shared backbone network. Importantly, they show
that the ensemble-mean loss hurts prediction diversity across different heads, while training with the
“oracle” loss yields specialized heads. Variations have since been proposed to mitigate hypothesis
collapse or overconfidence issues in MCL by modifying the loss or applying learnable probabilistic
scoring schemes [28–30, 14]. MCL has been used to mitigate the ambiguity in several tasks including
image segmentation [31], optical-flow estimation [32], trajectory forecasting [33], human pose and
shape estimation [14, 34]. In our work, we use the “oracle” loss in context of auto-encoder which
supervises the pose encoder indirectly through projections provided by the decoder.
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3 Problem Definition

Image formation in cryo-EM is well-approximated using the weak-phase object model [35]. Under
this model, the structure of interest is an unknown 3D density map, V : R3 → R≥0, represented
in some canonical coordinate frame. Cryo-EM images, {Ii}Ni=1, are approximated as orthographic
projections of the 3D map under some unknown coordinate transformation. We denote the unknown
orientation by a rotation Ri ∈ SO(3) and the unknown position in terms of an in-plane translation
ti = (tx, ty) ∈ R2. Formally,

Ii(x, y) = [gi ⋆ (StiPRiV )](x, y) + n(x, y) , (1)

where PRi
(·) is the linear operator computing the integral along the optical axis, z, over the input

density map rotated by Ri, and S is the shift operator. The projection is convolved with the image-
specific point-spread function (PSF), gi, and corrupted by additive noise n. It is common to assume
that n follows a zero-mean white (or colored) Gaussian distribution.

By the Fourier slice theorem [36], the Fourier transform of a projection is equal to a central slice
through the density map’s 3D Fourier spectrum. That is,

Îi(ωx, ωy) = ĝiŜti(P̂Ri
V̂ )(ωx, ωy) + n̂(ωx, ωy) , (2)

where Î and V̂ denote the 2D and 3D Fourier transforms of the image and the density map. The slice
perpendicular to the projection is computed by (P̂Ri

V̂ ). The translation by Sti becomes a phase
shift operator Ŝti , and convolution with gi is equivalent to element-wise multiplication with, ĝi, the
contrast transfer function (CTF). The noise n̂ remains zero-mean Gaussian.

Under this model, given the structure V̂ , the negative log-likelihood of observing image Îi with noise
variance σ2 and pose (Ri, ti) is

L = − 1

2σ2

∑
ωx,ωy

[ĝiŜti(P̂Ri
V̂ )(ωx, ωy)− Îi(ωx, ωy)]

2 . (3)

Ab-initio reconstruction methods [8–10, 7] solve jointly for the unknown structure V̂ and per-particle
poses (Ri, ti). They often follow an Expectation-Maximization (EM) [37, 21] procedure in which
the E-step aligns images with the structure yielding pose estimates (Ri, ti), and then in the M-step
the volume V̂ is updated by minimizing the negative log-likelihood in Eq. 3. Since errors in pose
estimates lead to blurry reconstructions, accurate pose estimates are crucial to finding high-resolution
structures. As discussed above, poses are either optimized through search and projection matching
[8, 7] or estimated by an encoder network [10, 9, 15].

4 Methodology

We introduce cryoSPIN, a two-staged approach to ab-initio cryo-EM reconstruction, combining
auto-encoding and auto-decoding. We start with amortized inference (Fig. 1, auto-encoding) where
a shared encoder equipped with multiple heads provide a set of pose guesses. Multiple guesses
enable multimodal inference in the initial stages of reconstruction when the 3D structure is poorly
resolved. As reconstruction improves, the pose posterior becomes less uncertain, at which point we
switch to direct pose optimization (Fig. 1, auto-decoding). The former enables handling the pose
uncertainty early in reconstruction while the latter circumvents sub-optimality of encoder network
leading to arguably more accurate poses and faster convergence. We couple our pose estimation
module with an explicit volumetric decoder representing the 3D structure in Hartley space [5]. Our
explicit model enables faster evaluation of projections compared to multiple passes through implicit
neural representations [38–40]. The following sections discuss these components in detail.

4.1 Multi-choice encoder

With randomly initialized or a low-resolution reconstruction, the pose posterior contains multiple
modes. Also, due to high levels of noise in images and near-symmetries in biological structures, pose
estimation inherently involves high uncertainty. As a result, there exist several plausible poses for
each image, and naive optimization or search is prone to local minima.
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To account for uncertainty in pose estimation, we build upon cryoAI [10] and extend the encoder to
return multiple candidate poses ϕ. Formally, given the image Ii ∈ RH×W , M pairs of rotations and
translations are computed as,

ϕi,j = (Ri,j , ti,j) = Hθj (Fi), 1 ≤ j ≤ M (4)

where Ri,j ∈ SO(3) and ti,j ∈ R2 . The image-specific intermediate features, Fi = VGG(Ii) ∈
RC×H×W are extracted by a shared convolutional backbone based on the VGG16 architecture [41],
which are then supplied to M separate pose predictor heads, Hθj , 1 ≤ j ≤ M , yielding poses
ϕi,j . The heads are composed of fully-connected layers with distinct learnable weights, while the
backbone is shared across all heads. Using multiple heads facilitates pose exploration and reduces
uncertainty in the pose estimation process. Moreover, as θj are randomly initialized, different heads
are free to specialize on subsets of pose space so that they collectively produce a set of likely poses
{ϕi,1, . . . , ϕi,M}.

Inspired by multi-choice learning [12–14], we optimize the encoder-decoder using a “winner-take-all”
loss. For each image Ii and predicted pose ϕi,j , the negative log-likelihood, Li,j in (Eq. 3), is
computed, and the minimum is selected as the final loss for the corresponding image, i.e.,

Li = min
j

Li,j . (5)

Minimizing this loss requires only one of the predicted poses to be accurate. Interestingly, we find
that this approach produces heads that specialize to somewhat disjoint regions of pose space (see
Supp. C), consistent with previous work showing that it improves diversity in prediction tasks [13, 27].
This ’divide-and-conquer’ approach facilitates pose space exploration, which is crucial in order to
avoid local minima during the early stages of reconstruction where uncertainty in the 3D structure
is significant. CryoAI [10] can be viewed a special case of this formulation; it assigns two poses to
each image as a consequence of input augmentation, and selects the best one with a symmetrized
loss. In contrast, our approach augments the output of the encoder network with multiple heads, each
providing a pose estimate.

4.2 Switching from auto-encoding to auto-decoding

As optimization progresses and fine-grained details of the 3D structure are resolved, the posterior
pose variance tends to decrease, with the posterior approaching a unimodal distribution. At this
point, the gap between the amortized and variational posterior distributions is mainly determined
by the error in the pose estimate (predicted mean), prioritizing accuracy over exploration. However,
a feed-forward network, as a globally parameterized function of the input image, may be limited
in the accuracy of its predictions, and hence the approximations inherent in amortized inference
become significant sources of error in the refinement of the 3D structure. In prior work [11, 42–44],
a related issue, called the amortization gap, is characterized by the KL-divergence between the true
and predicted (amortized) variational posteriors.

To address this issue, we adopt a semi-amortized inference scheme [11] comprising two stages.
First, the encoder predicts a set of pose candidates using a multi-head architecture. In the second
stage, rather than amortized inference, pose parameters are directly optimized for each image using
stochastic gradient descent. To initialize poses for the i-th image, we choose the one with the lowest
reconstruction loss from the set of candidates {ϕi,1, . . . , ϕi,M}, namely ϕ∗

i = ϕi,s such that

s = argmin
j

Li,j . (6)

Subsequently, the pose and structure are optimized by coordinate descent using the negative log-
likelihood (Eq. 3) as the objective function. See Supp. A for more details on rotation optimization.

4.3 Explicit representation as volume decoder

Recent works [10, 5] use coordinate networks [39, 40, 38] to implicitly model the Fourier rep-
resentation of the 3D structure. Instead, we couple the pose estimation module with an explicit
parameterization (3D voxel array) of the structure in the Fourier domain. The explicit representation
is less computationally expensive than an MLP to evaluate and update. Also, this choice is motivated
by the fact the implicit decoder needs to be queried multiple times for each image with the multi-head
encoder.
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We parameterize the volume using the Hartley representation [5]. The Fourier and Hartley transforms,
respectively denoted as F (ω) and H(ω), are related as

H(ω) = R[F (ω)]− I[F (ω)], (7)

where ω denotes the frequency coordinate and R and I are the real and imaginary part, respectively.
The Hartley representation is real-valued, and so more memory efficient to use than storing complex-
valued Fourier coefficients. To account for high dynamic range of the Hartley coefficients, we assume
the Hartley field is decomposed into mantissa, m(ω) and exponent e(ω) fields [10] as,

H(ω) = m(ω)× exp(e(ω)). (8)

This decomposition restricts the range of values for m(ω) and e(ω) and makes the reconstruction
less sensitive to the initialization of the field.

5 Experiments

In what follows, we consider both synthetic and real datasets to empirically compare our semi-
amortized ab-initio reconstruction method with state-of-the-art methods, cryoAI [10] and cryo-
DRGN [7] which use amortized inference for reconstruction, and cryoSPARC [8] which performs
pose search separately for each particle image.

Synthetic data. We generate synthetic datasets by simulating the image formation process for-
malized in Sec. 3 using atomic models deposited in the Protein Data Bank (PDB). We compute
ground-truth density maps of size 1283 for a heat shock protein (HSP) [45] (1.5 Å), pre-catalytic
spliceosome [46] (4.33 Å), and SARS-CoV-2 spike protein [47] (2.13 Å). Then, N = 50, 000 projec-
tions of size L = 128 are generated by randomly rotating and projecting the density map along the
canonical z-axis. To simplify the analysis and interpretation of results (e.g. Figs. 4, 5), we consider
synthetic particles are centered, and therefore omit the estimation of 2D translation and allowing us
to visualize the pose posterior more easily. Finally, a random CTF is applied in the Fourier space and
Gaussian noise is added yielding SNR = 0.1.

Experimental data. As a widely adopted experimental benchmark, we use the 80S ribosome
dataset (EMPIAR-10028 [48]), containing 105,247 particle images of linear box size L = 360 with
pixel size 1.34 Å. Following cryoAI and cryoDRGN, we downsample the images to L = 128 (3.76 Å)
using cryoSPARC software [8], and randomly split the data into two halves and run the reconstruction
methods independently on each (to enable Fourier Shell Correlation as a quantitative measure of the
resolution of the 3D reconstruction). Unlike synthetic data, particles are not well-centered so it is
required to estimate translation parameters as well as rotations. This is achieved by augmenting each
head to return translation parameters as well.

Implementation details. During auto-encoding, we use encoders with M = 7 and M = 15 heads
for reconstruction on synthetic and real datasets, respectively, with Adam [49] to optimize encoder
and decoder with learning rates 0.0001 and 0.05. Once switched to direct optimization (after 7 epochs
for synthetic and 15 epochs for real data), we reduce the decoder learning rate to 0.02 and allocate a
new optimizer for pose parameters with learning rate 0.05. To be consistent with cryoAI, we use a
batch size of 64 and train for the same number of epochs (20 for synthetic, 30 for real data). We use
the public cryoAI codebase, run cryoSPARC v4.4.0 [8] with default settings, and run cryoDRGN
homogenous ab-initio job. Methods are implemented in Pytorch [50]. Experiments are run on a
single NVIDIA A40 GPU.

5.1 Results

We first qualitatively compare final reconstructions of cryoSPIN with cryoAI [10], cryoDRGN [7],
and cryoSPARC [8] on synthetic and real datasets (Fig. 2, left). We observe that cryoAI gets stuck in
local minima when evaluated on experimental data (eg, 80S ribosome). In particular, we found that
in the presence of unknown planar shift, cryoAI fails to estimate effective translation parameters, but
after centering all particles via pre-processing, we could reproduce the cryoAI results. Hence, the
provided results for cryoAI in Fig. 2 are obtained after this pre-processing step, whereas our method
and others are given off-centered experimental images. Both cryoSPIN and cryoSPARC capture
high-frequency details of the 3D structure on all datasets, whereas reconstructions by amortized
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Figure 2: Qualitative and quantitative comparison of reconstructions obtained by our proposed
semi-amortized method, cryoSPIN, with cryoAI [10], cryoDRGN [7] and cryoSPARC [8] We note
that cryoAI often becomes stuck in local minima when particles are not centered, so for cryoAI
we translate the input images to correct for the spatial offset. (Left) Final 3D reconstructions on
three synthetic datasets and one experimental dataset (EMPIAR-10028) are depicted using ChimeraX
[51]. (Right) FSC curves are visualized for quantitative comparison. The red dashed lines show the
standard threshold levels of 0.5 and 0.143 to report the resolution (in Angstrom) for synthetic and
real data, respectively. CryoSPIN achieves higher resolution on the Spliceosome and HSP datasets,
and it is competitive with the state of the art on the Spike and EMPIAR-10028 datasets.

methods, cryoAI and cryoDRGN, are inferior on the HSP and 80S datasets. In particular, on HSP,
cryoAI gets stuck in local minima as it fails to handle high uncertainty in poses caused by symmetries
in this structure.

For quantitative comparison, we visualize the Fourier Shell Correlation (FSC) [52] between the
reconstruction and the ground truth (Fig. 2, right). FSC is the gold-standard metric measuring the
normalised cross-correlation coefficient between two 3D Fourier volumes along shells of increasing
radius. Higher FSC implies more accurate reconstruction. On the Spliceosome, HSP and 80S experi-
mental datasets, our reconstruction outperforms amortized methods of cryoAI and cryoDRGN. Also,
our method outperforms cryoSPARC on Spliceosome, HSP and 80S, while achieving competitive
FSC on Spike. We use the standard 0.5 and 0.143 cutoff thresholds to report the resolution for
synthetic and real data, respectively. CryoSPIN achieves higher or competitive resolution compared
to others on all datasets.
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Figure 3: 3D resolution as a function of log time for different methods. These plots show the
semi-amortized method is significantly faster than cryoAI.

Figure 4: Quantitative and qualitative comparison of fully- vs. semi-amortized methods in pose
optimization for Spike (top) and Spliceosome (bottom) datasets. (Left) Mean geodesic distance
between the predicted pose and ground-truth is visualized at different epochs. By switching from
amortized inference to direct optimization, semi-amortized method (blue) enjoys accelerated pose
convergence compared to amortized inference (red). (Right) To visualize pose inference, images
depict the approximate log posterior for three particles (marginalized over in-plane rotations) as
view-direction distribution over a HEALPix [53] uniform grid on a unit sphere S2. After Gnomonic
projection to 2D, we show the neighborhood of the mode of interest. Black dots depict starting points.
Blue and red dots are pose estimates from fully- and semi-amortized methods.

In Fig. 3, we visualize resolution-time plots, showing that cryoSPIN gets to high-resolution
reconstructions significantly faster than cryoAI. In fact, semi-amortization in cryoSPIN ac-
celerates the improvement in the resolution and with our explicit structure decoder, we cir-
cumvent expensive MLP evaluations and train faster without any degradation to the final re-
construction quality as shown in Fig. 2. In Supp. B, through a detailed comparison with
cryoAI, we show cryoSPIN is ∼ 6x faster and uses ∼ 5x less memory compared to cryoAI.

Table 1: Mean/median errors of estimated rotations in units
of degrees evaluated on synthetic datasets.

Method HSP Spike Spliceosome

CryoSPARC [8] 6.23 / 1.05 1.61 / 1.51 1.41 / 1.36
CryoAI [10] 45.83 / 61.86 2.52 / 2.29 2.85 / 2.61
CryoSPIN (Ours) 3.27 / 0.97 1.54 / 0.90 0.68 / 0.61

Finally, we report the mean and me-
dian errors in estimated poses on syn-
thetic datasets in Table 1, showing that
our method outperforms cryoSPARC
and cryoAI. High errors by cryoAI on
HSP dataset shows that it gets stuck
in local minima and fails to accurately
estimate poses.
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CryoAI Multi-head

Figure 5: Comparing performance of our multi-head pose encoder (M = 4) with cryoAI pose
encoder on the challenging HSP [45] dataset. (Left) The approximate log posterior of view direction
is visualized on the unit sphere with highlighted areas showing modes of the distribution. CryoAI
and multi-head encoders provide two and four pose estimates, respectively, which are marked with
colored dots on the sphere (the order of poses is arbitrary). Below the sphere, the corresponding
projections are illustrated. CryoAI fails to find the correct mode while our method is able cover
multiple modes. (Top, right) With our multi-head encoder, the reconstruction converges to a much
higher resolution compared to cryoAI. (Bottom, right) Percentage of images assigned to each head
is visualized as a bar plot confirming that all heads participate in pose estimation.

5.2 Semi-Amortized vs. Fully-Amortized

To showcase the benefit of the auto-decoding stage, we compare our semi-amortized method with a
fully-amortized baseline on spike and spliceosome datasets. Starting with auto-encoding, we branch
the running reconstruction into two after 7 epochs: the first continues using the encoder while the
second switches to direct pose optimization. We plot the average pose error with respect to the
ground-truth at different epochs in Fig. 4 (left). When using the multi-head encoder, the pose with the
least reconstruction error is selected among the candidates. Interestingly, as our method switches to
direct pose optimization, the error in pose drops quickly, whereas the fully-amortized baseline exhibits
slow convergence. This clearly shows the superiority of auto-decoding compared to auto-encoding
during the later stages of optimization.

Next, we analyze the evolution of pose estimates over the optimization landscape depicted as a heat
map (Fig. 4, right). Qualitatively, poses obtained by direct optimization (blue dots) show stable
convergence to the optimal point (highlighted area) while those inferred by the encoder (red dots)
frequently oscillate. Indeed, the encoder in amortized inference is a globally parameterized function
which might be too restrictive, yielding sub-optimal pose parameters. Therefore, poses inferred in
an amortized fashion might fail to consistently converge to the optimal point. On other hand, direct
optimization is intuitively more flexible as it is performed separately and locally for each image,
exhibiting more stable convergence. See Supp. D for more examples.

5.3 Multi-Modal Pose Posterior

Lastly, we examine how well cryoSPIN multi-head encoder performs vs. cryoAI encoder in terms
of handling the uncertainty in the pose on the challenging dataset of HSP [45]. To simplify the
visualization, we run our method with M = 4 heads in this experiment. We first inspect the behavior
of encoders for two example cryo-EM images (Fig. 5, left, see Supp. E for more examples). In each
row, the approximate posterior distribution over view direction is visualized for both cryoAI and
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multi-head encoders given the input image and reconstruction. Our multi-head encoder returns a
set of plausible candidates, while cryoAI obtains two pose estimates by data augmentation. In both
examples, the multi-head encoder identifies the correct mode while cryoAI selects the incorrect one.
Note that the pose set predicted by the multi-head encoder contains other posterior modes as well.
Intuitively, cryoAI encoder with two pose predictions cannot explore the pose space as much as our
multi-head encoder. Thus, the pose posterior in cryoAI remains uncertain and multi-modal during
reconstruction. This also contributes to slower convergence to higher-resolution reconstructions as
depicted in the top left of Fig. 5. Finally, we visualize the percentage of images assigned to each
head by our “winner-takes-all” loss. The relatively even spread of assignments to different heads
shows that the multi-head encoder does not suffer hypotheses collapse [30], namely all heads actively
participate in the pose prediction. In Supp. C, we investigate how each head specializes in pose
prediction for non-overlapping regions of SO(3).

6 Conclusion, Limitations and Future Work

In this paper, we introduce cryoSPIN, a new semi-amortized approach to ab initio cryo-EM recon-
struction. We develop a new multi-head encoder that estimates a set of plausible candidate pose to
handle the uncertainty. As the uncertainty is reduced, we transition to an auto-decoding stage where
poses are iteratively optimized using SGD for each image. Our results show that our multi-head
encoder is able to capture multiple modes of the pose distribution, and our flexible direct optimization
enables accelerated convergence of poses and reconstructions. CryoSPIN outperforms cryoAI on
experimental data and achieves competitive results with cryoSPARC.

Limitations and future work. In this work, we assume that the 3D structure is rigid while many
biomolecules are flexible in practice, exhibiting different conformations. Our results show that,
even in this relatively constrained homogeneous case, there is a significant gap between amortized
inference and our semi-amortized approach. We expect that the benefits of semi-amortized inference
will also apply to such heterogeneous cases. In particular, our proposed multi-head encoder should
be applicable to the estimation of the multimodal posterior over heterogeneity latent parameters as
well as pose. Yet, there are significant challenges in heterogeneous reconstruction, such as extra
uncertainty due to heterogeneity and conflation of latent spaces, making it outside the scope of our
analysis on semi-amortized inference.

The development of principled criteria for switching from amortized to auto-decoding is also an
interesting direction for future research. Our experiments with a range of values show that after a
sufficient number of epochs, the reconstruction error becomes insensitive to the switching time. Our
intuition is that when switching too early, the pose posterior may have significant uncertainty, and
the pose estimates may be too far from the correct basin of attraction to afford robust convergence.
Therefore, it is better to switch late than early. However, a well-defined heuristic for the optimal
switch time is lacking.

Societal impact. Structure determination with Cryo-EM for macromolecules is one of the most
exciting, fundamental areas in structural biology, and is already having with vast social impact.
Cryo-EM was used to determine the structure of the SARS-COV2 spike protein, the discovery of its
pre-fusion conformation, and the evaluation of medical counter-measures. It compliments advances
in methods like alpha-fold for structure prediction, transforming our understanding of the process of
life at the scale of the cell, and the design and development of new therapeutics.
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Supplementary Material
CryoSPIN: Improving Ab-Initio Cryo-EM Reconstruction with

Semi-Amortized Pose Inference

A Pose Optimization

For the auto-encoding stage, we follow cryoAI and design the convolutional backbone to output the
six-dimensional representation commonly referred to as S2S2. To compute the rotation matrix from
this representation, the 6D vector is split into two 3D vectors and normalized, denoted as v1, v2 ∈ R3.
We then compute the cross product between them, v3 = v1×v2, yielding a new unit vector. Selecting
v1 and v3 as the first and third columns of the target rotation matrix, we compute ṽ2 = v3×v1, which
is another unit vector orthogonal to both v1 and v3. Then, R = [v1, ṽ2, v3].

Once switched to direct optimization, we change parameterization to axis-angle representation.
During auto-decoding, we alternate between five iterations of pose SGD updates and one iteration
of volume update. To update poses, we keep the volume fixed and optimize for the negative log-
likelihood (Eq. 3) with respect to the pose parameters. We define the new pose estimate based on the
current one as follows:

Rt+1 = RδRt (9)
where Rδ is an infinitesimal rotation matrix perturbing the current estimate. The perturbation matrix
Rδ is parameterized by axis-angle representation. By a single vector ω ∈ R3, one can represent
both the axis ||ω|| and the angle 0 < ω

||ω|| < π for any given rotation. Using Rodrigues formula, the
perturbation matrix Rδ(ω) can be parameterized as a function of ω. To find the optimal ω, one can
initialize it with zero vector, and then use automatic differentiation [54] in pytorch to compute the
gradient with respect to ω and make updates using Adam [49]. However, a naive implementation of
the function Rδ(ω) would lead to numerically unstable calculations of the partial derivative ∂Rδ

∂ω . In
fact, there is a singularity at the zero vector, and the partial derivative involves terms that are unstable
around the origin. Formally, the derivative of i-th column of the rotation matrix Rδ with respect to
the vector ω is [55, 56],

∂R
(i)
δ

∂ω
=−

(
e(i) ⊗ ω + [e(i)]×

) sin(∥ω∥)
∥ω∥

+ [(ω · e(i))I + ω ⊗ e(i)]

(
1− cos(∥ω∥)

∥ω∥2

)
+ (ω ⊗ ω)

(
(ω · e(i))2 cos(∥ω∥)− 2 + ∥ω∥ sin(∥ω∥)

∥ω∥4

)
+ [(ω × e(i))⊗ ω]

∥ω∥ cos(∥ω∥)− sin(∥ω∥)
∥ω∥3

.

where ⊗ and × are tensor and cross products, respectively. e(i) is the i-th standard basis in 3D and
[v]× denotes the cross product matrix for the vector v. In all four terms, there are scalars such as
sin(∥ω∥)

∥ω∥ or 1−cos(∥ω∥)
∥ω∥2 that evaluate to 0

0 at zero angle ω = 0. Similar to [55], for ||ω|| ≪ 1, we
substitute these terms with their numerically robust Taylor expansion, for instance,

sin(∥ω∥)
∥ω∥

= 1− ||ω||2

6
+O(||ω||4) ,

1− cos(∥ω∥)
∥ω∥2

=
1

2
− ||ω||2

24
+O(||ω||4) .

We implement a differentiable and numerically stable version of the function Rδ(ω) in pytorch and
use it in our pose estimation module.

B Ablation Study on Decoder

We perform an ablation study on the decoder, detailed in Table 2, as well as a comparison with
baselines in terms of reconstruction time per epoch, GPU memory usage, and number of parameters.
As our method consists of two stages, we report numbers for each stage separately. In the first
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Table 2: The reconstruction time per epoch, GPU memory, and number of parameters for different
methods averaged across three runs. GPU memory is recorded separately for the encoding and
decoding modules. Also, two numbers provided for semi-amortized method corresponds to auto-
encoding and auto-decoding stages, respectively. In CryoAI-explicit, the implicit decoder of CryoAI
is replaced with an explicit decoder. Since we store rotations in 3D representation during direct
optimization, the number of parameters of pose module is N × 3 with N denoting number of images
in millions.

Model Time (s) GPU Mem. (GB) # Params (M)Encoding Decoding

Semi-Amortized 99.76, 81.61 1.17, - 2.22, 0.35 13.01, 4.29 +N×3
Fully-Amortized 99.75 1.17 2.22 13.01
CryoAI-explicit 142.40 2.32 0.75 9.05
CryoAI 622.39 2.78 14.05 5.09

stage, the encoder has H=7 heads, while in the second stage, it is replaced with a pose module
with size depending on the number of particles (N ). To facilitate comparison, we include another
baseline, cryoAI-explicit, in which the implicit decoder is replaced by an explicit one as in our method.
The explicit and implicit decoders have 4.29 and 0.33 million parameters, respectively. Despite a
larger decoder, our method is 6x faster and uses 5x less memory compared to cryoAI. Importantly,
swapping the implicit decoder with an explicit one (cryoAI-explicit) significantly drops time and
memory, indicating that the implicit decoder is a major computational and memory bottleneck. Yet,
cryoAI-explicit uses 2x more GPU memory for encoding and is 1.5x slower than our method as
it performs early input augmentation and runs the entire encoder twice per image. Our method, by
augmenting the encoder head, saves memory and time during pose encoding. Finally, the amortized
baseline, which uses an explicit decoder coupled with a multi-head encoder (H=7), uses more memory
in decoding (negligible vs implicit decoder) and runs slower than the direct optimization stage of the
semi-amortized method.

C Specialization of Encoder Heads

A natural question about the multi-head encoder is: how each head does take part in pose encoding
process? To address this, using the synthetic datasets, we conduct an experiment with our multi-head
architecture (M = 4) and visualize the performance of each head on different regions of SO(3)
space. In particular, as before, we define a uniform grid on the unit sphere using HEALPix [53] and
assign images to their corresponding cells based on the view-direction. Now, for all images end up in
the same cell, we compute the average rotation error and visualize it separately for each head. As
shown in Fig. 6, all heads actively participate in pose estimation and they are able to specialize in
prediction of poses for images with certain view-direction. A similar result has been provided in prior
work on MCL [27, 13], to show that minimizing the error made by the best prediction (“oracle” loss)
encourages diversity in deep ensembles. In our problem, by optimizing a “winner-takes-all” loss, the
whole burden of pose estimation is no longer on a single network but it gets divided between multiple
heads as separate predictors.

D More on Semi-Amortized vs. Fully-Amortized

To validate the advantages of direct pose optimization in our semi-amortized method, we further
show more qualitative examples of paths taken by pose estimates over the optimization landscape
during reconstruction in Fig. 7. For both methods, optimization start from the same point marked by
black dot in the vicinity of the distribution mode. It will then continue in paths colored in blue and
red for semi-amortized and full-amortized methods, respectively. We observe in all examples that
iterative updates by stochastic gradient descent demonstrate a stable convergence toward the optima
while poses obtained by amortized inference show unstable behavior around the mode.
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Figure 6: Average rotation error is visualized over the sphere for different heads of the multi-head
pose encoder (M = 4). The sphere is uniformly divided into cells using HEALPix [53]; images are
assigned to cells based on ground-truth view-direction. For each cell, the average rotation error is
visualized, showing diverse behavior of different heads across the space. Blue and red colors show
low and high error regions, respectively. Error ranges from zero to 180 degrees.

Figure 7: We compare the behavior of fully-amortized and semi-amortized pose inference on four
examples per dataset. Two rows correspond to Spike and Spliceosome datasets, respectively. Each
plot shows the approximate log pose posterior, marginalized over in-plane rotations represented as
a heat map on a uniform grid over the unit sphere S2. Gnomonic projection to 2D is also applied,
followed by zooming on the proximity of the mode of interest. Black cross is the starting point while
blue dots and red dots show poses estimated by fully- and semi-amortized methods, respectively.

E More on Multi-Modal Pose Posterior

Through more examples (Fig. 8), we demonstrate that cryoAI fails to handle ambiguity in pose
estimation on HSP dataset. The visualization shows that pose estimates by cryoAI become stuck
in incorrect modes whereas our pose encoder with multi-head architecture is able to return a pose
candidate that captures the correct mode.
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CryoAI Multi-head

Figure 8: The approximate log posterior of view-direction visualized on the unit sphere with high-
lighted areas showing modes of the distribution. CryoAI [10] and our multi-head encoders provide
two and four pose estimates, respectively, which are marked with colored dots on the sphere (the
order of poses is arbitrary). The corresponding projections are also illustrated. CryoAI cannot identify
the correct mode of pose distribution.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state the claims in the abstract, discuss them through the introduction
section, and summarize them in a list at the end of introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss limitations in the conclusion section. We acknowledge that ours
assumptions about homogeneity and centered images could be limiting in some experimental
setups. However, our framework could be extended to account for heterogeneity and
translation parameters.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We provide no theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: In a subsection called implementation details, we included all details needed to
reproduce reconstruction results of our method, cryoAI and cryoSPARC. Steps to generate
synthetic datasets and preprocessing steps to prepare experimental data are also provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have discussed all the necessary information about experimental settings
in implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: When reporting the resolution, we follow the standard to compute FSC by
splitting data into two halves and make independent reconstructions and compare resulting
half-maps.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: We have mentioned that we are using A40 Nvidia GPU to prodcue the results.
Also, in Fig. 3 we compare the execution time of our method vs. cryoAI.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Societal impacts of the work is dicussed in the conclusion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For cryoAI, we are using the available code provided in github. For
cryoSPARC, we have mentioned which version of the software is used. Synthetic datasets
are generated based on atomic models on PDB which are free of all copyright restrictions
and freely available for both non-commercial and commercial use. For experimental data,
we use EMPIAR database which is freely and publicly available to the global community
under the CC0 licence.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or research with human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or research with human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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