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ABSTRACT

Lagrangian-based methods are one of the dominant approaches for safe reinforce-
ment learning (RL) in constrained Markov decision processes, commonly used
across domains with multiple constraints. While some implementations combine
all constraints into a mixed penalty term and others use one estimator per con-
straint, the fundamental question of which design is theoretically sound has re-
ceived little scrutiny. We provide the first theoretical analysis showing that the
mixed-critic architecture induces a persistent bias due to target drift from evolv-
ing Lagrange multipliers. In contrast, dedicated-critic design—separate critics for
reward and each constraint—avoids this issue. We also validate our findings in a
simulated but realistic energy system with multiple physical constraints, where the
dedicated-critic method achieves stable learning and consistent constraint satisfac-
tion, while the mixed-critic method fails. Our results offer a principled argument
for preferring dedicated-critic architectures in multi-constraint safe RL problems.

1 INTRODUCTION

Safe reinforcement learning (RL) in constrained Markov decision processes (CMDPs) (Altman,
1999) has become increasingly important in real-world applications such as robotics, energy sys-
tems, autonomous driving, and healthcare (Yan and Xu, 2020; Wang et al., 2020; Calascibetta et al.,
2023; Zhang et al., 2020; Shi et al., 2023). Among the most widely adopted frameworks for handling
such problems are Lagrangian-based methods, which introduce Lagrange multipliers for constraints
and optimize a mixed/augmented objective (Achiam et al., 2017; Ray et al., 2019b). This approach
offers appealing theoretical properties: it transforms a constrained problem into an unconstrained
one, allowing the use of powerful policy gradient and actor-critic techniques, while enabling prin-
cipled constraint enforcement via dual variable updates. Theoretically, under suitable assumptions,
this leads to saddle-point solutions that jointly maximize reward and satisfy constraints, making it
both elegant and scalable for complex, high-dimensional systems (Achiam et al., 2017).

One important but often overlooked reality is that real-world CMDPs rarely involve a single con-
straint. Instead, agents are typically required to satisfy multiple, interacting safety, resource, or op-
erational constraints during both training and deployment. For instance, robotic systems must avoid
unsafe behaviors while simultaneously respecting torque and energy limitations (Liu et al., 2022;
Junges et al., 2016); autonomous driving agents must account for safety margins, passenger com-
fort, and compliance with traffic laws (Zhang et al., 2023; 2021); and power systems must balance
supply and demand while maintaining safe voltage and capacity constraints (Wu et al., 2023; Chen
et al., 2022). These constraints are rarely independent and often conflict, making multi-constraint
settings the norm rather than the exception.

A critical but insufficiently studied aspect of Lagrangian safe RL is the value-critic architecture for
multi-constraint problems. Although the CMDP formalism and constraint-aware algorithms such
as CPO define per-constraint(dedicated) quantities for policy updates (Achiam et al., 2017), there
remains no theoretical justification in the literature for why to use this approach in practice. On the
other hand, most widely used implementations, including PPO-/TRPO-Lagrangian baselines (Ray
et al., 2019b; Stooke et al., 2020; Yang et al., 2020; Bhatnagar et al., 2009; Kim et al., 2023), im-
plicitly collapse all constraints into a single mixed penalty term and estimate it using one cost critic.
While simple and computationally efficient, this design sidesteps the unique challenges posed by
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Figure 1: Difference between the two approaches.

multi-constraint CMDPs. As shown in
Figure 1, practitioners tackling real-world
problems are left without clear criteria
for choosing between approaches. How-
ever, the theoretical validation of these ap-
proaches remains unproven, and the opti-
mization bias may induce remains under-
explored. This issue is not merely the-
oretical. Empirical evidence shows that
PPO-Lagrangian, despite its widespread
use, suffers from instability and inconsis-
tent performance in multi-constraint set-
tings (Stooke et al., 2020; Tessler et al.,
2019). These observations further moti-
vate a deeper theoretical analysis of critic design and support our proposal for a dedicated-critic
framework as a necessary advancement for stable and scalable safe RL under multiple constraints.

Motivated by the widespread use of mixed-critic architectures in safe RL and the increasing demand
for multi-constraint decision-making in real-world applications, we aim to close a crucial theoretical
gap in constrained reinforcement learning. In this work, we provide the first formal analysis of
mixed- versus dedicated-critic designs in Lagrangian-based constrained RL. We show that training a
mixed critic on multi-constraint signals introduces a structural bias in the actor update. Specifically,
as the Lagrange multipliers evolve during training, the critic’s target drifts in a way that violates
the stationarity assumption required by temporal-difference learning. This leads to a persistent error
in the estimated policy gradient. We prove that the dedicated-critic design, training separate critics
for the reward and each constraint signal, eliminates the dual-driven drift altogether. To validate
our theoretical results in practice, we implement both mixed- and dedicated-critic methods in a
constrained bandit problem and a constrained energy control problem with multiple physical limits.
The experiments reveal that the mixed-critic approach frequently violates constraints, whereas the
dedicated-critic design achieves stable learning and consistently satisfies all constraints. This work
makes three main contributions: 1) We provide the first formal analysis of mixed- vs. dedicated-
critic designs in Lagrangian safe RL, showing that mixed critics suffer from dual-induced bias. 2)
We prove that dedicated critics yield stationary targets, eliminating drift and enabling stable policy
gradient estimation. 3) We validate our theory in constrained MDP tasks and complex energy control
task, where dedicated critics achieve stable learning and consistent constraint satisfaction.

2 RELATED WORK

Safe RL aims to train agents that not only maximize long-term performance but also respect safety
or risk-related constraints during learning and deployment. This is often formalized through the
framework of Constrained Markov Decision Processes (CMDPs), where the objective is to maxi-
mize expected return while ensuring that expected costs, representing safety violations or resource
usage, remain below specified thresholds. (Altman, 1999; Garcıa and Fernández, 2015). This formu-
lation admits a primal–dual view in which constraints are handled by Lagrange multipliers, giving
rise to the widely used Lagrangian (lag-based) methods: they update policy parameters to ascend
a Lagrangian objective and update dual variables toward feasibility. Prominent examples include
TRPO-Lagrangian and PPO-Lagrangian (Achiam et al., 2017; Ray et al., 2019b), SAC-Lagrangian
variants (Ray et al., 2019b), and Reward-Constrained Policy Optimization (RCPO) (Tessler et al.,
2019).

Compared to alternative approaches(Stooke et al., 2020; Liu et al., 2020; Xu et al., 2021; Chow
et al., 2018), Lagrangian methods offer several practical advantages that have led to their widespread
adoption (Achiam et al., 2017; Schulman et al., 2015; Ray et al., 2019b; Yang et al., 2021a; Kim
et al., 2023). They are plug-and-play compatible with both on-policy and off-policy learners, and
introduce only a small number of hyperparameter. These properties make them highly amenable
to integration within standard RL pipelines. Consequently, Lagrangian variants like PPO-Lag and
TRPO-Lag have become de facto baselines in major Safe RL benchmarks and toolkits. Their ac-
cessibility, combined with consistently strong empirical performance, has made them the dominant
choice in both robotics and simulated safety-critical control environments.
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A critical yet underexplored aspect of Lagrangian based safe reinforcement learning is the archi-
tecture of value critics when dealing with multiple constraints. The question of how to estimate
constraints returns in deep RL has received far less attention than objective or dual design, but it un-
derlies much of the instability noted in safe RL. In early safe RL and constrained MDP work, classic
algorithms (e.g., Constrained Policy Iteration) implicitly worked with per-constraint value functions,
but without deeply discussing representation in function approximation settings (Altman, 1999;
Achiam et al., 2017). As deep safe RL matured, many practical baselines resorted to collapsing cost
signals into an aggregated penalty and training a mixed “cost critic” alongside a reward critic; this
pattern is pervasive in benchmark codebases (e.g. Safety Starter Agents, PPO-/TRPO-Lagrangian)
(Ray et al., 2019b; Stooke et al., 2020). Some recent methods extend to multiple constraints, but
often leave the critic architecture unspecified or adopt ad-hoc shared representations rather than for-
mally treating per-constraint estimation (Kim et al., 2023). Work on stabilizing Lagrangian dual
updates—such as PID-Lagrangian, dual clipping, or adaptive multiplier heuristics—addresses the
dual dynamics but typically retains the standard two-critic collapse architecture (Stooke et al., 2020;
Xu et al., 2021; Liu et al., 2020). In off-policy safe RL methods like SAC-Lagrangian variants or
worst-case safety critics (e.g. WCSAC), the separation between reward and cost critics is common,
but again usually implemented at the aggregate cost level even when multiple constraints are present
(Yang et al., 2021b; Tessler et al., 2019). Across the literature, the critic architecture—whether to
collapse or separate constraints—is treated as an afterthought, often chosen for ease or efficiency
rather than guided by theoretical insight. This pervasive gap means that many empirical instabil-
ity observations, violation spikes, slow convergence remain underexplained—pointing to a need for
more rigorous analysis of critic structure in multi-constraint safe RL. In this work, we fill this gap
by theoretically and empirically analyzing these design choices. Our analysis shows that mixed
constraint critics can introduce structural bias in multi-constraint settings, whereas dedicated critics
mitigate this bias by isolating constraint signals.

3 PROBLEM FORMULATION

We begin by formalizing the constrained reinforcement learning problem with multiple constraints.
A discounted Constrained Markov Decision Process (CMDP)(Altman, 1999) is specified by the
tuple (S, A, P, γ, r, {ci}mi=1), where: S is the (possibly infinite) state space; A is the action
space; P (·|s, a) is the transition kernel governing state evolution; γ ∈ (0, 1) is the discount factor;
r : S × A → R is the reward signal we aim to maximize; ci : S × A → R+ are cost signals
corresponding to m safety or resource constraints.

For a stochastic policy πθ(a|s) parameterized by θ, the expected discounted return of a signal x ∈
{r, c1, . . . , cm} is

Jx(πθ) = Eπθ

[ ∞∑
t=0

γt x(st, at)

]
. (1)

In particular, Jr(πθ) is the expected reward return, while Jci(πθ) is the expected discounted cost
associated with constraint i. The returns in equation 1 can be characterized via value functions.

Constraints of the form Jci(πθ) ≤ di can be enforced via a Lagrangian formulation. Introducing
multipliers λ = (λ1, . . . , λm) ∈ Rm

+ , we define L(θ, λ) = Jr(πθ) −
∑m

i=1 λi
(
Jci(πθ) − di

)
.

Optimization then proceeds in a primal–dual fashion: the actor seeks to maximize L(θ, λ) over
θ, while the dual variables λ adaptively adjust to enforce the constraints. Let Exπθ

(·; ω) denote a
learned signal estimator for x ∈ {r, c1, . . . , cm} parameterized by ω. Its input may be s or (s, a)
depending on the method (e.g., value-, advantage-, or return-based); the analysis does not depend
on this choice.

By the policy gradient theorem, the gradient of the Lagrangian w.r.t. θ is

∇θL(θ, λ) = Es,a∼πθ

[
∇θ log πθ(a|s)

(
Erπθ

(s, a) −
m∑
i=1

λi Eciπθ
(s, a)

)]
, (2)

where Erπθ
and Eciπθ

denote the learned signal estimators for reward and each cost under πθ. Note
that λ merely scales the Eciπθ

contributions; the estimators themselves depend only on πθ.
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Mixed-critic (Classic) methods. Constraints are aggregated before (or within) estimation, so
there is no per-constraint head. Two common variants both qualify as “mixed critic”:

(a) Single-Estimator: Emix
πθ

(·;ω) ≈ E r−
∑m

i=1 λici
πθ (·).

(b) Two-Estimator: Erπθ
(·;ωr), Ecost-agg

πθ
(·;ωc) ≈ E

∑m
i=1 λici

πθ (·).
In both (a) (Altman, 1999) and (b) (Ray et al., 2019b; Stooke and Abbeel, 2020), all constraints are
mixed into a single scalar cost signal, hence “mixed critic.”

Dedicated-critic methods. Maintain one estimator per signal, i.e., a Separate Estimator for re-
ward and for each constraint (Achiam et al., 2017):{

Exπθ
(·;ωx) : x ∈ {r, c1, . . . , cm}

}
.

4 THEORETICAL ANALYSIS: WHY WE NEED DEDICATED CRITICS FOR
MULTI-CONSTRAINT PROBLEMS

In this section, we will systematically show that training a mixed critic on the multiple signal gener-
ally yields actor updates that do not track the true Lagrangian gradient ∇θL(θ, λ) during learning,
unless one imposes stronger timescale separation (critic faster than both actor and dual) and near-
exact critics. In contrast, a dedicated-critic design (one critic per signal) does not suffer from this
issue. Our argument is constructive and quantitative.

4.1 SETTING

Assumption 4.1 (Stepsizes and timescale separation). Critic, actor, and dual stepsizes ηt, αt, βt > 0
satisfy

∑∞
t=0 ηt =∞,

∑∞
t=0 η

2
t <∞, αt

ηt
→ 0, βt

ηt
→ 0.

Assumption 4.2 (Bounded policy score and compact dual domain). At iteration t, states/actions
(st, at) are sampled on-policy under πθt . There exists G < ∞ such that the log-policy score
is uniformly bounded almost surely:

∥∥∇θ log πθt(at | st)
∥∥ ≤ G. The dual variable sequence

{λt}t≥0 ⊂ Rm
≥0 remains in a fixed compact set Λ ⊂ Rm

≥0 (e.g., via projected updates onto Λ).
Assumption 4.3 (Critic noise regularity). Let the critic update use the population linear form
with additive martingale-difference noise: ωt+1 = ωt + ηt

(
bt − Atωt

)
+ ηt ζt+1, where At :=

A(θt) and bt := b(θt) are Ft-measurable. The noise {ζt+1}t≥0 satisfies E[ζt+1 | Ft] =
0 and E

[
∥ζt+1∥2 | Ft

]
≤ σ2 <∞ a.s. for all t.

Assumption 4.1 matches standard stochastic-approximation practice: the critic uses diminishing
stepsizes and runs faster than the actor and dual. Assumption 4.2 is routine for common policies
(softmax, Gaussian with clipped parameters) and for lag-based methods that project/clip λt onto a
compact box Λ. Assumption 4.3 follows from on-policy sampling with bounded features/signals and
mini-batch estimates, which yield martingale-difference noise with bounded conditional variance.
These mild conditions are typical in deep RL and suffice to ensure critic contraction and to isolate
the dual-induced drift term that motivates dedicated per-signal critics.

For a fixed policy πθ and signal x ∈ {r, c1, . . . , cm}, the per-signal critic in a linear class (Sutton,
1988; Tsitsiklis and Van Roy, 1996a) satisfies the projected Bellman equation (PBE) (Munos, 2003;
Tsitsiklis and Van Roy, 1996b), which yields the normal equations A(θ)ωx,∗(θ) = bx(θ) with
A(θ) = Φ⊤Dθ(I − γPπθ

)Φ and bx(θ) = Φ⊤Dθr
x (state–action and advantage/GAE variants give

the same linear template with the appropriate A, b). We work under A(θ) ⪰ µI for some µ > 0, and
A(·), bx(·) are locally Lipschitz in θ (See Appendix B and F for details).

4.2 MIXED-CRITIC IN MULTI-CONSTRAINT CMDPS

When a mixed critic is used for the scalarized signal, rλt = r −
∑m

i=1 λt,i ci, The PBE is
A(θt)ω

mix,∗
t = bmix

t := br(θt) −
∑m

i=1 λt,i b
ci(θt). The stochastic update implements a Robbins–

Monro step toward this fixed point using mini-batch estimates of A(θt) and bmix
t . Writing the update

in population form plus a mean-zero error gives

ωmix
t+1 = ωmix

t + ηt
(
bmix
t −A(θt)ωmix

t

)
+ ηt ζt+1, (3)

4
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where ηt > 0 is the critic stepsize and ζt+1 is a martingale-difference noise capturing finite-sample
and sampling variability. For a fixed (θ, λ), the PBE for the mixed signal is A(θ)ωmix(θ, λ) =
br(θ) −

∑m
i=1 λib

ci(θ). By linearity of the operator, the solution decomposes as ωmix(θ, λ) =
ωr(θ)−

∑m
i=1 λi ω

ci(θ),where ωr(θ) and ωci(θ) are the PBE solutions for the reward and each cost
signal individually. Let us denote the instantaneous target at time t by ωmix,⋆

t = ωmix(θt, λt), et =

ωmix
t −ωmix,⋆

t . That is, et is the critic error relative to the exact PBE solution for the current (θt, λt).
Subtracting ωmix,⋆

t+1 from both sides of the recursion equation 3 yields the exact error recursion

et+1 = (I − ηtA(θt)) et + (ωmix,⋆
t − ωmix,⋆

t+1 )︸ ︷︷ ︸
target drift

+ηtζt+1 +∆θ
t , (4)

where ∆θ
t collects the small changes in A(θ), I ∈ Rd×d denote the d × d identity matrix, and b(θ)

induced by θt+1 ̸= θt. Using the stationary equivalence ωmix,⋆
t = ωr(θt) −

∑m
i=1 λt,i ω

ci(θt) and
the analogous expression at time t+1, we have

ωmix,⋆
t − ωmix,⋆

t+1 =
[
ωr(θt)−

m∑
i=1

λt,i ω
ci(θt)

]
−
[
ωr(θt+1)−

m∑
i=1

λt+1,i ω
ci(θt+1)

]
=
(
ωr(θt)− ωr(θt+1)

)
−

m∑
i=1

(
λt,i ω

ci(θt)− λt+1,i ω
ci(θt+1)

)
. (5)

Add and subtract λt,i ωci(θt+1) inside the sum:

λt,i ω
ci(θt)− λt+1,i ω

ci(θt+1) = λt,i
(
ωci(θt)− ωci(θt+1)

)
+ (λt,i − λt+1,i)ω

ci(θt+1). (6)
Substituting equation 6 into equation 5 yields

ωmix,⋆
t − ωmix,⋆

t+1 =
(
ωr(θt)− ωr(θt+1)

)
−

m∑
i=1

λt,i

(
ωci(θt)− ωci(θt+1)

)
−

m∑
i=1

(
λt+1,i − λt,i

)
ωci(θt+1). (7)

By Lipschitz continuity, there exist Lr, Lci < ∞ such that ∥ωr(θt+1) − ωr(θt)∥ ≤ Lr∥θt+1 −
θt∥, ∥ωci(θt+1) − ωci(θt)∥ ≤ Lci∥θt+1 − θt∥. With a standard actor update θt+1 = θt + αt g

act
t ,

where gact
t is a stochastic policy-gradient estimate and we assume ∥gact

t ∥ ≤ Cθ, it follows that
∥θt+1 − θt∥ = αt∥gact

t ∥ = O(αt). Therefore,

∥ωr(θt)− ωr(θt+1)∥ = O(αt),
∥∥λt,i(ωci(θt)− ωci(θt+1)

)∥∥ ≤ ∥λt∥∞ Lci∥θt+1 − θt∥ = O(αt),

using λt ∈ Λ compact. Thus the first two terms in equation 7 are O(αt).

Consider the dual-induced part of equation 7:
∑m

i=1

(
λt+1,i − λt,i

)
ωci(θt+1). By Assumption 4.2,

λt ∈ Λ with Λ compact, and local Lipschitzness, the map θ 7→ ωci(θ) is continuous; hence M :=
supi,θ ∥ωci(θ)∥ <∞ (on the on-policy region visited by {θt}). Therefore∥∥∥ m∑

i=1

(λt+1,i − λt,i)ωci(θt+1)
∥∥∥ ≤ ∥λt+1 − λt∥1 max

i
∥ωci(θt+1)∥ ≤ M ∥λt+1 − λt∥.

For a standard projected dual update, λt+1 = ΠΛ

(
λt+βt gt

)
,with ΠΛ nonexpansive and ∥gt∥ ≤ Cλ

(gt ∈ Rm denotes a subgradient of the dual objective with respect to λ), we have
∥λt+1 − λt∥ ≤

∥∥λt + βtgt − λt
∥∥ = βt ∥gt∥ ≤ βtCλ = O(βt).

Combining the two displays yields∥∥∥ m∑
i=1

(λt+1,i − λt,i)ωci(θt+1)
∥∥∥ ≤ MCλ βt = O(βt).

The target drift decomposes as ω⋆
t − ω⋆

t+1 = O(αt) − O(βt). The O(αt) term arises from policy
updates (present in any actor–critic), with the additional O(βt) term. In this case, the target moves
not only because the policy parameters θ evolve (the standard O(αt) policy-driven drift), but also
because the dual variables λ evolve, producing an additional O(βt) dual-driven term. This extra
dual-driven drift induces persistent bias in the actor gradient.

5
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Remark 4.4 (Drift for the reward critic + cost critic design). In the two-critic setup, one critic esti-
mates the reward target ωr(θ) and a second critic estimates the aggregated cost target ωcost(θ, λ) =∑m

i=1 λi ω
ci(θ),(used in PPO-LAG, TRPO-LAG) follow the same process on ωcost, we have

ωcost,⋆
t − ωcost,⋆

t+1 = −
m∑
i=1

λt,i

(
ωci(θt)− ωci(θt+1)

)
−

m∑
i=1

(
λt+1,i − λt,i

)
ωci(θt+1). (8)

Here the reward term ωr(θt)−ωr(θt+1) does not appear because it is handled by the reward critic’s
own recursion; equation 8 isolates the drift of the aggregated-cost head, which contains a policy-
induced component (through θt+1 − θt) and a dual-induced component (through λt+1 − λt).
Lemma 4.5 (Mixed-critic error bound). If A(θ) ⪰ µI uniformly and the stepsizes satisfy αt/ηt →
0, βt/ηt → 0, then there exist constants Cλ, Cθ, such that:

lim sup
t→∞

E∥et∥ ≤
Cλ

µ
lim sup
t→∞

βt
ηt

+
Cθ

µ
lim sup
t→∞

αt

ηt
+ O(1). (9)

Proof sketch. From equation 4 and since A(θt) ⪰ µI , ∥(I − ηtA(θt))et∥ ≤ (1 − µηt)∥et∥, using
equation 7, we have:

∥ω⋆
t − ω⋆

t+1∥ ≤ Cλ ∥λt+1 − λt∥+ Cθ ∥θt+1 − θt∥ ≤ Cλ βt + Cθ αt.

Taking expectations and using bounded MDS noise and apply the standard SA comparison: if
xt+1 ≤ (1− at)xt + bt with at = µηt, then lim supxt ≤ lim sup bt/at. Hence,

lim sup
t→∞

E∥et∥ ≤
1

µ
lim sup
t→∞

(
Cλβt

ηt
+ Cθαt

ηt
+O(ηt)

)
,

which yields equation 9 since ηt → 0. Please refer to Appendix C for detailed proof.

Lemma 4.6 (Actor-gradient bias bound). Let ĝt and g⋆t be the actor’s estimated and ideal gradients,

ĝt = Et

[
∇θ log πθt(at|st)ϕ(st, at)⊤ωt

]
, g⋆t = Et

[
∇θ log πθt(at|st)ϕ(st, at)⊤ω⋆

t

]
, (10)

with critic error et = ωt−ω⋆
t . Assume the score and features are bounded as ∥∇θ log πθt(at|st)∥ ≤

G, ∥ϕ(st, at)∥ ≤ Lϕ. Then the actor-gradient bias Bt := ĝt − g⋆t satisfies

∥Bt∥ ≤ GLϕ ∥et∥. (11)

Proof. See Appendix D for detailed proof.

Theorem 4.7 (Bias from a Mixed Critic). Suppose Assumptions 4.1–4.3 hold and A(θ) ⪰ µI
uniformly in θ. Then the actor-gradient bias Bt incurred by using a single mixed critic satisfies

lim sup
t→∞

E∥Bt∥ ≤ GLϕ

(
Cλ

µ
lim sup
t→∞

βt
ηt

+
Cθ

µ
lim sup
t→∞

αt

ηt

)
. (12)

Proof. See Appendix E for detailed proof.

Mixed-critic design introduces an additional bias term of order βt/ηt, arising from the dependence
of the mixed constraints on the dual variables λ. Consequently, the actor’s update does not follow
the true Lagrangian gradient unless the critic runs much faster than the dual (βt/ηt→ 0 sufficiently
quickly), or is essentially exact.

4.3 DEDICATED-CRITIC IN MULTI-CONSTRAINT CMDPS

For dedicated-critic design, we maintain a separate critic with parameters ωx
t for each reward and

constraints x ∈ {r, c1, . . . , cm}, updated by

ωx
t+1 = ωx

t + ηt

(
−A(θt)ωx

t + bx(θt) + ζxt+1

)
, x ∈ {r, c1, . . . , cm}. (13)

6
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Define the signal-specific fixed point ωx,⋆(θ) by A(θ)ωx,⋆(θ) = bx(θ) and let the tracking error be
ext := ωx

t − ω
x,⋆
t . Subtract ωx,⋆

t+1(θt+1) to equation 13 to obtain

ext+1 = ωx
t+1 − ω

x,⋆
t+1(θt+1) =

(
ωx
t − ηtA(θt)ωx

t + ηtb
x(θt) + ηtζ

x
t+1

)
− ωx,⋆

t+1(θt+1)

=
(
I − ηtA(θt)

)
ext + ηtζ

x
t+1 + ∆θ,x

t .

A dedicated critic answers a fixed question: under the current policy, what is the expected cumu-
lative value of one signal—either reward or a single cost? Because that question does not mention
the penalty weights, changing λ does not change what the critic is trying to predict; only changing
the policy does. To be more specific, each dedicated critic estimates a signal-specific fixed point
ωx,⋆(θ) defined by A(θ)ωx,⋆(θ) = bx(θ), where both A(θ) and bx(θ) depend on the policy θ and
the single signal x ∈ {r, c1, . . . , cm}, but not on the Lagrange multipliers; Therefore, in the one-step
error recursion the only drift term comes from policy movement θt→θt+1, and no (λt+1−λt) term
appears. By contrast, a mixed-critic’s target is defined using λ (it blends reward and costs with those
weights), so every time λ is updated the target itself shifts, creating the extra (λt+1 − λt) drift.

Lemma 4.8 (Dedicated-critic tracking error). Suppose assumptions 4.1 and 4.3 hold, then there
exists C̃θ <∞ such that for every x ∈ {r, c1, . . . , cm},

lim sup
t→∞

E∥ext ∥ ≤
C̃θ

µ
lim sup
t→∞

αt

ηt
. (14)

Proof. Please refer to Appendix C for detailed proof.

Theorem 4.9 (Dedicated-critic Bias). Suppose Assumptions 4.1–4.3 hold, let ĝt and g⋆t be the ac-
tor’s estimated and ideal gradients, the dedicated-critic actor bias be Bmulti

t := ĝmulti
t − g⋆t . Then

lim sup
t→∞

E∥Bmulti
t ∥ ≤ GLϕ

C̃θ

µ
lim sup
t→∞

αt

ηt
, (15)

Proof. See Appendix E for detailed proof.

5 EXPERIMENTS

5.1 SIMPLE CMDP BANDIT PROBLEM

We design a minimal yet diagnostic constrained bandit CMDP that cleanly isolates the effect of
single vs. dedicated-critic architectures under Lagrangian updates. All implementation choices be-
low are fixed and reported for full reproducibility. We use a one-state bandit with binary actions
A = {a1, a2}, discount γ = 0, reward r(a1) = 0, r(a2) = 1, and two costs c1(a1) = 0, c1(a2) =
1, c2(a1) = 1, c2(a2) = 0,with constraints Jc1 ≤ d1 and Jc2 ≤ d2, where d1 = d2 = 0.5. The pol-
icy πθ is a Bernoulli with a single logit θ ∈ R: πθ(a1) = σ(θ), πθ(a2) = 1− σ(θ), σ(θ) =

1
1+e−θ . Under this policy, expected costs are Jc1 = 1 − σ(θ), Jc2 = σ(θ), and expected reward is
Jr = σ(θ) r(a1) + (1− σ(θ)) r(a2) = 1− σ(θ).
We compare two actor–critic variants that share the same actor and dual updates. On each step,
we sample a ∼ πθ and apply an update with a (learned) advantage surrogate from the critic(s):
θt+1 = θt + α ĝt, ĝt := ∇θ log πθt(at) Q̂t(at), where ∇θ log πθ(a1) = 1 − σ(θ)
and ∇θ log πθ(a2) = −σ(θ). We maintain λ = (λ1, λ2) ∈ R2

+ with projected stochas-

tic ascent: λi,t+1 = Π[0,λmax]

(
λi,t + β (ĉi − di)

)
, i ∈ {1, 2}, where ĉi is the instan-

taneous cost sample (0 or 1 in this bandit) and λmax = 10. Projection keeps λt in a com-
pact set. In this bandit, the true Lagrangian gradient has a closed form. Let π1 = σ(θ) and
f(a) := r(a)− λ1c1(a)− λ2c2(a), f(a1) = r(a1)− λ2, f(a2) = r(a2)− λ1. Then gt :=
∇θL(θt, λt) = π1(1−π1)

(
f(a1)− f(a2)

)
= σ(θt)

(
1−σ(θt)

) (
(r(a1)−λ2,t)− (r(a2)−λ1,t)

)
.

Results and Discussion: Both methods attain similar average returns, but the mixed-critic curve
has much higher variance (large confidence band, occasional dips). The dedicated-critic maintains
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(a) Average Returns (b) Constraint violation (c) Gradient alignment (d) Dual-oscillation
Figure 2: Performance for CMDP Bandit.

comparable reward with markedly lower variability. The mixed-critic exhibits large and growing
volatility, whereas the dedicated-critic remains low and stable. This matches the theory: a mixed
critic’s target moves with ∆λt, inducing oscillatory dual dynamics; dedicated critics avoid this λ–
coupling.

To measure safety, we compute the violation which quantifies by how much the learned policy
exceeds constraint thresholds at each step. Mixed-critic drifts to higher violations, while dedicated-
critic settles much lower, implying better safety during training rather than only at convergence.

We also measure how well the actor’s update direction matches the true Lagrangian gradient by
computing a moving Pearson correlation between the estimated gradient ĝt and the true gradient gt.
Based on the results, dedicated-critic sustains a higher correlation than mixed-critic, indicating the
actor follows the true Lagrangian gradient more reliably when critics are per-signal.

We quantify the stability of the dual variables by tracking the moving standard deviation of the gap
|λ2,t−λ1,t|. This measures whether Lagrange multipliers converge smoothly or oscillate over time.
The mixed-critic exhibits large and growing volatility, whereas the dedicated-critic remains low and
stable. This matches the theory: a mixed critic’s target moves with ∆λt, inducing oscillatory dual
dynamics; dedicated critics avoid this λ–coupling.

5.2 MULTI-CONSTRAINT POWER SYSTEM APPLICATION

Rather than relying on standard safe-RL benchmarks (whose constraints are few and stylized), we
evaluate in a complex energy scenario designed to stress realism and constraint diversity. Compared
with standard, the environment couples stochastic demand, renewable generation uncertainty, ramp-
ing limits, transmission congestion, reserve requirements, and device-level safety, yielding multiple,
interacting constraints with heterogeneous timescales. This setting captures (i) tight operational
envelopes,(ii) correlated risks across assets, and (iii) nontrivial trade-offs between cost and safety.

System Overview and Constraints. We consider a radial distribution network with high rooftop
PV penetration, where community battery energy storage systems (CBESSs) are coordinated to en-
sure safe and efficient operation. Each CBESS is subject to power, efficiency, and state-of-charge
(SoC) constraints, can transact with the upstream grid under trading limits, and incurs both trading
and degradation costs. When storage is saturated, PV curtailment is applied with fairness constraints
to avoid disproportionate restrictions across buses. The system is modeled using the LinDistFlow
approximation. The central control task is to schedule CBESS actions and PV curtailment to mini-
mize trading cost while maintaining constraint satisfaction across multiple operational and fairness
dimensions. To enforce safety and equity, we define five cost terms (constraints) monitored over the
scheduling horizon: (1) Voltage Violation Ratio penalizes the number of buses breaching voltage
limits; (2) Voltage Deviation Degree penalizes the severity of such violations; (3) Line Loading Cost
penalizes thermal overloads on network branches; (4) Battery Degradation Cost discourages exces-
sive CBESS cycling; and (5) PV Curtailment Unfairness penalizes uneven curtailment across buses.
These constraints interact over heterogeneous timescales, capturing the multifaceted trade-offs in
real-world energy systems. Full modeling details are provided in Appendix I.

Results and Discussion: In this work, we prioritize constraint satisfaction as the central perfor-
mance objective. Under consistent PPO backbones and training configurations, we compare two
architectures: (i) the widely used PPO-Lagrangian baseline, which utilizes a single reward critic and
a mixed critic for the aggregated cost signal, and (ii) the proposed Dedicated critic setup, which
retains a shared reward critic but replaces the single cost critic with multiple per-constraint critics.
Experimental details are provided in Table 1 in Appendix I. As shown in Fig. 3, the dedicated ar-
chitecture exhibits significantly more stable training behavior, with smoother learning curves and
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Figure 3: Learning curves for the power system application.
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Figure 4: Pareto fronts from the test results of the power system application(the lower the better).

reduced variance in value estimates, while the baseline often suffers from unstable updates and
erratic dual dynamics—particularly when constraint signals conflict. On unseen demand and renew-
able profiles, the Dedicated model consistently achieves the lowest violation rates and magnitudes
across all five constraint dimensions, with noticeably fewer and shorter spikes in unsafe behavior. To
quantify trade-offs between return and safety, we construct empirical Pareto fronts using ε-constraint
sweeps. As shown in Fig. 4, dedicated policies cluster tightly near the estimated frontiers, consis-
tently outperforming the baseline across a broad range of safety budgets—achieving either lower
constraint violations for the same reward, or higher reward at equivalent violation levels.

These results collectively shows that performance gains of the dedicated setup are consistent with
the theoretical mechanism identified in our analysis: by estimating each constraint with its own
critic, the actor update depends on per-constraint advantages that are independent of the evolving
multipliers, thereby avoiding the λ-driven target drift that can destabilise training. Per-constraint
critics preserve the relative scale and variance of individual constraint signals, enabling head-wise
normalisation and reducing “winner-takes-all” effects where the most active constraint dominates
updates. This appears crucial for tracing clean Pareto sets: Dedicated policies concentrate near the
frontier across budgets, whereas the aggregated-cost baseline often lies inside the frontier, indicative
of optimisation bias introduced by collapsing constraints.

6 CONCLUSION

This paper examined how critic design shapes stability and safety in Lagrangian (policy-gradient)
methods for constrained Markov decision processes. We showed, both theoretically and empiri-
cally, that mixing all reward and cost signals into a mixed critic couples the evaluation target to the
evolving dual variables, introducing a form of dual-induced nonstationarity that can impair learn-
ing stability. In contrast, dedicated per-signal critics yield targets that depend solely on the policy,
eliminating this source of drift. Our experiments across both bandit and stylized energy system en-
vironments confirm these theoretical insights. This paper provides concrete guidance for the design
of safe reinforcement learning algorithms under multiple constraints, highlighting the importance of
critic architecture in ensuring both stability and constraint satisfaction in Lagrangian-based methods.
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ETHICS STATEMENT

This work investigates algorithmic design choices for safe reinforcement learning in constrained
Markov decision processes. All experiments are conducted exclusively in simulated environments;
no human subjects, personal data, or identifiable information are involved at any stage. The com-
plex energy-system environment used in our study is a stylized simulator designed to explore
safety–performance trade-offs in high-stakes decision-making. It does not interface with or con-
trol any real-world infrastructure. Our aim is to advance the understanding of algorithmic safety in
reinforcement learning without posing risks to individuals, communities, or operational systems.

REPRODUCIBILITY STATEMENT

To support the reproducibility of our results, we provide comprehensive details on training proce-
dures, including step sizes, optimization parameters, and evaluation metrics used throughout the
experiments. With the release of our codebase, we will ensure full transparency by including ran-
dom seeds, environment specifications, dependency versions, and scripts necessary to replicate all
experiments and figures. All results presented in the paper can be reproduced using the provided
scripts without manual tuning. Where applicable, we will also include pretrained models and logs
to facilitate result verification and benchmarking.
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A LIMITATIONS

A fundamental tension exists in safe RL between maximizing cumulative reward and satisfying
multiple constraints—particularly in realistic, high-stakes domains. While our Dedicated Critic
architecture significantly enhances constraint adherence and stabilizes training dynamics, it does
not resolve the inherent trade-off: enforcing stricter safety often reduces achievable reward or slows
convergence.

The approach also introduces greater computational and memory requirements, as it maintains a
separate critic for each constraint. This design may be less scalable in environments with many
constraints or where critic updates are expensive. Although shared-backbone models with multiple
heads offer a partial remedy, they require careful balancing and tuning to be effective.

Another limitation is the static one-to-one mapping between constraints and critics. In settings where
constraints vary in relevance or activate sparsely, some critics may be under-trained, reducing sample
efficiency (see Appendix F). Future directions could involve adaptive critic selection or shared-
parameter architectures that dynamically reallocate capacity based on constraint salience.

Finally, although our theoretical results are first presented under linear function approximation for
analytical clarity, we also extend them to nonlinear cases such as neural networks. Still, understand-
ing the implications of gradient bias in deep architectures—particularly when critics share represen-
tations—remains an open question warranting further theoretical and empirical investigation.

B PBE

We justify that, for each fixed policy πθ and each signal x ∈ {r, c1, . . . , cm}, the population target of
the per-signal critic is the unique solution of a linear system A(θ)ωx,∗(θ) = bx(θ) with A(θ) ⪰ µI ,
and that A(·), bx(·) are locally Lipschitz in θ under standard conditions.

Let Exπθ
(s) denote the discounted state value for signal x under policy πθ and let ϕ : S → Rd be a

fixed feature map. We approximate Exπθ
(s) ≈ ϕ(s)⊤ωx. Write Φ ∈ Rn×d for the matrix stacking

feature rows ϕ(s)⊤, D = diag(dπθ
) for the diagonal matrix of the on-policy stationary distribution

over states, and Pπθ
for the state transition kernel.

The projected fixed-point equation (PFE) in the D-weighted norm is

Φωx = Π
(
T x
πθ
(Φωx)

)
, T x

πθ
v = rx + γPπθ

v,

where Π is the D-orthogonal projection onto span(Φ) and rx ∈ Rn is the immediate signal vector
(r for x = r, ci for x = ci). The normal equations are

Φ⊤D
(
Φωx − (rx + γPπθ

Φωx)
)
= 0 ⇐⇒ Φ⊤D(I − γPπθ

)Φ︸ ︷︷ ︸
A(θ)

ωx = Φ⊤D rx︸ ︷︷ ︸
bx(θ)

.

Hence the population target satisfies A(θ)ωx,∗(θ) = bx(θ).

Assume (i) ergodicity: the Markov chain under πθ admits a stationary distribution dπθ
with full

support on the on-policy visited set; (ii) feature non-degeneracy: the columns of D1/2Φ are linearly
independent. Then A(θ) = Φ⊤D(I − γPπθ

)Φ is symmetric positive definite; in particular there
exists µ > 0 with A(θ) ⪰ µI , so the solution ωx,∗(θ) is unique.

If πθ is C1 in θ and ergodicity holds on a neighbourhood, then Pπθ
and dπθ

vary locally Lipschitzly
in θ. Since Φ is fixed, A(θ) = Φ⊤D(I − γPπθ

)Φ and bx(θ) = Φ⊤Drx inherit local Lipschitzness.

If the estimator depends on (s, a), take features ϕ : S × A → Rd, stack Φ over (s, a), let D =
diag(dπθ

(s, a)) be the on-policy state–action occupancy matrix, and use the state–action transition
kernel Pπθ . The same PFE derivation yields

A(θ) = Φ⊤D (I − γPπθ ) Φ, bx(θ) = Φ⊤D rx,

so A(θ)ωx,∗(θ) = bx(θ) with A(θ) ⪰ µI under the analogues of ergodicity and feature non-
degeneracy for (s, a). Local Lipschitzness follows as above.
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When training with advantages (e.g., GAE), two standard constructions lead to a linear system:

(1) Difference-of-values: Learn V x (or Qx) with the state/state–action equations above, and form
Ax = Qx − V x; the critic parameters still solve A(θ)ωx,∗ = bx(θ).

(2) Least-squares to generalized returns: Regress ϕ(z)⊤ωx onto generalized returns Ĝx (e.g., GAE
targets) in theD-weighted norm, i.e. minωx Ez∼dπθ

[
(ϕ(z)⊤ωx− Ĝx(z))2

]
. The normal equations

are
Φ⊤DΦ︸ ︷︷ ︸

A(θ)

ωx,∗(θ) = Φ⊤D Ĝx︸ ︷︷ ︸
bx(θ)

.

Thus the linear model still holds (with a different A), and A(θ) ⪰ µI under D1/2Φ full column
rank. If Ĝx depends smoothly on θ through πθ, bx(·) is locally Lipschitz.
Lemma B.1 (Positive definiteness of A(θ)). Fix a policy πθ and let D = diag(dπθ

) be the diago-
nal matrix of the on-policy stationary distribution over states. Let Pπθ

be the corresponding state
transition kernel (row-stochastic) satisfying d⊤πθ

Pπθ
= d⊤πθ

. Let Φ ∈ Rn×d stack feature rows and
assume D1/2Φ has full column rank. For γ ∈ [0, 1) define

A(θ) = Φ⊤D (I − γPπθ
) Φ.

Then A(θ) is symmetric positive definite and

v⊤A(θ) v ≥ (1− γ)λmin

(
Φ⊤DΦ

)
∥v∥22 for all v ∈ Rd.

In particular, A(θ) ⪰ µI with µ = (1− γ)λmin(Φ
⊤DΦ) > 0.

Proof. Let y = Φv. Using the D-weighted inner product ⟨u,w⟩D := u⊤Dw and norm ∥u∥2D :=
⟨u, u⟩D,

v⊤A(θ) v = y⊤D(I − γPπθ
)y = ∥y∥2D − γ ⟨y, Pπθ

y⟩D.
Because Pπθ

is a Markov operator with invariant measure dπθ
, it is a non-expansion in L2(D), i.e.,

∥Pπθ
y∥D ≤ ∥y∥D and therefore ⟨y, Pπθ

y⟩D ≤ ∥y∥D ∥Pπθ
y∥D ≤ ∥y∥2D. Hence

v⊤A(θ) v ≥ ∥y∥2D − γ ∥y∥2D = (1− γ) ∥y∥2D.

Finally, ∥y∥2D = v⊤Φ⊤DΦ v ≥ λmin(Φ
⊤DΦ) ∥v∥22 because D1/2Φ has full column rank. Com-

bining the inequalities yields the claim.

Corollary B.2 (State–action variant). Let D = diag(dπθ
(s, a)) be the on-policy state–action occu-

pancy matrix, Pπθ the state–action transition kernel (row-stochastic) with d⊤πθ
Pπθ = d⊤πθ

, and Φ

stack features over (s, a) with D1/2Φ full column rank. Define

A(θ) = Φ⊤D (I − γPπθ ) Φ.

Then A(θ) ⪰ (1− γ)λmin(Φ
⊤DΦ) I and is symmetric positive definite.

13
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C DETAILED PROOF FOR MIXED-CRITIC ERROR BOUND

Lemma C.1 (Mixed-critic error bound). IfA(θ) ⪰ µI uniformly, and the stepsizes satisfy Robbins–
Monro conditions with αt/ηt → 0 and βt/ηt → 0, then there exist constants Cλ, Cθ < ∞ such
that

lim sup
t→∞

E∥et∥ ≤
Cλ

µ
lim sup
t→∞

βt
ηt

+
Cθ

µ
lim sup
t→∞

αt

ηt
+ O(1). (16)

Proof. Recall the error recursion equation 4:

et+1 = (I − ηtA(θt))et + (ω⋆
t − ω⋆

t+1)︸ ︷︷ ︸
target drift

+ηtζt+1 +∆θ
t .

Since A(θt) ⪰ µI , we have for all v, ∥(I − ηtA(θt))v∥ ≤ (1− µηt)∥v∥. Hence
∥(I − ηtA(θt))et∥ ≤ (1− µηt) ∥et∥. (17)

Using the drift expansion equation 7,

ω⋆
t − ω⋆

t+1 = −
m∑
i=1

(λi,t+1 − λi,t)ωci(θt) +O(∥θt+1 − θt∥).

Assuming the PBE solutions ωci(θ) and ωr(θ) are Lipschitz in θ (true under our linear/PBE setup
with A(θ), bx(θ) smoothly varying), there exist constants Cλ, Cθ s.t.

∥ω⋆
t − ω⋆

t+1∥ ≤ Cλ ∥λt+1 − λt∥+ Cθ ∥θt+1 − θt∥. (18)
By the definitions of the dual and actor steps, ∥λt+1 − λt∥ = O(βt) and ∥θt+1 − θt∥ = O(αt),
hence

∥ω⋆
t − ω⋆

t+1∥ ≤ Cλ βt + Cθ αt. (19)

Write δt := (ω⋆
t − ω⋆

t+1) + ∆θ
t . By equation 19 and Lipschitz variation of A(θ), b(θ) (collected in

∆θ
t ), there exists C̃θ s.t.

E∥δt∥ ≤ Cλ βt + C̃θ αt. (20)
Using equation 17 and the triangle inequality,

∥et+1∥ ≤ (1− µηt)∥et∥+ ∥δt∥+ ηt∥ζt+1∥.
Take conditional expectation and then total expectation. With E[ζt+1|Ft] = 0 and E∥ζt+1∥2 ≤ σ2,
standard SA arguments (via a mean-square detour or BDG inequality) yield

E
[
ηt∥ζt+1∥

]
≤ Cnoise η

2
t , (21)

for some constant Cnoise (intuitively, the “linear in ηt” noise can be handled through a square-norm
contraction; in the first-moment recursion it appears as O(η2t )). Hence, taking total expectation and
applying equation 20 gives

E∥et+1∥ ≤ (1− µηt)E∥et∥ + Cλ βt + C̃θ αt + Cnoise η
2
t . (22)

We now use a standard comparison lemma: if a nonnegative sequence (xt) satisfies

xt+1 ≤ (1− at)xt + bt, at ∈ (0, 1),
∑
t

at =∞, at → 0,

then
lim sup
t→∞

xt ≤ lim sup
t→∞

bt
at
.

Applying this to equation 22 with xt = E∥et∥, at = µηt and

bt = Cλ βt + C̃θ αt + Cnoise η
2
t ,

gives

lim sup
t→∞

E∥et∥ ≤
1

µ
lim sup
t→∞

(
Cλ βt
ηt

+
C̃θ αt

ηt
+ Cnoise ηt

)
.

Since ηt → 0 and
∑

t η
2
t <∞, the last term contributesO(1). Renaming C̃θ asCθ yields equation 9.
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Lemma C.2 (dedicated-critic tracking error). Suppose A(θ) ⪰ µI uniformly, Assumptions 4.1 and
4.3 hold, then there exists C̃θ <∞ such that for every x ∈ {r, c1, . . . , cm},

lim sup
t→∞

E∥ext ∥ ≤
C̃θ

µ
lim sup
t→∞

αt

ηt
. (23)

Proof. Use A(θt) ⪰ µI:

∥ext+1∥ ≤ ∥(I−ηtA(θt))ext ∥+ηt∥ζxt+1∥+∥∆
θ,x
t ∥ ≤ (1−µηt)∥ext ∥+ηt∥ζxt+1∥+Cθ∥θt+1−θt∥.

Take conditional expectation given Ft and then expectation; by Assumption 4.3, E[ηt∥ζxt+1∥] ≤ c ηt
and yields O(η2t ) at the level of first-moment recursion. By Assumption 4.1, ∥θt+1 − θt∥ = O(αt).
Thus,

E∥ext+1∥ ≤ (1− µηt)E∥ext ∥ + Cθ αt + O(η2t ).

Apply the standard SA comparison lemma for sequences of the form xt+1 ≤ (1 − at)xt + bt with
at = µηt and bt = Cθαt +O(η2t ), using

∑
t ηt =∞,

∑
t η

2
t <∞, and αt/ηt → 0. This yields

lim sup
t→∞

E∥ext ∥ ≤
Cθ

µ
lim sup
t→∞

αt

ηt
,

and absorbing constants into C̃θ gives equation 14.
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D DETAILED PROOF FOR ACTOR-GRADIENT BIAS BOUND

Lemma D.1 (Actor-gradient bias bound). Let ĝt and g⋆t be the actor’s estimated and ideal gradients,

ĝt = Et

[
∇θ log πθt(at|st)ϕ(st, at)⊤ωt

]
, g⋆t = Et

[
∇θ log πθt(at|st)ϕ(st, at)⊤ω⋆

t

]
, (24)

with critic error et = ωt − ω⋆
t . Assume the score and features are bounded as

∥∇θ log πθt(at|st)∥ ≤ G, ∥ϕ(st, at)∥ ≤ Lϕ a.s.

Then the actor-gradient bias
Bt := ĝt − g⋆t

satisfies
∥Bt∥ ≤ GLϕ ∥et∥. (25)

Proof. Recall the definitions

ĝt = E
[
∇θ log πθt(at|st)ϕ(st, at)⊤ωt

∣∣Ft

]
, g⋆t = E

[
∇θ log πθt(at|st)ϕ(st, at)⊤ω⋆

t

∣∣Ft

]
,

and the critic error et = ωt−ω⋆
t . Here Ft is the sigma-field generated by everything up to time t; in

particular, θt, λt, ωt, ω
⋆
t , et are Ft-measurable, while (st, at) are drawn from πθt at time t and are

not Ft-measurable.

Using linearity of conditional expectation and et = ωt − ω⋆
t ,

Bt := ĝt − g⋆t
= E
[
∇θ log πθt(at|st)ϕ(st, at)⊤(ωt − ω⋆

t )
∣∣Ft

]
= E
[
∇θ log πθt(at|st)ϕ(st, at)⊤et

∣∣Ft

]
.

Since et is Ft-measurable, we can factor it outside the conditional expectation: for any random
matrix/vector X and Ft-measurable (deterministic under E[·|Ft]) vector Y ,

E[X Y | Ft] = E[X | Ft]Y.

Applying this with X := ∇θ log πθt(at|st)ϕ(st, at)⊤ and Y := et,

Bt = E
[
∇θ log πθt(at|st)ϕ(st, at)⊤

∣∣Ft

]
et.

Equivalently, without explicitly pulling out the matrix, we can directly bound the norm inside the
conditional expectation as follows.

From the triangle inequality for norms, we have

∥Bt∥ =
∥∥∥E[∇θ log πθt(at|st)ϕ(st, at)⊤et

∣∣Ft

]∥∥∥ ≤ E
[∥∥∇θ log πθt(at|st)ϕ(st, at)⊤et

∥∥ ∣∣Ft

]
,

where we used Jensen’s inequality for the convex function x 7→ ∥x∥ and conditional expectation.

Now use submultiplicativity of operator/vector norms:∥∥∇θ log πθt(at|st)ϕ(st, at)⊤et
∥∥ ≤ ∥∇θ log πθt(at|st)∥ ∥ϕ(st, at)∥ ∥et∥.

Here we regard the product ψ ϕ⊤et (with ψ := ∇θ log πθt(at|st)) as (ψ ϕ⊤)et; the operator norm
of the rank-1 matrix ψ ϕ⊤ is ∥ψ∥ ∥ϕ∥.
Therefore,

∥Bt∥ ≤ E
[
∥∇θ log πθt(at|st)∥ ∥ϕ(st, at)∥ ∥et∥

∣∣Ft

]
.

Assume the standard boundedness conditions hold almost surely:

∥∇θ log πθt(at|st)∥ ≤ G, ∥ϕ(st, at)∥ ≤ Lϕ.

Since ∥et∥ is Ft-measurable, we can treat it as a constant inside the conditional expectation. Hence,

∥Bt∥ ≤ E
[
GLϕ ∥et∥

∣∣Ft

]
= GLϕ ∥et∥.

This establishes the claimed Lipschitz bound

∥Bt∥ ≤ GLϕ∥et∥,
which is precisely equation 11.
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E DETAILED PROOF FOR ACTOR-GRADIENT BIAS BOUND

Theorem E.1 (Bias from a Mixed Critic). Assume the conditions of Lemma 4.5 hold, and the
score/features are uniformly bounded ∥∇θ log πθt(at|st)∥ ≤ G, ∥ϕ(st, at)∥ ≤ Lϕ a.s. Then the
actor-gradient bias Bt = ĝt − g⋆t satisfies

lim sup
t→∞

E∥Bt∥ ≤ GLϕ

(
Cλ

µ
lim sup
t→∞

βt
ηt

+
Cθ

µ
lim sup
t→∞

αt

ηt

)
. (26)

Proof. By Lemma 4.6,
∥Bt∥ ≤ GLϕ ∥et∥.

Taking expectations preserves the inequality (monotonicity of E):
E∥Bt∥ ≤ GLϕ E∥et∥. (27)

Lemma 4.5 states that, for some finite Cλ, Cθ,

lim sup
t→∞

E∥et∥ ≤
Cλ

µ
lim sup
t→∞

βt
ηt

+
Cθ

µ
lim sup
t→∞

αt

ηt
+ O(1). (28)

Here the O(1) term collects vanishing contributions such as O(ηt) from the noise control (cf. the
proof of Lemma 4.5).

Taking lim supt→∞ on both sides of equation 27 and using equation 28 yields

lim sup
t→∞

E∥Bt∥ ≤ GLϕ lim sup
t→∞

E∥et∥ ≤ GLϕ

(
Cλ

µ
lim sup
t→∞

βt
ηt

+
Cθ

µ
lim sup
t→∞

αt

ηt
+ O(1)

)
.

Since G,Lϕ, Cλ, Cθ, µ are constants (independent of t), and lim sup(O(1)) = 0, we can drop the
vanishing term to obtain exactly equation 12.

In Lemma 4.5, the βt

ηt
contribution arises from the dual-driven target drift in the mixed-critic error

dynamics (see the decomposition of ω⋆
t − ω⋆

t+1). Thus the bound equation 12 explicitly exposes the
additional bias component inherited from the mixed critic’s dependence on λ.

Theorem E.2 (dedicated-critic bias). Suppose Assumptions 4.1–4.3 hold, A(θ) ⪰ µI uniformly,
and ∥∇θ log πθt(at|st)∥ ≤ G, ∥ϕ(st, at)∥ ≤ Lϕ a.s. Let ĝt and g⋆t be the actor’s estimated and
ideal gradients, the dedicated-critic actor bias be Bmulti

t := ĝmulti
t − g⋆t . Then

lim sup
t→∞

E∥Bmulti
t ∥ ≤ GLϕ

C̃θ

µ
lim sup
t→∞

αt

ηt
, (29)

Proof. Define the ideal (mixed) gradient at time t and its estimator as

g⋆t = Et

[
∇θ log πθt(at|st)

(
ϕ(st, at)

⊤ωr(θt)−
m∑
i=1

λi,t ϕ(st, at)
⊤ωci(θt)

)]
,

ĝmulti
t = Et

[
∇θ log πθt(at|st)

(
ϕ(st, at)

⊤ωr
t −

m∑
i=1

λi,t ϕ(st, at)
⊤ωci

t

)]
. (30)

From equation 30 and linearity,

Bmulti
t = Et

[
∇θ log πθt(at|st)ϕ(st, at)⊤

(
ert −

m∑
i=1

λi,t e
ci
t

)]
,

where ext = ωx
t −ωx(θt). Using Jensen, submultiplicativity, and boundedness of score and features,

∥Bmulti
t ∥ ≤ Et

[
∥∇θ log πθt(at|st)∥ ∥ϕ(st, at)∥

(
∥ert∥+

m∑
i=1

∥λi,t∥ ∥ecit ∥
)]
≤ GLϕ

(
∥ert∥+Λ max

i
∥ecit ∥

)
,

where Λ = supt ∥λt∥ <∞ due to projection onto a compact set. Taking expectations and lim sup,

lim sup
t→∞

E∥Bmulti
t ∥ ≤ GLϕ

(
1 + Λ

)
lim sup
t→∞

max
x∈{r,ci}

E∥ext ∥.

Apply Lemma 4.8 to bound each E∥ext ∥ by C̃θ

µ lim sup αt

ηt
, and absorb (1 + Λ) into C̃θ (renaming

the constant) to get equation 15. No βt term appears and the target drift involves only θ (rate αt),
not λ.
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F DUAL-INDUCED DRIFT AND LINEARITY

Let the mixed critic be trained by minimizing any smooth population loss

Lmix(ω; θ, λ) (e.g., TD loss, Monte-Carlo/GAE regression, etc.).

Because the scalarized signal is rλ := r −
∑m

i=1 λici, this loss depends explicitly on λ. Denote
the population minimizer by ω⋆(θ, λ) ∈ argminω Lmix(ω; θ, λ). At any (strict) local minimum, the
first-order condition holds:

∇ωLmix(ω
⋆(θ, λ); θ, λ) = 0.

Assume the Hessian H(θ, λ) := ∇2
ωωLmix(ω

⋆(θ, λ); θ, λ) is nonsingular (standard local strong con-
vexity around the solution). Then by the implicit function theorem, ω⋆ is differentiable in (θ, λ)
and

∂ω⋆

∂λ
= −H(θ, λ)−1 ∇2

ωλ Lmix(ω
⋆(θ, λ); θ, λ)︸ ︷︷ ︸

̸=0 generically

.

Hence for small updates (∆θ,∆λ),

ω⋆(θ +∆θ, λ+∆λ)− ω⋆(θ, λ) =
∂ω⋆

∂θ
∆θ︸ ︷︷ ︸

policy-induced drift

+
∂ω⋆

∂λ
∆λ︸ ︷︷ ︸

dual-induced drift

+ o(∥∆θ∥+ ∥∆λ∥).

The key point is that∇2
ωλLmix ̸= 0 whenever the training targets or TD errors inside Lmix depend on

rλ (which they do for any mixed critic). Therefore, ∂ω⋆/∂λ ̸= 0 generically, and the dual-induced
drift term proportional to ∆λ appears regardless of linearity. The linear case analysed in the main
text is just the special instance where Lmix yields normal equations A(θ)ω = br(θ) −

∑
i λib

ci(θ),
so that ∂ω⋆/∂λ = −A(θ)−1[bc1(θ), . . . , bcm(θ)] explicitly.

Why dedicated critics avoid it. For per-signal critics, each loss Lx(ω
x; θ) does not involve λ:

∇ωLx(ω
x,⋆(θ); θ) = 0 ⇒ ∂ωx,⋆

∂λ
= 0.

Thus their targets drift only through θ (policy-induced), with no dual-induced component. When the
actor later combines the already-computed per-signal estimates as ωmix = ωr −

∑
i λiω

ci , the λ’s
appear outside the critics and do not change the critics’ own population optima.

18
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G COMPUTATIONAL RESOURCES

We implement all experiments using PyTorch-1.12 on an Ubuntu 18.04 server with two Intel Xeon
Gold 6142M CPUs with 16 cores, 24G memory, and one NVIDIA 3090 GPU.

H EXPERIMENT DETAIL - CMDP BANDIT

Single mixed critic: A single scalar critic per action is trained on the mixed signal

rλ(a) := r(a)− λ1c1(a)− λ2c2(a).

With γ = 0, a TD(0) bandit update reduces to exponential averaging:

Qmixed
t+1 (a) = Qmixed

t (a) + ηmixed

(
rλ(at) − Qmixed

t (at)
)
1{at = a}. (31)

The actor readout in equation 5.1 uses Q̂t(a) = Qmixed
t (a).

Dedicated-critic: We train separate per-action critics for reward and each cost:

Qr
t+1(a) = Qr

t (a) + ηmulti
(
r(at)−Qr

t (at)
)
1{at = a}, (32)

Qc1
t+1(a) = Qc1

t (a) + ηmulti
(
c1(at)−Qc1

t (at)
)
1{at = a}, (33)

Qc2
t+1(a) = Qc2

t (a) + ηmulti
(
c2(at)−Qc2

t (at)
)
1{at = a}. (34)

The actor combines them at readout time with the current multipliers:

Q̂t(a) = Qr
t (a) − λ1,tQ

c1
t (a) − λ2,tQ

c2
t (a). (35)

We run T = 5000 steps per seed and average over S = 15 random seeds for the main curves. For the
timescale ablation (Sec. H.2), we sweep critic and dual learning rates and average over 8 seeds per
grid point. For a mixed scalar summary of conditional alignment (reported once), we optionally use
S = 20 seeds to reduce variance. α = 0.02, β = 0.02, ηmixed = 0.03, ηmulti = 0.03, θ0 = 0, λ1,0 =
λ2,0 = 0.1, Q(·) = 0 for all heads at t = 0.

H.1 EVALUATION METRICS

Expected reward. We report the on-policy expected reward Jr = σ(θ) r(a1) + (1− σ(θ)) r(a2)
as a function of steps.

Constraint violation. Instantaneous expected violation is

Violt := max
(
0, Jc1(πθt)−d1

)
+ max

(
0, Jc2(πθt)−d2

)
= max(0, 1−σ(θt)−0.5)+max(0, σ(θt)−0.5).

(36)

Unconditional gradient alignment. We compute a moving Pearson correlation between the esti-
mated actor gradient ĝt (from equation 5.1 with the appropriate critic readout) and the true gradient
gt, using a centered window of width w = 201 with boundary normalization:

corrt(ĝ, g) =
Covt(ĝ, g)√

Vart(ĝ)Vart(g)
, (37)

with Covt(·, ·), Vart(·) computed over the window and normalized by its effective length.

Conditional gradient alignment. Same as equation 37, but restricted to timesteps in the window
where the ground-truth magnitude exceeds a threshold ε = 10−3:

corrcond
t (ĝ, g) = corr

(
{ĝτ : |gτ | > ε}, {gτ : |gτ | > ε}

)
(38)

This metric emphasizes periods with a meaningful learning signal, computed with boundary-
normalized counts; windows with < 5 effective samples are masked.
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Dual oscillation magnitude. We quantify multiplier oscillations via the moving standard devia-
tion of the signed gap |λ2 − λ1|, again using a boundary-normalized window of width w = 201:

Osct =

√
max

(
0, Et[∆2]−

(
Et[∆]

)2)
, ∆τ := |λ2,τ − λ1,τ |. (39)

Smoothing (for curves) and uncertainty bands. For reward and violation we plot boundary-
normalized running means:

x̃t =

∑t+⌊w/2⌋
τ=t−⌊w/2⌋ xτ

#{τ inside range}
, (40)

then average x̃t across seeds and show ±1 standard deviation bands across seeds.

H.2 TIMESCALE ABLATION (CRITIC VS. DUAL)

To mirror the theory’s timescale conclusions, we sweep critic and dual learning rates on a grid:

η ∈ {0.01, 0.03, 0.10}, β ∈ {0.005, 0.02, 0.08},

holding the actor step α = 0.02 fixed. For each (η, β), we run the mixed-critic variant for T = 5000
steps with 8 seeds and report:

1. Violation AUC:
∑T

t=1 Violt/T ,
2. Late conditional alignment: mean of equation 38 over the last 500 steps,
3. Late dual oscillation: mean of equation 39 over the last 500 steps.

Results are visualized as heatmaps over (η, β).

(a) Violation AUC (b) Late conditional alignment (c) Late dual oscillation

Figure 5: Performance for CMDP Bandit.

H.3 COMPUTE, RANDOMIZATION, AND REPRODUCIBILITY

All runs are CPU-only and complete within seconds. Random seeds s ∈ {1000, . . . , 1000+S − 1}
control action sampling only (initial parameters are deterministic). Each figure reports the mean
across seeds with ±1 standard deviation. We save raw arrays (per-seed trajectories for reward,
violation, gradients, and multipliers) to a serialized file for exact reproduction of all plots.
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I EXPERIMENT DETAILS - POWER SYSTEM

I.1 SYSTEM DESCRIPTION

We model a radial distribution network with high rooftop PV penetration, where a set of community
battery energy storage systems (CBESSs) are coordinated to ensure operational safety and effi-
ciency. Each CBESS is constrained by efficiency, power, and state-of-charge (SOC) limits, and can
exchange energy with the upstream grid within trading bounds, incurring both trading and degra-
dation costs. When storage is saturated, PV curtailment at the bus level is introduced with fairness
considerations to avoid disproportionate restrictions. The distribution network is described using the
LinDistFlow approximation, including power balance, voltage regulation, and branch thermal limits.
Voltage violations and line loading are penalized in the objective. The overall scheduling problem
minimizes the aggregated penalties and costs associated with CBESS operations, grid trading, and
PV curtailment fairness.

We consider a radial distribution network (N ,L) operated by a DNSP over intra-day periods t ∈
T = {1, . . . , T}. The system model consists of CBESS operation, PV curtailment, and PDN-level
constraints.

I.1.1 CBESS

Let M denote the set of CBESSs. Each CBESS m ∈ M is connected to bus ξ(m), with charg-
ing/discharging efficiencies (ηch

m, η
dis
m ), charging and discharging limits (P

ch
m, P

dis
m ), and SOC range

[SOCm, SOCm]. The charging/discharging power are pch
m,t and pdis

m,t, the reactive support is qCB
m,t,

and stored energy is Em,t with capacity ECap
m . Their dynamics are:

Em,t+1 = Em,t + ηch
mp

ch
m,t∆t−

1

ηdis
m

pdis
m,t∆t, (41a)

SOCm,t =
Em,t

ECap
m

, SOCm ≤ SOCm,t ≤ SOCm, (41b)

0 ≤ pch
m,t ≤ P

ch
m, 0 ≤ pdis

m,t ≤ P
dis
m , (41c)

pch
m,t · pdis

m,t = 0, (41d)

(pdis
m,t − pch

m,t)
2 + (qCB

m,t)
2 ≤ (SCB

m )2, (41e)

Em,0 = Einit
m . (41f)

CBESSs also trade with the main grid through a ratio ρtrade
m,t ∈ [0, 1]. With buy/sell prices (ϕbuy

t , ϕsell
t ),

the trading cost is:

fET
t =

∑
m∈M

f trade
m,t , (42a)

f trade
m,t = ϕbuy

t pch
m,tρ

trade
m,t − ϕsell

t pdis
m,tρ

trade
m,t , (42b)

0 ≤ pch
m,tρ

trade
m,t ≤ P

trade,ch
m , 0 ≤ pdis

m,tρ
trade
m,t ≤ P

trade,dis
m . (42c)

Battery degradation is approximated linearly:

fBD
t =

∑
m∈M

cdeg
m (pch

m,t + pdis
m,t), (43a)

where cdeg
m > 0 is the degradation cost coefficient.

I.1.2 PV CURTAILMENT

When all CBESSs are full, PV generation is curtailed via ratio γi,t ∈ [0, 1]:

p̃PV
i,t = (1− γi,t)pPV

i,t , (44a)

0 ≤ γi,t ≤ 1. (44b)
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Fairness is enforced by comparing each bus’s curtailed ratio πcurt
i with its proportional target πtar

i :

fPVF =
∑
i∈N

(πcurt
i − πtar

i )2. (45)

I.1.3 PDN

The PDN is described by lossless LinDistFlow. For each branch (i, j) ∈ L:

pij,t =
∑

k:(j,k)∈L

pjk,t + pload
j,t − p̃PV

j,t −
∑

m:ξ(m)=j

(pdis
m,t − pch

m,t), (46a)

qij,t =
∑

k:(j,k)∈L

qjk,t + qload
j,t −

∑
m:ξ(m)=j

qCB
m,t. (46b)

Voltage drop is given by:

Vj,t = Vi,t − 2(rijpij,t + xijqij,t), (47)

with bounds V ≤ Vi,t ≤ V . Penalties for voltage violations are:

fVD
t =

∑
i∈N

(
[Vi,t − V ]+ + [V − Vi,t]+

)
, (48a)

fVN
t =

∑
i∈N

I(Vi,t > V ∨ Vi,t < V ). (48b)

Line loading penalty is:

fLL
t =

∑
(i,j)∈L

rij
p2ij,t + q2ij,t

V 2
0

, (49a)

p2ij,t + q2ij,t ≤ S
2

ij . (49b)

I.1.4 PROBLEM FORMULATION

The goal is to coordinate CBESS operation under PV-rich PDNs to ensure network safety and effi-
ciency. At each time step, CBESSs decide charging/discharging and grid trading ratios. The opti-
mization problem is:

min
pch,pdis,qCB

m,t,ρ
trade

∑
t∈T

(
fVD
t + fVN

t + fLL
t + fBD

t + fET
t

)
+ fPVF, (50a)

s.t. equation 41, equation 42c, equation 44, equation 46, and equation 47. (50b)

I.2 CMDP MODELING WITH DEDICATED-CRITIC LAGRANGIAN RL

We cast the CBESS coordination as a constrained Markov decision process (CMDP)(
S,A, P, r, {ci}mi=1, γ, {di}mi=1

)
, where S and A denote the state and action spaces, P (·|s, a) the

transition kernel, γ ∈ (0, 1) the discount factor, r(s, a) the reward, and ci(s, a) the cost signal for
constraint i with threshold di. Given a stochastic policy πθ(a|s), define the discounted returns

Jr(πθ)=Eπ

[ ∞∑
t=0

γtr(st, at)
]
, Jci(πθ)=Eπ

[ ∞∑
t=0

γtci(st, at)
]
. (51)

The CMDP objective is

max
θ

Jr(πθ) s.t. Jci(πθ) ≤ di, i = 1, . . . ,m. (52)
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Reward & costs from the PDN model. Let the instantaneous penalties/costs at time t be those
defined in the system model: fVD

t , fVN
t , fLL

t , fBD
t , fET

t and the daily PV-curtailment fairness term
fPVF. A practical partition is:

r(st, at) = −
(
αBDf

BD
t + αETf

ET
t

)
, (53)

c1(st, at) = fVD
t , c2(st, at) = fVN

t , c3(st, at) = fLL
t , (54)

and an episodic fairness constraint

C4(τ) ≜ fPVF with Eπ[C4(τ)] ≤ d4, (55)

where τ denotes a full episode (day). If desired, fPVF can be spread as a per-step density c4(st, at)
so that

∑
t γ

tc4(st, at) recovers the same daily target. The weights αBD, αET > 0 reflect economic
preferences. Alternative partitions (e.g., moving fET into constraints) are also supported without
changing the derivations below.

Lagrangian relaxation with per-constraint critics. Introduce multipliers λ = (λ1, . . . , λm) ⪰ 0
and define

L(θ, λ) = Jr(πθ)−
m∑
i=1

λi
(
Jci(πθ)− di

)
. (56)

We perform the standard primal–dual updates:

θ update: ∇θL(θ, λ) = ∇θJr(πθ)−
m∑
i=1

λi∇θJci(πθ), (57)

λ update: λi ← Π[0,λmax]

(
λi + β [Jci(πθ)− di]

)
, (58)

where Π denotes projection to stabilize λ.

Signal-wise value functions and advantages. For each signal x ∈ {r, c1, . . . , cm} define

Qx
π(s, a) = Eπ

[ ∞∑
t=0

γtx(st, at)
∣∣∣ s0=s, a0=a], (59)

V x
π (s) = Ea∼π[Q

x
π(s, a)], A

x
π(s, a) = Qx

π(s, a)− V x
π (s). (60)

Using the policy score function, the actor gradient becomes

∇θL(θ, λ) = Eπ

[
∇θ log πθ(a|s)

(
Ar

π(s, a)−
m∑
i=1

λiA
ci
π (s, a)

)
︸ ︷︷ ︸

Ãπ(s,a)

]
. (61)

Per-constraint critics. We learn one critic per signal x ∈ {r, c1, . . . , cm} with parameters ωx:

Qωx
(s, a) ≈ Qx

π(s, a), δxt = xt + γ Qωx
(st+1, at+1)−Qωx

(st, at), (62)

and minimize E[(δxt )2] (or use GAE to reduce variance). Advantages are estimated by Ax
t (e.g.,

GAE(λ)) and plugged into equation 61.

PPO-style actor (with dedicated-critic advantage). Let rt(θ) = πθ(at|st)
πθold (at|st) and Ãt = Ar

t −∑
i λiA

ci
t . The clipped surrogate is

JPPO(θ) = E
[
min

(
rt(θ) Ãt, clip(rt(θ), 1−ϵ, 1+ϵ) Ãt

)]
+ η E[H(πθ(·|st))], (63)

whereH is policy entropy and η ≥ 0.

Episodic fairness constraint. If keeping fPVF as episodic, use the per-episode estimator Ĵc4 =
1
N

∑N
k=1 C4(τ

(k)) in equation 58. A practical alternative is to define a per-step density c4(st, at)
whose discounted sum equals the daily fairness value, enabling a standard critic update as in equa-
tion 62.
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Table 1: Key hyperparameters, reward, and CMDP constraints for the energy management case
study.

Category Hyperparameter / Term Value Notes / Definition
Reward & constraints
Reward rt − fET

t – fET
t =

∑
m

(
ϕbuy
t pch

m,tρ
trade
m,t −

ϕsell
t pdis

m,tρ
trade
m,t

)
Constraint 1 cVN

t
1

|N|
∑

i I
(
Vi,t /∈ [V , V ]

)
[0, 1] Count of voltage violations (normal-

ized by bus count)
Constraint 2 cVD

t

∑
i

(
[Vi,t−V ]++[V −Vi,t]

+
)

– Degree of voltage violation (no extra
scaling)

Constraint 3 cLL
t

∑
(i,j)[ ℓij,t − τ line ]+ – Line thermal overload beyond thresh-

old (p.u. or %)

Constraint 4 cBD
t

∑
m(pch

m,t + pdis
m,t)∆t

|M|P CB
∆t

[0, 1] Battery degradation (throughput, nor-
malized)

Constraint 5 cPVF
t

var({γi,t}i̸=0)

0.25
[0, 1] PV curtailment unfairness (variance

normalized by max 0.25)
Lag-PPO constraint cVN

t + cVD
t + cLL

t + cBD
t + cPVF

t - Summation of all constraints
General training parameters
Learning rate α/η - 3e− 4 Shared by actor/critic
Clip coefficient - 0.2 Ratio clipping [1− ϵ, 1 + ϵ]
Target KL – 0.015 Early stop when approx-KL exceeds

threshold
Value loss coeff. – 0.5 Weight on value loss
Entropy coeff. – 0.0 Entropy regularization
Grad norm clip – 0.5 Global gradient clipping
Hidden sizes – (256,

256)
MLP for actor/critic

Init log-std – −0.5 Gaussian policy init
Discount γ, GAE – 0.99,

0.95
For returns and advantages

Dual learning rate λ – 5e-3 Step size for dual updates in La-
grangian RL paradigm

λ init / max – 0.0 / 104 Projected to [0, λmax]
Training schedule & environment
PPO episodes – 2000 Total training episodes
Steps / episode – 288 ∆t = 5 min ⇒ one day per episode
Env time step – 5 min Day length = 288 steps

Concrete instantiation for this problem. With equation 53–equation 55, we have m ∈ {3, 4}
constraints:

Critics: Qωr
for reward, Qωc1

, Qωc2
, Qωc3

(and Qωc4
if episodic fairness is densified); (64)

Advantage: Ãt = Ar
t − λ1A

c1
t − λ2A

c2
t − λ3A

c3
t (−λ4Ac4

t if used); (65)

Dual: λi ← Π[0,λmax]

(
λi + β [Ĵci − di]

)
, i = 1, . . . ,m. (66)

Notes on stability and practice. (i) Use separate target networks or Polyak averaging for each
critic to stabilize TD. (ii) Normalize everyAx

t before forming Ãt to balance scales across constraints.
(iii) Choose di from engineering limits (e.g., allowable daily voltage violation budget, line loading
budget); start with conservative di then relax. (iv) Bound λ via projection or log-parameterization
to avoid runaway dual ascent; optionally add a small L2 penalty on λ. (v) For mixed episodic/step
constraints, update episodic multipliers once per episode and stepwise ones per minibatch.

I.3 EXPERIMENTAL PARAMETERS

Symbols. The key parameters of the power system management case study are provided in Table 1.
ϕbuy
t , ϕsell

t : upstream buy/sell prices; ρtrade
m,t ∈ [0, 1]: trading ratio for CBESS m; [x]+ = max{x, 0};

I(·): indicator; V , V : voltage bounds (e.g., [1 − ν, 1 + ν] p.u., ν > 0); Vi,t: bus-i voltage; ℓij,t:
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loading of line (i, j) (p.u. or %); τ line: overload threshold (default 0); γi,t ∈ [0, 1]: PV curtailment
ratio at bus i; ∆t: step duration (5 min); T : daily horizon (288 steps); |N |: number of buses; |M|:
number of CBESS; P

CB
: nameplate active-power rating for normalization.

I.4 TWO-TIERED STATISTICS

The two-tiered statistical results in Table 2 highlight a clear trade-off between economic performance
and system safety. Specifically, the DC-Lag-PPO variant achieves substantial improvements across
all five constraint metrics. The violation ratio (c1) and violation degree (c2) of bus voltages are
reduced by approximately 33% and 52%, respectively, while the line loading rate (c3) decreases by
11.6%. Similarly, the battery degradation cost (c4) drops by 46%, and the PV curtailment unfairness
(c5) improves by 52.7%. These reductions indicate that DC-Lag-PPO enforces network security and
operational fairness more effectively than the baseline Lag-PPO.

In contrast, the reward, which reflects the economic cost, declines significantly (-87.2%). Since
higher reward is preferred, this suggests that DC-Lag-PPO sacrifices economic efficiency to achieve
stronger compliance with safety and fairness constraints. The mechanism is likely due to more
conservative charging, discharging, and trading behaviors encouraged by the tightened constraint
handling.

In terms of stability, the across-run standard deviations of c1, c2, and c3 decrease considerably,
demonstrating more consistent performance in voltage and line-loading metrics. However, the stan-
dard deviation of PV curtailment fairness (c5) increases, implying reduced consistency across dif-
ferent runs in this aspect. This suggests that while DC-Lag-PPO reliably improves most safety
indicators, its fairness outcomes may vary depending on specific training trajectories.

Overall, DC-Lag-PPO demonstrates its effectiveness as a safer policy with stronger constraint satis-
faction, albeit at the cost of economic performance. Future work may seek to balance this trade-off
by tuning constraint thresholds, adjusting the dual update step size, or normalizing advantage signals
across constraints to prevent overly conservative policies.

Table 2: Two-tiered test statistics, where across-run mean ± across-run std; The higher reward is
better, while the lower constraints are better. ∆ = (DC-Lag-PPO − Lag-PPO). Positive improve-
ment % is computed as Lag-PPO− DC-Lag-PPO/Lag-PPO× 100%.

Metric Lag-PPO (n=9) DC-Lag-PPO (n=9) ∆ Improvement %
Economic cost (reward) 25.95 ± 63.25 3.32 ± 34.68 -22.64 -87.23%
Volt. vio. ratio (c1) 62.96 ± 29.41 42.17 ± 11.61 -20.80 +33.03%
Volt. vio. degree (c2) 54.77 ± 36.31 26.47 ± 10.69 -28.30 +51.67%
Line load rate (c3) 0.405 ± 0.062 0.358 ± 0.024 -0.047 +11.59%
Battery degradation (c4) 32.23 ± 13.47 17.35 ± 11.21 -14.88 +46.17%
PV curt. unfairness (c5) 210.95 ± 23.09 99.82 ± 62.79 -111.13 +52.68%

I.5 ADDITIONAL RESULTS

I.5.1 TRAINING CURVES

As shown in Fig. 6 - 11, the training curves across multiple runs consistently highlight the strengths
of DC-Lag-PPO in terms of constraint satisfaction. While the reward trajectories show that DC-Lag-
PPO tends to converge to lower economic returns compared to the baseline Lag-PPO, the improve-
ment in constraint metrics is substantial.

First, the voltage violation metrics (both ratio and degree) are markedly reduced under DC-Lag-
PPO. The curves demonstrate faster convergence to lower levels of violations and maintain stability
across episodes, especially in Fig. 10 and 11. This indicates that the dual-critic structure effectively
penalizes unsafe voltage states, leading to more secure system operation.

Second, the line loading rates remain consistently lower for DC-Lag-PPO. Although the difference
is modest compared to voltage metrics, the reduced variance in the curves reflects more stable uti-
lization of line capacity, especially in Fig. 7 and 9.
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Third, battery degradation under DC-Lag-PPO is substantially lower. The curves show that the al-
gorithm learns to avoid excessive charging and discharging cycles, which not only improves system
longevity but also reduces long-term operational costs.

Finally, PV curtailment unfairness also benefits significantly from DC-Lag-PPO. Although variance
is occasionally higher across runs, the overall trajectory converges to much lower unfairness com-
pared to Lag-PPO. This suggests that DC-Lag-PPO is able to balance curtailment more evenly across
the network, enhancing fairness.

Overall, the training results confirm that DC-Lag-PPO enforces operational safety and fairness more
effectively than the baseline. The cost of this improvement is a reduction in reward, implying that
the method prioritizes constraint satisfaction over immediate economic gains. From a practical
perspective, this trade-off can be acceptable or even desirable in safety-critical power systems, where
violations may carry severe penalties or risks.

Future extensions could explore adaptive balancing mechanisms—such as dynamic adjustment of
dual learning rates or reward re-weighting—to recover part of the economic performance while
maintaining the strong safety guarantees observed here.
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Figure 6: Training curves on Lagrangian cost threshold set: [9,9,0.1,30,30].
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Figure 7: Training curves on Lagrangian cost threshold set: [12,12,0.1,30,30].
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Figure 8: Training curves on Lagrangian cost threshold set: [15,15,0.1,30,30].
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Figure 9: Training curves on Lagrangian cost threshold set: [18,18,0.1,20,30].

I.5.2 LAGRANGIAN MULTIPLIER LEARNING CURVES

As shown in Fig. 12, the trajectories of the Lagrange multipliers provide insight into how Lag-PPO
and DC-Lag-PPO enforce constraints during training. In the baseline Lag-PPO, the single multiplier
tends to grow rapidly and exhibit instability, reflecting difficulty in balancing multiple heterogeneous
constraints with a single aggregated signal. In contrast, DC-Lag-PPO assigns a dedicated multiplier
to each constraint, and the resulting curves show more moderate growth and better separation among
the multipliers. This indicates that the algorithm is able to distinguish between constraints of varying
tightness and adjust enforcement accordingly.

Although some multipliers in DC-Lag-PPO still reach relatively high values, the spread across con-
straints suggests that the framework avoids over-penalizing all dimensions uniformly. Instead, it
allocates stricter penalties only where violations are more prevalent. This aligns with the earlier
observation that DC-Lag-PPO substantially reduces voltage violations, line overloads, and battery
degradation, even though economic rewards are diminished.

Overall, the Lagrange multiplier dynamics confirm that DC-Lag-PPO enforces constraints in a more
structured and interpretable way than Lag-PPO. By disentangling constraint signals, it achieves
stronger and more balanced compliance with operational limits, providing a safer and more reliable
control policy for power system management.
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Figure 10: Training curves on Lagrangian cost threshold set: [9,9,0.1,30,20].
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Figure 11: Training curves on Lagrangian cost threshold set: [7,7,0.1,15,15].

I.5.3 PARETO FRONTS

Across all Pareto fronts shown in test cases in Fig. 13 - 20, which are obtained from different
training runs, the DC-Lag-PPO fronts are typically shifted toward lower constraint values for the
same (or nearby) reward levels, especially on the voltage metrics (violation ratio c1 and degree c2),
indicating stronger constraint satisfaction without requiring large additional sacrifices in reward at
the efficient frontier. This shift is visible in the reward–c1/c2 plots and also in the c1–c2, c1–c3, and
c1–c4 pairings where the dedicated-critic front envelopes or nearly envelopes the single-critic front.

Knee regions and policy selection Several plots exhibit knee points on the DC-Lag-PPO front
(most clearly on voltage and line-loading axes), where a small relaxation in reward yields a dis-
proportionate drop in violations. These knees are natural operating points for deployment, offering
strong safety gains at modest economic cost.

Voltage safety trade-offs (c1, c2) For voltage ratio and degree, DC-Lag-PPO consistently attains
lower violations at comparable reward, producing a “left/downward” movement of the frontier rela-
tive to Lag-PPO. The paired-constraint views (c1 vs. c2) show a visibly tighter cloud and a frontier
closer to the origin, suggesting better joint compliance.
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Figure 12: Lagrangian multiplier λ learning curves.

Line loading and degradation (c3, c4) On line-loading (c3) and battery-degradation (c4), DC-
Lag-PPO fronts again tend to sit below the Lag-PPO fronts for similar reward ranges, implying
reduced thermal stress and milder throughput for batteries. The cross-constraint plots (e.g., c2–c3,
c3–c4) also show that dedicated-critic solutions better balance these two operational risks simulta-
neously.

PV curtailment unfairness (c5) In the reward–c5 panels and the mixed-constraint views involv-
ing c5, the dedicated-critic frontier usually dominates or matches the single-critic frontier for a
broad range, indicating more equitable PV curtailment at similar reward. That said, dispersion
varies across runs, hinting that fairness may remain sensitive to training seed or tariff profiles.

Discussion DC-Lag-PPO delivers stronger and more balanced constraint satisfaction than Lag-
PPO, most prominently on voltage safety and with consistent advantages on line loading, degrada-
tion, and fairness. 2) The Pareto frontier shifts indicate that many safe operating points do not re-
quire drastic reward compromises once the policy is tuned to the knee region. 3) Fairness (c5) gains
are evident, though variability suggests room for additional stabilization (e.g., densifying episodic
fairness or smoothing dual updates) in future runs.
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Figure 13: Pareto fronts from the test results on Lagrangian cost threshold set [9,9,0.1,30,30].
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Figure 14: Pareto fronts from the test results on Lagrangian cost threshold set [12,12,0.1,30,30].

J NOTATION SUMMARY

We summarize the key notations used throughout the paper.

Symbol Meaning
S State space of the CMDP.
A Action space of the CMDP.
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P (·|s, a) Transition kernel, probability of next state given (s, a).
γ ∈ (0, 1) Discount factor.
r(s, a) Reward function.
ci(s, a) Cost function for constraint i ∈ {1, . . . ,m}.
di Threshold for constraint i.
πθ Stochastic policy parameterized by θ.
∇θ log πθ(a|s) Policy score function.
Jx(πθ) Expected discounted return of signal x.
L(θ, λ) Lagrangian objective.
λ = (λ1, . . . , λm) Vector of Lagrange multipliers.
Qx

π(s, a) State–action value function for signal x under π.
T x
π Bellman operator for signal x.
ϕ(s, a) ∈ Rd Feature vector for linear function approximation.
Φ Feature matrix stacking ϕ(s, a) for all (s, a).
Qω(s, a) = ϕ(s, a)⊤ω Linear critic parameterized by ω.
D Diagonal weighting matrix with stationary distribution dπ(s, a).
A(θ) System matrix Φ⊤D(I − γPπ)Φ.
bx(θ) Right-hand side vector Φ⊤Dx.
ωx(θ) PBE solution for signal x: A(θ)ωx(θ) = bx(θ).
ωλ(θ, λ) Mixed critic solution.
ηt Critic stepsize.
αt Actor stepsize.
βt Dual stepsize.
θt Actor parameters at iteration t.
λt Dual variables at iteration t.
ωt Critic parameters at iteration t.
ω⋆
t Instantaneous mixed-critic target at iteration t,
et Mixed critic error: et = ωt − ω⋆

t .
ext Dedicated critic error: ext = ωx

t − ωx(θt).
ζt, ζ

x
t Martingale-difference noise terms in critic updates.

∆θ
t Variation from changes in θ, eq. equation 4.

∆θ,x
t Drift term for dedicated critic x.

g⋆t True actor gradient at iteration t.
ĝt Actor gradient estimate using mixed critic.
ĝmulti
t Actor gradient estimate using dedicated-critic, eq. equation 61.
Bt Actor-gradient bias (mixed critic): ĝt − g⋆t .
Bmulti

t Actor-gradient bias (dedicated-critic): ĝmulti
t − g⋆t .

G Uniform bound on ∥∇θ log πθ(a|s)∥.
Lϕ Uniform bound on ∥ϕ(s, a)∥.
µ Uniform lower bound on eigenvalues of A(θ).
Cλ, Cθ, C̃θ Lipschitz / drift constants from error bounds.
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Figure 15: Pareto fronts from the test results on Lagrangian cost threshold set [15,15,0.1,20,30].
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Figure 16: Pareto fronts from the test results on Lagrangian cost threshold set [18,18,0.1,20,30].
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Figure 17: Pareto fronts from the test results on Lagrangian cost threshold set [9,9,0.1,30,20].
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Figure 18: Pareto fronts from the test results on Lagrangian cost threshold set [12,12,0.1,30,20].
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Figure 19: Pareto fronts from the test results on Lagrangian cost threshold set [9,9,0.1,20,20].
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Figure 20: Pareto fronts from the test results on Lagrangian cost threshold set [7,7,0.1,15,15].
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