

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TARGET DRIFT IN MULTI-CONSTRAINT LAGRANGIAN RL: THEORY AND PRACTICE

Anonymous authors

Paper under double-blind review

## ABSTRACT

Lagrangian-based methods are one of the dominant approaches for safe reinforcement learning (RL) in constrained Markov decision processes, commonly used across domains with multiple constraints. While some implementations combine all constraints into a mixed penalty term and others use one estimator per constraint, the fundamental question of which design is theoretically sound has received little scrutiny. We provide the first theoretical analysis showing that the mixed-critic architecture induces a persistent bias due to target drift from evolving Lagrange multipliers. In contrast, dedicated-critic design—separate critics for reward and each constraint—avoids this issue. We also validate our findings in a simulated but realistic power system with multiple physical constraints, where the dedicated-critic method achieves stable learning and consistent constraint satisfaction, while the mixed-critic method fails. Our results offer a principled argument for preferring dedicated-critic architectures in multi-constraint safe RL problems.

## 1 INTRODUCTION

Safe reinforcement learning (RL) in constrained Markov decision processes (CMDPs) (Altman, 1999) has become increasingly important in real-world applications such as robotics, power systems, autonomous driving, and healthcare (Yan and Xu, 2020; Wang et al., 2020; Calascibetta et al., 2023; Zhang et al., 2020; Shi et al., 2023). Among the most widely adopted frameworks for handling such problems are Lagrangian-based methods, which introduce Lagrange multipliers for constraints and optimize a mixed/augmented objective (Achiam et al., 2017; Ray et al., 2019b). This approach offers appealing theoretical properties: it transforms a constrained problem into an unconstrained one, allowing the use of powerful policy gradient and actor-critic techniques, while enabling principled constraint enforcement via dual variable updates. Theoretically, under suitable assumptions, this leads to saddle-point solutions that jointly maximize reward and satisfy constraints, making it both elegant and scalable for complex, high-dimensional systems (Achiam et al., 2017).

One important but often overlooked reality is that real-world CMDPs rarely involve a single constraint. Instead, agents are typically required to satisfy multiple, interacting safety, resource, or operational constraints during both training and deployment. For instance, robotic systems must avoid unsafe behaviors while simultaneously respecting torque and energy limitations (Liu et al., 2022; Junges et al., 2016); autonomous driving agents must account for safety margins, passenger comfort, and compliance with traffic laws (Zhang et al., 2023; 2021); and power systems must balance supply and demand while maintaining safe voltage and capacity constraints (Wu et al., 2023; Chen et al., 2022). These constraints are rarely independent and often conflict, making multi-constraint settings the norm rather than the exception.

A critical but insufficiently studied aspect of Lagrangian safe RL is the value-critic architecture for multi-constraint problems. Although the CMDP formalism and constraint-aware algorithms such as CPO define per-constraint(dedicated) quantities for policy updates (Achiam et al., 2017), there remains *no theoretical justification* in the literature for why to use this approach in practice. On the other hand, most widely used implementations, including PPO-/TRPO-Lagrangian baselines (Ray et al., 2019b; Stooke et al., 2020; Yang et al., 2020; Bhatnagar et al., 2009; Kim et al., 2023), implicitly collapse all constraints into a single mixed penalty term and estimate it using one cost critic. While simple and computationally efficient, this design sidesteps the unique challenges posed by

054 multi-constraint CMDPs. As shown in  
 055 Figure 1, practitioners tackling real-world  
 056 problems are left without clear criteria  
 057 for choosing between approaches. How-  
 058 ever, the theoretical validation of these  
 059 approaches remains unproven, and the  
 060 optimization bias may induce remains  
 061 under-explored. This issue is not merely  
 062 theoretical. Empirical evidence shows that  
 063 PPO-Lagrangian, despite its widespread  
 064 use, suffers from instability and inconsis-  
 065 tent performance in multi-constraint set-  
 066 tings (Stooke et al., 2020; Tessler et al.,  
 067 2019). These observations further moti-  
 068 vate a deeper theoretical analysis of critic  
 069 design and support our proposal for a dedi-  
 070 cated-critic framework as a necessary advan-  
 071 tancement for stable and scalable safe RL  
 072 under multiple constraints.  
 073

074 Motivated by the widespread use of mixed-critic  
 075 architectures in safe RL and the increasing demand  
 076 for multi-constraint decision-making in real-world  
 077 applications, we aim to close a crucial theoretical  
 078 gap in constrained reinforcement learning. In this  
 079 work, we provide the first formal analysis of  
 080 mixed- versus dedicated-critic designs in Lagrangian-based  
 081 constrained RL. We show that training a  
 082 mixed critic on multi-constraint signals introduces  
 083 a structural bias in the actor update. Specifically,  
 084 as the Lagrange multipliers evolve during training,  
 085 the critic’s target drifts in a way that violates  
 086 the stationarity assumption required by temporal-difference  
 087 learning. This leads to a persistent error  
 088 in the estimated policy gradient. We prove that the  
 089 dedicated-critic design, training separate critics  
 090 for the reward and each constraint signal,  
 091 eliminates the dual-driven drift altogether. To  
 092 validate our theoretical results in practice, we  
 093 implement both mixed- and dedicated-critic  
 094 methods in a constrained bandit problem and a  
 095 constrained energy control problem with multiple  
 096 physical limits. The experiments reveal that the  
 097 mixed-critic approach frequently violates  
 098 constraints, whereas the  
 099 dedicated-critic design achieves stable learning and  
 100 consistently satisfies all constraints. This work  
 101 makes three main contributions: 1) We provide the  
 102 first formal analysis of mixed- vs. dedicated-  
 103 critic designs in Lagrangian safe RL, showing that  
 104 mixed critics suffer from dual-induced bias. 2)  
 105 We prove that dedicated critics yield stationary  
 106 targets, eliminating drift and enabling stable  
 107 policy gradient estimation. 3) We validate our  
 108 theory in constrained MDP tasks and complex  
 109 energy control task, where dedicated critics  
 110 achieve stable learning and consistent constraint  
 111 satisfaction.

## 2 RELATED WORK

090 Safe RL aims to train agents that not only maximize long-term performance but also respect safety  
 091 or risk-related constraints during learning and deployment. This is often formalized through the  
 092 framework of *Constrained Markov Decision Processes* (CMDPs), where the objective is to max-  
 093 imize expected return while ensuring that expected costs, representing safety violations or resource  
 094 usage, remain below specified thresholds. (Altman, 1999; Garcia and Fernández, 2015). This for-  
 095 mulation admits a primal–dual view in which constraints are handled by Lagrange multipliers, giving  
 096 rise to the widely used *Lagrangian (lag-based)* methods: they update policy parameters to ascend  
 097 a Lagrangian objective and update dual variables toward feasibility. Prominent examples include  
 098 TRPO-Lagrangian and PPO-Lagrangian (Achiam et al., 2017; Ray et al., 2019b), SAC-Lagrangian  
 099 variants (Ray et al., 2019b), and Reward-Constrained Policy Optimization (RCPO) (Tessler et al.,  
 2019).

100 Compared to alternative approaches (Stooke et al., 2020; Liu et al., 2020; Xu et al., 2021; Chow  
 101 et al., 2018), Lagrangian methods offer several practical advantages that have led to their widespread  
 102 adoption (Achiam et al., 2017; Schulman et al., 2015; Ray et al., 2019b; Yang et al., 2021a; Kim  
 103 et al., 2023). They are *plug-and-play* compatible with both on-policy and off-policy learners, and  
 104 introduce only a small number of hyperparameter. These properties make them highly amenable  
 105 to integration within standard RL pipelines. Consequently, Lagrangian variants like PPO-Lag and  
 106 TRPO-Lag have become *de facto baselines* in major Safe RL benchmarks and toolkits. Their  
 107 accessibility, combined with consistently strong empirical performance, has made them the dominant  
 108 choice in both robotics and simulated safety-critical control environments.



Figure 1: Difference between the two approaches.

108 A critical yet underexplored aspect of Lagrangian based safe reinforcement learning is the architecture  
 109 of value critics when dealing with multiple constraints. The question of how to estimate  
 110 constraints returns in deep RL has received far less attention than objective or dual design, but it underlies  
 111 much of the instability noted in safe RL. In early safe RL and constrained MDP work, classic  
 112 algorithms (e.g., Constrained Policy Iteration) implicitly worked with per-constraint value functions,  
 113 but without deeply discussing representation in function approximation settings (Altman, 1999;  
 114 Achiam et al., 2017). As deep safe RL matured, many practical baselines resorted to collapsing cost  
 115 signals into an aggregated penalty and training a mixed “cost critic” alongside a reward critic; this  
 116 pattern is pervasive in benchmark codebases (e.g. Safety Starter Agents, PPO-/TRPO-Lagrangian)  
 117 (Ray et al., 2019b; Stooke et al., 2020). Some recent methods extend to multiple constraints, but  
 118 often leave the critic architecture unspecified or adopt ad-hoc shared representations rather than for-  
 119 mally treating per-constraint estimation (Kim et al., 2023). Work on stabilizing Lagrangian dual  
 120 updates—such as PID-Lagrangian, dual clipping, or adaptive multiplier heuristics—addresses the  
 121 dual dynamics but typically retains the standard two-critic collapse architecture (Stooke et al., 2020;  
 122 Xu et al., 2021; Liu et al., 2020). In off-policy safe RL methods like SAC-Lagrangian variants or  
 123 worst-case safety critics (e.g. WCSAC), the separation between reward and cost critics is common,  
 124 but again usually implemented at the aggregate cost level even when multiple constraints are present  
 125 (Yang et al., 2021b; Tessler et al., 2019). Across the literature, the critic architecture—whether to  
 126 collapse or separate constraints—is treated as an afterthought, often chosen for ease or efficiency  
 127 rather than guided by theoretical insight. This pervasive gap means that many empirical instabil-  
 128 ity observations, violation spikes, slow convergence remain underexplained—pointing to a need for  
 129 more rigorous analysis of critic structure in multi-constraint safe RL. In this work, we fill this gap  
 130 by theoretically and empirically analyzing these design choices. Our analysis shows that mixed  
 131 constraint critics can introduce structural bias in multi-constraint settings, whereas dedicated critics  
 132 mitigate this bias by isolating constraint signals.

### 3 PROBLEM FORMULATION

135 We begin by formalizing the constrained reinforcement learning problem with multiple constraints.  
 136 A discounted Constrained Markov Decision Process (CMDP)(Altman, 1999) is specified by the  
 137 tuple  $(\mathcal{S}, \mathcal{A}, P, \gamma, r, \{c_i\}_{i=1}^m)$ , where:  $\mathcal{S}$  is the (possibly infinite) state space;  $\mathcal{A}$  is the action  
 138 space;  $P(\cdot|s, a)$  is the transition kernel governing state evolution;  $\gamma \in (0, 1)$  is the discount factor;  
 139  $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$  is the reward signal we aim to maximize;  $c_i : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}_+$  are cost signals  
 140 corresponding to  $m$  safety or resource constraints.

141 For a stochastic policy  $\pi_\theta(a|s)$  parameterized by  $\theta$ , the expected discounted return of a signal  $x \in$   
 142  $\{r, c_1, \dots, c_m\}$  is

$$J_x(\pi_\theta) = \mathbb{E}_{\pi_\theta} \left[ \sum_{t=0}^{\infty} \gamma^t x(s_t, a_t) \right]. \quad (1)$$

146 In particular,  $J_r(\pi_\theta)$  is the expected reward return, while  $J_{c_i}(\pi_\theta)$  is the expected discounted cost  
 147 associated with constraint  $i$ . The returns in equation 1 can be characterized via value functions.

148 Constraints of the form  $J_{c_i}(\pi_\theta) \leq d_i$  can be enforced via a Lagrangian formulation. Introducing  
 149 multipliers  $\lambda = (\lambda_1, \dots, \lambda_m) \in \mathbb{R}_+^m$ , we define  $\mathcal{L}(\theta, \lambda) = J_r(\pi_\theta) - \sum_{i=1}^m \lambda_i (J_{c_i}(\pi_\theta) - d_i)$ .  
 150 Optimization then proceeds in a *primal-dual* fashion: the actor seeks to maximize  $\mathcal{L}(\theta, \lambda)$  over  
 151  $\theta$ , while the dual variables  $\lambda$  adaptively adjust to enforce the constraints. Let  $\mathcal{E}_{\pi_\theta}^x(\cdot; \omega)$  denote a  
 152 learned *signal estimator* for  $x \in \{r, c_1, \dots, c_m\}$  parameterized by  $\omega$ . Its input may be  $s$  or  $(s, a)$   
 153 depending on the method (e.g., value-, advantage-, or return-based); the analysis does not depend  
 154 on this choice.

155 By the policy gradient theorem, the gradient of the Lagrangian w.r.t.  $\theta$  is

$$\nabla_\theta \mathcal{L}(\theta, \lambda) = \mathbb{E}_{s, a \sim \pi_\theta} \left[ \nabla_\theta \log \pi_\theta(a|s) \left( \mathcal{E}_{\pi_\theta}^r(s, a) - \sum_{i=1}^m \lambda_i \mathcal{E}_{\pi_\theta}^{c_i}(s, a) \right) \right], \quad (2)$$

161 where  $\mathcal{E}_{\pi_\theta}^r$  and  $\mathcal{E}_{\pi_\theta}^{c_i}$  denote the learned signal estimators for reward and each cost under  $\pi_\theta$ . Note  
 that  $\lambda$  merely scales the  $\mathcal{E}_{\pi_\theta}^{c_i}$  contributions; the estimators themselves depend only on  $\pi_\theta$ .

162 **Mixed-critic (Classic) methods.** Constraints are *aggregated* before (or within) estimation, so  
 163 there is no per-constraint head. Two common variants both qualify as “mixed critic”:  
 164

$$(a) \text{Single-Estimator: } \mathcal{E}_{\pi_\theta}^{\text{mix}}(\cdot; \omega) \approx \mathcal{E}_{\pi_\theta}^{r - \sum_{i=1}^m \lambda_i c_i}(\cdot).$$

$$(b) \text{Two-Estimator: } \mathcal{E}_{\pi_\theta}^r(\cdot; \omega^r), \quad \mathcal{E}_{\pi_\theta}^{\text{cost-agg}}(\cdot; \omega^c) \approx \mathcal{E}_{\pi_\theta}^{\sum_{i=1}^m \lambda_i c_i}(\cdot).$$

166 In both (a) (Altman, 1999) and (b) (Ray et al., 2019b; Stooke and Abbeel, 2020), all constraints are  
 167 *mixed into a single scalar cost signal*, hence “mixed critic.”  
 168

170 **Dedicated-critic methods.** Maintain one estimator *per signal*, i.e., a *Separate Estimator* for re-  
 171 ward and for *each* constraint (Achiam et al., 2017):  
 172

$$\{\mathcal{E}_{\pi_\theta}^x(\cdot; \omega^x) : x \in \{r, c_1, \dots, c_m\}\}.$$

## 4 THEORETICAL ANALYSIS: WHY WE NEED DEDICATED CRITICS FOR MULTI-CONSTRAINT PROBLEMS

178 In this section, we will systematically show that training a *mixed critic* on the multiple signal gener-  
 179 ally yields actor updates that *do not track* the true Lagrangian gradient  $\nabla_\theta \mathcal{L}(\theta, \lambda)$  during learning,  
 180 unless one imposes stronger timescale separation (critic faster than *both* actor and dual) and near-  
 181 exact critics. In contrast, a *dedicated-critic* design (one critic per signal) does not suffer from this  
 182 issue. Our argument is constructive and quantitative.

### 4.1 SETTING

185 **Assumption 4.1** (Stepsizes and timescale separation). Critic, actor, and dual stepsizes  $\eta_t, \alpha_t, \beta_t > 0$   
 186 satisfy  $\sum_{t=0}^{\infty} \eta_t = \infty$ ,  $\sum_{t=0}^{\infty} \eta_t^2 < \infty$ ,  $\frac{\alpha_t}{\eta_t} \rightarrow 0$ ,  $\frac{\beta_t}{\eta_t} \rightarrow 0$ .  
 187

188 **Assumption 4.2** (Bounded policy score and compact dual domain). At iteration  $t$ , states/actions  
 189 ( $s_t, a_t$ ) are sampled on-policy under  $\pi_{\theta_t}$ . There exists  $G < \infty$  such that the log-policy score  
 190 is uniformly bounded almost surely:  $\|\nabla_\theta \log \pi_{\theta_t}(a_t \mid s_t)\| \leq G$ . The dual variable sequence  
 191  $\{\lambda_t\}_{t \geq 0} \subset \mathbb{R}_{\geq 0}^m$  remains in a fixed compact set  $\Lambda \subset \mathbb{R}_{\geq 0}^m$  (e.g., via projected updates onto  $\Lambda$ ).  
 192

193 **Assumption 4.3** (Critic noise regularity). Let the critic update use the population linear form  
 194 with additive martingale-difference noise:  $\omega_{t+1} = \omega_t + \eta_t(b_t - A_t \omega_t) + \eta_t \zeta_{t+1}$ , where  $A_t :=$   
 195  $A(\theta_t)$  and  $b_t := b(\theta_t)$  are  $\mathcal{F}_t$ -measurable. The noise  $\{\zeta_{t+1}\}_{t \geq 0}$  satisfies  $\mathbb{E}[\zeta_{t+1} \mid \mathcal{F}_t] = 0$  and  
 $\mathbb{E}[\|\zeta_{t+1}\|^2 \mid \mathcal{F}_t] \leq \sigma^2 < \infty$  a.s. for all  $t$ .  
 196

197 Assumption 4.1 matches standard stochastic-approximation practice: the critic uses diminishing  
 198 stepsizes and runs faster than the actor and dual. Assumption 4.2 is routine for common policies  
 199 (softmax, Gaussian with clipped parameters) and for lag-based methods that project/clip  $\lambda_t$  onto a  
 200 compact box  $\Lambda$ . Assumption 4.3 follows from on-policy sampling with bounded features/signals and  
 201 mini-batch estimates, which yield martingale-difference noise with bounded conditional variance.  
 202 These mild conditions are typical in deep RL and suffice to ensure critic contraction and to isolate  
 203 the dual-induced drift term that motivates dedicated per-signal critics.  
 204

205 For a fixed policy  $\pi_\theta$  and signal  $x \in \{r, c_1, \dots, c_m\}$ , the per-signal critic in a linear class (Sutton,  
 206 1988; Tsitsiklis and Van Roy, 1996a) satisfies the projected Bellman equation (PBE) (Munos, 2003;  
 207 Tsitsiklis and Van Roy, 1996b), which yields the normal equations  $A(\theta) \omega^{x,*}(\theta) = b^x(\theta)$  with  
 208  $A(\theta) = \Phi^\top D_\theta(I - \gamma P_{\pi_\theta})\Phi$  and  $b^x(\theta) = \Phi^\top D_\theta r^x$  (state-action and advantage/GAE variants give  
 209 the same linear template with the appropriate  $A, b$ ). We work under  $A(\theta) \succeq \mu I$  for some  $\mu > 0$ , and  
 210  $A(\cdot), b^x(\cdot)$  are locally Lipschitz in  $\theta$  (See Appendix B and F for details).  
 211

### 4.2 MIXED-CRITIC IN MULTI-CONSTRAINT CMDPS

212 When a mixed critic is used for the scalarized signal,  $r_{\lambda_t} = r - \sum_{i=1}^m \lambda_{t,i} c_i$ , The PBE is  
 213  $A(\theta_t) \omega_t^{\text{mix},*} = b_t^{\text{mix}} := b^r(\theta_t) - \sum_{i=1}^m \lambda_{t,i} b^{c_i}(\theta_t)$ . The stochastic update implements a Robbins-  
 214 Monro step toward this fixed point using mini-batch estimates of  $A(\theta_t)$  and  $b_t^{\text{mix}}$ . Writing the update  
 215 in *population form* plus a mean-zero error gives

$$\omega_{t+1}^{\text{mix}} = \omega_t^{\text{mix}} + \eta_t(b_t^{\text{mix}} - A(\theta_t) \omega_t^{\text{mix}}) + \eta_t \zeta_{t+1}, \quad (3)$$

216 where  $\eta_t > 0$  is the critic stepsize and  $\zeta_{t+1}$  is a martingale-difference noise capturing finite-sample  
 217 and sampling variability. For a fixed  $(\theta, \lambda)$ , the PBE for the mixed signal is  $A(\theta) \omega^{\text{mix}}(\theta, \lambda) =$   
 218  $b^r(\theta) - \sum_{i=1}^m \lambda_i b^{c_i}(\theta)$ . By linearity of the operator, the solution decomposes as  $\omega^{\text{mix}}(\theta, \lambda) =$   
 219  $\omega^r(\theta) - \sum_{i=1}^m \lambda_i \omega^{c_i}(\theta)$ , where  $\omega^r(\theta)$  and  $\omega^{c_i}(\theta)$  are the PBE solutions for the reward and each cost  
 220 signal individually. Let us denote the instantaneous target at time  $t$  by  $\omega_t^{\text{mix},*} = \omega^{\text{mix}}(\theta_t, \lambda_t)$ ,  $e_t =$   
 221  $\omega_t^{\text{mix}} - \omega_t^{\text{mix},*}$ . That is,  $e_t$  is the critic error relative to the exact PBE solution for the current  $(\theta_t, \lambda_t)$ .  
 222 Subtracting  $\omega_{t+1}^{\text{mix},*}$  from both sides of the recursion equation 3 yields the exact error recursion  
 223

$$224 \quad e_{t+1} = (I - \eta_t A(\theta_t)) e_t + \underbrace{(\omega_t^{\text{mix},*} - \omega_{t+1}^{\text{mix},*})}_{\text{target drift}} + \eta_t \zeta_{t+1} + \Delta_t^\theta, \quad (4)$$

$$225$$

226 where  $\Delta_t^\theta$  collects the small changes in  $A(\theta)$ ,  $I \in \mathbb{R}^{d \times d}$  denote the  $d \times d$  identity matrix, and  $b(\theta)$   
 227 induced by  $\theta_{t+1} \neq \theta_t$ . Using the stationary equivalence  $\omega_t^{\text{mix},*} = \omega^r(\theta_t) - \sum_{i=1}^m \lambda_{t,i} \omega^{c_i}(\theta_t)$  and  
 228 the analogous expression at time  $t+1$ , we have  
 229

$$230 \quad \omega_t^{\text{mix},*} - \omega_{t+1}^{\text{mix},*} = \left[ \omega^r(\theta_t) - \sum_{i=1}^m \lambda_{t,i} \omega^{c_i}(\theta_t) \right] - \left[ \omega^r(\theta_{t+1}) - \sum_{i=1}^m \lambda_{t+1,i} \omega^{c_i}(\theta_{t+1}) \right] \\ 231 \\ 232 = \left( \omega^r(\theta_t) - \omega^r(\theta_{t+1}) \right) - \sum_{i=1}^m \left( \lambda_{t,i} \omega^{c_i}(\theta_t) - \lambda_{t+1,i} \omega^{c_i}(\theta_{t+1}) \right). \quad (5)$$

$$233$$

$$234$$

235 Add and subtract  $\lambda_{t,i} \omega^{c_i}(\theta_{t+1})$  inside the sum:  
 236

$$237 \quad \lambda_{t,i} \omega^{c_i}(\theta_t) - \lambda_{t+1,i} \omega^{c_i}(\theta_{t+1}) = \lambda_{t,i} (\omega^{c_i}(\theta_t) - \omega^{c_i}(\theta_{t+1})) + (\lambda_{t,i} - \lambda_{t+1,i}) \omega^{c_i}(\theta_{t+1}). \quad (6)$$

238 Substituting equation 6 into equation 5 yields  
 239

$$240 \quad \omega_t^{\text{mix},*} - \omega_{t+1}^{\text{mix},*} = \left( \omega^r(\theta_t) - \omega^r(\theta_{t+1}) \right) - \sum_{i=1}^m \lambda_{t,i} \left( \omega^{c_i}(\theta_t) - \omega^{c_i}(\theta_{t+1}) \right) \\ 241 \\ 242 - \sum_{i=1}^m (\lambda_{t+1,i} - \lambda_{t,i}) \omega^{c_i}(\theta_{t+1}). \quad (7)$$

$$243$$

$$244$$

245 By Lipschitz continuity, there exist  $L_r, L_{c_i} < \infty$  such that  $\|\omega^r(\theta_{t+1}) - \omega^r(\theta_t)\| \leq L_r \|\theta_{t+1} - \theta_t\|$ ,  
 246  $\|\omega^{c_i}(\theta_{t+1}) - \omega^{c_i}(\theta_t)\| \leq L_{c_i} \|\theta_{t+1} - \theta_t\|$ . With a standard actor update  $\theta_{t+1} = \theta_t + \alpha_t g_t^{\text{act}}$ ,  
 247 where  $g_t^{\text{act}}$  is a stochastic policy-gradient estimate and we assume  $\|g_t^{\text{act}}\| \leq C_\theta$ , it follows that  
 248  $\|\theta_{t+1} - \theta_t\| = \alpha_t \|g_t^{\text{act}}\| = O(\alpha_t)$ . Therefore,

249  $\|\omega^r(\theta_t) - \omega^r(\theta_{t+1})\| = O(\alpha_t)$ ,  $\|\lambda_{t,i} (\omega^{c_i}(\theta_t) - \omega^{c_i}(\theta_{t+1}))\| \leq \|\lambda_t\|_\infty L_{c_i} \|\theta_{t+1} - \theta_t\| = O(\alpha_t)$ ,  
 250 using  $\lambda_t \in \Lambda$  compact. Thus the first two terms in equation 7 are  $O(\alpha_t)$ .  
 251

252 Consider the dual-induced part of equation 7:  $\sum_{i=1}^m (\lambda_{t+1,i} - \lambda_{t,i}) \omega^{c_i}(\theta_{t+1})$ . By Assumption 4.2,  
 253  $\lambda_t \in \Lambda$  with  $\Lambda$  compact, and local Lipschitzness, the map  $\theta \mapsto \omega^{c_i}(\theta)$  is continuous; hence  $M :=$   
 254  $\sup_{i,\theta} \|\omega^{c_i}(\theta)\| < \infty$  (on the on-policy region visited by  $\{\theta_t\}$ ). Therefore

$$255 \quad \left\| \sum_{i=1}^m (\lambda_{t+1,i} - \lambda_{t,i}) \omega^{c_i}(\theta_{t+1}) \right\| \leq \|\lambda_{t+1} - \lambda_t\|_1 \max_i \|\omega^{c_i}(\theta_{t+1})\| \leq M \|\lambda_{t+1} - \lambda_t\|.$$

$$256$$

$$257$$

258 For a standard projected dual update,  $\lambda_{t+1} = \Pi_\Lambda(\lambda_t + \beta_t g_t)$ , with  $\Pi_\Lambda$  nonexpansive and  $\|g_t\| \leq C_\lambda$   
 259 ( $g_t \in \mathbb{R}^m$  denotes a subgradient of the dual objective with respect to  $\lambda$ ), we have

$$260 \quad \|\lambda_{t+1} - \lambda_t\| \leq \|\lambda_t + \beta_t g_t - \lambda_t\| = \beta_t \|g_t\| \leq \beta_t C_\lambda = O(\beta_t).$$

$$261$$

262 Combining the two displays yields  
 263

$$264 \quad \left\| \sum_{i=1}^m (\lambda_{t+1,i} - \lambda_{t,i}) \omega^{c_i}(\theta_{t+1}) \right\| \leq M C_\lambda \beta_t = O(\beta_t).$$

$$265$$

266 The target drift decomposes as  $\omega_t^* - \omega_{t+1}^* = O(\alpha_t) - O(\beta_t)$ . The  $O(\alpha_t)$  term arises from policy  
 267 updates (present in any actor-critic), with the additional  $O(\beta_t)$  term. In this case, the target moves  
 268 not only because the policy parameters  $\theta$  evolve (the standard  $O(\alpha_t)$  policy-driven drift), but also  
 269 because the dual variables  $\lambda$  evolve, producing an additional  $O(\beta_t)$  dual-driven term. This extra  
 dual-driven drift induces persistent bias in the actor gradient.

270    **Remark 4.4** (Drift for the reward critic + cost critic design). In the two-critic setup, one critic estimates the reward target  $\omega^r(\theta)$  and a second critic estimates the aggregated cost target  $\omega^{\text{cost}}(\theta, \lambda) = \sum_{i=1}^m \lambda_i \omega^{c_i}(\theta)$ , (used in PPO-LAG, TRPO-LAG) follow the same process on  $\omega^{\text{cost}}$ , we have

$$274 \quad \omega_t^{\text{cost},*} - \omega_{t+1}^{\text{cost},*} = - \sum_{i=1}^m \lambda_{t,i} \left( \omega^{c_i}(\theta_t) - \omega^{c_i}(\theta_{t+1}) \right) - \sum_{i=1}^m (\lambda_{t+1,i} - \lambda_{t,i}) \omega^{c_i}(\theta_{t+1}). \quad (8)$$

277    Here the reward term  $\omega^r(\theta_t) - \omega^r(\theta_{t+1})$  does not appear because it is handled by the *reward critic*'s own recursion; equation 8 isolates the drift of the *aggregated-cost* head, which contains a policy-induced component (through  $\theta_{t+1} - \theta_t$ ) and a dual-induced component (through  $\lambda_{t+1} - \lambda_t$ ).

280    **Lemma 4.5** (Mixed-critic error bound). *If  $A(\theta) \succeq \mu I$  uniformly and the stepsizes satisfy  $\alpha_t/\eta_t \rightarrow 0$ ,  $\beta_t/\eta_t \rightarrow 0$ , then there exist constants  $C_\lambda, C_\theta$ , such that:*

$$283 \quad \limsup_{t \rightarrow \infty} \mathbb{E} \|e_t\| \leq \frac{C_\lambda}{\mu} \limsup_{t \rightarrow \infty} \frac{\beta_t}{\eta_t} + \frac{C_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t} + O(1). \quad (9)$$

285    *Proof sketch.* From equation 4 and since  $A(\theta_t) \succeq \mu I$ ,  $\|(I - \eta_t A(\theta_t))e_t\| \leq (1 - \mu \eta_t) \|e_t\|$ , using equation 7, we have:

$$288 \quad \|\omega_t^* - \omega_{t+1}^*\| \leq C_\lambda \|\lambda_{t+1} - \lambda_t\| + C_\theta \|\theta_{t+1} - \theta_t\| \leq C_\lambda \beta_t + C_\theta \alpha_t.$$

290    Taking expectations and using bounded MDS noise and apply the standard SA comparison: if  $x_{t+1} \leq (1 - a_t)x_t + b_t$  with  $a_t = \mu \eta_t$ , then  $\limsup x_t \leq \limsup b_t/a_t$ . Hence,

$$293 \quad \limsup_{t \rightarrow \infty} \mathbb{E} \|e_t\| \leq \frac{1}{\mu} \limsup_{t \rightarrow \infty} \left( \frac{C_\lambda \beta_t}{\eta_t} + \frac{C_\theta \alpha_t}{\eta_t} + O(\eta_t) \right),$$

295    which yields equation 9 since  $\eta_t \rightarrow 0$ . Please refer to Appendix C for detailed proof.  $\square$

296    **Lemma 4.6** (Actor-gradient bias bound). *Let  $\hat{g}_t$  and  $g_t^*$  be the actor's estimated and ideal gradients,*

$$299 \quad \hat{g}_t = \mathbb{E}_t [\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top \omega_t], \quad g_t^* = \mathbb{E}_t [\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top \omega_t^*], \quad (10)$$

300    *with critic error  $e_t = \omega_t - \omega_t^*$ . Assume the score and features are bounded as  $\|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)\| \leq G$ ,  $\|\phi(s_t, a_t)\| \leq L_\phi$ . Then the actor-gradient bias  $B_t := \hat{g}_t - g_t^*$  satisfies*

$$302 \quad \|B_t\| \leq GL_\phi \|e_t\|. \quad (11)$$

304    *Proof.* See Appendix D for detailed proof.  $\square$

306    **Theorem 4.7** (Bias from a Mixed Critic). *Suppose Assumptions 4.1–4.3 hold and  $A(\theta) \succeq \mu I$  uniformly in  $\theta$ . Then the actor-gradient bias  $B_t$  incurred by using a single mixed critic satisfies*

$$309 \quad \limsup_{t \rightarrow \infty} \mathbb{E} \|B_t\| \leq GL_\phi \left( \frac{C_\lambda}{\mu} \limsup_{t \rightarrow \infty} \frac{\beta_t}{\eta_t} + \frac{C_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t} \right). \quad (12)$$

312    *Proof.* See Appendix E for detailed proof.  $\square$

314    Mixed-critic design introduces an **additional bias term** of order  $\beta_t/\eta_t$ , arising from the dependence of the mixed constraints on the dual variables  $\lambda$ . Consequently, the actor's update does not follow the true Lagrangian gradient unless the critic runs much faster than the dual ( $\beta_t/\eta_t \rightarrow 0$  sufficiently quickly), or is essentially exact.

### 319    4.3 DEDICATED-CRITIC IN MULTI-CONSTRAINT CMDPS

321    For dedicated-critic design, we maintain a separate critic with parameters  $\omega_t^x$  for each reward and constraints  $x \in \{r, c_1, \dots, c_m\}$ , updated by

$$323 \quad \omega_{t+1}^x = \omega_t^x + \eta_t \left( -A(\theta_t) \omega_t^x + b^x(\theta_t) + \zeta_{t+1}^x \right), \quad x \in \{r, c_1, \dots, c_m\}. \quad (13)$$

324 Define the signal-specific fixed point  $\omega^{x,*}(\theta)$  by  $A(\theta)\omega^{x,*}(\theta) = b^x(\theta)$  and let the tracking error be  
 325  $e_t^x := \omega_t^x - \omega_t^{x,*}$ . Subtract  $\omega_{t+1}^{x,*}(\theta_{t+1})$  to equation 13 to obtain  
 326

$$\begin{aligned} 327 \quad e_{t+1}^x &= \omega_{t+1}^x - \omega_{t+1}^{x,*}(\theta_{t+1}) = \left( \omega_t^x - \eta_t A(\theta_t) \omega_t^x + \eta_t b^x(\theta_t) + \eta_t \zeta_{t+1}^x \right) - \omega_{t+1}^{x,*}(\theta_{t+1}) \\ 328 \\ 329 \quad &= \left( I - \eta_t A(\theta_t) \right) e_t^x + \eta_t \zeta_{t+1}^x + \Delta_t^{\theta,x}. \\ 330 \end{aligned}$$

331 A dedicated critic answers a fixed question: under the *current policy*, what is the expected cumulative  
 332 value of one signal—either reward or a single cost? Because that question does not mention  
 333 the penalty weights, changing  $\lambda$  does not change what the critic is trying to predict; only changing  
 334 the policy does. To be more specific, each dedicated critic estimates a *signal-specific* fixed point  
 335  $\omega^{x,*}(\theta)$  defined by  $A(\theta)\omega^{x,*}(\theta) = b^x(\theta)$ , where both  $A(\theta)$  and  $b^x(\theta)$  depend on the policy  $\theta$  and  
 336 the single signal  $x \in \{r, c_1, \dots, c_m\}$ , but not on the Lagrange multipliers; Therefore, in the one-step  
 337 error recursion the only drift term comes from policy movement  $\theta_t \rightarrow \theta_{t+1}$ , and no  $(\lambda_{t+1} - \lambda_t)$  term  
 338 appears. By contrast, a mixed-critic’s target is defined using  $\lambda$  (it blends reward and costs with those  
 339 weights), so every time  $\lambda$  is updated the target itself shifts, creating the extra  $(\lambda_{t+1} - \lambda_t)$  drift.

340 **Lemma 4.8** (Dedicated-critic tracking error). *Suppose assumptions 4.1 and 4.3 hold, then there*  
 341 *exists  $\tilde{C}_\theta < \infty$  such that for every  $x \in \{r, c_1, \dots, c_m\}$ ,*

$$\limsup_{t \rightarrow \infty} \mathbb{E} \|e_t^x\| \leq \frac{\tilde{C}_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t}. \quad (14)$$

345 *Proof.* Please refer to Appendix C for detailed proof.  $\square$

347 **Theorem 4.9** (Dedicated-critic Bias). *Suppose Assumptions 4.1–4.3 hold, let  $\hat{g}_t$  and  $g_t^*$  be the ac-  
 348 tor’s estimated and ideal gradients, the dedicated-critic actor bias be  $B_t^{\text{multi}} := \hat{g}_t^{\text{multi}} - g_t^*$ . Then*

$$\limsup_{t \rightarrow \infty} \mathbb{E} \|B_t^{\text{multi}}\| \leq GL_\phi \frac{\tilde{C}_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t}, \quad (15)$$

353 *Proof.* See Appendix E for detailed proof.  $\square$

## 355 5 EXPERIMENTS

### 357 5.1 SIMPLE CMDP BANDIT PROBLEM

359 We design a minimal yet diagnostic constrained bandit CMDP that cleanly isolates the effect of  
 360 *single* vs. *dedicated-critic* architectures under Lagrangian updates. All implementation choices  
 361 below are fixed and reported for full reproducibility. We use a one-state bandit with binary actions  
 362  $\mathcal{A} = \{a_1, a_2\}$ , discount  $\gamma = 0$ , reward  $r(a_1) = 0, r(a_2) = 1$ , and two costs  $c_1(a_1) = 0, c_1(a_2) =$   
 363  $1, c_2(a_1) = 1, c_2(a_2) = 0$ , with constraints  $J_{c_1} \leq d_1$  and  $J_{c_2} \leq d_2$ , where  $d_1 = d_2 = 0.5$ . The pol-  
 364 icy  $\pi_\theta$  is a Bernoulli with a single logit  $\theta \in \mathbb{R}$ :  $\pi_\theta(a_1) = \sigma(\theta), \pi_\theta(a_2) = 1 - \sigma(\theta), \sigma(\theta) =$   
 365  $\frac{1}{1+e^{-\theta}}$ . Under this policy, expected costs are  $J_{c_1} = 1 - \sigma(\theta), J_{c_2} = \sigma(\theta)$ , and expected reward is  
 366  $J_r = \sigma(\theta)r(a_1) + (1 - \sigma(\theta))r(a_2) = 1 - \sigma(\theta)$ .

367 We compare two actor–critic variants that share the same actor and dual updates. On each step,  
 368 we sample  $a \sim \pi_\theta$  and apply an update with a (learned) advantage surrogate from the critic(s):  
 369  $\theta_{t+1} = \theta_t + \alpha \hat{g}_t, \hat{g}_t := \nabla_\theta \log \pi_{\theta_t}(a_t) \hat{Q}_t(a_t)$ , where  $\nabla_\theta \log \pi_\theta(a_1) = 1 - \sigma(\theta)$   
 370 and  $\nabla_\theta \log \pi_\theta(a_2) = -\sigma(\theta)$ . We maintain  $\lambda = (\lambda_1, \lambda_2) \in \mathbb{R}_+^2$  with projected stochas-  
 371 tic ascent:  $\lambda_{i,t+1} = \Pi_{[0, \lambda_{\max}]}(\lambda_{i,t} + \beta(\hat{c}_i - d_i))$ ,  $i \in \{1, 2\}$ , where  $\hat{c}_i$  is the instan-  
 372 taneous cost sample (0 or 1 in this bandit) and  $\lambda_{\max} = 10$ . Projection keeps  $\lambda_t$  in a com-  
 373 pact set. In this bandit, the true Lagrangian gradient has a closed form. Let  $\pi_1 = \sigma(\theta)$  and  
 374  $f(a) := r(a) - \lambda_1 c_1(a) - \lambda_2 c_2(a), f(a_1) = r(a_1) - \lambda_2, f(a_2) = r(a_2) - \lambda_1$ . Then  $g_t :=$   
 375  $\nabla_\theta \mathcal{L}(\theta_t, \lambda_t) = \pi_1(1 - \pi_1)(f(a_1) - f(a_2)) = \sigma(\theta_t)(1 - \sigma(\theta_t))((r(a_1) - \lambda_{2,t}) - (r(a_2) - \lambda_{1,t}))$ .

377 **Results and Discussion:** Both methods attain similar average returns, but the mixed-critic curve  
 has much higher variance (large confidence band, occasional dips). The dedicated-critic maintains



Figure 2: Performance for CMDP Bandit.

comparable reward with markedly lower variability. The mixed-critic exhibits large and growing volatility, whereas the dedicated-critic remains low and stable. This matches the theory: a mixed critic’s target moves with  $\Delta\lambda_t$ , inducing oscillatory dual dynamics; dedicated critics avoid this  $\lambda$ -coupling.

To measure safety, we compute the violation which quantifies by how much the learned policy exceeds constraint thresholds at each step. Mixed-critic drifts to higher violations, while dedicated-critic settles much lower, implying better safety during training rather than only at convergence.

We also measure how well the actor’s update direction matches the true Lagrangian gradient by computing a moving Pearson correlation between the estimated gradient  $\hat{g}_t$  and the true gradient  $g_t$ . Based on the results, dedicated-critic sustains a higher correlation than mixed-critic, indicating the actor follows the true Lagrangian gradient more reliably when critics are per-sign.

We quantify the stability of the dual variables by tracking the moving standard deviation of the gap  $|\lambda_{2,t} - \lambda_{1,t}|$ . This measures whether Lagrange multipliers converge smoothly or oscillate over time. The mixed-critic exhibits large and growing volatility, whereas the dedicated-critic remains low and stable. This matches the theory: a mixed critic’s target moves with  $\Delta\lambda_t$ , inducing oscillatory dual dynamics; dedicated critics avoid this  $\lambda$ -coupling.

## 5.2 MULTI-CONSTRAINT POWER SYSTEM APPLICATION

Rather than relying on standard safe-RL benchmarks (whose constraints are few and stylized), we evaluate in a *complex energy scenario* designed to stress realism and constraint diversity. Compared with standard, the environment couples stochastic demand, renewable generation uncertainty, ramping limits, transmission congestion, reserve requirements, and device-level safety, yielding *multiple, interacting* constraints with heterogeneous timescales. This setting captures (i) tight operational envelopes, (ii) correlated risks across assets, and (iii) nontrivial trade-offs between cost and safety. In this case, we adopt a standard deep PPO configuration with neural-network critics (two-layer MLPs with 256 units per layer), so the empirical results directly evaluate our approach in the deep RL regime rather than in the idealised linear setting used for the theory.

**System Overview and Constraints.** We consider a radial distribution network with high rooftop PV penetration, where community battery energy storage systems (CBESSs) are coordinated to ensure safe and efficient operation. Each CBESS is subject to power, efficiency, and state-of-charge (SoC) constraints, can transact with the upstream grid under trading limits, and incurs both trading and degradation costs. When storage is saturated, PV curtailment is applied with fairness constraints to avoid disproportionate restrictions across buses. The system is modeled using the LinDistFlow approximation. The central control task is to schedule CBESS actions and PV curtailment to minimize trading cost while maintaining constraint satisfaction across multiple operational and fairness dimensions. To enforce safety and equity, we define five cost terms (constraints) monitored over the scheduling horizon: (1) *Voltage Violation Ratio* penalizes the number of buses breaching voltage limits; (2) *Voltage Deviation Degree* penalizes the severity of such violations; (3) *Line Loading Cost* penalizes thermal overloads on network branches; (4) *Battery Degradation Cost* discourages excessive CBESS cycling; and (5) *PV Curtailment Unfairness* penalizes uneven curtailment across buses. These constraints interact over heterogeneous timescales, capturing the multifaceted trade-offs in real-world power systems. Full modeling details are provided in Appendix J.

**Results and Discussion:** In this work, we prioritize *constraint satisfaction* as the central performance objective. Under consistent PPO backbones and training configurations, we compare two architectures: (i) the widely used PPO-Lagrangian baseline, which utilizes a single reward critic and a mixed critic for the aggregated cost signal, and (ii) the proposed Dedicated critic setup, which retains a shared reward critic but replaces the single cost critic with multiple per-constraint critics.



Figure 3: Learning curves for the power system application.



Figure 4: Pareto fronts from the test results of the power system application (the lower the better).

Experimental details are provided in Table 3 in Appendix J. As shown in Fig. 3, the dedicated architecture exhibits significantly more stable training behavior, with smoother learning curves and reduced variance in value estimates, while the baseline often suffers from unstable updates and erratic dual dynamics—particularly when constraint signals conflict. On unseen demand and renewable profiles, the Dedicated model consistently achieves the lowest violation rates and magnitudes across all five constraint dimensions, with noticeably fewer and shorter spikes in unsafe behavior. To quantify trade-offs between return and safety, we construct empirical Pareto fronts using  $\varepsilon$ -constraint sweeps. As shown in Fig. 4, dedicated policies cluster tightly near the estimated frontiers, consistently outperforming the baseline across a broad range of safety budgets—achieving either lower constraint violations for the same reward, or higher reward at equivalent violation levels.

These results collectively shows that performance gains of the dedicated setup are consistent with the theoretical mechanism identified in our analysis: by estimating each constraint with its own critic, the actor update depends on per-constraint advantages that are independent of the evolving multipliers, thereby avoiding the  $\lambda$ -driven target drift that can destabilise training. Per-constraint critics preserve the relative scale and variance of individual constraint signals, enabling head-wise normalisation and reducing “winner-takes-all” effects where the most active constraint dominates updates. This appears crucial for tracing clean Pareto sets: Dedicated policies concentrate near the frontier across budgets, whereas the aggregated-cost baseline often lies inside the frontier, indicative of optimisation bias introduced by collapsing constraints.

## 6 CONCLUSION

This paper examined how critic design shapes stability and safety in Lagrangian (policy-gradient) methods for constrained Markov decision processes. We showed, both theoretically and empirically, that mixing all reward and cost signals into a mixed critic couples the evaluation target to the evolving dual variables, introducing a form of dual-induced nonstationarity that can impair learning stability. In contrast, dedicated per-signal critics yield targets that depend solely on the policy, eliminating this source of drift. Our experiments across both bandit and stylized power system environments confirm these theoretical insights. This paper provides concrete guidance for the design of safe reinforcement learning algorithms under multiple constraints, highlighting the importance of critic architecture in ensuring both stability and constraint satisfaction in Lagrangian-based methods.

486 ETHICS STATEMENT  
487488 This work investigates algorithmic design choices for safe reinforcement learning in constrained  
489 Markov decision processes. All experiments are conducted exclusively in simulated environments;  
490 no human subjects, personal data, or identifiable information are involved at any stage. The com-  
491 plex energy-system environment used in our study is a stylized simulator designed to explore  
492 safety–performance trade-offs in high-stakes decision-making. It does not interface with or con-  
493 trol any real-world infrastructure. Our aim is to advance the understanding of algorithmic safety in  
494 reinforcement learning without posing risks to individuals, communities, or operational systems.  
495496 REPRODUCIBILITY STATEMENT  
497498 To support the reproducibility of our results, we provide comprehensive details on training pro-  
499 cedures, including step sizes, optimization parameters, and evaluation metrics used throughout the  
500 experiments. With the release of our codebase, we will ensure full transparency by including ran-  
501 dom seeds, environment specifications, dependency versions, and scripts necessary to replicate all  
502 experiments and figures. All results presented in the paper can be reproduced using the provided  
503 scripts without manual tuning. Where applicable, we will also include pretrained models and logs  
504 to facilitate result verification and benchmarking.  
505506 REFERENCES  
507508 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In  
509 *International conference on machine learning*, pages 22–31. PMLR, 2017.510 Eitan Altman. *Constrained Markov Decision Processes*. Chapman and Hall/CRC, 1999.511 Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-  
512 critic algorithms. *Automatica*, 45(11):2471–2482, 2009.  
513514 Chiara Calascibetta, Luca Biferal, Francesco Borra, Antonio Celani, and Massimo Cencini. Taming  
515 lagrangian chaos with multi-objective reinforcement learning. *The European Physical Journal E*,  
516 46(3):9, 2023.517 Xin Chen, Guannan Qu, Yujie Tang, Steven Low, and Na Li. Reinforcement learning for selective  
518 key applications in power systems: Recent advances and future challenges. *IEEE Transactions  
519 on Smart Grid*, 13(4):2935–2958, 2022.520 Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-  
521 based approach to safe reinforcement learning. *Advances in neural information processing sys-  
522 tems*, 31, 2018.  
523524 Javier García and Fernando Fernández. A comprehensive survey on safe reinforcement learning.  
525 *Journal of Machine Learning Research*, 16(1):1437–1480, 2015.526 Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen. Safety-  
527 constrained reinforcement learning for mdps. In *International conference on tools and algorithms  
528 for the construction and analysis of systems*, pages 130–146. Springer, 2016.  
529530 Dohyeong Kim, Kyungjae Lee, and Songhwai Oh. Trust region-based safe distributional reinfor-  
531 cement learning for multiple constraints. *Advances in neural information processing systems*, 36:  
19908–19939, 2023.  
532533 Puze Liu, Davide Tateo, Haitham Bou Ammar, and Jan Peters. Robot reinforcement learning on the  
534 constraint manifold. In *Conference on Robot Learning*, pages 1357–1366. PMLR, 2022.535 Ying Liu, Wenlong Ding, Xin Liu, Lijun Wang, Li Zhao, Zhenyu Chen, and Li Zhang. Ipo: Interior-  
536 point policy optimization under constraints. In *AAAI Conference on Artificial Intelligence*, 2020.  
537538 Rémi Munos. Error bounds for approximate policy iteration. In *Proceedings of the Twentieth  
539 International Conference on International Conference on Machine Learning*, pages 560–567,  
2003.

540 Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement  
 541 learning. *arXiv preprint arXiv:1910.01708*, 7(1):2, 2019b.  
 542

543 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region  
 544 policy optimization. In *International Conference on Machine Learning (ICML)*, 2015. Backbone  
 545 for TRPO-Lagrangian variants.

546 Xiaoying Shi, Yinliang Xu, Guibin Chen, and Ye Guo. An augmented lagrangian-based safe re-  
 547inforcement learning algorithm for carbon-oriented optimal scheduling of ev aggregators. *IEEE*  
 548 *Transactions on Smart Grid*, 15(1):795–809, 2023.

549 Adam Stooke and Pieter Abbeel. Responsive safety in reinforcement learning via pid lagrangian  
 550 methods. *arXiv preprint arXiv:2007.03964*, 2020.  
 551

552 Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by  
 553 pid lagrangian methods. In *International Conference on Machine Learning*, pages 9133–9143.  
 554 PMLR, 2020.

555 Richard S Sutton. Learning to predict by the methods of temporal differences. *Machine learning*, 3  
 556 (1):9–44, 1988.  
 557

558 Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. In  
 559 *International Conference on Learning Representations (ICLR)*, 2019.

560 John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-difference learning with function  
 561 approximation. *Advances in neural information processing systems*, 9, 1996a.  
 562

563 John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic program-  
 564 ming. *Machine Learning*, 22(1):59–94, 1996b.

565 Saiwei Wang, Xin Jin, Shuai Mao, Athanasios V Vasilakos, and Yang Tang. Model-free event-  
 566 triggered optimal consensus control of multiple euler-lagrange systems via reinforcement learn-  
 567 ing. *IEEE Transactions on Network Science and Engineering*, 8(1):246–258, 2020.

568 Tong Wu, Anna Scaglione, and Daniel Arnold. Constrained reinforcement learning for predictive  
 569 control in real-time stochastic dynamic optimal power flow. *IEEE Transactions on Power Systems*,  
 570 39(3):5077–5090, 2023.  
 571

572 Pan Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement learning  
 573 with convergence guarantees. In *International Conference on Machine Learning (ICML)*, 2021.

574 Ziming Yan and Yan Xu. Real-time optimal power flow: A lagrangian based deep reinforcement  
 575 learning approach. *IEEE Transactions on Power Systems*, 35(4):3270–3273, 2020.  
 576

577 Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Wcsac: Worst-case soft  
 578 actor critic for safety-constrained reinforcement learning. In *Proceedings of the AAAI Conference  
 579 on Artificial Intelligence*, volume 35, pages 10639–10646, 2021a.

580 Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based  
 581 constrained policy optimization. *arXiv preprint arXiv:2010.03152*, 2020.  
 582

583 Yuhang Yang, Yitao Liu, Huan Xu, and Peng Cheng. Projection-free lagrangian methods for con-  
 584 strained reinforcement learning. In *ICML*, 2021b.

585 Hailong Zhang, Jiankun Peng, Huachun Tan, Hanxuan Dong, and Fan Ding. A deep reinforcement  
 586 learning-based energy management framework with lagrangian relaxation for plug-in hybrid elec-  
 587 tric vehicle. *IEEE Transactions on Transportation Electrification*, 7(3):1146–1160, 2020.

588 Lixian Zhang, Ruixian Zhang, Tong Wu, Rui Weng, Minghao Han, and Ye Zhao. Safe reinforcement  
 589 learning with stability guarantee for motion planning of autonomous vehicles. *IEEE transactions*  
 590 *on neural networks and learning systems*, 32(12):5435–5444, 2021.  
 591

592 Yuxiang Zhang, Xiaoling Liang, Dongyu Li, Shuzhi Sam Ge, Bingzhao Gao, Hong Chen, and  
 593 Tong Heng Lee. Adaptive safe reinforcement learning with full-state constraints and constrained  
 adaptation for autonomous vehicles. *IEEE Transactions on Cybernetics*, 54(3):1907–1920, 2023.

594 **A LIMITATIONS**

596 A fundamental tension exists in safe RL between maximizing cumulative reward and satisfying  
 597 multiple constraints—particularly in realistic, high-stakes domains. While our **Dedicated Critic**  
 598 architecture significantly enhances constraint adherence and stabilizes training dynamics, it does  
 599 not resolve the inherent trade-off: enforcing stricter safety often reduces achievable reward or slows  
 600 convergence. The approach also introduces greater computational and memory requirements, as it  
 601 maintains a separate critic for each constraint. This design may be less scalable in environments  
 602 with many constraints or where critic updates are expensive. Although shared-backbone models  
 603 with multiple heads offer a partial remedy, they require careful balancing and tuning to be effective.

604 Another limitation is the static one-to-one mapping between constraints and critics. In settings where  
 605 constraints vary in relevance or activate sparsely, some critics may be under-trained, reducing sample  
 606 efficiency (see Appendix F). Future directions could involve adaptive critic selection or shared-  
 607 parameter architectures that dynamically reallocate capacity based on constraint salience.

608 The theoretical results provide asymptotic error bounds and bias characterisations, rather than full  
 609 finite-time guarantees for PPO-style deep RL under realistic training regimes. However, this limitation  
 610 is not specific to our approach: most practical deep RL algorithms rely on similar heuristic sta-  
 611 bilisation mechanisms and likewise lack end-to-end finite-time guarantees. In our implementation,  
 612 we mitigate these issues using standard techniques—advantage normalisation, conservative learn-  
 613 ing rates, PPO ratio clipping, gradient clipping, and bounding the dual variables—and empirically  
 614 observe stable learning across seeds. Nevertheless, a more refined finite-time analysis that explicitly  
 615 captures these practical design choices remains an open direction, so our current guarantees should  
 616 be interpreted as qualitative guidance on critic design rather than a complete convergence certificate  
 617 for deep safe RL.

618 Finally, although our theoretical results are first presented under linear function approximation for  
 619 analytical clarity, we also extend them to nonlinear cases such as neural networks. Still, understand-  
 620 ing the implications of gradient bias in deep architectures—particularly when critics share represen-  
 621 tations—remains an open question warranting further theoretical and empirical investigation.

622 **B PBE**

625 We justify that, for each fixed policy  $\pi_\theta$  and each signal  $x \in \{r, c_1, \dots, c_m\}$ , the population target of  
 626 the per-signal critic is the unique solution of a linear system  $A(\theta) \omega^{x,*}(\theta) = b^x(\theta)$  with  $A(\theta) \succeq \mu I$ ,  
 627 and that  $A(\cdot), b^x(\cdot)$  are locally Lipschitz in  $\theta$  under standard conditions.

628 Let  $\mathcal{E}_{\pi_\theta}^x(s)$  denote the discounted state value for signal  $x$  under policy  $\pi_\theta$  and let  $\phi : \mathcal{S} \rightarrow \mathbb{R}^d$  be a  
 629 fixed feature map. We approximate  $\mathcal{E}_{\pi_\theta}^x(s) \approx \phi(s)^\top \omega^x$ . Write  $\Phi \in \mathbb{R}^{n \times d}$  for the matrix stacking  
 630 feature rows  $\phi(s)^\top$ ,  $D = \text{diag}(d_{\pi_\theta})$  for the diagonal matrix of the on-policy stationary distribution  
 631 over states, and  $P_{\pi_\theta}$  for the state transition kernel.

633 The projected fixed-point equation (PFE) in the  $D$ -weighted norm is

$$634 \Phi \omega^x = \Pi(\mathcal{T}_{\pi_\theta}^x(\Phi \omega^x)), \quad \mathcal{T}_{\pi_\theta}^x v = r^x + \gamma P_{\pi_\theta} v,$$

636 where  $\Pi$  is the  $D$ -orthogonal projection onto  $\text{span}(\Phi)$  and  $r^x \in \mathbb{R}^n$  is the immediate signal vector  
 637 ( $r$  for  $x = r$ ,  $c_i$  for  $x = c_i$ ). The normal equations are

$$638 \Phi^\top D \left( \Phi \omega^x - (r^x + \gamma P_{\pi_\theta} \Phi \omega^x) \right) = 0 \iff \underbrace{\Phi^\top D(I - \gamma P_{\pi_\theta}) \Phi}_{A(\theta)} \omega^x = \underbrace{\Phi^\top D r^x}_{b^x(\theta)}.$$

641 Hence the population target satisfies  $A(\theta) \omega^{x,*}(\theta) = b^x(\theta)$ .

642 Assume (i) *ergodicity*: the Markov chain under  $\pi_\theta$  admits a stationary distribution  $d_{\pi_\theta}$  with full  
 643 support on the on-policy visited set; (ii) *feature non-degeneracy*: the columns of  $D^{1/2} \Phi$  are linearly  
 644 independent. Then  $A(\theta) = \Phi^\top D(I - \gamma P_{\pi_\theta}) \Phi$  is symmetric positive definite; in particular there  
 645 exists  $\mu > 0$  with  $A(\theta) \succeq \mu I$ , so the solution  $\omega^{x,*}(\theta)$  is unique.

646 If  $\pi_\theta$  is  $C^1$  in  $\theta$  and ergodicity holds on a neighbourhood, then  $P_{\pi_\theta}$  and  $d_{\pi_\theta}$  vary locally Lipschitzly  
 647 in  $\theta$ . Since  $\Phi$  is fixed,  $A(\theta) = \Phi^\top D(I - \gamma P_{\pi_\theta}) \Phi$  and  $b^x(\theta) = \Phi^\top D r^x$  inherit local Lipschitzness.

If the estimator depends on  $(s, a)$ , take features  $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$ , stack  $\Phi$  over  $(s, a)$ , let  $D = \text{diag}(d_{\pi_\theta}(s, a))$  be the on-policy state-action occupancy matrix, and use the state-action transition kernel  $P^{\pi_\theta}$ . The same PFE derivation yields

$$A(\theta) = \Phi^\top D (I - \gamma P^{\pi_\theta}) \Phi, \quad b^x(\theta) = \Phi^\top D r^x,$$

so  $A(\theta)\omega^{x,*}(\theta) = b^x(\theta)$  with  $A(\theta) \succeq \mu I$  under the analogues of ergodicity and feature non-degeneracy for  $(s, a)$ . Local Lipschitzness follows as above.

When training with advantages (e.g., GAE), two standard constructions lead to a linear system:

(1) *Difference-of-values*: Learn  $V^x$  (or  $Q^x$ ) with the state/state-action equations above, and form  $A^x = Q^x - V^x$ ; the critic parameters still solve  $A(\theta)\omega^{x,*} = b^x(\theta)$ .

(2) *Least-squares to generalized returns*: Regress  $\phi(z)^\top \omega^x$  onto generalized returns  $\hat{G}^x$  (e.g., GAE targets) in the  $D$ -weighted norm, i.e.  $\min_{\omega^x} \mathbb{E}_{z \sim d_{\pi_\theta}} [(\phi(z)^\top \omega^x - \hat{G}^x(z))^2]$ . The normal equations are

$$\underbrace{\Phi^\top D \Phi}_{A(\theta)} \omega^{x,*}(\theta) = \underbrace{\Phi^\top D \hat{G}^x}_{b^x(\theta)}.$$

Thus the linear model still holds (with a different  $A$ ), and  $A(\theta) \succeq \mu I$  under  $D^{1/2}\Phi$  full column rank. If  $\hat{G}^x$  depends smoothly on  $\theta$  through  $\pi_\theta$ ,  $b^x(\cdot)$  is locally Lipschitz.

**Lemma B.1** (Positive definiteness of  $A(\theta)$ ). *Fix a policy  $\pi_\theta$  and let  $D = \text{diag}(d_{\pi_\theta})$  be the diagonal matrix of the on-policy stationary distribution over states. Let  $P_{\pi_\theta}$  be the corresponding state transition kernel (row-stochastic) satisfying  $d_{\pi_\theta}^\top P_{\pi_\theta} = d_{\pi_\theta}^\top$ . Let  $\Phi \in \mathbb{R}^{n \times d}$  stack feature rows and assume  $D^{1/2}\Phi$  has full column rank. For  $\gamma \in [0, 1)$  define*

$$A(\theta) = \Phi^\top D (I - \gamma P_{\pi_\theta}) \Phi.$$

Then  $A(\theta)$  is symmetric positive definite and

$$v^\top A(\theta) v \geq (1 - \gamma) \lambda_{\min}(\Phi^\top D \Phi) \|v\|_2^2 \quad \text{for all } v \in \mathbb{R}^d.$$

In particular,  $A(\theta) \succeq \mu I$  with  $\mu = (1 - \gamma) \lambda_{\min}(\Phi^\top D \Phi) > 0$ .

*Proof.* Let  $y = \Phi v$ . Using the  $D$ -weighted inner product  $\langle u, w \rangle_D := u^\top D w$  and norm  $\|u\|_D^2 := \langle u, u \rangle_D$ ,

$$v^\top A(\theta) v = y^\top D (I - \gamma P_{\pi_\theta}) y = \|y\|_D^2 - \gamma \langle y, P_{\pi_\theta} y \rangle_D.$$

Because  $P_{\pi_\theta}$  is a Markov operator with invariant measure  $d_{\pi_\theta}$ , it is a non-expansion in  $L_2(D)$ , i.e.,  $\|P_{\pi_\theta} y\|_D \leq \|y\|_D$  and therefore  $\langle y, P_{\pi_\theta} y \rangle_D \leq \|y\|_D \|P_{\pi_\theta} y\|_D \leq \|y\|_D^2$ . Hence

$$v^\top A(\theta) v \geq \|y\|_D^2 - \gamma \|y\|_D^2 = (1 - \gamma) \|y\|_D^2.$$

Finally,  $\|y\|_D^2 = v^\top \Phi^\top D \Phi v \geq \lambda_{\min}(\Phi^\top D \Phi) \|v\|_2^2$  because  $D^{1/2}\Phi$  has full column rank. Combining the inequalities yields the claim.  $\square$

**Corollary B.2** (State-action variant). *Let  $D = \text{diag}(d_{\pi_\theta}(s, a))$  be the on-policy state-action occupancy matrix,  $P^{\pi_\theta}$  the state-action transition kernel (row-stochastic) with  $d_{\pi_\theta}^\top P^{\pi_\theta} = d_{\pi_\theta}^\top$ , and  $\Phi$  stack features over  $(s, a)$  with  $D^{1/2}\Phi$  full column rank. Define*

$$A(\theta) = \Phi^\top D (I - \gamma P^{\pi_\theta}) \Phi.$$

Then  $A(\theta) \succeq (1 - \gamma) \lambda_{\min}(\Phi^\top D \Phi) I$  and is symmetric positive definite.

694  
695  
696  
697  
698  
699  
700  
701

702 **C DETAILED PROOF FOR MIXED-CRITIC ERROR BOUND**  
 703

704 **Lemma C.1** (Mixed-critic error bound). *If  $A(\theta) \succeq \mu I$  uniformly, and the stepsizes satisfy Robbins–  
 705 Monro conditions with  $\alpha_t/\eta_t \rightarrow 0$  and  $\beta_t/\eta_t \rightarrow 0$ , then there exist constants  $C_\lambda, C_\theta < \infty$  such  
 706 that*

$$707 \limsup_{t \rightarrow \infty} \mathbb{E}\|e_t\| \leq \frac{C_\lambda}{\mu} \limsup_{t \rightarrow \infty} \frac{\beta_t}{\eta_t} + \frac{C_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t} + O(1). \quad (16)$$

709 *Proof.* Recall the error recursion equation 4:

$$711 e_{t+1} = (I - \eta_t A(\theta_t))e_t + \underbrace{(\omega_t^* - \omega_{t+1}^*)}_{\text{target drift}} + \eta_t \zeta_{t+1} + \Delta_t^\theta.$$

714 Since  $A(\theta_t) \succeq \mu I$ , we have for all  $v$ ,  $\|(I - \eta_t A(\theta_t))v\| \leq (1 - \mu \eta_t)\|v\|$ . Hence

$$715 \|(I - \eta_t A(\theta_t))e_t\| \leq (1 - \mu \eta_t) \|e_t\|. \quad (17)$$

716 Using the drift expansion equation 7,

$$718 719 \omega_t^* - \omega_{t+1}^* = - \sum_{i=1}^m (\lambda_{i,t+1} - \lambda_{i,t}) \omega^{c_i}(\theta_t) + O(\|\theta_{t+1} - \theta_t\|).$$

721 Assuming the PBE solutions  $\omega^{c_i}(\theta)$  and  $\omega^r(\theta)$  are Lipschitz in  $\theta$  (true under our linear/PBE setup  
 722 with  $A(\theta)$ ,  $b^r(\theta)$  smoothly varying), there exist constants  $C_\lambda, C_\theta$  s.t.

$$723 \|\omega_t^* - \omega_{t+1}^*\| \leq C_\lambda \|\lambda_{t+1} - \lambda_t\| + C_\theta \|\theta_{t+1} - \theta_t\|. \quad (18)$$

724 By the definitions of the dual and actor steps,  $\|\lambda_{t+1} - \lambda_t\| = O(\beta_t)$  and  $\|\theta_{t+1} - \theta_t\| = O(\alpha_t)$ ,  
 725 hence

$$726 \|\omega_t^* - \omega_{t+1}^*\| \leq C_\lambda \beta_t + C_\theta \alpha_t. \quad (19)$$

727 Write  $\delta_t := (\omega_t^* - \omega_{t+1}^*) + \Delta_t^\theta$ . By equation 19 and Lipschitz variation of  $A(\theta), b(\theta)$  (collected in  
 728  $\Delta_t^\theta$ ), there exists  $\tilde{C}_\theta$  s.t.

$$729 \mathbb{E}\|\delta_t\| \leq C_\lambda \beta_t + \tilde{C}_\theta \alpha_t. \quad (20)$$

731 Using equation 17 and the triangle inequality,

$$732 \mathbb{E}\|e_{t+1}\| \leq (1 - \mu \eta_t) \mathbb{E}\|e_t\| + \|\delta_t\| + \eta_t \|\zeta_{t+1}\|.$$

734 Take conditional expectation and then total expectation. With  $\mathbb{E}[\zeta_{t+1} | \mathcal{F}_t] = 0$  and  $\mathbb{E}\|\zeta_{t+1}\|^2 \leq \sigma^2$ ,  
 735 standard SA arguments (via a mean-square detour or BDG inequality) yield

$$736 \mathbb{E}[\eta_t \|\zeta_{t+1}\|] \leq C_{\text{noise}} \eta_t^2, \quad (21)$$

737 for some constant  $C_{\text{noise}}$  (intuitively, the “linear in  $\eta_t$ ” noise can be handled through a square-norm  
 738 contraction; in the first-moment recursion it appears as  $O(\eta_t^2)$ ). Hence, taking total expectation and  
 739 applying equation 20 gives

$$740 \mathbb{E}\|e_{t+1}\| \leq (1 - \mu \eta_t) \mathbb{E}\|e_t\| + C_\lambda \beta_t + \tilde{C}_\theta \alpha_t + C_{\text{noise}} \eta_t^2. \quad (22)$$

742 We now use a standard comparison lemma: if a nonnegative sequence  $(x_t)$  satisfies

$$743 744 x_{t+1} \leq (1 - a_t)x_t + b_t, \quad a_t \in (0, 1), \quad \sum_t a_t = \infty, \quad a_t \rightarrow 0,$$

745 then

$$746 747 \limsup_{t \rightarrow \infty} x_t \leq \limsup_{t \rightarrow \infty} \frac{b_t}{a_t}.$$

748 Applying this to equation 22 with  $x_t = \mathbb{E}\|e_t\|$ ,  $a_t = \mu \eta_t$  and

$$750 b_t = C_\lambda \beta_t + \tilde{C}_\theta \alpha_t + C_{\text{noise}} \eta_t^2,$$

751 gives

$$752 753 \limsup_{t \rightarrow \infty} \mathbb{E}\|e_t\| \leq \frac{1}{\mu} \limsup_{t \rightarrow \infty} \left( \frac{C_\lambda \beta_t}{\eta_t} + \frac{\tilde{C}_\theta \alpha_t}{\eta_t} + C_{\text{noise}} \eta_t \right).$$

754 Since  $\eta_t \rightarrow 0$  and  $\sum_t \eta_t^2 < \infty$ , the last term contributes  $O(1)$ . Renaming  $\tilde{C}_\theta$  as  $C_\theta$  yields equation 9.

755  $\square$

756    **Lemma C.2** (dedicated-critic tracking error). *Suppose  $A(\theta) \succeq \mu I$  uniformly, Assumptions 4.1 and*  
 757    *4.3 hold, then there exists  $\tilde{C}_\theta < \infty$  such that for every  $x \in \{r, c_1, \dots, c_m\}$ ,*  
 758

$$\limsup_{t \rightarrow \infty} \mathbb{E}\|e_t^x\| \leq \frac{\tilde{C}_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t}. \quad (23)$$

762    *Proof.* Use  $A(\theta_t) \succeq \mu I$ :

$$764 \quad \|e_{t+1}^x\| \leq \|(I - \eta_t A(\theta_t))e_t^x\| + \eta_t \|\zeta_{t+1}^x\| + \|\Delta_t^{\theta, x}\| \leq (1 - \mu \eta_t) \|e_t^x\| + \eta_t \|\zeta_{t+1}^x\| + C_\theta \|\theta_{t+1} - \theta_t\|.$$

765    Take conditional expectation given  $\mathcal{F}_t$  and then expectation; by Assumption 4.3,  $\mathbb{E}[\eta_t \|\zeta_{t+1}^x\|] \leq c \eta_t$   
 766    and yields  $O(\eta_t^2)$  at the level of first-moment recursion. By Assumption 4.1,  $\|\theta_{t+1} - \theta_t\| = O(\alpha_t)$ .  
 767    Thus,

$$768 \quad \mathbb{E}\|e_{t+1}^x\| \leq (1 - \mu \eta_t) \mathbb{E}\|e_t^x\| + C_\theta \alpha_t + O(\eta_t^2).$$

769    Apply the standard SA comparison lemma for sequences of the form  $x_{t+1} \leq (1 - a_t)x_t + b_t$  with  
 770     $a_t = \mu \eta_t$  and  $b_t = C_\theta \alpha_t + O(\eta_t^2)$ , using  $\sum_t \eta_t = \infty$ ,  $\sum_t \eta_t^2 < \infty$ , and  $\alpha_t/\eta_t \rightarrow 0$ . This yields

$$772 \quad \limsup_{t \rightarrow \infty} \mathbb{E}\|e_t^x\| \leq \frac{C_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t},$$

775    and absorbing constants into  $\tilde{C}_\theta$  gives equation 14. □

776  
 777  
 778  
 779  
 780  
 781  
 782  
 783  
 784  
 785  
 786  
 787  
 788  
 789  
 790  
 791  
 792  
 793  
 794  
 795  
 796  
 797  
 798  
 799  
 800  
 801  
 802  
 803  
 804  
 805  
 806  
 807  
 808  
 809

810    **D DETAILED PROOF FOR ACTOR-GRADIENT BIAS BOUND**  
 811

812    **Lemma D.1** (Actor-gradient bias bound). *Let  $\hat{g}_t$  and  $g_t^*$  be the actor's estimated and ideal gradients,*

813    
$$\hat{g}_t = \mathbb{E}_t[\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top \omega_t], \quad g_t^* = \mathbb{E}_t[\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top \omega_t^*], \quad (24)$$

814    *with critic error  $e_t = \omega_t - \omega_t^*$ . Assume the score and features are bounded as*

815    
$$\|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)\| \leq G, \quad \|\phi(s_t, a_t)\| \leq L_\phi \quad a.s.$$

816    *Then the actor-gradient bias*

817    
$$B_t := \hat{g}_t - g_t^*$$

818    *satisfies*

819    
$$\|B_t\| \leq GL_\phi \|e_t\|. \quad (25)$$

820    *Proof.* Recall the definitions

821    
$$\hat{g}_t = \mathbb{E}[\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top \omega_t | \mathcal{F}_t], \quad g_t^* = \mathbb{E}[\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top \omega_t^* | \mathcal{F}_t],$$

822    and the critic error  $e_t = \omega_t - \omega_t^*$ . Here  $\mathcal{F}_t$  is the sigma-field generated by everything up to time  $t$ ; in  
 823    particular,  $\theta_t, \lambda_t, \omega_t, \omega_t^*, e_t$  are  $\mathcal{F}_t$ -measurable, while  $(s_t, a_t)$  are drawn from  $\pi_{\theta_t}$  at time  $t$  and are  
 824    not  $\mathcal{F}_t$ -measurable.

825    Using linearity of conditional expectation and  $e_t = \omega_t - \omega_t^*$ ,

826    
$$\begin{aligned} B_t &:= \hat{g}_t - g_t^* \\ &= \mathbb{E}[\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top (\omega_t - \omega_t^*) | \mathcal{F}_t] \\ &= \mathbb{E}[\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top e_t | \mathcal{F}_t]. \end{aligned}$$

827    Since  $e_t$  is  $\mathcal{F}_t$ -measurable, we can factor it outside the conditional expectation: for any random  
 828    matrix/vector  $X$  and  $\mathcal{F}_t$ -measurable (deterministic under  $\mathbb{E}[\cdot | \mathcal{F}_t]$ ) vector  $Y$ ,

829    
$$\mathbb{E}[X Y | \mathcal{F}_t] = \mathbb{E}[X | \mathcal{F}_t] Y.$$

830    Applying this with  $X := \nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top$  and  $Y := e_t$ ,

831    
$$B_t = \mathbb{E}[\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top | \mathcal{F}_t] e_t.$$

832    Equivalently, without explicitly pulling out the matrix, we can directly bound the norm inside the  
 833    conditional expectation as follows.

834    From the triangle inequality for norms, we have

835    
$$\|B_t\| = \left\| \mathbb{E}[\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top e_t | \mathcal{F}_t] \right\| \leq \mathbb{E}[\|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top e_t\| | \mathcal{F}_t],$$

836    where we used Jensen's inequality for the convex function  $x \mapsto \|x\|$  and conditional expectation.

837    Now use submultiplicativity of operator/vector norms:

838    
$$\|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top e_t\| \leq \|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)\| \|\phi(s_t, a_t)\| \|e_t\|.$$

839    Here we regard the product  $\psi \phi^\top e_t$  (with  $\psi := \nabla_\theta \log \pi_{\theta_t}(a_t|s_t)$ ) as  $(\psi \phi^\top) e_t$ ; the operator norm  
 840    of the rank-1 matrix  $\psi \phi^\top$  is  $\|\psi\| \|\phi\|$ .

841    Therefore,

842    
$$\|B_t\| \leq \mathbb{E}[\|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)\| \|\phi(s_t, a_t)\| \|e_t\| | \mathcal{F}_t].$$

843    Assume the standard boundedness conditions hold almost surely:

844    
$$\|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)\| \leq G, \quad \|\phi(s_t, a_t)\| \leq L_\phi.$$

845    Since  $\|e_t\|$  is  $\mathcal{F}_t$ -measurable, we can treat it as a constant inside the conditional expectation. Hence,

846    
$$\|B_t\| \leq \mathbb{E}[G L_\phi \|e_t\| | \mathcal{F}_t] = G L_\phi \|e_t\|.$$

847    This establishes the claimed Lipschitz bound

848    
$$\|B_t\| \leq GL_\phi \|e_t\|,$$

849    which is precisely equation 11. □

864 E DETAILED PROOF FOR ACTOR-GRADIENT BIAS BOUND  
865

866 **Theorem E.1** (Bias from a Mixed Critic). *Assume the conditions of Lemma 4.5 hold, and the*  
867 *score/features are uniformly bounded  $\|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)\| \leq G$ ,  $\|\phi(s_t, a_t)\| \leq L_\phi$  a.s. Then the*  
868 *actor-gradient bias  $B_t = \hat{g}_t - g_t^*$  satisfies*

$$869 \limsup_{t \rightarrow \infty} \mathbb{E}\|B_t\| \leq GL_\phi \left( \frac{C_\lambda}{\mu} \limsup_{t \rightarrow \infty} \frac{\beta_t}{\eta_t} + \frac{C_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t} \right). \quad (26)$$

872 *Proof.* By Lemma 4.6,

$$873 \quad \|B_t\| \leq GL_\phi \|e_t\|.$$

874 Taking expectations preserves the inequality (monotonicity of  $\mathbb{E}$ ):

$$875 \quad \mathbb{E}\|B_t\| \leq GL_\phi \mathbb{E}\|e_t\|. \quad (27)$$

876 Lemma 4.5 states that, for some finite  $C_\lambda, C_\theta$ ,

$$877 \quad \limsup_{t \rightarrow \infty} \mathbb{E}\|e_t\| \leq \frac{C_\lambda}{\mu} \limsup_{t \rightarrow \infty} \frac{\beta_t}{\eta_t} + \frac{C_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t} + O(1). \quad (28)$$

878 Here the  $O(1)$  term collects vanishing contributions such as  $O(\eta_t)$  from the noise control (cf. the  
879 proof of Lemma 4.5).

880 Taking  $\limsup_{t \rightarrow \infty}$  on both sides of equation 27 and using equation 28 yields

$$881 \quad \limsup_{t \rightarrow \infty} \mathbb{E}\|B_t\| \leq GL_\phi \limsup_{t \rightarrow \infty} \mathbb{E}\|e_t\| \leq GL_\phi \left( \frac{C_\lambda}{\mu} \limsup_{t \rightarrow \infty} \frac{\beta_t}{\eta_t} + \frac{C_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t} + O(1) \right).$$

882 Since  $G, L_\phi, C_\lambda, C_\theta, \mu$  are constants (independent of  $t$ ), and  $\limsup(O(1)) = 0$ , we can drop the  
883 vanishing term to obtain exactly equation 12.

884 In Lemma 4.5, the  $\frac{\beta_t}{\eta_t}$  contribution arises from the *dual-driven target drift* in the mixed-critic error  
885 dynamics (see the decomposition of  $\omega_t^* - \omega_{t+1}^*$ ). Thus the bound equation 12 explicitly exposes the  
886 additional bias component inherited from the mixed critic's dependence on  $\lambda$ .  $\square$

887 **Theorem E.2** (dedicated-critic bias). *Suppose Assumptions 4.1–4.3 hold,  $A(\theta) \succeq \mu I$  uniformly,*  
888 *and  $\|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)\| \leq G$ ,  $\|\phi(s_t, a_t)\| \leq L_\phi$  a.s. Let  $\hat{g}_t$  and  $g_t^*$  be the actor's estimated and*  
889 *ideal gradients, the dedicated-critic actor bias be  $B_t^{\text{multi}} := \hat{g}_t^{\text{multi}} - g_t^*$ . Then*

$$890 \quad \limsup_{t \rightarrow \infty} \mathbb{E}\|B_t^{\text{multi}}\| \leq GL_\phi \frac{\tilde{C}_\theta}{\mu} \limsup_{t \rightarrow \infty} \frac{\alpha_t}{\eta_t}, \quad (29)$$

891 *Proof.* Define the ideal (mixed) gradient at time  $t$  and its estimator as

$$892 \quad g_t^* = \mathbb{E}_t \left[ \nabla_\theta \log \pi_{\theta_t}(a_t|s_t) (\phi(s_t, a_t)^\top \omega^r(\theta_t) - \sum_{i=1}^m \lambda_{i,t} \phi(s_t, a_t)^\top \omega^{c_i}(\theta_t)) \right],$$

$$903 \quad \hat{g}_t^{\text{multi}} = \mathbb{E}_t \left[ \nabla_\theta \log \pi_{\theta_t}(a_t|s_t) (\phi(s_t, a_t)^\top \omega_t^r - \sum_{i=1}^m \lambda_{i,t} \phi(s_t, a_t)^\top \omega_t^{c_i}) \right]. \quad (30)$$

904 From equation 30 and linearity,

$$905 \quad B_t^{\text{multi}} = \mathbb{E}_t \left[ \nabla_\theta \log \pi_{\theta_t}(a_t|s_t) \phi(s_t, a_t)^\top \left( e_t^r - \sum_{i=1}^m \lambda_{i,t} e_t^{c_i} \right) \right],$$

906 where  $e_t^x = \omega_t^x - \omega^x(\theta_t)$ . Using Jensen, submultiplicativity, and boundedness of score and features,

$$907 \quad \|B_t^{\text{multi}}\| \leq \mathbb{E}_t \left[ \|\nabla_\theta \log \pi_{\theta_t}(a_t|s_t)\| \|\phi(s_t, a_t)\| \left( \|e_t^r\| + \sum_{i=1}^m \|\lambda_{i,t}\| \|e_t^{c_i}\| \right) \right] \leq GL_\phi \left( \|e_t^r\| + \Lambda \max_i \|e_t^{c_i}\| \right),$$

908 where  $\Lambda = \sup_t \|\lambda_t\| < \infty$  due to projection onto a compact set. Taking expectations and  $\limsup$ ,

$$909 \quad \limsup_{t \rightarrow \infty} \mathbb{E}\|B_t^{\text{multi}}\| \leq GL_\phi (1 + \Lambda) \limsup_{t \rightarrow \infty} \max_{x \in \{r, c_i\}} \mathbb{E}\|e_t^x\|.$$

910 Apply Lemma 4.8 to bound each  $\mathbb{E}\|e_t^x\|$  by  $\frac{\tilde{C}_\theta}{\mu} \limsup \frac{\alpha_t}{\eta_t}$ , and absorb  $(1 + \Lambda)$  into  $\tilde{C}_\theta$  (renaming  
911 the constant) to get equation 15. No  $\beta_t$  term appears and the target drift involves only  $\theta$  (rate  $\alpha_t$ ),  
912 not  $\lambda$ .  $\square$

918 F DUAL-INDUCED DRIFT AND LINEARITY  
919920 Let the mixed critic be trained by minimizing any smooth population loss  
921

922  $\mathcal{L}_{\text{mix}}(\omega; \theta, \lambda)$  (e.g., TD loss, Monte-Carlo/GAE regression, etc.).

923 Because the scalarized signal is  $r_\lambda := r - \sum_{i=1}^m \lambda_i c_i$ , this loss depends *explicitly* on  $\lambda$ . Denote  
924 the population minimizer by  $\omega^*(\theta, \lambda) \in \arg \min_{\omega} \mathcal{L}_{\text{mix}}(\omega; \theta, \lambda)$ . At any (strict) local minimum, the  
925 first-order condition holds:

926  $\nabla_{\omega} \mathcal{L}_{\text{mix}}(\omega^*(\theta, \lambda); \theta, \lambda) = 0.$

927 Assume the Hessian  $H(\theta, \lambda) := \nabla_{\omega\omega}^2 \mathcal{L}_{\text{mix}}(\omega^*(\theta, \lambda); \theta, \lambda)$  is nonsingular (standard local strong  
928 convexity around the solution). Then by the implicit function theorem,  $\omega^*$  is differentiable in  $(\theta, \lambda)$   
929 and

930 
$$\frac{\partial \omega^*}{\partial \lambda} = -H(\theta, \lambda)^{-1} \underbrace{\nabla_{\omega\lambda}^2 \mathcal{L}_{\text{mix}}(\omega^*(\theta, \lambda); \theta, \lambda)}_{\neq 0 \text{ generically}}.$$
  
931  
932

933 Hence for small updates  $(\Delta\theta, \Delta\lambda)$ ,

934 
$$\omega^*(\theta + \Delta\theta, \lambda + \Delta\lambda) - \omega^*(\theta, \lambda) = \underbrace{\frac{\partial \omega^*}{\partial \theta} \Delta\theta}_{\text{policy-induced drift}} + \underbrace{\frac{\partial \omega^*}{\partial \lambda} \Delta\lambda}_{\text{dual-induced drift}} + o(\|\Delta\theta\| + \|\Delta\lambda\|).$$
  
935  
936  
937

938 The key point is that  $\nabla_{\omega\lambda}^2 \mathcal{L}_{\text{mix}} \neq 0$  whenever the training targets or TD errors inside  $\mathcal{L}_{\text{mix}}$  depend on  
939  $r_\lambda$  (which they do for any mixed critic). Therefore,  $\partial \omega^* / \partial \lambda \neq 0$  generically, and the *dual-induced*  
940 *drift* term proportional to  $\Delta\lambda$  appears *regardless of linearity*. The linear case analysed in the main  
941 text is just the special instance where  $\mathcal{L}_{\text{mix}}$  yields normal equations  $A(\theta)\omega = b^r(\theta) - \sum_i \lambda_i b^{c_i}(\theta)$ ,  
942 so that  $\partial \omega^* / \partial \lambda = -A(\theta)^{-1}[b^{c_1}(\theta), \dots, b^{c_m}(\theta)]$  explicitly.943  
944 **Why dedicated critics avoid it.** For per-signal critics, each loss  $\mathcal{L}_x(\omega^x; \theta)$  *does not* involve  $\lambda$ :

945  
946 
$$\nabla_{\omega} \mathcal{L}_x(\omega^{x,*}(\theta); \theta) = 0 \Rightarrow \frac{\partial \omega^{x,*}}{\partial \lambda} = 0.$$
  
947

948 Thus their targets drift only through  $\theta$  (policy-induced), with *no* dual-induced component. When the  
949 actor later combines the already-computed per-signal estimates as  $\omega^{\text{mix}} = \omega^r - \sum_i \lambda_i \omega^{c_i}$ , the  $\lambda$ 's  
950 appear *outside* the critics and do not change the critics' own population optima.951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971

972 **G COMPUTATIONAL RESOURCES**  
973

974 We implement all experiments using PyTorch-1.12 on an Ubuntu 18.04 server with two Intel Xeon  
975 Gold 6142M CPUs with 16 cores, 24G memory, and one NVIDIA 3090 GPU.  
976

977 To further clarify constraint satisfaction during testing, Fig. 5 reports the measured computation  
978 time per training epoch under different numbers of Lagrangian critics (i.e., constraints). The results  
979 exhibit a clear linear trend, quantified by the fitted regression:  
980

$$y = 0.00169x + 0.00776, \quad (31)$$

981 indicating stable and predictable scaling as the number of constraints increases. Importantly, the  
982 variance bars are small across all cases, showing that the training remains stable even when more  
983 constraints are introduced.  
984

996 Figure 5: Time consumption of the proposed method with different number of critics (constraints).  
997

998 **H EXPERIMENT DETAIL - CMDP BANDIT**  
999

1000 **Single mixed critic:** A *single* scalar critic per action is trained on the mixed signal  
1001

$$r_\lambda(a) := r(a) - \lambda_1 c_1(a) - \lambda_2 c_2(a).$$

1003 With  $\gamma = 0$ , a TD(0) bandit update reduces to exponential averaging:  
1004

$$Q_{t+1}^{\text{mixed}}(a) = Q_t^{\text{mixed}}(a) + \eta_{\text{mixed}} \left( r_\lambda(a_t) - Q_t^{\text{mixed}}(a_t) \right) \mathbf{1}\{a_t = a\}. \quad (32)$$

1007 The actor readout in equation 5.1 uses  $\hat{Q}_t(a) = Q_t^{\text{mixed}}(a)$ .  
1008

1009 **Dedicated-critic:** We train *separate* per-action critics for reward and each cost:  
1010

$$Q_{t+1}^r(a) = Q_t^r(a) + \eta_{\text{multi}} \left( r(a_t) - Q_t^r(a_t) \right) \mathbf{1}\{a_t = a\}, \quad (33)$$

$$Q_{t+1}^{c_1}(a) = Q_t^{c_1}(a) + \eta_{\text{multi}} \left( c_1(a_t) - Q_t^{c_1}(a_t) \right) \mathbf{1}\{a_t = a\}, \quad (34)$$

$$Q_{t+1}^{c_2}(a) = Q_t^{c_2}(a) + \eta_{\text{multi}} \left( c_2(a_t) - Q_t^{c_2}(a_t) \right) \mathbf{1}\{a_t = a\}. \quad (35)$$

1014 The actor combines them *at readout time* with the *current* multipliers:  
1015

$$\hat{Q}_t(a) = Q_t^r(a) - \lambda_{1,t} Q_t^{c_1}(a) - \lambda_{2,t} Q_t^{c_2}(a). \quad (36)$$

1017 We run  $T = 5000$  steps per seed and average over  $S = 15$  random seeds for the main curves. For the  
1018 *timescale ablation* (Sec. H.2), we sweep critic and dual learning rates and average over 8 seeds per  
1019 grid point. For a mixed scalar summary of conditional alignment (reported once), we optionally use  
1020  $S = 20$  seeds to reduce variance.  $\alpha = 0.02$ ,  $\beta = 0.02$ ,  $\eta_{\text{mixed}} = 0.03$ ,  $\eta_{\text{multi}} = 0.03$ ,  $\theta_0 = 0$ ,  $\lambda_{1,0} =$   
1021  $\lambda_{2,0} = 0.1$ ,  $Q(\cdot) = 0$  for all heads at  $t = 0$ .  
1022

1023 **H.1 EVALUATION METRICS**  
1024

1025 **Expected reward.** We report the *on-policy* expected reward  $J_r = \sigma(\theta) r(a_1) + (1 - \sigma(\theta)) r(a_2)$   
1026 as a function of steps.  
1027

1026

**Constraint violation.** Instantaneous expected violation is

1027

1028

1029

1030

1031

1032

1033

**Unconditional gradient alignment.** We compute a *moving* Pearson correlation between the estimated actor gradient  $\hat{g}_t$  (from equation 5.1 with the appropriate critic readout) and the true gradient  $g_t$ , using a centered window of width  $w = 201$  with boundary normalization:

1034

1035

1036

1037

1038

1039

1040

1041

$$\text{corr}_t(\hat{g}, g) = \frac{\text{Cov}_t(\hat{g}, g)}{\sqrt{\text{Var}_t(\hat{g}) \text{Var}_t(g)}}, \quad (38)$$

with  $\text{Cov}_t(\cdot, \cdot)$ ,  $\text{Var}_t(\cdot)$  computed over the window and normalized by its effective length.

1042

1043

**Conditional gradient alignment.** Same as equation 38, but *restricted* to timesteps in the window where the ground-truth magnitude exceeds a threshold  $\varepsilon = 10^{-3}$ :

$$\text{corr}_t^{\text{cond}}(\hat{g}, g) = \text{corr}(\{\hat{g}_\tau : |g_\tau| > \varepsilon\}, \{g_\tau : |g_\tau| > \varepsilon\}) \quad (39)$$

1044

1045

This metric emphasizes periods with a meaningful learning signal, computed with boundary-normalized counts; windows with  $< 5$  effective samples are masked.

1046

1047

**Dual oscillation magnitude.** We quantify multiplier oscillations via the *moving standard deviation* of the signed gap  $|\lambda_2 - \lambda_1|$ , again using a boundary-normalized window of width  $w = 201$ :

1048

1049

1050

1051

1052

1053

1054

$$\text{Osc}_t = \sqrt{\max(0, \mathbb{E}_t[\Delta^2] - (\mathbb{E}_t[\Delta])^2)}, \quad \Delta_\tau := |\lambda_{2,\tau} - \lambda_{1,\tau}|. \quad (40)$$

**Smoothing (for curves) and uncertainty bands.** For reward and violation we plot *boundary-normalized* running means:

1055

1056

1057

$$\tilde{x}_t = \frac{\sum_{\tau=t-\lfloor w/2 \rfloor}^{t+\lfloor w/2 \rfloor} x_\tau}{\#\{\tau \text{ inside range}\}}, \quad (41)$$

1058

then average  $\tilde{x}_t$  across seeds and show  $\pm 1$  standard deviation bands across seeds.

1059

## H.2 TIMESCALE ABLATION (CRITIC VS. DUAL)

1060

1061

To mirror the theory’s timescale conclusions, we sweep critic and dual learning rates on a grid:

1062

1063

1064

$$\eta \in \{0.01, 0.03, 0.10\}, \quad \beta \in \{0.005, 0.02, 0.08\},$$

1065

1066

1067

holding the actor step  $\alpha = 0.02$  fixed. For each  $(\eta, \beta)$ , we run the *mixed-critic* variant for  $T = 5000$  steps with 8 seeds and report:

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1. **Violation AUC:**  $\sum_{t=1}^T \text{Viol}_t / T$ ,
2. **Late conditional alignment:** mean of equation 39 over the last 500 steps,
3. **Late dual oscillation:** mean of equation 40 over the last 500 steps.

Results are visualized as heatmaps over  $(\eta, \beta)$ .

## H.3 COMPUTE, RANDOMIZATION, AND REPRODUCIBILITY

All runs are CPU-only and complete within seconds. Random seeds  $s \in \{1000, \dots, 1000 + S - 1\}$  control action sampling only (initial parameters are deterministic). Each figure reports the mean across seeds with  $\pm 1$  standard deviation. We save raw arrays (per-seed trajectories for reward, violation, gradients, and multipliers) to a serialized file for exact reproduction of all plots.



Figure 6: Performance for CMDP Bandit.

---

## I ALGORITHM: DEDICATED-CRITIC PPO-LAG

---

**Algorithm 1** Dedicated-Critic Lagrangian PPO (multi-constraint, single-constraint is special case)

---

```

1134
1135
1136
1137
1138 1: Initialize policy parameters  $\theta$ ; Initialize reward critic parameters  $\phi_r$ ; Initialize cost critic parameters  $\phi_{c_i}$  for  $i = 1, \dots, m$ ; Initialize dual variables  $\lambda_i \leftarrow \lambda_{\text{init}} \geq 0$  for  $i = 1, \dots, m$ 
1139
1140 2: for iteration  $k = 0, 1, 2, \dots$  do
1141 3:   Reset buffers  $\{s_t, a_t, r_t, c_t^{(i)}, \text{done}_t, \log \pi_t^{\text{old}}, V_t^r, V_t^{c_i}\}_{t=0}^{T-1}$ ;  $s_0 \leftarrow \mathcal{E}.\text{reset}()$ 
1142 4:   for  $t = 0, \dots, T-1$  do
1143 5:     Sample  $a_t \sim \pi_\theta(\cdot | s_t)$ ;  $\log \pi_t^{\text{old}} \leftarrow \log \pi_\theta(a_t | s_t)$ ;  $V_t^r \leftarrow V_r(s_t; \phi_r)$ 
1144 6:     for  $i = 1, \dots, m$  do
1145 7:        $V_t^{c_i} \leftarrow V_{c_i}(s_t; \phi_{c_i})$ 
1146 8:     end for
1147 9:      $s_{t+1}, r_t, \{c_t^{(i)}\}_{i=1}^m, \text{done}_t \leftarrow \mathcal{E}.\text{step}(a_t)$ 
1148 10:    Store  $(s_t, a_t, r_t, \{c_t^{(i)}\}, \text{done}_t, \log \pi_t^{\text{old}}, V_t^r, \{V_t^{c_i}\})$  in buffer
1149 11:  end for
1150 12:  if  $s_T$  is terminal then
1151 13:     $V_T^r \leftarrow 0, V_T^{c_i} \leftarrow 0 \ \forall i$ 
1152 14:  else
1153 15:     $V_T^r \leftarrow V_r(s_T; \phi_r)$ 
1154 16:     $V_T^{c_i} \leftarrow V_{c_i}(s_T; \phi_{c_i}) \ \forall i$ 
1155 17:  end if
1156 18:  Initialize  $A_T^r \leftarrow 0$  and  $A_T^{c_i} \leftarrow 0$  for all  $i$ 
1157 19:  for  $t = T-1, \dots, 0$  do
1158 20:     $\delta_t^r \leftarrow r_t + \gamma(1 - \text{done}_{t+1})V_{t+1}^r - V_t^r$ 
1159 21:     $A_t^r \leftarrow \delta_t^r + \gamma\lambda_{\text{GAE}}(1 - \text{done}_{t+1})A_{t+1}^r$ 
1160 22:    for  $i = 1, \dots, m$  do
1161 23:       $\delta_t^{c_i} \leftarrow c_t^{(i)} + \gamma(1 - \text{done}_{t+1})V_{t+1}^{c_i} - V_t^{c_i}$ 
1162 24:       $A_t^{c_i} \leftarrow \delta_t^{c_i} + \gamma\lambda_{\text{GAE}}(1 - \text{done}_{t+1})A_{t+1}^{c_i}$ 
1163 25:    end for
1164 26:     $R_t^r \leftarrow A_t^r + V_t^r; R_t^{c_i} \leftarrow A_t^{c_i} + V_t^{c_i} \ \forall i$ 
1165 27:  end for
1166 28:  for  $t = 0, \dots, T-1$  do
1167 29:     $A_t^{\text{Lag}} \leftarrow A_t^r - \sum_{i=1}^m \lambda_i A_t^{c_i}$ 
1168 30:  end for
1169 31:  for PPO epoch  $e = 1, \dots, K$  do
1170 32:    for minibatch  $\mathcal{M}$  do
1171 33:      for  $(s_t, a_t, \log \pi_t^{\text{old}}, A_t^{\text{Lag}}) \in \mathcal{M}$  do
1172 34:         $\log \pi_t \leftarrow \log \pi_\theta(a_t | s_t)$ 
1173 35:         $\rho_t \leftarrow \exp(\log \pi_t - \log \pi_t^{\text{old}})$ 
1174 36:         $\hat{L}_t \leftarrow \min(\rho_t A_t^{\text{Lag}}, \text{clip}(\rho_t, 1 - \epsilon, 1 + \epsilon) A_t^{\text{Lag}})$ 
1175 37:      end for
1176 38:       $L_\pi \leftarrow -\frac{1}{|\mathcal{M}|} \sum_{t \in \mathcal{M}} \hat{L}_t$ 
1177 39:      Update  $\theta \leftarrow \theta - \alpha_\pi \nabla_\theta L_\pi$ 
1178 40:       $L_V^r \leftarrow \frac{1}{|\mathcal{M}|} \sum_{t \in \mathcal{M}} (V_r(s_t; \phi_r) - R_t^r)^2$ 
1179 41:      for  $i = 1, \dots, m$  do
1180 42:         $L_V^{c_i} \leftarrow \frac{1}{|\mathcal{M}|} \sum_{t \in \mathcal{M}} (V_{c_i}(s_t; \phi_{c_i}) - R_t^{c_i})^2$ 
1181 43:      end for
1182 44:       $L_V \leftarrow L_V^r + \sum_{i=1}^m L_V^{c_i}$ 
1183 45:      Update  $\phi_r, \{\phi_{c_i}\} \leftarrow \phi_r, \{\phi_{c_i}\} - \alpha_V \nabla L_V$ 
1184 46:    end for
1185 47:  end for
1186 48:   $\theta_{\text{old}} \leftarrow \theta$ 
1187 49:  for  $i = 1, \dots, m$  do
1188 50:    Estimate average cost  $\hat{J}_{c_i} \leftarrow \frac{1}{T} \sum_{t=0}^{T-1} c_t^{(i)}$ 
1189 51:     $\lambda_i \leftarrow \max(0, \lambda_i + \alpha_\lambda(\hat{J}_{c_i} - d_i))$ 
1190 52:  end for
1191 53: end for

```

---

1188 **J EXPERIMENT DETAILS - CASE 1**1189 **J.1 SYSTEM DESCRIPTION**

1190 We model a radial distribution network with high rooftop PV penetration, where a set of community  
 1191 battery energy storage systems (CBESSs) are coordinated to ensure operational safety and efficiency.  
 1192 Each CBESS is constrained by efficiency, power, and state-of-charge (SOC) limits, and can  
 1193 exchange energy with the upstream grid within trading bounds, incurring both trading and degra-  
 1194 dation costs. When storage is saturated, PV curtailment at the bus level is introduced with fairness  
 1195 considerations to avoid disproportionate restrictions. The distribution network is described using the  
 1196 LinDistFlow approximation, including power balance, voltage regulation, and branch thermal limits.  
 1197 Voltage violations and line loading are penalized in the objective. The overall scheduling problem  
 1198 minimizes the aggregated penalties and costs associated with CBESS operations, grid trading, and  
 1199 PV curtailment fairness.

1200 We consider a radial distribution network  $(\mathcal{N}, \mathcal{L})$  operated by a DNSP over intra-day periods  $t \in$   
 1201  $\mathcal{T} = \{1, \dots, T\}$ . The system model consists of CBESS operation, PV curtailment, and PDN-level  
 1202 constraints.

1203 **J.1.1 CBESS**

1204 Let  $\mathcal{M}$  denote the set of CBESSs. Each CBESS  $m \in \mathcal{M}$  is connected to bus  $\xi(m)$ , with charg-  
 1205 ing/discharging efficiencies  $(\eta_m^{\text{ch}}, \eta_m^{\text{dis}})$ , charging and discharging limits  $(\bar{P}_m^{\text{ch}}, \bar{P}_m^{\text{dis}})$ , and SOC range  
 1206  $[\underline{SOC}_m, \overline{SOC}_m]$ . The charging/discharging power are  $p_{m,t}^{\text{ch}}$  and  $p_{m,t}^{\text{dis}}$ , the reactive support is  $q_{m,t}^{\text{CB}}$ ,  
 1207 and stored energy is  $E_{m,t}$  with capacity  $E_m^{\text{Cap}}$ . Their dynamics are:

$$1208 E_{m,t+1} = E_{m,t} + \eta_m^{\text{ch}} p_{m,t}^{\text{ch}} \Delta t - \frac{1}{\eta_m^{\text{dis}}} p_{m,t}^{\text{dis}} \Delta t, \quad (42a)$$

$$1209 SOC_{m,t} = \frac{E_{m,t}}{E_m^{\text{Cap}}}, \quad \underline{SOC}_m \leq SOC_{m,t} \leq \overline{SOC}_m, \quad (42b)$$

$$1210 0 \leq p_{m,t}^{\text{ch}} \leq \bar{P}_m^{\text{ch}}, \quad 0 \leq p_{m,t}^{\text{dis}} \leq \bar{P}_m^{\text{dis}}, \quad (42c)$$

$$1211 p_{m,t}^{\text{ch}} \cdot p_{m,t}^{\text{dis}} = 0, \quad (42d)$$

$$1212 (p_{m,t}^{\text{dis}} - p_{m,t}^{\text{ch}})^2 + (q_{m,t}^{\text{CB}})^2 \leq (S_m^{\text{CB}})^2, \quad (42e)$$

$$1213 E_{m,0} = E_m^{\text{init}}. \quad (42f)$$

1214 CBESSs also trade with the main grid through a ratio  $\rho_{m,t}^{\text{trade}} \in [0, 1]$ . With buy/sell prices  $(\phi_t^{\text{buy}}, \phi_t^{\text{sell}})$ ,  
 1215 the trading cost is:

$$1216 f_t^{\text{ET}} = \sum_{m \in \mathcal{M}} f_{m,t}^{\text{trade}}, \quad (43a)$$

$$1217 f_{m,t}^{\text{trade}} = \phi_t^{\text{buy}} p_{m,t}^{\text{ch}} \rho_{m,t}^{\text{trade}} - \phi_t^{\text{sell}} p_{m,t}^{\text{dis}} \rho_{m,t}^{\text{trade}}, \quad (43b)$$

$$1218 0 \leq p_{m,t}^{\text{ch}} \rho_{m,t}^{\text{trade}} \leq \bar{P}_m^{\text{trade, ch}}, \quad 0 \leq p_{m,t}^{\text{dis}} \rho_{m,t}^{\text{trade}} \leq \bar{P}_m^{\text{trade, dis}}. \quad (43c)$$

1219 Battery degradation is approximated linearly:

$$1220 f_t^{\text{BD}} = \sum_{m \in \mathcal{M}} c_m^{\text{deg}} (p_{m,t}^{\text{ch}} + p_{m,t}^{\text{dis}}), \quad (44a)$$

1221 where  $c_m^{\text{deg}} > 0$  is the degradation cost coefficient.

1222 **J.1.2 PV CURTAILMENT**

1223 When all CBESSs are full, PV generation is curtailed via ratio  $\gamma_{i,t} \in [0, 1]$ :

$$1224 \tilde{p}_{i,t}^{\text{PV}} = (1 - \gamma_{i,t}) p_{i,t}^{\text{PV}}, \quad (45a)$$

$$1225 0 \leq \gamma_{i,t} \leq 1. \quad (45b)$$

1242 Fairness is enforced by comparing each bus's curtailed ratio  $\pi_i^{\text{curt}}$  with its proportional target  $\pi_i^{\text{tar}}$ :  
 1243

$$1244 \quad f^{\text{PVF}} = \sum_{i \in \mathcal{N}} (\pi_i^{\text{curt}} - \pi_i^{\text{tar}})^2. \quad (46)$$

1246 **J.1.3 PDN**

1247 The PDN is described by lossless LinDistFlow. For each branch  $(i, j) \in \mathcal{L}$ :

$$1250 \quad p_{ij,t} = \sum_{k:(j,k) \in \mathcal{L}} p_{jk,t} + p_{j,t}^{\text{load}} - \hat{p}_{j,t}^{\text{PV}} - \sum_{m:\xi(m)=j} (p_{m,t}^{\text{dis}} - p_{m,t}^{\text{ch}}), \quad (47a)$$

$$1253 \quad q_{ij,t} = \sum_{k:(j,k) \in \mathcal{L}} q_{jk,t} + q_{j,t}^{\text{load}} - \sum_{m:\xi(m)=j} q_{m,t}^{\text{CB}}. \quad (47b)$$

1256 Voltage drop is given by:

$$1258 \quad V_{j,t} = V_{i,t} - 2(r_{ij}p_{ij,t} + x_{ij}q_{ij,t}), \quad (48)$$

1259 with bounds  $\underline{V} \leq V_{i,t} \leq \bar{V}$ . Penalties for voltage violations are:

$$1261 \quad f_t^{\text{VD}} = \sum_{i \in \mathcal{N}} ([V_{i,t} - \bar{V}]^+ + [\underline{V} - V_{i,t}]^+), \quad (49a)$$

$$1264 \quad f_t^{\text{VN}} = \sum_{i \in \mathcal{N}} \mathbb{I}(V_{i,t} > \bar{V} \vee V_{i,t} < \underline{V}). \quad (49b)$$

1266 Line loading penalty is:

$$1269 \quad f_t^{\text{LL}} = \sum_{(i,j) \in \mathcal{L}} r_{ij} \frac{p_{ij,t}^2 + q_{ij,t}^2}{V_0^2}, \quad (50a)$$

$$1272 \quad p_{ij,t}^2 + q_{ij,t}^2 \leq \bar{S}_{ij}^2. \quad (50b)$$

1273 **J.1.4 OBJECTIVE**

1275 The goal is to coordinate CBESS operation under PV-rich PDNs to ensure network safety and efficiency. At each time step, CBESSs decide charging/discharging and grid trading ratios. The optimization problem is:  
 1276

$$1280 \quad \min_{p^{\text{ch}}, p^{\text{dis}}, q_{m,t}^{\text{CB}}, \rho^{\text{trade}}} \sum_{t \in \mathcal{T}} (f_t^{\text{VD}} + f_t^{\text{VN}} + f_t^{\text{LL}} + f_t^{\text{BD}} + f_t^{\text{ET}}) + f^{\text{PVF}}, \quad (51a)$$

$$1282 \quad \text{s.t. equation 42, equation 43c, equation 45, equation 47, and equation 48.} \quad (51b)$$

1284 **J.2 CMDP MODELING WITH DEDICATED-CRITIC LAGRANGIAN RL**

1286 We cast the CBESS coordination as a constrained Markov decision process (CMDP)  
 1287  $(\mathcal{S}, \mathcal{A}, P, r, \{c_i\}_{i=1}^m, \gamma, \{d_i\}_{i=1}^m)$ , where  $\mathcal{S}$  and  $\mathcal{A}$  denote the state and action spaces,  $P(\cdot|s, a)$  the  
 1288 transition kernel,  $\gamma \in (0, 1)$  the discount factor,  $r(s, a)$  the reward, and  $c_i(s, a)$  the cost signal for  
 1289 constraint  $i$  with threshold  $d_i$ . Given a stochastic policy  $\pi_\theta(a|s)$ , define the discounted returns

$$1291 \quad J_r(\pi_\theta) = \mathbb{E}_\pi \left[ \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right], \quad J_{c_i}(\pi_\theta) = \mathbb{E}_\pi \left[ \sum_{t=0}^{\infty} \gamma^t c_i(s_t, a_t) \right]. \quad (52)$$

1294 The CMDP objective is

$$1295 \quad \max_{\theta} J_r(\pi_\theta) \quad \text{s.t.} \quad J_{c_i}(\pi_\theta) \leq d_i, \quad i = 1, \dots, m. \quad (53)$$

1296 **Reward & costs from the PDN model.** Let the instantaneous penalties/costs at time  $t$  be those  
 1297 defined in the system model:  $f_t^{\text{VD}}, f_t^{\text{VN}}, f_t^{\text{LL}}, f_t^{\text{BD}}, f_t^{\text{ET}}$  and the daily PV-curtailment fairness term  
 1298  $f^{\text{PVF}}$ . A practical partition is:

$$r(s_t, a_t) = -(\alpha_{\text{BD}} f_t^{\text{BD}} + \alpha_{\text{ET}} f_t^{\text{ET}}), \quad (54)$$

$$c_1(s_t, a_t) = f_t^{\text{VD}}, \quad c_2(s_t, a_t) = f_t^{\text{VN}}, \quad c_3(s_t, a_t) = f_t^{\text{LL}}, \quad (55)$$

1302 and an episodic fairness constraint

$$C_4(\tau) \triangleq f^{\text{PVF}} \text{ with } \mathbb{E}_{\pi}[C_4(\tau)] \leq d_4, \quad (56)$$

1305 where  $\tau$  denotes a full episode (day). If desired,  $f^{\text{PVF}}$  can be spread as a per-step density  $c_4(s_t, a_t)$   
 1306 so that  $\sum_t \gamma^t c_4(s_t, a_t)$  recovers the same daily target. The weights  $\alpha_{\text{BD}}, \alpha_{\text{ET}} > 0$  reflect economic  
 1307 preferences. Alternative partitions (e.g., moving  $f^{\text{ET}}$  into constraints) are also supported without  
 1308 changing the derivations below.

1309 **Lagrangian relaxation with per-constraint critics.** Introduce multipliers  $\lambda = (\lambda_1, \dots, \lambda_m) \succeq 0$   
 1310 and define

$$\mathcal{L}(\theta, \lambda) = J_r(\pi_{\theta}) - \sum_{i=1}^m \lambda_i (J_{c_i}(\pi_{\theta}) - d_i). \quad (57)$$

1315 We perform the standard primal–dual updates:

$$\theta \text{ update: } \nabla_{\theta} \mathcal{L}(\theta, \lambda) = \nabla_{\theta} J_r(\pi_{\theta}) - \sum_{i=1}^m \lambda_i \nabla_{\theta} J_{c_i}(\pi_{\theta}), \quad (58)$$

$$\lambda \text{ update: } \lambda_i \leftarrow \Pi_{[0, \lambda_{\max}]} \left( \lambda_i + \beta [J_{c_i}(\pi_{\theta}) - d_i] \right), \quad (59)$$

1321 where  $\Pi$  denotes projection to stabilize  $\lambda$ .

1323 **Signal-wise value functions and advantages.** For each signal  $x \in \{r, c_1, \dots, c_m\}$  define

$$Q_{\pi}^x(s, a) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t x(s_t, a_t) \mid s_0=s, a_0=a \right], \quad (60)$$

$$V_{\pi}^x(s) = \mathbb{E}_{a \sim \pi}[Q_{\pi}^x(s, a)], \quad A_{\pi}^x(s, a) = Q_{\pi}^x(s, a) - V_{\pi}^x(s). \quad (61)$$

1328 Using the policy score function, the actor gradient becomes

$$\nabla_{\theta} \mathcal{L}(\theta, \lambda) = \mathbb{E}_{\pi} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s) \underbrace{\left( A_{\pi}^r(s, a) - \sum_{i=1}^m \lambda_i A_{\pi}^{c_i}(s, a) \right)}_{\tilde{A}_{\pi}(s, a)} \right]. \quad (62)$$

1334 **Per-constraint critics.** We learn one critic per signal  $x \in \{r, c_1, \dots, c_m\}$  with parameters  $\omega_x$ :

$$Q_{\omega_x}(s, a) \approx Q_{\pi}^x(s, a), \quad \delta_t^x = x_t + \gamma Q_{\omega_x}(s_{t+1}, a_{t+1}) - Q_{\omega_x}(s_t, a_t), \quad (63)$$

1337 and minimize  $\mathbb{E}[(\delta_t^x)^2]$  (or use GAE to reduce variance). Advantages are estimated by  $A_t^x$  (e.g.,  
 1338 GAE( $\lambda$ )) and plugged into equation 62.

1340 **PPO-style actor (with dedicated-critic advantage).** Let  $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}$  and  $\tilde{A}_t = A_t^r -$   
 1341  $\sum_i \lambda_i A_t^{c_i}$ . The clipped surrogate is

$$\mathcal{J}_{\text{PPO}}(\theta) = \mathbb{E} \left[ \min \left( r_t(\theta) \tilde{A}_t, \text{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon) \tilde{A}_t \right) \right] + \eta \mathbb{E}[\mathcal{H}(\pi_{\theta}(\cdot|s_t))], \quad (64)$$

1345 where  $\mathcal{H}$  is policy entropy and  $\eta \geq 0$ .

1346 **Episodic fairness constraint.** If keeping  $f^{\text{PVF}}$  as episodic, use the per-episode estimator  $\hat{J}_{c_4} =$   
 1347  $\frac{1}{N} \sum_{k=1}^N C_4(\tau^{(k)})$  in equation 82. A practical alternative is to define a per-step density  $c_4(s_t, a_t)$   
 1348 whose discounted sum equals the daily fairness value, enabling a standard critic update as in equa-  
 1349 tion 87.

Table 1: Key hyperparameters, reward, and CMDP constraints for the energy management case study.

| Category                                   | Hyperparameter / Term                                                                                             | Value        | Notes / Definition                                                                                                                                                   |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reward &amp; constraints</b>            |                                                                                                                   |              |                                                                                                                                                                      |
| Reward $r_t$                               | $-f_t^{\text{ET}}$                                                                                                | -            | $f_t^{\text{ET}} = \sum_m (\phi_t^{\text{buy}} p_{m,t}^{\text{ch}} \rho_{m,t}^{\text{trade}} - \phi_t^{\text{sell}} p_{m,t}^{\text{dis}} \rho_{m,t}^{\text{trade}})$ |
| Constraint 1 $c_t^{\text{VN}}$             | $\frac{1}{ \mathcal{N} } \sum_i \mathbb{I}(V_{i,t} \notin [\underline{V}, \bar{V}])$                              | [0, 1]       | Count of voltage violations (normalized by bus count)                                                                                                                |
| Constraint 2 $c_t^{\text{VD}}$             | $\sum_i ([V_{i,t} - \bar{V}]^+ + [\underline{V} - V_{i,t}]^+)$                                                    | -            | Degree of voltage violation (no extra scaling)                                                                                                                       |
| Constraint 3 $c_t^{\text{LL}}$             | $\sum_{(i,j)} [\ell_{ij,t} - \tau^{\text{line}}]^+$                                                               | -            | Line thermal overload beyond threshold (p.u. or %)                                                                                                                   |
| Constraint 4 $c_t^{\text{BD}}$             | $\frac{\sum_m (p_{m,t}^{\text{ch}} + p_{m,t}^{\text{dis}}) \Delta t}{ \mathcal{M}  \bar{P}^{\text{CB}} \Delta t}$ | [0, 1]       | Battery degradation (throughput, normalized)                                                                                                                         |
| Constraint 5 $c_t^{\text{PVF}}$            | $\frac{\text{var}(\{\gamma_{i,t}\}_{i \neq 0})}{0.25}$                                                            | [0, 1]       | PV curtailment unfairness (variance normalized by max 0.25)                                                                                                          |
| Lag-PPO constraint                         | $c_t^{\text{VN}} + c_t^{\text{VD}} + c_t^{\text{LL}} + c_t^{\text{BD}} + c_t^{\text{PVF}}$                        | -            | Summation of all constraints                                                                                                                                         |
| <b>General training parameters</b>         |                                                                                                                   |              |                                                                                                                                                                      |
| Learning rate $\alpha/\eta$                | -                                                                                                                 | 3e-4         | Shared by actor/critic                                                                                                                                               |
| Clip coefficient                           | -                                                                                                                 | 0.2          | Ratio clipping $[1 - \epsilon, 1 + \epsilon]$                                                                                                                        |
| Target KL                                  | -                                                                                                                 | 0.015        | Early stop when approx-KL exceeds threshold                                                                                                                          |
| Value loss coeff.                          | -                                                                                                                 | 0.5          | Weight on value loss                                                                                                                                                 |
| Entropy coeff.                             | -                                                                                                                 | 0.0          | Entropy regularization                                                                                                                                               |
| Grad norm clip                             | -                                                                                                                 | 0.5          | Global gradient clipping                                                                                                                                             |
| Hidden sizes                               | -                                                                                                                 | (256, 256)   | MLP for actor/critic                                                                                                                                                 |
| Init log-std                               | -                                                                                                                 | -0.5         | Gaussian policy init                                                                                                                                                 |
| Discount $\gamma$ , GAE                    | -                                                                                                                 | 0.99, 0.95   | For returns and advantages                                                                                                                                           |
| Dual learning rate $\lambda$               | -                                                                                                                 | 5e-3         | Step size for dual updates in Lagrangian RL paradigm                                                                                                                 |
| $\lambda$ init / max                       | -                                                                                                                 | 0.0 / $10^4$ | Projected to $[0, \lambda_{\max}]$                                                                                                                                   |
| <b>Training schedule &amp; environment</b> |                                                                                                                   |              |                                                                                                                                                                      |
| PPO episodes                               | -                                                                                                                 | 2000         | Total training episodes                                                                                                                                              |
| Steps / episode                            | -                                                                                                                 | 288          | $\Delta t = 5 \text{ min} \Rightarrow$ one day per episode                                                                                                           |
| Env time step                              | -                                                                                                                 | 5 min        | Day length = 288 steps                                                                                                                                               |

**Concrete instantiation for this problem.** With equation 74–equation 56, we have  $m \in \{3, 4\}$  constraints:

Critics:  $Q_{\omega_r}$  for reward,  $Q_{\omega_{c_1}}, Q_{\omega_{c_2}}, Q_{\omega_{c_3}}$  (and  $Q_{\omega_{c_4}}$  if episodic fairness is densified); (65)

Advantage:  $\tilde{A}_t = A_t^r - \lambda_1 A_t^{c_1} - \lambda_2 A_t^{c_2} - \lambda_3 A_t^{c_3}$  ( $-\lambda_4 A_t^{c_4}$  if used); (66)

Dual:  $\lambda_i \leftarrow \Pi_{[0, \lambda_{\max}]}(\lambda_i + \beta [\hat{J}_{c_i} - d_i])$ ,  $i = 1, \dots, m$ . (67)

**Notes on stability and practice.** (i) Use separate target networks or Polyak averaging for each critic to stabilize TD. (ii) Normalize every  $A_t^x$  before forming  $\tilde{A}_t$  to balance scales across constraints. (iii) Choose  $d_i$  from engineering limits (e.g., allowable daily voltage violation budget, line loading budget); start with conservative  $d_i$  then relax. (iv) Bound  $\lambda$  via projection or log-parameterization to avoid runaway dual ascent; optionally add a small L2 penalty on  $\lambda$ . (v) For mixed episodic/step constraints, update episodic multipliers once per episode and stepwise ones per minibatch.

### J.3 EXPERIMENTAL PARAMETERS

**Symbols.** The key parameters of the power system management case study are provided in Table 3.  $\phi_t^{\text{buy}}, \phi_t^{\text{sell}}$ : upstream buy/sell prices;  $\rho_{m,t}^{\text{trade}} \in [0, 1]$ : trading ratio for CBESS  $m$ ;  $[x]^+ = \max\{x, 0\}$ ;  $\mathbb{I}(\cdot)$ : indicator;  $\underline{V}, \bar{V}$ : voltage bounds (e.g.,  $[1 - \nu, 1 + \nu]$  p.u.,  $\nu > 0$ );  $V_{i,t}$ : bus- $i$  voltage;  $\ell_{ij,t}$ :

1404 loading of line  $(i, j)$  (p.u. or %);  $\tau^{\text{line}}$ : overload threshold (default 0);  $\gamma_{i,t} \in [0, 1]$ : PV curtailment  
 1405 ratio at bus  $i$ ;  $\Delta t$ : step duration (5 min);  $T$ : daily horizon (288 steps);  $|\mathcal{N}|$ : number of buses;  $|\mathcal{M}|$ :  
 1406 number of CBESS;  $\bar{P}^{\text{CB}}$ : nameplate active-power rating for normalization.  
 1407

1408

1409 

#### J.4 TWO-TIERED STATISTICS

1410

1411 The two-tiered statistical results in Table 2 highlight a clear trade-off between economic performance  
 1412 and system safety. Specifically, the DC-Lag-PPO variant achieves substantial improvements across  
 1413 all five constraint metrics. The violation ratio (c1) and violation degree (c2) of bus voltages are  
 1414 reduced by approximately 33% and 52%, respectively, while the line loading rate (c3) decreases by  
 1415 11.6%. Similarly, the battery degradation cost (c4) drops by 46%, and the PV curtailment unfairness  
 1416 (c5) improves by 52.7%. These reductions indicate that DC-Lag-PPO enforces network security and  
 1417 operational fairness more effectively than the baseline Lag-PPO.

1418

1419 In contrast, the reward, which reflects the economic cost, declines significantly (-87.2%). Since  
 1420 higher reward is preferred, this suggests that DC-Lag-PPO sacrifices economic efficiency to achieve  
 1421 stronger compliance with safety and fairness constraints. The mechanism is likely due to more  
 1422 conservative charging, discharging, and trading behaviors encouraged by the tightened constraint  
 1423 handling.

1424

1425 In terms of stability, the across-run standard deviations of c1, c2, and c3 decrease considerably,  
 1426 demonstrating more consistent performance in voltage and line-loading metrics. However, the stan-  
 1427 dard deviation of PV curtailment fairness (c5) increases, implying reduced consistency across dif-  
 1428 ferent runs in this aspect. This suggests that while DC-Lag-PPO reliably improves most safety  
 1429 indicators, its fairness outcomes may vary depending on specific training trajectories.

1430

1431 Overall, DC-Lag-PPO demonstrates its effectiveness as a safer policy with stronger constraint satis-  
 1432 faction, albeit at the cost of economic performance. Future work may seek to balance this trade-off  
 1433 by tuning constraint thresholds, adjusting the dual update step size, or normalizing advantage signals  
 1434 across constraints to prevent overly conservative policies.

1435

1436 Table 2: Two-tiered test statistics, where across-run mean  $\pm$  across-run std; The higher reward is  
 1437 better, while the lower constraints are better.  $\Delta = (\text{DC-Lag-PPO} - \text{Lag-PPO})$ . Positive improve-  
 1438 ment % is computed as  $\text{Lag-PPO} - \text{DC-Lag-PPO} / \text{Lag-PPO} \times 100\%$ .

| Metric                   | Lag-PPO (n=9)      | DC-Lag-PPO (n=9)  | $\Delta$       | Improvement %  |
|--------------------------|--------------------|-------------------|----------------|----------------|
| Economic cost (reward)   | $25.95 \pm 63.25$  | $3.32 \pm 34.68$  | <b>-22.64</b>  | <b>-87.23%</b> |
| Volt. vio. ratio (c1)    | $62.96 \pm 29.41$  | $42.17 \pm 11.61$ | <b>-20.80</b>  | <b>+33.03%</b> |
| Volt. vio. degree (c2)   | $54.77 \pm 36.31$  | $26.47 \pm 10.69$ | <b>-28.30</b>  | <b>+51.67%</b> |
| Line load rate (c3)      | $0.405 \pm 0.062$  | $0.358 \pm 0.024$ | <b>-0.047</b>  | <b>+11.59%</b> |
| Battery degradation (c4) | $32.23 \pm 13.47$  | $17.35 \pm 11.21$ | <b>-14.88</b>  | <b>+46.17%</b> |
| PV curt. unfairness (c5) | $210.95 \pm 23.09$ | $99.82 \pm 62.79$ | <b>-111.13</b> | <b>+52.68%</b> |

1443

1444

1445

1446

## J.5 TRAINING CURVES

1447

1448 As shown in Fig. 7 - 12, the training curves across multiple runs consistently highlight the strengths  
 1449 of DC-Lag-PPO in terms of constraint satisfaction. While the reward trajectories show that DC-Lag-  
 1450 PPO tends to converge to lower economic returns compared to the baseline Lag-PPO, the improve-  
 1451 ment in constraint metrics is substantial.

1452

1453 First, the voltage violation metrics (both ratio and degree) are markedly reduced under DC-Lag-  
 1454 PPO. The curves demonstrate faster convergence to lower levels of violations and maintain stability  
 1455 across episodes, especially in Fig. 11 and 12. This indicates that the dual-critic structure effectively  
 1456 penalizes unsafe voltage states, leading to more secure system operation.

1457

1458 Second, the line loading rates remain consistently lower for DC-Lag-PPO. Although the difference  
 1459 is modest compared to voltage metrics, the reduced variance in the curves reflects more stable uti-  
 1460 lization of line capacity, especially in Fig. 8 and 10.

1458  
 1459 Third, battery degradation under DC-Lag-PPO is substantially lower. The curves show that the  
 1460 algorithm learns to avoid excessive charging and discharging cycles, which not only improves system  
 1461 longevity but also reduces long-term operational costs.

1462 Finally, PV curtailment unfairness also benefits significantly from DC-Lag-PPO. Although variance  
 1463 is occasionally higher across runs, the overall trajectory converges to much lower unfairness com-  
 1464 pared to Lag-PPO. This suggests that DC-Lag-PPO is able to balance curtailment more evenly across  
 1465 the network, enhancing fairness.

1466 Overall, the training results confirm that DC-Lag-PPO enforces operational safety and fairness more  
 1467 effectively than the baseline. The cost of this improvement is a reduction in reward, implying that  
 1468 the method prioritizes constraint satisfaction over immediate economic gains. From a practical  
 1469 perspective, this trade-off can be acceptable or even desirable in safety-critical power systems, where  
 1470 violations may carry severe penalties or risks.

1471 Future extensions could explore adaptive balancing mechanisms, such as dynamic adjustment of  
 1472 dual learning rates or reward re-weighting—to recover part of the economic performance while  
 1473 maintaining the strong safety guarantees observed here.

1474  
 1475



1491 Figure 7: Training curves on Lagrangian cost threshold set: [9,9,0.1,30,30].  
 1492  
 1493  
 1494  
 1495

1496



1504 Figure 8: Training curves on Lagrangian cost threshold set: [12,12,0.1,30,30].  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511



Figure 9: Training curves on Lagrangian cost threshold set: [15,15,0.1,30,30].



Figure 10: Training curves on Lagrangian cost threshold set: [18,18,0.1,20,30].



Figure 11: Training curves on Lagrangian cost threshold set: [9,9,0.1,30,20].



Figure 12: Training curves on Lagrangian cost threshold set: [7,7,0.1,15,15].

1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604

Additionally,  $J_c$  curves are demonstrated in Fig. 13-18. Across all parameter settings, the plots consistently show a clear difference between Lag-PPO and our DC-Lag-PPO. The  $J_c$  curve of Lag-PPO represents the summed constraint cost, and it frequently drifts far above the allowed threshold, exhibiting large fluctuations during training (e.g., group 1 and group 5). This indicates that a single shared Lagrange multiplier cannot effectively regulate multiple heterogeneous constraints.

In contrast, DC-Lag-PPO decomposes the constraint cost into five independent components, each with its own critic. The corresponding  $J_c$  curves tightly track their respective thresholds across all settings, for large thresholds (e.g., 18, 20, 30) and even for very small ones ( $d = 0.1$ ). This demonstrates precise constraint satisfaction and significantly improved stability. Therefore, the decomposed multi-critic structure is fundamentally more effective for enforcing multi-constraint safety compared to the single-critic Lag-PPO.

Figure 13: Training curves of  $J_c$  on Lagrangian cost threshold set: [9,9,0.1,30,30].

Figure 14: Training curves of  $J_c$  on Lagrangian cost threshold set: [12,12,0.1,30,30].Figure 15: Training curves of  $J_c$  on Lagrangian cost threshold set: [15,15,0.1,30,30].Figure 16: Training curves of  $J_c$  on Lagrangian cost threshold set: [18,18,0.1,20,30].

Figure 17: Training curves of  $J_c$  on Lagrangian cost threshold set: [9,9,0.1,30,20].Figure 18: Training curves of  $J_c$  on Lagrangian cost threshold set: [7,7,0.1,15,15].

## J.6 LAGRANGIAN MULTIPLIER LEARNING CURVES

As shown in Fig. 19, the trajectories of the Lagrange multipliers provide insight into how Lag-PPO and DC-Lag-PPO enforce constraints during training. In the baseline Lag-PPO, the single multiplier tends to grow rapidly and exhibit instability, reflecting difficulty in balancing multiple heterogeneous constraints with a single aggregated signal. In contrast, DC-Lag-PPO assigns a dedicated multiplier to each constraint, and the resulting curves show more moderate growth and better separation among the multipliers. This indicates that the algorithm is able to distinguish between constraints of varying tightness and adjust enforcement accordingly.

Although some multipliers in DC-Lag-PPO still reach relatively high values, the spread across constraints suggests that the framework avoids over-penalizing all dimensions uniformly. Instead, it allocates stricter penalties only where violations are more prevalent. This aligns with the earlier observation that DC-Lag-PPO substantially reduces voltage violations, line overloads, and battery degradation, even though economic rewards are diminished.

Overall, the Lagrange multiplier dynamics confirm that DC-Lag-PPO enforces constraints in a more structured and interpretable way than Lag-PPO. By disentangling constraint signals, it achieves stronger and more balanced compliance with operational limits, providing a safer and more reliable control policy for power system management.

Figure 19: Lagrangian multiplier  $\lambda$  learning curves.

## J.7 PARETO FRONTS

Across all Pareto fronts shown in test cases in Fig. 20-27, which are obtained from different training runs, the DC-Lag-PPO fronts are typically shifted toward lower constraint values for the same (or nearby) reward levels, especially on the voltage metrics (violation ratio  $c_1$  and degree  $c_2$ ), indicating stronger constraint satisfaction without requiring large additional sacrifices in reward at the efficient frontier. This shift is visible in the reward- $c_1/c_2$  plots and also in the  $c_1-c_2$ ,  $c_1-c_3$ , and  $c_1-c_4$  pairings, where the dedicated-critic front envelopes or nearly envelopes the single-critic front.

A consistent pattern also emerges when examining the  $J_c - d$  Pareto views across all parameter settings, where the points are the  $J_c$  values of each constraint cost, and  $d$ , the black dotted line, is the target threshold of each constraint (see Figs. 28-35). For every constraint dimension, the DC-Lag-PPO solutions cluster tightly around, or slightly below, the threshold  $d$ , forming a compact Pareto front near the lower-left region. In contrast, Lag-PPO's  $J_c$  values frequently lie well above the thresholds, and its Pareto front stretches diagonally upward, revealing strong trade-off tensions that arise from using a single shared multiplier. These  $J_c - d$  relations provide direct evidence that DC-Lag-PPO not only finds better reward-constraint trade-offs but also fundamentally attains closer adherence to the prescribed limits on every constraint dimension.

**Knee regions and policy selection** Several plots exhibit knee points on the DC-Lag-PPO front (most clearly on voltage and line-loading axes), where a small relaxation in reward yields a disproportionate drop in violations. These knees are natural operating points for deployment, offering strong safety gains at modest economic cost.

In the  $J_c - d$  space, knee behavior manifests as sharp transitions where  $J_c$  collapses rapidly once the policy enters the feasible region. These knees appear consistently in DC-Lag-PPO but rarely in Lag-PPO, further indicating that decomposed critics create a more controllable and interpretable constraint landscape.

**Voltage safety trade-offs (C1, C2)** For voltage ratio and degree, DC-Lag-PPO consistently attains lower violations at comparable reward, producing a “left/downward” movement of the frontier relative to Lag-PPO. The paired-constraint views (C1 vs. C2) show a visibly tighter cloud and a frontier closer to the origin, suggesting better joint compliance.

The corresponding  $J_c - d$  results reinforce this pattern: across all runs, DC-Lag-PPO keeps  $J_c$  (C1) and  $J_c$  (C2) very near the voltage thresholds, whereas Lag-PPO exhibits persistent overshoot. This aligns with the training curves and confirms that decomposed voltage critics effectively isolate and regulate the two voltage-related risks during testing.

1782 **Line loading and degradation (C3, C4)** On line loading (C3) and battery degradation (C4), DC-  
 1783 Lag-PPO fronts again tend to sit below the Lag-PPO fronts for similar reward ranges, implying  
 1784 reduced thermal stress and milder throughput for batteries. The cross-constraint plots (e.g., C2-C3,  
 1785 C3-C4) also show that dedicated-critic solutions better balance these two operational risks simulta-  
 1786 neously.

1787 The  $J_c - d$  plots show the same effect: DC-Lag-PPO pushes  $J_c$ (C3) and  $J_c$ (C4) tightly toward their  
 1788 respective thresholds, often forming extremely compact clusters around  $d$ , while Lag-PPO's distri-  
 1789 butions remain dispersed and systematically above the limits. This confirms that multi-critic La-  
 1790 grangian updates mitigate cross-constraint interference that otherwise destabilizes single-multiplier  
 1791 methods.

1792  
 1793  
 1794 **PV curtailment unfairness (C5)** In the reward C5 panels and the mixed-constraint views in-  
 1795 volving C5, the dedicated-critic frontier usually dominates or matches the single-critic frontier for  
 1796 a broad range, indicating more equitable PV curtailment at similar reward. That said, dispersion  
 1797 varies across runs, hinting that fairness may remain sensitive to training seed or tariff profiles.

1798 The  $J_c - d$  comparisons show that DC-Lag-PPO frequently holds  $J_c$ (C5) near the fairness threshold,  
 1799 whereas Lag-PPO often overshoots or displays large variance. This confirms that separating the fair-  
 1800 ness critic prevents it from being overshadowed by voltage/thermal constraints during optimization.

1801  
 1802  
 1803 **Discussion** DC-Lag-PPO delivers stronger and more balanced constraint satisfaction than Lag-  
 1804 PPO, most prominently on voltage safety and with consistent advantages on line loading, degra-  
 1805 dation, and fairness. The additional  $J_c - d$  evidence strengthens this conclusion: the dedicated-critic  
 1806 design yields systematically lower  $J_c$  values tightly aligned with target thresholds, while the single-  
 1807 critic baseline exhibits structural difficulty simultaneously controlling heterogeneous constraints.  
 1808 The Pareto frontier shifts indicate that many safe operating points do not require drastic reward  
 1809 compromises once the policy is tuned to the knee region. Fairness (C5) gains are evident, though  
 1810 variability suggests room for additional stabilization (e.g., densifying episodic fairness or smoothing  
 1811 dual updates) in future runs.



1833 Figure 20: Pareto fronts from the test results on Lagrangian cost threshold set [9,9,0,1,30,30].



Figure 21: Pareto fronts from the test results on Lagrangian cost threshold set [12,12,0.1,30,30].



Figure 22: Pareto fronts from the test results on Lagrangian cost threshold set [15,15,0.1,20,30].



Figure 23: Pareto fronts from the test results on Lagrangian cost threshold set [18,18,0.1,20,30].



Figure 24: Pareto fronts from the test results on Lagrangian cost threshold set [9,9,0.1,30,20].



Figure 25: Pareto fronts from the test results on Lagrangian cost threshold set [12,12,0.1,30,20].



Figure 26: Pareto fronts from the test results on Lagrangian cost threshold set [9,9,0.1,20,20].



Figure 27: Pareto fronts from the test results on Lagrangian cost threshold set [7,7,0.1,15,15].

Figure 28: Pareto fronts from the test results of  $J_c$  on Lagrangian cost threshold set [9,9,0.1,30,30], where the black dotted lines are the thresholds  $d$ .



Figure 29: Pareto fronts from the test results of  $J_c$  on Lagrangian cost threshold set [12,12,0.1,30,30], where the black dotted lines are the thresholds  $d$ .



Figure 30: Pareto fronts from the test results of  $J_c$  on Lagrangian cost threshold set [15,15,0.1,20,30], where the black dotted lines are the thresholds  $d$ .





Figure 33: Pareto fronts from the test results of  $J_c$  on Lagrangian cost threshold set [12, 12, 0.1, 30, 20], where the black dotted lines are the thresholds  $d$ .



Figure 34: Pareto fronts from the test results of  $J_c$  on Lagrangian cost threshold set [9, 9, 0.1, 20, 20], where the black dotted lines are the thresholds  $d$ .



Figure 35: Pareto fronts from the test results of  $J_c$  on Lagrangian cost threshold set  $[7, 7, 0.1, 15, 15]$ , where the black dotted lines are the thresholds  $d$ .

---

2268 **K EXPERIMENT DETAILS - CASE 2**  
2269

2270 We extend our experiments to a more complex electric vehicle charging station (EVCS) problem  
2271 to further evaluate how well the dedicated-critic approach scales and whether its benefits persist in  
2272 realistic multi-constraint settings (Power system environment → observation dimension: 105, action  
2273 dimension: 24; Electric Vehicle Charging → Observation dimension: 219; action dimension: 40).  
2274 This environment models coordination problems, where the goal is to minimize charging costs while  
2275 enforcing multiple charging related constraints, including voltage limits, EV battery degradation,  
2276 and charging demand satisfaction. In contrast to the power system problem, this setting involves co-  
2277 ordinating multiple EVCSs, each operating dozens of chargers and responding to highly stochastic  
2278 and heterogeneous EV behaviours (arrival and departure times, charging demands, battery capaci-  
2279 ties, etc.). As a result, both the state and action spaces are substantially higher-dimensional, and the  
2280 additional uncertainty introduced by EV dynamics makes the EVCS coordination task considerably  
2281 more challenging than community battery scheduling.

2282 **K.1 SYSTEM DESCRIPTION**  
2283

2284 **K.1.1 PDN**  
2285

2286 The power distribution network (PDN) consists of a set of buses  $\mathcal{N} = \{1, \dots, N\}$  interconnected  
2287 via distribution lines  $\mathcal{L} \subseteq \mathcal{N} \times \mathcal{N}$ . The system evolves over a discrete time horizon  $\mathcal{T} = \{1, \dots, T\}$ .  
2288 At each bus  $i \in \mathcal{N}$  and time  $t \in \mathcal{T}$ , let  $p_{i,t}$  and  $v_{i,t}$  denote the net active power injection and voltage  
2289 magnitude, respectively.

2290 All nodes must satisfy the standard voltage bounds:  
2291

2292 
$$V^{\min} \leq v_{i,t} \leq V^{\max}, \quad \forall i \in \mathcal{N}, t \in \mathcal{T}. \quad (68)$$
  
2293

2294 **K.1.2 EVCS DEPLOYMENT AND NEIGHBORHOOD STRUCTURE**  
2295

2296 The DSO manages a set of EV charging stations (EVCSs)  $\mathcal{K} = \{1, \dots, K\}$ , each equipped with  
2297 rooftop PV generation and a set of chargers  $\mathcal{C}_k = \{1, \dots, C_k\}$ . EVCS  $k$  is placed at exactly one  
2298 PDN bus, represented by the binary deployment matrix  $\mathbf{K} \in \{0, 1\}^{N \times K}$ :

2299 
$$K_{ik} = 1 \text{ if EVCS } k \text{ is located at bus } i, \quad K_{ik} = 0 \text{ otherwise,}$$
  
2300

2301 with the physical constraint that no two EVCSs collocate:  
2302

2303 
$$\sum_{k \in \mathcal{K}} K_{ik} \leq 1, \quad \forall i \in \mathcal{N}.$$
  
2304

2305 For each bus  $i$ , its one-hop neighborhood is defined as  
2306

2307 
$$\mathcal{N}_i^{(1)} = \{j \in \mathcal{N} \setminus \{i\} \mid (i, j) \in \mathcal{L}\}.$$
  
2308

2309 If EVCS  $k$  is located at bus  $i$  ( $K_{ik} = 1$ ), its accessible neighborhood is  
2310

2311 
$$\mathcal{N}_k^{(1)} = \mathcal{N}_i^{(1)},$$
  
2312

2313 representing all physically adjacent buses whose aggregate voltage and load information is available.  
2314

2315 **K.1.3 EV CHARGING MODEL**  
2316

2317 Each charger serves EVs that arrive, park for a duration, and leave with a required energy level. Let  
2318  $T_{c_k}^{\text{arr}}$  and  $T_{c_k}^{\text{dep}}$  denote the arrival and departure times of EV  $c_k$ , and let  $\text{SoC}_{c_k}^{\text{arr}}$  and  $\text{SoC}_{c_k}^{\text{dep}}$  be the  
2319 corresponding SoC levels. Their target SoC trajectory is modeled via linear interpolation:

2320 
$$\text{SoC}_{c_k}^{\text{target}}(t) = \text{SoC}_{c_k}^{\text{arr}} + \frac{t - T_{c_k}^{\text{arr}}}{T_{c_k}^{\text{dep}} - T_{c_k}^{\text{arr}}} \left( \text{SoC}_{c_k}^{\text{dep}} - \text{SoC}_{c_k}^{\text{arr}} \right).$$
  
2321

2322 Each charger must satisfy:  
 2323

$$0 \leq p_{c_k}^{\text{ch}}(t) \leq P_{c_k}^{\text{ch,max}}, \quad (69\text{a})$$

$$0 \leq p_{c_k}^{\text{dis}}(t) \leq P_{c_k}^{\text{dis,max}}, \quad (69\text{b})$$

$$p_{c_k}^{\text{ch}}(t) p_{c_k}^{\text{dis}}(t) = 0, \quad (69\text{c})$$

$$\text{SoC}_{c_k}^{\text{min}} \leq \text{SoC}_{c_k}(t) \leq \text{SoC}_{c_k}^{\text{max}}, \quad (69\text{d})$$

$$\Delta \text{SoC}_{c_k}(t) = \eta^{\text{ch}} p_{c_k}^{\text{ch}}(t) - \frac{1}{\eta^{\text{dis}}} p_{c_k}^{\text{dis}}(t). \quad (69\text{e})$$

#### K.1.4 VOLTAGE VIOLATION METRICS

In addition to total voltage violation, we also consider the number of voltage-violating buses:

$$f^{\text{NV}}(t) = \sum_{i \in \mathcal{N}} \mathbf{1}\{v_{i,t} \notin [V^{\text{min}}, V^{\text{max}}]\}.$$

This discrete stability metric counts the extent of widespread voltage deviations across the PDN.

#### K.1.5 DEMAND SATISFACTION VIOLATION RATE

Let  $N^{\text{EV}}$  denote the total number of EVs served during the horizon. Define a violation indicator for each EV:

$$\delta_c^{\text{DS}} = \mathbf{1}\{\text{SoC}_c(T_c^{\text{dep}}) < 0.95 \text{SoC}_c^{\text{dep}}\},$$

i.e., the EV fails to achieve at least 95% of its desired departure SoC. The demand satisfaction violation rate is then

$$f_{\text{DS}}^{\text{VR}} = \frac{1}{N^{\text{EV}}} \sum_{c=1}^{N^{\text{EV}}} \delta_c^{\text{DS}}.$$

#### K.1.6 OPERATIONAL COST FUNCTIONS

At each EVCS  $k$ , the DSO controls charging and discharging powers  $\{p_{c_k}^{\text{ch}}(t), p_{c_k}^{\text{dis}}(t)\}_{c_k \in \mathcal{C}_k}$ . The cost components are:

$$f_k^{\text{TD}}(t) = \begin{cases} \lambda_t^{\text{buy}} p_k^{\text{TD}}(t), & p_k^{\text{TD}}(t) > 0, \\ \lambda_t^{\text{sell}} p_k^{\text{TD}}(t), & \text{otherwise,} \end{cases}$$

$$f_k^{\text{DG}}(t) = \alpha_e \sum_{c_k \in \mathcal{C}_k} ([p_{c_k}^{\text{ch}}(t)]^2 + [p_{c_k}^{\text{dis}}(t)]^2),$$

$$f_k^{\text{VT}}(t) = \sum_{i \in \mathcal{N}} \left( [v_{i,t} - V^{\text{max}}]^+ + [V^{\text{min}} - v_{i,t}]^+ \right),$$

$$f_k^{\text{DS}}(t) = \sum_{c_k \in \mathcal{C}_k} [\text{SoC}_{c_k}^{\text{target}}(t) - \text{SoC}_{c_k}(t)]^+,$$

with traded power

$$p_k^{\text{TD}}(t) = \sum_{c_k \in \mathcal{C}_k} (p_{c_k}^{\text{ch}}(t) - p_{c_k}^{\text{dis}}(t)) - p_{k,t}^{\text{PV}}.$$

2376 **K.1.7 OBJECTIVE**  
2377

2378 The DSO seeks to minimize aggregated operational costs and violation penalties:

2379  
2380 
$$\min_{\mathbf{p}^{\text{ch}}, \mathbf{p}^{\text{dis}}} \sum_{t \in \mathcal{T}} \left[ \sum_{k \in \mathcal{K}} (\beta_1 f_k^{\text{TD}}(t) + \beta_2 f_k^{\text{DG}}(t) + \beta_3 f_k^{\text{DS}}(t)) + \beta_4 f^{\text{VT}}(t) + \beta_5 f^{\text{NV}}(t) \right] + \beta_6 f_{\text{DS}}^{\text{VR}}. \quad (70)$$
  
2381

2382 This objective captures energy costs, degradation, voltage safety, spatial extent of voltage violations,  
2383 and global demand satisfaction reliability.  
23842385 **K.2 CMDP FORMULATION WITH DEDICATED-CRITIC LAGRANGIAN RL**  
23862387 The EVCS coordination problem is modeled as a constrained Markov decision process (CMDP):  
2388

2389 
$$(\mathcal{S}, \mathcal{A}, P, r, \{c_i\}_{i=1}^m, \gamma, \{d_i\}_{i=1}^m),$$
  
2390

2391 where  $\mathcal{S}$  and  $\mathcal{A}$  denote the state and action spaces,  $P(\cdot|s, a)$  the transition kernel,  $r(s, a)$  the reward  
2392 signal,  $c_i(s, a)$  the cost signal for constraint  $i$  with threshold  $d_i$ , and  $\gamma \in (0, 1)$  the discount factor.  
2393For a policy  $\pi_\theta(a|s)$ , define the discounted returns:

2394  
2395 
$$J_r(\pi_\theta) = \mathbb{E}_\pi \left[ \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right], \quad (71)$$
  
2396

2397  
2398 
$$J_{c_i}(\pi_\theta) = \mathbb{E}_\pi \left[ \sum_{t=0}^{\infty} \gamma^t c_i(s_t, a_t) \right], \quad i = 1, \dots, m. \quad (72)$$
  
2399

2400 The CMDP objective is  
2401

2402 
$$\max_{\theta} J_r(\pi_\theta) \quad \text{s.t.} \quad J_{c_i}(\pi_\theta) \leq d_i, \quad i = 1, \dots, m. \quad (73)$$
  
2403

2404 **Reward and cost signals derived from the system model.** Let the instantaneous cost components  
2405 from the system description be:  
24062407

- $f_t^{\text{VT}}$ : total voltage violation magnitude,
  
2408- $f_t^{\text{NV}}$ : number of voltage-violating buses,
  
2409- $f_t^{\text{LL}}$ : line-loading stress,
  
2410- $f_t^{\text{DG}}$ : battery degradation,
  
2411- $f_t^{\text{TD}}$ : energy trading cost,
  
2412- $f_t^{\text{DS}}$ : per-step EV dissatisfaction,
  
2413- $f_{\text{DS}}^{\text{VR}}$ : demand satisfaction violation rate (episodic).

  
24142415 A practical reward–cost decomposition aligning with operational goals is:  
2416

2417 
$$r(s_t, a_t) = -(\alpha_{\text{TD}} f_t^{\text{TD}} + \alpha_{\text{DG}} f_t^{\text{DG}} + \alpha_{\text{DS}} f_t^{\text{DS}}), \quad (74)$$
  
2418

2419 
$$c_1(s_t, a_t) = f_t^{\text{VT}}, \quad (\text{voltage violation magnitude}) \quad (75)$$
  
2420

2421 
$$c_2(s_t, a_t) = f_t^{\text{NV}}, \quad (\text{number of violating buses}) \quad (76)$$
  
2422

2423 
$$c_3(s_t, a_t) = f_t^{\text{LL}}, \quad (\text{line loading}) \quad (77)$$
  
2424

2425 
$$c_4(s_t, a_t) = f_t^{\text{DG}}, \quad (\text{battery degradation}) \quad (78)$$
  
2426

Additionally, the demand-satisfaction violation rate  $f_{\text{DS}}^{\text{VR}}$  is an episodic cost:  
2427

2428 
$$C_5(\tau) \triangleq f_{\text{DS}}^{\text{VR}}, \quad \mathbb{E}_\pi[C_5(\tau)] \leq d_5, \quad (79)$$
  
2429

where  $\tau$  denotes a full episode. If preferred,  $f_{\text{DS}}^{\text{VR}}$  can be distributed as a per-step cost  $c_5(s_t, a_t)$  such  
that its discounted sum recovers the same episodic value.

2430  
2431 **Lagrangian relaxation with per-constraint critics.** Introduce dual multipliers  $\lambda =$   
2432  $(\lambda_1, \dots, \lambda_m) \succeq 0$  and form the Lagrangian:

2433 
$$\mathcal{L}(\theta, \lambda) = J_r(\pi_\theta) - \sum_{i=1}^m \lambda_i (J_{c_i}(\pi_\theta) - d_i). \quad (80)$$
  
2434  
2435

2436 Primal-dual updates follow:

2437 
$$\nabla_\theta \mathcal{L}(\theta, \lambda) = \nabla_\theta J_r(\pi_\theta) - \sum_{i=1}^m \lambda_i \nabla_\theta J_{c_i}(\pi_\theta), \quad (81)$$
  
2438  
2439

2440 
$$\lambda_i \leftarrow \Pi_{[0, \lambda_{\max}]} \left( \lambda_i + \beta (\widehat{J}_{c_i} - d_i) \right), \quad (82)$$
  
2441  
2442

2443 with  $\Pi$  denoting projection for stability.

2444 **Value functions and signal-specific advantages.** For each signal  $x \in \{r, c_1, \dots, c_m\}$ , define:

2445 
$$Q_\pi^x(s, a) = \mathbb{E}_\pi \left[ \sum_{t=0}^{\infty} \gamma^t x(s_t, a_t) \mid s_0 = s, a_0 = a \right], \quad (83)$$
  
2446  
2447

2448 
$$V_\pi^x(s) = \mathbb{E}_{a \sim \pi} [Q_\pi^x(s, a)], \quad (84)$$
  
2449

2450 
$$A_\pi^x(s, a) = Q_\pi^x(s, a) - V_\pi^x(s). \quad (85)$$
  
2451

2452 The actor gradient becomes:

2453 
$$\nabla_\theta \mathcal{L}(\theta, \lambda) = \mathbb{E}_\pi [\nabla_\theta \log \pi_\theta(a|s) (A_\pi^r(s, a) - \sum_{i=1}^m \lambda_i A_\pi^{c_i}(s, a))]. \quad (86)$$
  
2454  
2455

2456 **Dedicated critics for each signal.** Each signal  $x \in \{r, c_1, \dots, c_m\}$  is assigned a separate critic  
2457  $Q_{\omega_x}$ :

2458 
$$\delta_t^x = x_t + \gamma Q_{\omega_x}(s_{t+1}, a_{t+1}) - Q_{\omega_x}(s_t, a_t), \quad (87)$$
  
2459  
2460

2461 and the critic minimizes  $\mathbb{E}[(\delta_t^x)^2]$ . Advantage estimates (e.g., GAE) are computed per signal and  
2462 combined through the Lagrangian structure.

2463 **PPO-style actor update.** Let  $r_t(\theta) = \pi_\theta(a_t|s_t)/\pi_{\theta_{\text{old}}}(a_t|s_t)$  and

2464 
$$\tilde{A}_t = A_t^r - \sum_{i=1}^m \lambda_i A_t^{c_i}.$$
  
2465  
2466

2467 The clipped surrogate is

2468 
$$\mathcal{J}_{\text{PPO}}(\theta) = \mathbb{E} \left[ \min \left( r_t(\theta) \tilde{A}_t, \text{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon) \tilde{A}_t \right) \right] + \eta \mathbb{E}[\mathcal{H}(\pi_\theta(\cdot|s_t))], \quad (88)$$
  
2469  
2470

2471 where  $\mathcal{H}$  denotes policy entropy.

2472 **Instantiated constraints for this problem.** With the reward and cost mapping above, we typically  
2473 have

2474 
$$m = 5,$$
  
2475

2476 corresponding to:

2477

- 2478 •  $c_1$ : voltage violation magnitude  $f_t^{\text{VT}}$ ,
- 2479 •  $c_2$ : violating node count  $f_t^{\text{NV}}$ ,
- 2480 •  $c_3$ : line loading  $f_t^{\text{LL}}$ ,
- 2481 •  $c_4$ : battery degradation  $f_t^{\text{DG}}$ ,
- 2482 •  $c_5$ : demand-satisfaction violation rate  $f_{\text{DS}}^{\text{VR}}$  (episodic or densified).

Table 3: Key hyperparameters, reward structure, and CMDP constraints for the EVCS coordination case study.

| Category                                              | Term / Parameter                                                                                                  | Value              | Definition / Description                                   |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------|
| <b>Reward &amp; CMDP constraints</b>                  |                                                                                                                   |                    |                                                            |
| Reward $r_t$                                          | $-(\alpha_{\text{TD}} f_t^{\text{TD}} + \alpha_{\text{DG}} f_t^{\text{DG}} + \alpha_{\text{DS}} f_t^{\text{DS}})$ | –                  | Trading, degradation, and dissatisfaction penalties        |
| Constraint $c_1$ (Voltage magnitude violation)        | $f_t^{\text{VT}} = \sum_i ([v_{i,t} - V^{\max}]^+ + [V^{\min} - v_{i,t}]^+)$                                      | –                  | Voltage violation magnitude across buses                   |
| Constraint $c_2$ (Count of violating buses)           | $f_t^{\text{NV}} = \sum_i \mathbf{1}\{v_{i,t} \notin [V^{\min}, V^{\max}]\}$                                      | [0, $N$ ]          | Number of buses violating voltage limits                   |
| Constraint $c_3$ (Line loading)                       | $f_t^{\text{LL}} = \sum_{(i,j)} [\ell_{i,j,t} - \tau^{\text{line}}]^+$                                            | –                  | Thermal overload above permissible threshold               |
| Constraint $c_4$ (Battery degradation)                | $f_t^{\text{DG}} = \alpha_e \sum_{c_k} ([p_{c_k,t}^{\text{ch}}]^2 + [p_{c_k,t}^{\text{dis}}]^2)$                  | –                  | Throughput-based quadratic degradation                     |
| Constraint $c_5$ (Demand satisfaction violation rate) | $f_{\text{DS}}^{\text{VR}}$                                                                                       | [0, 1]             | Fraction of EVs leaving with SoC < 0.95 SoC <sup>dep</sup> |
| <i>Lag-PPO baseline constraint</i>                    | $\sum_{i=1}^5 c_i$                                                                                                | –                  | Single aggregated constraint in standard Lag-PPO           |
| <b>General training hyperparameters</b>               |                                                                                                                   |                    |                                                            |
| Learning rate                                         | –                                                                                                                 | $3 \times 10^{-4}$ | For both actor and critics                                 |
| PPO clip $\epsilon$                                   | –                                                                                                                 | 0.2                | Ratio clipping: $[1 - \epsilon, 1 + \epsilon]$             |
| Target KL                                             | –                                                                                                                 | 0.015              | Early stopping threshold                                   |
| Value loss coefficient                                | –                                                                                                                 | 0.5                | Weight for critic loss                                     |
| Entropy coefficient                                   | –                                                                                                                 | 0.0                | Entropy regularization                                     |
| Gradient norm clip                                    | –                                                                                                                 | 0.5                | Global clipping limit                                      |
| Hidden sizes                                          | –                                                                                                                 | (256, 256)         | MLP layers for all networks                                |
| Init log-std                                          | –                                                                                                                 | –0.5               | Gaussian policy initialization                             |
| Discount $\gamma$ / GAE $\lambda$                     | –                                                                                                                 | 0.99 / 0.95        | Returns and advantage estimation                           |
| Dual learning rate                                    | –                                                                                                                 | $5 \times 10^{-3}$ | Step size for multiplier update                            |
| $\lambda$ init / max                                  | –                                                                                                                 | 0.0 / $10^4$       | Multiplier projection range                                |
| <b>Training schedule &amp; environment</b>            |                                                                                                                   |                    |                                                            |
| Episodes                                              | –                                                                                                                 | 2000               | Total PPO training episodes                                |
| Steps per episode                                     | –                                                                                                                 | 288                | One full day (5 min resolution)                            |
| Environment step                                      | –                                                                                                                 | 5 min              | Sampling interval                                          |

2519  
2520 The corresponding critics are:

$$Q_{\omega_r}, Q_{\omega_{c_1}}, Q_{\omega_{c_2}}, Q_{\omega_{c_3}}, Q_{\omega_{c_4}}, Q_{\omega_{c_5}}.$$

2523  
2524 The combined advantage is:

$$\tilde{A}_t = A_t^r - \lambda_1 A_t^{c_1} - \lambda_2 A_t^{c_2} - \lambda_3 A_t^{c_3} - \lambda_4 A_t^{c_4} - \lambda_5 A_t^{c_5}.$$

2526 Dual multipliers update via equation 82.

2528  
2529 **Practical considerations.** To stabilize learning: (i) use target networks or Polyak averaging for each critic; (ii) normalize each advantage  $A_t^{c_i}$  before aggregation; (iii) constrain multipliers via projection or softplus parameterization; (iv) for episodic costs, update multipliers once per episode; stepwise costs update per batch.

### 2533 K.3 EXPERIMENTAL PARAMETERS

2534  
2535 **Symbols.**  $\phi_t^{\text{buy}}, \phi_t^{\text{sell}}$ : buy/sell electricity prices;  $[x]^+ = \max(x, 0)$ ;  $\mathbf{1}\{\cdot\}$ : indicator;  $v_{i,t}$ : voltage at bus  $i$ ;  $V^{\min}, V^{\max}$ : voltage bounds;  $\ell_{i,j,t}$ : loading of line  $(i, j)$ ;  $\tau^{\text{line}}$ : overload threshold;  $p_{c_k,t}^{\text{ch}}, p_{c_k,t}^{\text{dis}}$ : charging/discharging powers;  $\gamma_{i,t}$ : PV curtailment ratio;  $\Delta t$ : step duration (5 min);  $N$ : number of buses;  $|\mathcal{C}_k|$ : chargers at EVCS  $k$ .

2538  
2539

## K.4 TWO-TIERED STATISTICS

2540  
2541  
2542  
2543  
2544

See Table 4 for details. This table summarizes the two-tiered evaluation statistics, reporting the mean and standard deviation across three independent training runs. Overall, DC-Lag-PPO consistently outperforms Lag-PPO across all constraint metrics while also achieving better economic performance, confirming that decomposing the critics alleviates the interference between heterogeneous constraints and stabilizes the dual updates.

2545  
2546  
2547  
2548  
2549

DC-Lag-PPO reduces the economic cost substantially, outperforming Lag-PPO by 19.3 units on average, despite the inherently high variance of cost signals. The improvement of -109% (negative because higher reward is better) indicates that DC-Lag-PPO not only avoids the reward degradation often observed in constrained RL, but actually discovers more cost-efficient charging strategies while still satisfying the operational constraints.

2550  
2551  
2552  
2553  
2554  
2555  
2556

For both voltage violation ratio (c1) and degree (c2), DC-Lag-PPO achieves consistent and significant reductions: -23.14 in violation ratio (+16.9% improvement), -44.67 in violation degree (+22.8% improvement). These gains validate the core motivation of the dedicated-critic design: each voltage-related critic captures its own risk landscape, preventing the single-critic baseline from being dominated by a few severe constraints. The larger improvement on violation degree (c2) suggests that DC-Lag-PPO not only reduces the frequency of violations but also suppresses their severity, producing safer voltage profiles across the entire PDN.

2557  
2558  
2559  
2560  
2561

Battery throughput and degradation drop from 41.43 to 25.62, yielding the largest improvement among all instantaneous constraints (+38.2%). This indicates that DC-Lag-PPO is better at distributing the charging/discharging workload across EV chargers, avoiding the overuse of individual chargers or time windows. The result also aligns with DC-Lag-PPO’s smoother dual updates, which prevent oscillatory behaviors commonly seen in single-multiplier methods.

2562  
2563  
2564

The dissatisfaction volume is reduced from 41.07 to 36.72 (+12.2%), demonstrating that DC-Lag-PPO better supports EV users’ charging requirements. The relatively low variance of DC-Lag-PPO also implies improved training stability and more consistent performance across runs.

2565  
2566  
2567  
2568  
2569

Among all constraints, the dedicated-critic method yields one of the most significant improvements on dissatisfaction number from 53.13 to 35.44 (+33.9%). This confirms that DC-Lag-PPO not only reduces instantaneous dissatisfaction but also lowers the probability of EVs failing to meet their departure SoC requirement, complementing the improvement in dissatisfaction volume.

2570  
2571  
2572  
2573

Table 4: Two-tiered test statistics, where across-run mean  $\pm$  across-run std; The higher reward is better, while the lower constraints are better.  $\Delta = (\text{DC-Lag-PPO} - \text{Lag-PPO})$ . Positive improvement % is computed as  $(\text{Lag-PPO} - \text{DC-Lag-PPO})/\text{Lag-PPO} \times 100\%$ , except reward where the value is negated because higher is better.

2574  
2575  
2576  
2577  
2578  
2579  
2580  
2581  
2582

| Metric                 | Lag-PPO (n=3)      | DC-Lag-PPO (n=3)   | $\Delta$      | Improvement %   |
|------------------------|--------------------|--------------------|---------------|-----------------|
| Economic cost (reward) | $17.66 \pm 40.88$  | $-1.61 \pm 10.02$  | <b>-19.27</b> | <b>-109.18%</b> |
| Volt. vio. ratio (c1)  | $136.67 \pm 6.61$  | $113.53 \pm 10.72$ | <b>-23.14</b> | <b>+16.93%</b>  |
| Volt. vio. degree (c2) | $196.41 \pm 14.06$ | $151.74 \pm 47.41$ | <b>-44.67</b> | <b>+22.75%</b>  |
| Battery deg. (c3)      | $41.43 \pm 4.86$   | $25.62 \pm 7.81$   | <b>-15.82</b> | <b>+38.18%</b>  |
| Dissat. vol. (c3)      | $41.07 \pm 9.01$   | $36.72 \pm 3.16$   | <b>-9.89</b>  | <b>+12.17%</b>  |
| Dissat. num. (c5)      | $53.13 \pm 8.25$   | $35.44 \pm 5.22$   | <b>-11.68</b> | <b>+33.87%</b>  |

2583

## K.5 TRAINING CURVES

2584  
2585  
2586

See Figure 36 and Figure 37 for detail. It can be seen that DC-Lag-PPO learns faster, stabilizes earlier, satisfies constraints better, and avoids the late-stage divergence exhibited by Lag-PPO.

2587  
2588  
2589  
2590  
2591

First, DC-Lag-PPO achieves lower and more stable economic cost, whereas Lag-PPO exhibits large oscillations and late-stage degradation. Second, for all constraint metrics, including voltage ratio/degree, line loading, battery degradation, and demand dissatisfaction, DC-Lag-PPO maintains lower violation levels throughout training, with clearly reduced variance. In contrast, Lag-PPO’s curves drift upward or fluctuate heavily, indicating unstable constraint handling under the aggregated-critic formulation.

2592  
 2593 The  $J_c$  curves further confirm this advantage: every DC-Lag-PPO constraint return steadily moves  
 2594 toward its target threshold  $d$  crosses it, and eventually stabilizes near or below the limit. Lag-PPO,  
 2595 however, shows a single aggregated  $J_c$  that quickly rises above the feasibility threshold and fails to  
 2596 recover, demonstrating an inability to control multiple constraints simultaneously.

2597 In summary, DC-Lag-PPO learns faster, stabilizes earlier, satisfies constraints more reliably, and  
 2598 avoids the divergence observed in Lag-PPO, showing clear benefits of using dedicated critics for  
 2599 multi-constraint RL.



2600  
 2601 Case 2, Reward (Group 2)  
 2602 Economic cost  
 2603 0 1000  
 2604 0 1000 2000  
 2605 Episode  
 2606  
 2607 Case 2, Constraint 1 (Group 2)  
 2608 Volt. vio. ratio  
 2609 0.8  
 2610 0.7  
 2611 0.6  
 2612 0 1000 2000  
 2613 Episode  
 2614  
 2615 Case 2, Constraint 2 (Group 2)  
 2616 Volt. vio. degree  
 2617 0.9  
 2618 0.8  
 2619 0.7  
 2620 0.6  
 2621 0 1000 2000  
 2622 Episode  
 2623  
 2624 Case 2, Constraint 3 (Group 2)  
 2625 Battery degradation  
 2626 0.5  
 2627 0.4  
 2628 0 1000 2000  
 2629 Episode  
 2630  
 2631 Case 2, Constraint 4 (Group 2)  
 2632 Demand unsat. volume  
 2633 0.40  
 2634 0.38  
 2635 0.36  
 2636 0.34  
 2637 0 1000 2000  
 2638 Episode  
 2639  
 2640 Case 2, Constraint 5 (Group 2)  
 2641 Demand unsat. num.  
 2642 0.6  
 2643 0.4  
 2644 0 1000 2000  
 2645 Episode

2615 Figure 36: Training curves on Lagrangian cost threshold set: [30,39,20,20,30].



2616  
 2617 Case 2, Lag-PPO (Group 2)  
 2618 Jc  
 2619 160  
 2620 140  
 2621 0 500 1000 1500 2000  
 2622 Epoch  
 2623  
 2624 Case 2, DC-Lag-PPO Jc\_0 (Group 2)  
 2625 Jc  
 2626 35  
 2627 30  
 2628 25  
 2629 0 500 1000 1500 2000  
 2630 Epoch  
 2631  
 2632 Case 2, DC-Lag-PPO Jc\_1 (Group 2)  
 2633 Jc  
 2634 50  
 2635 40  
 2636 0 500 1000 1500 2000  
 2637 Epoch  
 2638  
 2639 Case 2, DC-Lag-PPO Jc\_2 (Group 2)  
 2640 Jc  
 2641 22  
 2642 20  
 2643 0 500 1000 1500 2000  
 2644 Epoch  
 2645  
 2646 Case 2, DC-Lag-PPO Jc\_3 (Group 2)  
 2647 Jc  
 2648 35  
 2649 30  
 2650 25  
 2651 0 500 1000 1500 2000  
 2652 Epoch  
 2653  
 2654 Case 2, DC-Lag-PPO Jc\_4 (Group 2)  
 2655 Jc  
 2656 40  
 2657 30  
 2658 0 500 1000 1500 2000  
 2659 Epoch

2616 Figure 37: Training curves of  $J_c$  on Lagrangian cost threshold set: [30,39,20,20,30].

## 2635 K.6 LAGRANGIAN MULTIPLIER LEARNING CURVES

2636  
 2637 See Figure 38a.

## 2639 K.7 PARETO FRONTS

2640  
 2641 See Fig. 39. Across all reward-constraint and constraint-constraint pairs in this figure, DC-Lag-PPO  
 2642 exhibits consistently superior Pareto fronts. Its frontier lies uniformly closer to the lower-left region,  
 2643 indicating lower violations for comparable (or better) economic cost. Reward vs. all constraint: DC-  
 2644 Lag-PPO achieves strict dominance, producing solutions with both lower cost and lower violations,  
 2645 whereas Lag-PPO spreads widely and lacks a coherent frontier. Voltage-related pairs (c1-c2): DC-  
 2646 Lag-PPO forms a tighter and clearly improved front, showing better joint voltage safety. Battery



2654 (a) Lagrangian cost threshold set  
2655 [30,39,20,20,30].

2656 Figure 38: Lagrangian multiplier  $\lambda$  learning curves.  
2657  
2658

2659 degradation & dissatisfaction (c3-c4-c5): DC-Lag-PPO consistently pushes the front downward,  
2660 reducing both degradation and unmet demand simultaneously. Lag-PPO fronts are often fragmented  
2661 or upward-sloping, reflecting unstable trade-offs caused by aggregated-critic interference. Overall,  
2662 the DC-Lag-PPO front either envelops or strictly improves upon Lag-PPO across all dimensions,  
2663 confirming its ability to maintain safer and more efficient trade-offs under multi-constraint settings.  
2664



2686 Figure 39: Pareto fronts from the test results on Lagrangian cost threshold set [30,39,20,20,30],  
2687 where the black dotted lines are the thresholds  $d$ .

---

2700 **L NOTATION SUMMARY**
2701

2702 We summarize the key notations used throughout the paper.
2703

---

| Symbol                                    | Meaning                                                                      |
|-------------------------------------------|------------------------------------------------------------------------------|
| $\mathcal{S}$                             | State space of the CMDP.                                                     |
| $\mathcal{A}$                             | Action space of the CMDP.                                                    |
| $P(\cdot s, a)$                           | Transition kernel, probability of next state given $(s, a)$ .                |
| $\gamma \in (0, 1)$                       | Discount factor.                                                             |
| $r(s, a)$                                 | Reward function.                                                             |
| $c_i(s, a)$                               | Cost function for constraint $i \in \{1, \dots, m\}$ .                       |
| $d_i$                                     | Threshold for constraint $i$ .                                               |
| $\pi_\theta$                              | Stochastic policy parameterized by $\theta$ .                                |
| $\nabla_\theta \log \pi_\theta(a s)$      | Policy score function.                                                       |
| $J_x(\pi_\theta)$                         | Expected discounted return of signal $x$ .                                   |
| $\mathcal{L}(\theta, \lambda)$            | Lagrangian objective.                                                        |
| $\lambda = (\lambda_1, \dots, \lambda_m)$ | Vector of Lagrange multipliers.                                              |
| $Q_\pi^x(s, a)$                           | State-action value function for signal $x$ under $\pi$ .                     |
| $T_\pi^x$                                 | Bellman operator for signal $x$ .                                            |
| $\phi(s, a) \in \mathbb{R}^d$             | Feature vector for linear function approximation.                            |
| $\Phi$                                    | Feature matrix stacking $\phi(s, a)$ for all $(s, a)$ .                      |
| $Q_\omega(s, a) = \phi(s, a)^\top \omega$ | Linear critic parameterized by $\omega$ .                                    |
| $D$                                       | Diagonal weighting matrix with stationary distribution $d_\pi(s, a)$ .       |
| $A(\theta)$                               | System matrix $\Phi^\top D(I - \gamma P_\pi)\Phi$ .                          |
| $b^x(\theta)$                             | Right-hand side vector $\Phi^\top D x$ .                                     |
| $\omega^x(\theta)$                        | PBE solution for signal $x$ : $A(\theta)\omega^x(\theta) = b^x(\theta)$ .    |
| $\omega^\lambda(\theta, \lambda)$         | Mixed critic solution.                                                       |
| $\eta_t$                                  | Critic stepsize.                                                             |
| $\alpha_t$                                | Actor stepsize.                                                              |
| $\beta_t$                                 | Dual stepsize.                                                               |
| $\theta_t$                                | Actor parameters at iteration $t$ .                                          |
| $\lambda_t$                               | Dual variables at iteration $t$ .                                            |
| $\omega_t$                                | Critic parameters at iteration $t$ .                                         |
| $\omega_t^*$                              | Instantaneous mixed-critic target at iteration $t$ ,                         |
| $e_t$                                     | Mixed critic error: $e_t = \omega_t - \omega_t^*$ .                          |
| $e_t^x$                                   | Dedicated critic error: $e_t^x = \omega_t^x - \omega^x(\theta_t)$ .          |
| $\zeta_t, \zeta_t^x$                      | Martingale-difference noise terms in critic updates.                         |
| $\Delta_t^\theta$                         | Variation from changes in $\theta$ , eq. equation 4.                         |
| $\Delta_t^{\theta, x}$                    | Drift term for dedicated critic $x$ .                                        |
| $g_t^*$                                   | True actor gradient at iteration $t$ .                                       |
| $\hat{g}_t$                               | Actor gradient estimate using mixed critic.                                  |
| $\hat{g}_t^{\text{multi}}$                | Actor gradient estimate using dedicated-critic, eq. equation 62.             |
| $B_t$                                     | Actor-gradient bias (mixed critic): $\hat{g}_t - g_t^*$ .                    |
| $B_t^{\text{multi}}$                      | Actor-gradient bias (dedicated-critic): $\hat{g}_t^{\text{multi}} - g_t^*$ . |
| $G$                                       | Uniform bound on $\ \nabla_\theta \log \pi_\theta(a s)\ $ .                  |
| $L_\phi$                                  | Uniform bound on $\ \phi(s, a)\ $ .                                          |
| $\mu$                                     | Uniform lower bound on eigenvalues of $A(\theta)$ .                          |
| $C_\lambda, C_\theta, \tilde{C}_\theta$   | Lipschitz / drift constants from error bounds.                               |

---

2746  
2747  
2748  
2749  
2750  
2751  
2752  
2753

Table 6: Performance comparison between dedicated-critic PPO-Lag and mixed-critic PPO-Lag. Values are mean  $\pm$  standard deviation over evaluation episodes.

| Env                     | Dedicated critics    |                   | Mixed critic          |                     |
|-------------------------|----------------------|-------------------|-----------------------|---------------------|
|                         | Reward               | Cost              | Reward                | Cost                |
| SafetyCarGoal1-v0       | 14.56 $\pm$ 8.97     | 21.72 $\pm$ 32.06 | 1.12 $\pm$ 9.23       | 55.34 $\pm$ 102.32  |
| SafetyCarButton1-v0     | 0.36 $\pm$ 1.81      | 51.40 $\pm$ 82.14 | 1.51 $\pm$ 3.64       | 107.14 $\pm$ 132.22 |
| SafetyAntVelocity-v1    | 3324.67 $\pm$ 83.21  | 13.01 $\pm$ 6.32  | 2821.72 $\pm$ 201.91  | 28.52 $\pm$ 8.37    |
| SafetyHalfCheetahV-v1   | 3035.76 $\pm$ 287.42 | 4.14 $\pm$ 2.37   | 2234.245 $\pm$ 345.73 | 45.82 $\pm$ 7.15    |
| SafetyHopperVelocity-v1 | 1002.73 $\pm$ 723.64 | 14.87 $\pm$ 20.74 | 1238.83 $\pm$ 465.35  | 17.21 $\pm$ 12.23   |
| SafetyPointGoal1-v0     | 13.03 $\pm$ 7.15     | 23.97 $\pm$ 33.16 | 15.78 $\pm$ 3.18      | 52.81 $\pm$ 17.10   |

## M ADDITIONAL EXPERIMENTS FOR THE ENVIRONMENT WITH SINGLE CONSTRAINTS

To assess the practical impact of critic design on safe RL performance, we compare our dedicated-critic PPO-Lagrangian (separate value functions for reward and constraint cost) against a standard mixed-critic PPO-Lagrangian baseline across a diverse set of Safety-Gymnasium and velocity-control benchmarks. Specifically, we evaluate on the navigation tasks `SafetyCarGoal1-v0`, `SafetyCarButton1-v0`, and `SafetyPointGoal1-v0`, as well as the continuous-control environments `SafetyAntVelocity-v1`, `SafetyHalfCheetahVelocity-v1` (`SafetyHalfCheetahV-v1`), and `SafetyHopperVelocity-v1`, which together span both sparse goal-reaching rewards with collision costs and dense velocity-tracking settings with safety penalties. For each environment and method, we report the mean  $\pm$  standard deviation of episodic reward and episodic cost over multiple evaluation rollouts after training, so that higher reward and lower cost indicate a better reward–safety trade-off. As summarised in Table 6, these experiments allow us to directly test whether separating reward and cost critics improves constraint satisfaction and stabilises learning compared to the widely used mixed-critic formulation.

Across all six benchmarks, the dedicated-critic PPO–Lagrangian consistently improves safety and often improves reward relative to the mixed-critic baseline. On the navigation tasks, *SafetyCarGoal1-v0* shows the clearest win: separating reward and cost critics raises the mean return from 1.12 to 14.56 while *also* reducing mean cost from 55.34 to 21.72, and it substantially shrinks the very large cost variance of the mixed critic. A similar pattern appears on *SafetyCarButton1-v0*: both methods obtain very low rewards (reflecting task difficulty), but the dedicated critic roughly halves the average cost (51.4 vs. 107.14) and reduces variability, indicating more reliable constraint satisfaction even when the policy is far from optimal. On *SafetyPointGoal1-v0*, the mixed critic achieves slightly higher reward (15.78 vs. 13.03) but at the price of more than double the mean cost (52.81 vs. 23.97), so the dedicated critic offers a strictly safer solution with only a modest reward gap.

The MuJoCo velocity environments highlight the benefit of dedicated critics even more strongly. On `SafetyAntVelocity-v1`, the dedicated-critic agent improves reward from 2821.72 to 3324.67 *and* cuts mean cost by more than half (28.52 to 13.01). On `SafetyHalfCheetahVelocity-v1`, the effect is even more pronounced: reward increases from 2234.25 to 3035.76, while cost drops from 45.82 to 4.14, giving a dramatically better reward–safety trade-off. `SafetyHopperVelocity-v1` is the only case where the mixed critic slightly outperforms in reward (1238.83 vs. 1002.73), but the dedicated critic still attains lower cost (14.87 vs. 17.21) and comparable variance. Overall, these results align with our theoretical claim: by removing the  $\lambda$ -induced target drift, dedicated critics provide more stable value estimates, which in practice translates into systematically lower constraint violations and, in most tasks, equal or higher task performance than the mixed-critic formulation.

N ASYMPTOTIC VANISHING OF MIXED-CRITIC BIAS

*Remark N.1 (Asymptotic vanishing of mixed-critic bias).* Under Assumption 4.1, the step-size ratios satisfy  $\alpha_t/\eta_t \rightarrow 0$  and  $\beta_t/\eta_t \rightarrow 0$  as  $t \rightarrow \infty$ . Hence both limsup terms on the right-hand



Figure 40: Robbins–Monro Lag-PPO in a two-constraint CMDP: comparison between mixed and dedicated critics

side of Theorem 4.7 are zero, and we obtain  $\limsup_{t \rightarrow \infty} \mathbb{E}[\|B_t\|] = 0$ . That is, in the idealised linear SA regime of Assumption 4.1, the mixed–critic actor–gradient bias vanishes asymptotically, so mixed–critic Lag-PPO and its dedicated–critic variant coincide in the limit. By contrast, this regime requires Robbins–Monro step sizes and strong timescale separation between critic, actor, and dual, which is *not* how deep PPO–Lagrangian is used in practice with (effectively) constant learning rates and Adam. Our experiments follow this practical setting, where a non-negligible mixed–critic bias can persist, which is why Theorem 4.7 is stated in terms of the ratios  $\beta_t/\eta_t$  and  $\alpha_t/\eta_t$ , keeping the bound informative for realistic, non-asymptotic schedules.

To more directly connect our empirical results to the asymptotic setting in Assumption 4.1 and Theorem 4.7, we also study a Robbins–Monro (RM) variant in a simplified, idealised environment. The goal of these experiments is to approximate the stochastic-approximation regime assumed in the theory and to compare mixed and dedicated critics under those conditions.

**Experimental design.** We consider a small constrained MDP with two constraints and a low-dimensional state and action space, for which we can reliably measure reward, total constraint violation, and dual-variable behaviour over training (same as Appendix H). In this setting we implement two variants:

- **Mixed RM:** a single mixed critic trained on the scalarised signal  $r_\lambda = r - \sum_i \lambda_i c_i$ .
- **Dedicated RM:** separate critics  $V_r$  and  $V_{c_i}$  trained on reward and each constraint cost, respectively.

Both variants use the *same* data (trajectories), and differ only in how the value function is parameterised. To align with Assumption 4.1, we use Robbins–Monro learning-rate schedules for the actor, critics, and dual variables:

$$\alpha_t = \frac{\alpha_0}{1 + k_\pi t}, \quad \eta_t = \frac{\eta_0}{1 + k_V t}, \quad \beta_t = \frac{\beta_0}{1 + k_\lambda t},$$

chosen such that  $\sum_t \alpha_t = \infty$ ,  $\sum_t \alpha_t^2 < \infty$  (and similarly for  $\eta_t, \beta_t$ ), and with a clear time-scale separation  $\eta_t \gg \alpha_t \gg \beta_t$ . All other hyperparameters are held fixed across the two variants. We track three metrics over training:

1. expected reward (per step),
2. total constraint violation (per step),
3. the absolute difference between dual variables (to monitor symmetry of the Lagrange multipliers in the two-constraint case).

Figure 40 shows these three quantities for both Mixed RM and Dedicated RM.

In this idealised, near-linear Robbins–Monro setting, the mixed–critic and dedicated–critic variants behave very similarly. Their reward curves almost overlap, both methods achieve comparable levels of constraint satisfaction, and the dual variables converge to a very similar symmetric configuration. This is consistent with Theorem 4.7: when the learning rates satisfy the stochastic-approximation conditions and the critics can track their targets on the fastest time scale, the additional dual-induced drift term in the mixed critic does not translate into a noticeable difference in the limiting behaviour. In other words, this toy Robbins–Monro experiment can be seen as a direct empirical realisation

2862 of the asymptotic linear-theory predictions, and it serves as a sanity check that our finite-sample  
 2863 implementation matches the behaviour analysed in the theoretical section.  
 2864

## 2865 O ROBBINS-MONRO LAG-PPO

2866 In RM Lag-PPO, we replace Adam with plain SGD and use diminishing step-size schedules for  
 2867 the actor, critic, and dual updates. The data-collection and PPO objective remain unchanged; only  
 2868 the optimiser and step-size schedules differ. We instantiate a *mixed* RM Lag-PPO, Lag-PPO (one  
 2869 critic) and a *Dedicated* RM variant (separate critics), and train them on the complex power system  
 2870 environments. However, as we cannot run for effectively unlimited time, and strict Robbins–Monro  
 2871 schedules cause step sizes to become very small within a realistic training budget, the RM Lag-  
 2872 PPO variant performs quite similarly with the standard constant-stepsize Lag-PPO (Figure 41). This  
 2873 similarity is further reinforced by PPO’s ratio clipping (and gradient clipping), which effectively  
 2874 bounds the size of each policy update even under a nominally constant learning rate, making standard  
 2875 Lag-PPO behave in practice like a conservatively damped method whose effective step sizes are not  
 2876 far from those induced by a Robbins–Monro schedule over a finite training horizon.  
 2877



2878 Figure 41: Training curves of Lag-PPO.  
 2879  
 2880  
 2881  
 2882  
 2883  
 2884  
 2885  
 2886  
 2887  
 2888  
 2889  
 2890  
 2891  
 2892  
 2893  
 2894  
 2895  
 2896  
 2897

## P STATEMENT ON LLM USAGE

2900 Large language models (LLMs), such as ChatGPT, were used solely for editorial assistance in this  
 2901 work. Their role was limited to improving grammar, rephrasing sentences, and enhancing clarity and  
 2902 readability of the authors’ original text. No LLM was used to generate original scientific content,  
 2903 analysis, or results. The authors take full responsibility for the integrity and validity of the work  
 2904 presented.  
 2905  
 2906  
 2907  
 2908  
 2909  
 2910  
 2911  
 2912  
 2913  
 2914  
 2915