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ABSTRACT

Lagrangian-based methods are one of the dominant approaches for safe reinforce-
ment learning (RL) in constrained Markov decision processes, commonly used
across domains with multiple constraints. While some implementations combine
all constraints into a mixed penalty term and others use one estimator per con-
straint, the fundamental question of which design is theoretically sound has re-
ceived little scrutiny. We provide the first theoretical analysis showing that the
mixed-critic architecture induces a persistent bias due to target drift from evolv-
ing Lagrange multipliers. In contrast, dedicated-critic design—separate critics for
reward and each constraint—avoids this issue. We also validate our findings in a
simulated but realistic power system with multiple physical constraints, where the
dedicated-critic method achieves stable learning and consistent constraint satisfac-
tion, while the mixed-critic method fails. Our results offer a principled argument
for preferring dedicated-critic architectures in multi-constraint safe RL problems.

1 INTRODUCTION

Safe reinforcement learning (RL) in constrained Markov decision processes (CMDPs) (Altman,
1999) has become increasingly important in real-world applications such as robotics, power systems,
autonomous driving, and healthcare (Yan and Xul [2020; |[Wang et al., 2020} |(Calascibetta et al., [2023;
Zhang et al.,|2020; Shi et al.,2023). Among the most widely adopted frameworks for handling such
problems are Lagrangian-based methods, which introduce Lagrange multipliers for constraints and
optimize a mixed/augmented objective (Achiam et al.,2017;|Ray et al.,[2019b). This approach offers
appealing theoretical properties: it transforms a constrained problem into an unconstrained one,
allowing the use of powerful policy gradient and actor-critic techniques, while enabling principled
constraint enforcement via dual variable updates. Theoretically, under suitable assumptions, this
leads to saddle-point solutions that jointly maximize reward and satisfy constraints, making it both
elegant and scalable for complex, high-dimensional systems (Achiam et al.,[2017).

One important but often overlooked reality is that real-world CMDPs rarely involve a single con-
straint. Instead, agents are typically required to satisfy multiple, interacting safety, resource, or op-
erational constraints during both training and deployment. For instance, robotic systems must avoid
unsafe behaviors while simultaneously respecting torque and energy limitations (Liu et al., 2022}
Junges et al.| 2016); autonomous driving agents must account for safety margins, passenger com-
fort, and compliance with traffic laws (Zhang et al., [2023;2021)); and power systems must balance
supply and demand while maintaining safe voltage and capacity constraints (Wu et al.| 2023} |Chen
et al., [2022). These constraints are rarely independent and often conflict, making multi-constraint
settings the norm rather than the exception.

A critical but insufficiently studied aspect of Lagrangian safe RL is the value-critic architecture for
multi-constraint problems. Although the CMDP formalism and constraint-aware algorithms such
as CPO define per-constraint(dedicated) quantities for policy updates (Achiam et al., 2017), there
remains no theoretical justification in the literature for why to use this approach in practice. On the
other hand, most widely used implementations, including PPO-/TRPO-Lagrangian baselines (Ray
et al., 2019b; [Stooke et al., 2020; [Yang et al., 2020; Bhatnagar et al.| |2009; Kim et al.| [2023)), im-
plicitly collapse all constraints into a single mixed penalty term and estimate it using one cost critic.
While simple and computationally efficient, this design sidesteps the unique challenges posed by
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multi-constraint CMDPs. As shown in
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2019). These observations further moti-
vate a deeper theoretical analysis of critic design and support our proposal for a dedicated-critic
framework as a necessary advancement for stable and scalable safe RL under multiple constraints.

Motivated by the widespread use of mixed-critic architectures in safe RL and the increasing demand
for multi-constraint decision-making in real-world applications, we aim to close a crucial theoretical
gap in constrained reinforcement learning. In this work, we provide the first formal analysis of
mixed- versus dedicated-critic designs in Lagrangian-based constrained RL. We show that training a
mixed critic on multi-constraint signals introduces a structural bias in the actor update. Specifically,
as the Lagrange multipliers evolve during training, the critic’s target drifts in a way that violates
the stationarity assumption required by temporal-difference learning. This leads to a persistent error
in the estimated policy gradient. We prove that the dedicated-critic design, training separate critics
for the reward and each constraint signal, eliminates the dual-driven drift altogether. To validate
our theoretical results in practice, we implement both mixed- and dedicated-critic methods in a
constrained bandit problem and a constrained energy control problem with multiple physical limits.
The experiments reveal that the mixed-critic approach frequently violates constraints, whereas the
dedicated-critic design achieves stable learning and consistently satisfies all constraints. This work
makes three main contributions: 1) We provide the first formal analysis of mixed- vs. dedicated-
critic designs in Lagrangian safe RL, showing that mixed critics suffer from dual-induced bias. 2)
We prove that dedicated critics yield stationary targets, eliminating drift and enabling stable policy
gradient estimation. 3) We validate our theory in constrained MDP tasks and complex energy control
task, where dedicated critics achieve stable learning and consistent constraint satisfaction.

2 RELATED WORK

Safe RL aims to train agents that not only maximize long-term performance but also respect safety
or risk-related constraints during learning and deployment. This is often formalized through the
framework of Constrained Markov Decision Processes (CMDPs), where the objective is to maxi-
mize expected return while ensuring that expected costs, representing safety violations or resource
usage, remain below specified thresholds. (Altman,|1999;|Garcia and Fernandez,[2015)). This formu-
lation admits a primal—dual view in which constraints are handled by Lagrange multipliers, giving
rise to the widely used Lagrangian (lag-based) methods: they update policy parameters to ascend
a Lagrangian objective and update dual variables toward feasibility. Prominent examples include
TRPO-Lagrangian and PPO-Lagrangian (Achiam et al., 2017} |Ray et al., 2019b), SAC-Lagrangian
variants (Ray et al., 2019b), and Reward-Constrained Policy Optimization (RCPO) (Tessler et al.,
2019).

Compared to alternative approaches(Stooke et al., 20205 [Liu et al.l 2020; | Xu et al., [2021; |(Chow
et al.,2018)), Lagrangian methods offer several practical advantages that have led to their widespread
adoption (Achiam et al., 2017} |Schulman et al.| 2015} Ray et al., |2019b; |Yang et al., |2021a} |Kim
et al., 2023). They are plug-and-play compatible with both on-policy and off-policy learners, and
introduce only a small number of hyperparameter. These properties make them highly amenable
to integration within standard RL pipelines. Consequently, Lagrangian variants like PPO-Lag and
TRPO-Lag have become de facto baselines in major Safe RL benchmarks and toolkits. Their ac-
cessibility, combined with consistently strong empirical performance, has made them the dominant
choice in both robotics and simulated safety-critical control environments.
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A critical yet underexplored aspect of Lagrangian based safe reinforcement learning is the archi-
tecture of value critics when dealing with multiple constraints. The question of how to estimate
constraints returns in deep RL has received far less attention than objective or dual design, but it un-
derlies much of the instability noted in safe RL. In early safe RL and constrained MDP work, classic
algorithms (e.g., Constrained Policy Iteration) implicitly worked with per-constraint value functions,
but without deeply discussing representation in function approximation settings (Altman, [1999;
Achiam et al.,|2017). As deep safe RL matured, many practical baselines resorted to collapsing cost
signals into an aggregated penalty and training a mixed “cost critic” alongside a reward critic; this
pattern is pervasive in benchmark codebases (e.g. Safety Starter Agents, PPO-/TRPO-Lagrangian)
(Ray et al.l |2019b; [Stooke et al.l 2020). Some recent methods extend to multiple constraints, but
often leave the critic architecture unspecified or adopt ad-hoc shared representations rather than for-
mally treating per-constraint estimation (Kim et al., 2023). Work on stabilizing Lagrangian dual
updates—such as PID-Lagrangian, dual clipping, or adaptive multiplier heuristics—addresses the
dual dynamics but typically retains the standard two-critic collapse architecture (Stooke et al., 2020;
Xu et al., 2021} [Liu et al., 2020). In off-policy safe RL methods like SAC-Lagrangian variants or
worst-case safety critics (e.g. WCSAC), the separation between reward and cost critics is common,
but again usually implemented at the aggregate cost level even when multiple constraints are present
(Yang et al.| |2021b; Tessler et al., 2019). Across the literature, the critic architecture—whether to
collapse or separate constraints—is treated as an afterthought, often chosen for ease or efficiency
rather than guided by theoretical insight. This pervasive gap means that many empirical instabil-
ity observations, violation spikes, slow convergence remain underexplained—pointing to a need for
more rigorous analysis of critic structure in multi-constraint safe RL. In this work, we fill this gap
by theoretically and empirically analyzing these design choices. Our analysis shows that mixed
constraint critics can introduce structural bias in multi-constraint settings, whereas dedicated critics
mitigate this bias by isolating constraint signals.

3  PROBLEM FORMULATION

We begin by formalizing the constrained reinforcement learning problem with multiple constraints.
A discounted Constrained Markov Decision Process (CMDP)(Altman, [1999) is specified by the
tuple (S, A, P, v, r, {¢;}™,), where: S is the (possibly infinite) state space; .A is the action
space; P(:|s,a) is the transition kernel governing state evolution; v € (0, 1) is the discount factor;
r: S x A — Ris the reward signal we aim to maximize; ¢; : S x A — R, are cost signals
corresponding to m safety or resource constraints.

For a stochastic policy 7y (a|s) parameterized by 6, the expected discounted return of a signal x €
{r,c1,...,cm}is

Jz(ﬂ'g) = Eﬂe

thw(st,at)l : 1)

t=0

In particular, .J,(7g) is the expected reward return, while J., () is the expected discounted cost
associated with constraint ¢. The returns in equation [I|can be characterized via value functions.

Constraints of the form J,, (mp) < d; can be enforced via a Lagrangian formulation. Introducing
multipliers A = (A1,...,Ap) € R, we define £(0,)) = J,(mg) — 21 Ni(Je, (m9) — ds).
Optimization then proceeds in a primal-dual fashion: the actor seeks to maximize £(6, \) over
¢, while the dual variables \ adaptively adjust to enforce the constraints. Let &7 (-; w) denote a
learned signal estimator for x € {r,c1,...,cp} parameterized by w. Its input may be s or (s, a)
depending on the method (e.g., value-, advantage-, or return-based); the analysis does not depend
on this choice.

By the policy gradient theorem, the gradient of the Lagrangian w.r.t. 0 is

VoL(0,\) = Eyor, [ve log mo(als) (S;e(s,a) -3 Sﬁg(s,a))] , 2)
=1

where £7 and £ denote the learned signal estimators for reward and each cost under 75. Note
that A merely scales the i contributions; the estimators themselves depend only on 7.



Under review as a conference paper at ICLR 2026

Mixed-critic (Classic) methods. Constraints are aggregated before (or within) estimation, so
there is no per-constraint head. Two common variants both qualify as “mixed critic:

(a) Single-Estimator: Sﬁ‘;x(q w) & 57:9_2’11 ties ()

(b) Two-Estimator: & (-;w"), EiEe( W) & &%Eil A ().
In both (a) (Altman, |1999) and (b) (Ray et al., 2019b; |Stooke and Abbeel, |2020), all constraints are
mixed into a single scalar cost signal, hence “mixed critic.”

Dedicated-critic methods. Maintain one estimator per signal, i.e., a Separate Estimator for re-
ward and for each constraint (Achiam et al., [2017):

{&€(5w®) s we{r,c,...,cm}}

4 THEORETICAL ANALYSIS: WHY WE NEED DEDICATED CRITICS FOR
MULTI-CONSTRAINT PROBLEMS

In this section, we will systematically show that training a mixed critic on the multiple signal gener-
ally yields actor updates that do not track the true Lagrangian gradient Vy£(60, \) during learning,
unless one imposes stronger timescale separation (critic faster than both actor and dual) and near-
exact critics. In contrast, a dedicated-critic design (one critic per signal) does not suffer from this
issue. Our argument is constructive and quantitative.

4.1 SETTING

Assumption 4.1 (Stepsizes and timescale separation). Critic, actor, and dual stepsizes 7, oy, 8¢ > 0
satisfy 35,71 = 00, 252017 < 00. 58 — 0, % — 0.

Assumption 4.2 (Bounded policy score and compact dual domain). At iteration ¢, states/actions
(st,at) are sampled on-policy under 7mp,. There exists G < oo such that the log-policy score
is uniformly bounded almost surely: ||Vglogm,(a; | s;)|| < G. The dual variable sequence
{At}i>0 C RZ, remains in a fixed compact set A C RZ,, (e.g., via projected updates onto A).
Assumption 4.3 (Critic noise regularity). Let the critic update use the population linear form
with additive martingale-difference noise: wi1 = wy + ¢ (be — Agwy) + ne Gi41, Where Ay =
A(6;) and b, := b(f;) are Fi-measurable. The noise {(i41}i>0 satisfies E[(4q1 | Fi] =
0 and E[|[¢+1]1? | Fi] < 0 < oo as. forall ¢.

Assumption matches standard stochastic-approximation practice: the critic uses diminishing
stepsizes and runs faster than the actor and dual. Assumption [4.2] is routine for common policies
(softmax, Gaussian with clipped parameters) and for lag-based methods that project/clip A; onto a
compact box A. Assumption[d.3|follows from on-policy sampling with bounded features/signals and
mini-batch estimates, which yield martingale-difference noise with bounded conditional variance.
These mild conditions are typical in deep RL and suffice to ensure critic contraction and to isolate
the dual-induced drift term that motivates dedicated per-signal critics.

For a fixed policy 7y and signal € {r,cy,...,¢n}, the per-signal critic in a linear class (Sutton,
1988; [Tsitsiklis and Van Roy, |1996a) satisfies the projected Bellman equation (PBE) (Munos, 2003;
Tsitsiklis and Van Royl [1996b), which yields the normal equations A(0) w™*(0) = b*(6) with
A(0) = ®"Dy(I — yP,,)® and b® () = & Dyr® (state—action and advantage/GAE variants give
the same linear template with the appropriate A, b). We work under A(6) = uI for some i > 0, and
A(+), b®(-) are locally Lipschitz in 6 (See Appendix [B]and [F for details).

4.2 MIXED-CRITIC IN MULTI-CONSTRAINT CMDPs

When a mixed critic is used for the scalarized signal, 7y, = r — 27;1 At i ci, The PBE is
A(B) W™ = B = b7(8;) — ST, Avi b (8;). The stochastic update implements a Robbins—
Monro step toward this fixed point using mini-batch estimates of A(6;) and b{"*. Writing the update
in population form plus a mean-zero error gives

wf_‘ﬁ’f = w;nix + e (b;nix - A(@t) winix) + Mt Ct—i—l: (3)
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where 1, > 0 is the critic stepsize and ;11 is a martingale-difference noise capturing finite-sample
and sampling variability. For a fixed (6, \), the PBE for the mixed signal is A(0) w™*(0,)\) =
b"(0) — >°1, A\;bei(6). By linearity of the operator, the solution decomposes as w™*(6,\) =
w(0) =31, A\ wei (), where w” (0) and w® (0) are the PBE solutions for the reward and each cost
signal individually. Let us denote the instantaneous target at time ¢ by wp Box — WXy, ), e =

S % That s, e, is the critic error relative to the exact PBE solution for the current (0¢, \p).

Subtracting wtm_ﬁ’f * from both sides of the recursion equatlonlylelds the exact error recursion

eir1 = (I = neA(0y) er + (W™ — W) +melegr + A, “)
—_——
target drift
where A? collects the small changes in A(6), I € R?*9 denote the d x d identity matrix, and b(#)

induced by ;1 # 6. Using the stationary equivalence w}"™* = w"(0;) — Yo A wei(6;) and
the analogous expression at time ¢+1, we have

Wit wfff = {wr(ot) - Z At W (97:)} - {wr(et-&-l) - Z Atg1,iw (0t+1)}

=1

= ( "(0;) — w"(041) ) i ()\tz — A1, w (9t+1))- &)

=1
Add and subtract A\, ; w® (6;11) inside the sum:
At i w(0r) — Aeg1,i W (Oppr) = )\t,z( (0;) — w (9t+1)) + (Ati — Atgis) W (0ip1).  (6)
Substituting equation [6]into equation 3] yields

W = (W (8) — & (Bu4n) ) — Z/\“( (00) — w* (Bu41))

Z AMt1,i — M) W (B @)
=1

By Lipschitz continuity, there exist L,, L., < oo such that ||w”(0;4+1) — w"(0:)]] < L, ||9t+1 -
O, [|we (Oe41) — w(0)|| < Le, ||0e11 — HtH With a standard actor update 6,41 = 0; + oy g€
where ¢ is a stochastic policy-gradient estimate and we assume ||g'|| < Cp, it follows that
[10e41 — 6:]] = a2 = O(cwt). Therefore,

lw" (0:) = " (B 1) || = Olaw), || Ari (W (0r) — w (0141)) || < [IAelloo Le; 1041 — 02| = Oewr),
using \; € A compact. Thus the first two terms in equationaIe O(ay).

Consider the dual-induced part of equation 27; ()‘t+1,i - )‘t,i) w® (0¢41). By Assumption
A+ € A with A compact, and local Lipschitzness, the map 6 — w® () is continuous; hence M :=
sup; ¢ [|w (0)]| < oo (on the on-policy region visited by {6 }). Therefore

m

[ 3o wts = A )| < It = Aelly max o Bl < M [Aess = Ml
=1

For a standard projected dual update, A1 = ITx (As+ B¢ g¢ ), with IT, nonexpansive and [|g¢|| < C
(g: € R™ denotes a subgradient of the dual objective with respect to \), we have

[Aerr = Ml < ||+ Bege = M| = Bellgell < B:Cx = O(Br).
Combining the two displays yields

Himu*Mw”i(@m)H < MCy B, = O(8y).
1=1

The target drift decomposes as w; — w;,; = O(ay) — O(fy). The O(oy) term arises from policy
updates (present in any actor—critic), with the additional O(;) term. In this case, the target moves
not only because the policy parameters € evolve (the standard O(«y) policy-driven drift), but also
because the dual variables A evolve, producing an additional O(/3;) dual-driven term. This extra
dual-driven drift induces persistent bias in the actor gradient.
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Remark 4.4 (Drift for the reward critic + cost critic design). In the two-critic setup, one critic esti-
mates the reward target w” () and a second critic estimates the aggregated cost target wst (9, \) =
o A wei(0),(used in PPO-LAG, TRPO-LAG) follow the same process on w®s*, we have

Wi fff*z—ZAm( (0) = (0r11)) = D (s = Aea) 6 (Brga). - (®)
i=1

Here the reward term w” (6;) — w" (6¢4.1) does not appear because it is handled by the reward critic’s
own recursion; equation [8| isolates the drift of the aggregated-cost head, which contains a policy-
induced component (through 6;; — ;) and a dual-induced component (through A\;11 — A\¢).

Lemma 4.5 (Mixed-critic error bound). If A(0) = pI uniformly and the stepsizes satisfy a/n —
0, Bt/n: — O, then there exist constants Cy, Cy, such that:

C
limsup E|je;]| < —/\limsup& + —hmsup— + O(1). 9)
t—o0 H t—oo Tt B t—oo M

Proof sketch. From equation fand since A(0;) = pul, ||(I — neA(6:))ee|| < (1 — pme)|lec]|, using
equation[7} we have:

lwi —wiiall < Ox A1 — Ml + Co [|0p11 — 0:]| < Cx Be + Cp vt

Taking expectations and using bounded MDS noise and apply the standard SA comparison: if
Zer1 < (1 — ag)xy + by with ap = pny, then lim sup ¢ < lim sup b;/a;. Hence,

1
limsupE|je;]] < —lim sup(% 4 Coou 4 O(nt)),
t—o00 Mt t—oco i e
which yields equation[9]since 7, — 0. Please refer to Appendix [C|for detailed proof. O
Lemma 4.6 (Actor-gradient bias bound). Let g; and g} be the actor’s estimated and ideal gradients,

Gr = Ey[ Vg log o, (as]se) ¢(st, at)th], g =By Vg logmg, (at]si) ¢(st, at)TwZ‘] (10)

with critic error e; = wy —w}. Assume the score and features are bounded as |V g log mg, (at]s:)|| <
G, ||¢(s¢,ae)|| < Lg. Then the actor-gradient bias B, = g, — g7 satisfies

Bl < GLg [lex]- (11)

Proof. See Appendix [D|for detailed proof. O

Theorem 4.7 (Bias from a Mixed Critic). Suppose Assumptions hold and A(0) = pl
uniformly in 0. Then the actor-gradient bias By incurred by using a single mixed critic satisfies

limsup E[[B:|| < GLy (C lim su p& + — hmsup at) : (12)
t— o0 17 t—oo Mt H t—oo Mt
Proof. See Appendix [E]for detailed proof. O

Mixed-critic design introduces an additional bias term of order 3; /7, arising from the dependence
of the mixed constraints on the dual variables A. Consequently, the actor’s update does not follow
the true Lagrangian gradient unless the critic runs much faster than the dual (5; /n; — 0 sufficiently
quickly), or is essentially exact.

4.3 DEDICATED-CRITIC IN MULTI-CONSTRAINT CMDPs

For dedicated-critic design, we maintain a separate critic with parameters w; for each reward and
constraints x € {r,cy,..., ¢y}, updated by

Wi = Wi+ m( = AO) W +0°0) + G ), e e{nenen) (13
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Define the signal-specific fixed point w®*(6) by A(6) w**(0) = b*(0) and let the tracking error be
ef = wf —w;"". Subtract w; | (6¢+1) to equation 13[to obtain

efﬂ = oJ'tt+1 - w?rl(etﬂ) = (Wf — e A(Or)wy +n:eb™(0:) + 77th+1) - Wfi:l(etﬂ)

= (1=mA@))er + mcr + AP",

A dedicated critic answers a fixed question: under the current policy, what is the expected cumu-
lative value of one signal—either reward or a single cost? Because that question does not mention
the penalty weights, changing A does not change what the critic is trying to predict; only changing
the policy does. To be more specific, each dedicated critic estimates a signal-specific fixed point
w™*(0) defined by A(0) w™*(0) = b*(6), where both A() and b*(#) depend on the policy 6 and
the single signal « € {r, ¢y, ..., ¢}, but not on the Lagrange multipliers; Therefore, in the one-step
error recursion the only drift term comes from policy movement 0; — 0;11, and no (A1 — A;) term
appears. By contrast, a mixed-critic’s target is defined using A (it blends reward and costs with those
weights), so every time ) is updated the target itself shifts, creating the extra (A;11 — A;) drift.

Lemma 4.8 (Dedicated-critic tracking error). Suppose assumptions [{.1] and {.3| hold, then there

exists Cy < oo such that for every x € {r,c1,...,cm},
C
limsup E||ef || < =0 limsup%. (14)
t—o00 12 t—oo Mt
Proof. Please refer to Appendix |C|for detailed proof. O
Theorem 4.9 (Dedicated-critic Bias). Suppose Assumptions hold, let g; and g; be the ac-
tor’s estimated and ideal gradients, the dedicated-critic actor bias be B"" = gmii — g% Then
. multi 59 . Oy
limsup E||B{"*"|| < GL4— limsup —, (15)
t—o0 M t—oo T
Proof. See Appendix [E]for detailed proof. O

5 EXPERIMENTS

5.1 SIMPLE CMDP BANDIT PROBLEM

We design a minimal yet diagnostic constrained bandit CMDP that cleanly isolates the effect of
single vs. dedicated-critic architectures under Lagrangian updates. All implementation choices be-
low are fixed and reported for full reproducibility. We use a one-state bandit with binary actions
A = {a1, a2}, discount v = 0, reward r(a;) = 0,7(az) = 1, and two costs ¢1(a1) = 0, ¢1(az) =
1,¢9(a1) =1, ca(az) = 0, with constraints J., < dy and J., < dg, where d; = do = 0.5. The pol-
icy mp is a Bernoulli with a single logit 6 € R: wg(a1) = o(f), mo(az) =1—o(6), o) =
H%. Under this policy, expected costs are J., = 1 — o(0), J., = o(f), and expected reward is
Jr=0(0)r(a1) + (1 —0o(0))r(az) =1—oc(0).

We compare two actor—critic variants that share the same actor and dual updates. On each step,
we sample a ~ 7y and apply an update with a (learned) advantage surrogate from the critic(s):

Oir1 = 6+ agy, g =V logm)t(at)@t(at), where Vglogmg(a1) = 1 — o(6)
and Vglogmg(az) = —o(f). We maintain A = (A\,A2) € R with projected stochas-
tic ascent: A; 411 = H[O,Amax]()‘i,t + B¢ — di)), i € {1,2}, where ¢; is the instan-
taneous cost sample (0 or 1 in this bandit) and A,x = 10. Projection keeps A; in a com-

pact set. In this bandit, the true Lagrangian gradient has a closed form. Let m; = o(6) and
fla) = r(a) — Ac1(a) — Aaca(a), flay) =r(a1) — N2, f(a2) =r(az) — A1. Then gy ==
VoL(0, M) = (1 —m1) (f(ar) = flaz)) = o(0:) (1= 0 (6:)) ((r(ar) — Aa.e) — (r(az) — A1)

Results and Discussion: Both methods attain similar average returns, but the mixed-critic curve
has much higher variance (large confidence band, occasional dips). The dedicated-critic maintains
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Figure 2: Performance for CMDP Bandit.

comparable reward with markedly lower variability. The mixed-critic exhibits large and growing
volatility, whereas the dedicated-critic remains low and stable. This matches the theory: a mixed
critic’s target moves with A);, inducing oscillatory dual dynamics; dedicated critics avoid this A\—
coupling.

To measure safety, we compute the violation which quantifies by how much the learned policy
exceeds constraint thresholds at each step. Mixed-critic drifts to higher violations, while dedicated-
critic settles much lower, implying better safety during training rather than only at convergence.

We also measure how well the actor’s update direction matches the true Lagrangian gradient by
computing a moving Pearson correlation between the estimated gradient g; and the true gradient g;.
Based on the results, dedicated-critic sustains a higher correlation than mixed-critic, indicating the
actor follows the true Lagrangian gradient more reliably when critics are per-signal.

We quantify the stability of the dual variables by tracking the moving standard deviation of the gap
|A2,+ — A1,¢|. This measures whether Lagrange multipliers converge smoothly or oscillate over time.
The mixed-critic exhibits large and growing volatility, whereas the dedicated-critic remains low and
stable. This matches the theory: a mixed critic’s target moves with A\, inducing oscillatory dual
dynamics; dedicated critics avoid this A—coupling.

5.2 MULTI-CONSTRAINT POWER SYSTEM APPLICATION

Rather than relying on standard safe-RL benchmarks (whose constraints are few and stylized), we
evaluate in a complex energy scenario designed to stress realism and constraint diversity. Compared
with standard, the environment couples stochastic demand, renewable generation uncertainty, ramp-
ing limits, transmission congestion, reserve requirements, and device-level safety, yielding multiple,
interacting constraints with heterogeneous timescales. This setting captures (i) tight operational en-
velopes,(ii) correlated risks across assets, and (iii) nontrivial trade-offs between cost and safety. In
this case, we adopt a standard deep PPO configuration with neural-network critics (two-layer MLPs
with 256 units per layer), so the empirical results directly evaluate our approach in the deep RL
regime rather than in the idealised linear setting used for the theory.

System Overview and Constraints. We consider a radial distribution network with high rooftop
PV penetration, where community battery energy storage systems (CBESSs) are coordinated to en-
sure safe and efficient operation. Each CBESS is subject to power, efficiency, and state-of-charge
(SoC) constraints, can transact with the upstream grid under trading limits, and incurs both trading
and degradation costs. When storage is saturated, PV curtailment is applied with fairness constraints
to avoid disproportionate restrictions across buses. The system is modeled using the LinDistFlow
approximation. The central control task is to schedule CBESS actions and PV curtailment to mini-
mize trading cost while maintaining constraint satisfaction across multiple operational and fairness
dimensions. To enforce safety and equity, we define five cost terms (constraints) monitored over the
scheduling horizon: (1) Voltage Violation Ratio penalizes the number of buses breaching voltage
limits; (2) Voltage Deviation Degree penalizes the severity of such violations; (3) Line Loading Cost
penalizes thermal overloads on network branches; (4) Battery Degradation Cost discourages exces-
sive CBESS cycling; and (5) PV Curtailment Unfairness penalizes uneven curtailment across buses.
These constraints interact over heterogeneous timescales, capturing the multifaceted trade-offs in
real-world power systems. Full modeling details are provided in Appendix [J]

Results and Discussion: In this work, we prioritize constraint satisfaction as the central perfor-
mance objective. Under consistent PPO backbones and training configurations, we compare two
architectures: (i) the widely used PPO-Lagrangian baseline, which utilizes a single reward critic and
a mixed critic for the aggregated cost signal, and (ii) the proposed Dedicated critic setup, which
retains a shared reward critic but replaces the single cost critic with multiple per-constraint critics.
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Experimental details are provided in Table [3]in Appendix [J] As shown in Fig. [3] the dedicated ar-
chitecture exhibits significantly more stable training behavior, with smoother learning curves and
reduced variance in value estimates, while the baseline often suffers from unstable updates and
erratic dual dynamics—particularly when constraint signals conflict. On unseen demand and renew-
able profiles, the Dedicated model consistently achieves the lowest violation rates and magnitudes
across all five constraint dimensions, with noticeably fewer and shorter spikes in unsafe behavior. To
quantify trade-offs between return and safety, we construct empirical Pareto fronts using e-constraint
sweeps. As shown in Fig. |4 dedicated policies cluster tightly near the estimated frontiers, consis-
tently outperforming the baseline across a broad range of safety budgets—achieving either lower
constraint violations for the same reward, or higher reward at equivalent violation levels.

These results collectively shows that performance gains of the dedicated setup are consistent with
the theoretical mechanism identified in our analysis: by estimating each constraint with its own
critic, the actor update depends on per-constraint advantages that are independent of the evolving
multipliers, thereby avoiding the \-driven target drift that can destabilise training. Per-constraint
critics preserve the relative scale and variance of individual constraint signals, enabling head-wise
normalisation and reducing “winner-takes-all” effects where the most active constraint dominates
updates. This appears crucial for tracing clean Pareto sets: Dedicated policies concentrate near the
frontier across budgets, whereas the aggregated-cost baseline often lies inside the frontier, indicative
of optimisation bias introduced by collapsing constraints.

6 CONCLUSION

This paper examined how critic design shapes stability and safety in Lagrangian (policy-gradient)
methods for constrained Markov decision processes. We showed, both theoretically and empiri-
cally, that mixing all reward and cost signals into a mixed critic couples the evaluation target to the
evolving dual variables, introducing a form of dual-induced nonstationarity that can impair learn-
ing stability. In contrast, dedicated per-signal critics yield targets that depend solely on the policy,
eliminating this source of drift. Our experiments across both bandit and stylized power system en-
vironments confirm these theoretical insights. This paper provides concrete guidance for the design
of safe reinforcement learning algorithms under multiple constraints, highlighting the importance of
critic architecture in ensuring both stability and constraint satisfaction in Lagrangian-based methods.
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plex energy-system environment used in our study is a stylized simulator designed to explore
safety—performance trade-offs in high-stakes decision-making. It does not interface with or con-
trol any real-world infrastructure. Our aim is to advance the understanding of algorithmic safety in
reinforcement learning without posing risks to individuals, communities, or operational systems.
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A LIMITATIONS

A fundamental tension exists in safe RL between maximizing cumulative reward and satisfying
multiple constraints—particularly in realistic, high-stakes domains. While our Dedicated Critic
architecture significantly enhances constraint adherence and stabilizes training dynamics, it does
not resolve the inherent trade-off: enforcing stricter safety often reduces achievable reward or slows
convergence. The approach also introduces greater computational and memory requirements, as it
maintains a separate critic for each constraint. This design may be less scalable in environments
with many constraints or where critic updates are expensive. Although shared-backbone models
with multiple heads offer a partial remedy, they require careful balancing and tuning to be effective.

Another limitation is the static one-to-one mapping between constraints and critics. In settings where
constraints vary in relevance or activate sparsely, some critics may be under-trained, reducing sample
efficiency (see Appendix [F). Future directions could involve adaptive critic selection or shared-
parameter architectures that dynamically reallocate capacity based on constraint salience.

The theoretical results provide asymptotic error bounds and bias characterisations, rather than full
finite-time guarantees for PPO-style deep RL under realistic training regimes. However, this limita-
tion is not specific to our approach: most practical deep RL algorithms rely on similar heuristic sta-
bilisation mechanisms and likewise lack end-to-end finite-time guarantees. In our implementation,
we mitigate these issues using standard techniques—advantage normalisation, conservative learn-
ing rates, PPO ratio clipping, gradient clipping, and bounding the dual variables—and empirically
observe stable learning across seeds. Nevertheless, a more refined finite-time analysis that explicitly
captures these practical design choices remains an open direction, so our current guarantees should
be interpreted as qualitative guidance on critic design rather than a complete convergence certificate
for deep safe RL.

Finally, although our theoretical results are first presented under linear function approximation for
analytical clarity, we also extend them to nonlinear cases such as neural networks. Still, understand-
ing the implications of gradient bias in deep architectures—particularly when critics share represen-
tations—remains an open question warranting further theoretical and empirical investigation.

B PBE

We justify that, for each fixed policy 7y and each signal z € {r, ¢, ..., ¢n }, the population target of
the per-signal critic is the unique solution of a linear system A(#) w®*(0) = b*(0) with A(0) = ul,
and that A(-), b®(+) are locally Lipschitz in 6 under standard conditions.

Let £7,(s) denote the discounted state value for signal 2 under policy mp and let ¢ : S — R? be a
fixed feature map. We approximate £Z (s) ~ ¢(s)'w”. Write ® € R"*¢ for the matrix stacking

feature rows ¢(s) ", D = diag(d,,) for the diagonal matrix of the on-policy stationary distribution
over states, and P, for the state transition kernel.

The projected fixed-point equation (PFE) in the D-weighted norm is
Pw® =11 (7;92 (‘wa))a 7;?97} = 1" +yPr,v,

where II is the D-orthogonal projection onto span(®) and »* € R™ is the immediate signal vector
(r for x = r, ¢; for x = ¢;). The normal equations are

<I>TD(<I>w” — (" +fyP7r9q>wm)) =0 < "D —4P,,)dw" = & Dr".
A(6) b= (0)

Hence the population target satisfies A(6) w®™*(6) = b*(6).

Assume (i) ergodicity: the Markov chain under 7y admits a stationary distribution d., with full
support on the on-policy visited set; (ii) feature non-degeneracy: the columns of D/2® are linearly
independent. Then A(f) = ®" D(I — vP,,)® is symmetric positive definite; in particular there
exists > 0 with A(6) > p1, so the solution w™*(6) is unique.

If 7y is C! in 0 and ergodicity holds on a neighbourhood, then P, and d, vary locally Lipschitzly
in 0. Since ® is fixed, A(§) = ® " D(I — vP,,)® and b*(§) = ® " Dr® inherit local Lipschitzness.

12
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If the estimator depends on (s, a), take features ¢ : S x A — R?, stack ® over (s,a), let D =
diag(dn, (s, a)) be the on-policy state—action occupancy matrix, and use the state—action transition
kernel P™. The same PFE derivation yields

A(0) = ®'D(I —~P™)®,  b°(0) = &' Dr",

so A(@)w**(0) = b*(0) with A(f) > pl under the analogues of ergodicity and feature non-
degeneracy for (s, a). Local Lipschitzness follows as above.

When training with advantages (e.g., GAE), two standard constructions lead to a linear system:

(1) Difference-of-values: Learn V* (or Q%) with the state/state—action equations above, and form
A% = Q* — V'*; the critic parameters still solve A()w** = b*(6).

(2) Least-squares to generalized returns: Regress ¢(z) " w® onto generalized returns G* (e.g., GAE
targets) in the D-weighted norm, i.e. minge E.q, [ (¢(2)"w® —G*(2))? |. The normal equations
are

DB W) = d'DG.

—— ——

A(6) b= (6)

Thus the linear model still holds (with a different A), and A(6) > I under D'/2® full column
rank. If G* depends smoothly on 6 through 7y, b*(-) is locally Lipschitz.

Lemma B.1 (Positive definiteness of A(6)). Fix a policy mg and let D = diag(d,,) be the diago-
nal matrix of the on-policy stationary distribution over states. Let P, be the corresponding state
transition kernel (row-stochastic) satisfying d;rg P, = d;—e. Let ® € R™* stack feature rows and

assume D'/2® has full column rank. For~y € [0, 1) define
A0) = ®"D(I —yP,,)®.
Then A(0) is symmetric positive definite and
v AB)v > (1—7) )\min(@TD ®) |v]|3  forallve R?.
In particular, A(0) = pl with = (1 — ) Apin(® T D®) > 0.
Proof. Let y = ®v. Using the D-weighted inner product (u,w)p := u' Dw and norm ||u|% :=
<ua u>Da
v A@0)v =y " DI = Pr,)y = llyll D — 7 (v, Pry¥) -

Because P, is a Markov operator with invariant measure d.,, it is a non-expansion in L2 (D), i.e.,
|1 Proyllp < [lyllp and therefore (y, Pr,y)p < ||yl | Pryyllp < [lylIh- Hence

vTAB) v = ylln —vllvlb = (1 =)yl

Finally, [|y|2 = v ® T D®v > Apin(® T D®) ||v]|3 because D'/2® has full column rank. Com-
bining the inequalities yields the claim. O

Corollary B.2 (State-action variant). Let D = diag(d, (s, a)) be the on-policy state-action occu-
pancy matrix, P™ the state-action transition kernel (row-stochastic) with d| , P = dl 0 and @

stack features over (s, a) with D'Y2® full column rank. Define
A(0) = ®"'D (I —~yP™)®.
Then A(6) >= (1 — ) Amin(® T D®) I and is symmetric positive definite.

13
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C DETAILED PROOF FOR MIXED-CRITIC ERROR BOUND

Lemma C.1 (Mixed-critic error bound). If A(0) > ul uniformly, and the stepsizes satisfy Robbins—
Monro conditions with o /n; — 0 and B¢/ — 0O, then there exist constants Cy,Cy < 00 such
that
C C
limsupElle;|| < —2 limsup& + = limsup% + O(1). (16)
t—00 12 t—oo Tt 1% t—oo Tt

Proof. Recall the error recursion equation [}
err1 = (I —neA(0))er + (Wi — wiyq) +meCeyr + Af-
N————’
target drift
Since A(6;) = pl, we have for all v, ||(I — . A(0;))v] < (1 — une)||v||. Hence
(L =neAB))ec]| < (1= pme) [lex]l- (17)

Using the drift expansion equation

wi —wip ==Y (i1 = i) @ (00) + O(|[6r1 — 61])).-
i=1
Assuming the PBE solutions w® () and w” (6) are Lipschitz in # (true under our linear/PBE setup
with A(6), b (6) smoothly varying), there exist constants C, Cy s.t.
[wi —witall < Ox A = Adll + Co [|0r41 — 04| (18)
By the definitions of the dual and actor steps, |[A\i+1 — A¢]| = O(B:) and ||0p41 — 0:]] = O(ay),
hence
lwi —wiall < Cx B+ Coay. (19)

Write §; == (wj — wj;,) + AY. By equation and Lipschitz variation of A(#), b(0) (collected in
AY), there exists Oy s.t.
Elfo:l] < O\ Bt + Cop . (20)
Using equation[T7)and the triangle inequality,
levrall < (1= pme)llecll + [16] + nel|Gega |l

Take conditional expectation and then total expectation. With E[(;,1|F;] = 0 and E|[(41 ]2 < 02,
standard SA arguments (via a mean-square detour or BDG inequality) yield

E[nel[Gs1ll] < Choise 77 (21)

for some constant Cse (intuitively, the “linear in 7;” noise can be handled through a square-norm
contraction; in the first-moment recursion it appears as O(n?)). Hence, taking total expectation and

applying equation [20] gives
Elersa]l < (1—pm)Elled| + CxB: + Coor + Coise 7 (22)

We now use a standard comparison lemma: if a nonnegative sequence (;) satisfies

Tt41 S (1 - at)xt + bt7 a; € (07 1)a Za’t =00, at —» 07
t
then

. . by
limsupz; < limsup —.
t—o0 t—oo At

Applying this to equationR2]with z, = E|e;||, a; = pn; and

by = Cy\ B+ 60 o + Choise 77t2,
gives

+ ——— + Choise Tt

Ch By 59 Qi
Tt Tt .

1
limsupE|le|| < — limsup<
t—o0 H t—oo

Sincen; — 0and Y, n? < oo, the last term contributes O(1). Renaming Cy as Cy yields equation@
U
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Lemma C.2 (dedicated-critic tracking error). Suppose A(0) = plI uniformly, Assumptions .1 and
hold, then there exists Cy < oo such that for every x € {r,c1,...,¢m},

C
limsup E||ef || < =0 1imsup%. (23)
t—00 12 t—oo Tt

Proof. Use A(6;) = ul:

X x x G’I x x
el < NI =neAO))ed || +ne |Gl + 1A < (U= pmo)lleg I+l G [+ CollOr1 = 0: -

Take conditional expectation given J; and then expectation; by Assumption4.3} E[n,[|(F, 1 [|] < ey
and yields O(n?) at the level of first-moment recursion. By Assumption4.1 ||0;+1 — ;]| = O(a).
Thus,

Ellefll < (1= pm)Elefll + Coar + O(np).

Apply the standard SA comparison lemma for sequences of the form z;; < (1 — a¢)z; + by with
ar = pny and by = Cyay + O(n?), using Y, g = o0, >, 7 < oo, and ay /n; — 0. This yields

. Co .. @
limsup E||ef| < =% Yimsup —*,
t—o00 K t—oco Tt
and absorbing constants into Cy gives equation O

15



Under review as a conference paper at ICLR 2026

D DETAILED PROOF FOR ACTOR-GRADIENT BIAS BOUND

Lemma D.1 (Actor-gradient bias bound). Let g, and g; be the actor’s estimated and ideal gradients,

G = Ey[Vologme, (arls) d(se,ar) "we|,  gf =By Velogme, (arls:) d(se,ar) wi], (24)
with critic error e; = wy — w}. Assume the score and features are bounded as
[Vologm, (als)| <G, [[¢(st,a)l| < Ly as.

Then the actor-gradient bias

By = g —g;
satisfies
|Be|| < GLg et (25)

Proof. Recall the definitions

G = E[Vologmg, (as|si) d(se,ai) "we | Fi], g7 = E[Velogmo, (arls) d(se, ar) Twi | Fe,

and the critic error e; = w; —w;. Here F; is the sigma-field generated by everything up to time ¢; in
particular, 6;, A, wy, wy, e; are Fy-measurable, while (s;, a;) are drawn from 7y, at time ¢ and are
not JF;-measurable.

Using linearity of conditional expectation and e; = w; — wy,
By =9: — g
= B[V logm, (at|st) d(se,ar) " (wr — w}) | Fi]
= E[Vglogm, (as|s¢) d(st, ar) e | Fi.

Since e; is F;-measurable, we can factor it outside the conditional expectation: for any random
matrix/vector X and F;-measurable (deterministic under E[-|F;]) vector Y,

EXY | F] = E[X | F]Y.
Applying this with X := Vg log 7y, (as|s:) ¢(ss,a:) T and Y := ey,
Bt = E[VQ 10g o, (CLt|St) ¢(St, at)T | ]:t} €t.

Equivalently, without explicitly pulling out the matrix, we can directly bound the norm inside the
conditional expectation as follows.

From the triangle inequality for norms, we have
| Be|| = HE[V@ log g, (at|st) ¢(st, ar) e | ]-"t] H < IE[HV@ log g, (at|st) ¢(st, at)TetH ’]:t]>
where we used Jensen’s inequality for the convex function x +— ||z|| and conditional expectation.
Now use submultiplicativity of operator/vector norms:
Vo logma, (arlse) p(se,ar) Ter]| < [[Vologma, (arlse)ll 16 (se, ar)l flecl]-

Here we regard the product ¢ ¢ e; (with ¢ := Vg logmy, (ai|s;)) as (¢ ¢ )e;; the operator norm
of the rank-1 matrix 1 ¢ T is ||10]| || ¢]|.

Therefore,
1Bl < E[||Vglogm, (arlse)ll ¢(se, ar) llec]l | Fe]-

Assume the standard boundedness conditions hold almost surely:
IVologm, (arlsi)| <G, lg(se, ar)|| < L.
Since ||e;|| is F;-measurable, we can treat it as a constant inside the conditional expectation. Hence,
1Bel < E[G Ly llecll [ 7] = G Lo [lexll-

This establishes the claimed Lipschitz bound
[Bill < GLgllex]l,
which is precisely equation O
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E DETAILED PROOF FOR ACTOR-GRADIENT BIAS BOUND

Theorem E.1 (Bias from a Mixed Critic). Assume the conditions of Lemma hold, and the
score/features are uniformly bounded ||V log mg, (at|s:) (st;ar)|| < Ly a.s. Then the
actor-gradient bias By = Gy — g7 satisfies

C
limsup E[|By|] < GLg ( hmsup& + — hmsup a). (26)
t—o00 1%

t—oo Mt K t—oco Mt

Proof. By Lemma[4.6]
1Bell < GLg [lex]l-
Taking expectations preserves the inequality (monotonicity of [E):
El|Bi| < GLgEfles]- 27)
Lemma [.3]states that, for some finite Cy, Cy,
Cy
limsupElle;|| < —= hmbup& + — hmbup— + O(1). (28)
t—o0 1% n B t—oo Mt

Here the O(1) term collects vanishing contrlbutlons such as O(n;) from the noise control (cf. the
proof of Lemma [.3).

Taking lim sup,_, ., on both sides of equation 27)and using equationyields
Ci
limsupE||B;|| < GLy limsupE|le,|| < GLy < hmsup& + — hmsup—t + O(1 ))
t— o0 t— o0 12 t—oo Tt M t—oo Tt

Since G, Ly, Cy, Cy, p are constants (independent of ¢), and lim sup(O(1)) = 0, we can drop the
vanishing term to obtain exactly equation[12]

In Lemmal4.5| the 2t contribution arises from the dual-driven target drift in the mixed-critic error

dynamics (see the decomposmon of wf — wj, 1). Thus the bound equatlonli_;lexphcltly exposes the
additional bias component inherited from the mixed critic’s dependence on O

Theorem E.2 (dedicated-critic bias). Suppose Assumptions hold, A(0) = ul uniformly,
and ||V log g, (at|st) (st;ar)|| < Ly a.s. Let g, and g be the actor’s estimated and

ideal gradients, the dedicated-critic actor bias be B! = g g: . Then
Co
hm sup]E||B””‘l”|| < GLy — hm sup — (29)
w —00 7]t

Proof. Define the ideal (mixed) gradient at time ¢ and its estimator as

9; = Et[ve log 7, (ar|st) (¢(se, ar) "w"(6;) — Z Ait B(se, ar) " w” (Gt))]a

./g\;nulli :Et[VQ logﬂ'@t (at|st) ( St,at ZAlt(b st,at ):| (30)
From equation [30]and linearity,
By — | Vg log o, (aclsi) ds,ar) (e Z Noeit)],

where ef = wf —w®(6;). Using Jensen, submultiplicativity, and boundedness of score and features,
1B < B Vo10g o, (arlso)l léCst, o)l (lle I+ il legtll)| < GLo(lles A max e l),
i=1

where A = sup, || \¢]| < oo due to projection onto a compact set. Taking expectations and lim sup,

hmsupEHBmul“H < GL¢(1—|—A) limsup max E|ef].

t—oo x€{r,ci}

Apply Lemmato bound each E||e7|| by £ limsup 7, and absorb (1 + A) into Cy (renaming

the constant) to get equation No 5, term appears and the target drift involves only 6 (rate o),
not . O
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F DUAL-INDUCED DRIFT AND LINEARITY

Let the mixed critic be trained by minimizing any smooth population loss
Lumix(w; 8,A)  (e.g., TD loss, Monte-Carlo/GAE regression, etc.).

Because the scalarized signal is ry = r — 221 Aic;, this loss depends explicitly on A. Denote
the population minimizer by w* (0, \) € arg min,, Lnix(w; 0, \). At any (strict) local minimum, the
first-order condition holds:

Ve Lmix(W(0,1);60,\) = 0.
Assume the Hessian H (0, \) := V2 Lo (w* (0, A); 0, \) is nonsingular (standard local strong con-
vexity around the solution). Then by the implicit function theorem, w* is differentiable in (6, \)

and
ow*
oA

= — H(e, )\)71 VE,)\ Emix(W*(av )‘)7 0; >‘) .

# 0 generically

Hence for small updates (A6, AN),

W0+ AO,A+ AN) — w*(0,)) = %AO + %A/\ + o(||A0]| + |AN]).

N—— N—_——
policy-induced drift dual-induced drift

The key point is that V2, Lnix # 0 whenever the training targets or TD errors inside Ly depend on
r (which they do for any mixed critic). Therefore, dw* /I # 0 generically, and the dual-induced
drift term proportional to A\ appears regardless of linearity. The linear case analysed in the main
text is just the special instance where Ly yields normal equations A(6)w = b"(0) — Y. \;b% (6),
so that dw* /OX = —A(0)~L[b°1 (), . .., b (0)] explicitly.

Why dedicated critics avoid it. For per-signal critics, each loss £, (w”; ) does not involve \:
Ow®*
oA

Thus their targets drift only through 6 (policy-induced), with no dual-induced component. When the
actor later combines the already-computed per-signal estimates as w™> = w” — 3. A;jw®, the \’s
appear outside the critics and do not change the critics’ own population optima.

=0.

Vo Le(w®*(0);0) =0 =

18
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G COMPUTATIONAL RESOURCES

We implement all experiments using PyTorch-1.12 on an Ubuntu 18.04 server with two Intel Xeon
Gold 6142M CPUs with 16 cores, 24G memory, and one NVIDIA 3090 GPU.

To further clarify constraint satisfaction during testing, Fig. [5] reports the measured computation
time per training epoch under different numbers of Lagrangian critics (i.e., constraints). The results
exhibit a clear linear trend, quantified by the fitted regression:

y = 0.00169z + 0.00776, 3D

indicating stable and predictable scaling as the number of constraints increases. Importantly, the
variance bars are small across all cases, showing that the training remains stable even when more
constraints are introduced.

y = 0.00169x + 0.00776

I
=
=t
W

0.0101

Time per training epoch (s)
S
S
o

2 3 4
Constraint number (Critic number)

Figure 5: Time consumption of the proposed method with different number of critics (constraints).

H EXPERIMENT DETAIL - CMDP BANDIT

Single mixed critic: A single scalar critic per action is trained on the mixed signal
rala) = r(a) — Mecr(a) — Aaca(a).
With v = 0, a TD(0) bandit update reduces to exponential averaging:

P (a) = QP™Y(a) + Tmixea (U(at) - ;nixed(at)) Ha; = a}. (32)

The actor readout in equationuses Qi(a) = mixed (@),

Dedicated-critic: We train separate per-action critics for reward and each cost:

Qiy1(a) = Qf(a) + nmui (r(ar) — Qf (ar)) H{ay = a}, (33)
thi(a) = Q7 (a) + thnui (c1(ar) — Q (ar)) 1{ar = a}, 34)
Q7%1(a) = Q7 (@) + M (c2(ar) — Q% (ar)) H{ar = a}. (35)
The actor combines them at readout time with the current multipliers:
Qu(a) = Qj(a) — M. Qf (@) — Aot Q5 (a). (36)

We run T = 5000 steps per seed and average over .S = 15 random seeds for the main curves. For the
timescale ablation (Sec.[H.2), we sweep critic and dual learning rates and average over 8 seeds per
grid point. For a mixed scalar summary of conditional alignment (reported once), we optionally use
S = 20 seeds to reduce variance. o = 0.02, 8 = 0.02, mixed = 0.03, Nmui = 0.03,00 = 0, A19 =
A20 =0.1,Q(+) = 0 for all heads at t = 0.

H.1 EVALUATION METRICS

Expected reward. We report the on-policy expected reward J,. = o(0) r(a1) + (1 — o(0)) r(az)
as a function of steps.
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Constraint violation. Instantaneous expected violation is

Viol; == max(0, Jg, (m,)—d1) + max(0, Jo,(mg,)—d2) = max(0, 1-0(6;)—0.5)+max(0, o(6;)—0.5).
(37)

Unconditional gradient alignment. We compute a moving Pearson correlation between the esti-
mated actor gradient g; (from equation [5.1|with the appropriate critic readout) and the true gradient
g, using a centered window of width w = 201 with boundary normalization:

COVt (/g\: g)

/Var,(g) Var(g)’

with Cov, (-, ), Var.(-) computed over the window and normalized by its effective length.

corr(g,g) = (38)

Conditional gradient alignment. Same as equation[38] but restricted to timesteps in the window
where the ground-truth magnitude exceeds a threshold ¢ = 10~3:

cond

corri™ (g, g) = corr({g- : |g-| > €}, {gr : lg-| > €}) 39)

This metric emphasizes periods with a meaningful learning signal, computed with boundary-
normalized counts; windows with < 5 effective samples are masked.

Dual oscillation magnitude. We quantify multiplier oscillations via the moving standard devia-
tion of the signed gap |\ — \1|, again using a boundary-normalized window of width w = 201:

Osc; = \/max(o, E,[A?] (Et[A])Q), Ay = |Aar — Arl. (40)

Smoothing (for curves) and uncertainty bands. For reward and violation we plot boundary-
normalized running means:

E::tﬁ-LlU/QJ

_ r=t—|w/2] TT
#{ inside range}’

Tt

(41)

then average z, across seeds and show +1 standard deviation bands across seeds.

H.2 TIMESCALE ABLATION (CRITIC VS. DUAL)
To mirror the theory’s timescale conclusions, we sweep critic and dual learning rates on a grid:
n € {0.01, 0.03, 0.10}, B € {0.005, 0.02, 0.08},

holding the actor step aw = 0.02 fixed. For each (7, 3), we run the mixed-critic variant for ' = 5000
steps with 8 seeds and report:

1. Violation AUC: Y/, Viol,/T,
2. Late conditional alignment: mean of equation 39| over the last 500 steps,

3. Late dual oscillation: mean of equation 40| over the last 500 steps.

Results are visualized as heatmaps over (7, /3).

H.3 COMPUTE, RANDOMIZATION, AND REPRODUCIBILITY

All runs are CPU-only and complete within seconds. Random seeds s € {1000, ...,1000+ S — 1}
control action sampling only (initial parameters are deterministic). Each figure reports the mean
across seeds with +1 standard deviation. We save raw arrays (per-seed trajectories for reward,
violation, gradients, and multipliers) to a serialized file for exact reproduction of all plots.
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Single-critic: Violation AUC vs. (n, B) Single-critic: Conditional Alignment (late) vs. (n, B)
036 026
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032 022
0303 020y
2 x 2 g 2
3 002 028 3 002 014 022 0187 = o
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(a) Violation AUC (b) Late conditional alignment

Figure 6: Performance for CMDP Bandit.
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Single-critic: Dual Oscillation (late) vs. (n, B)

0.03
Critic Irn

(c) Late dual oscillation

moving std of [A2-A1|
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I ALGORITHM: DEDICATED-CRITIC PPO-LAG

Algorithm 1 Dedicated-Critic Lagrangian PPO (multi-constraint, single-constraint is special case)

1: Initialize policy parameters 0; Initialize reward critic parameters ¢,.; Initialize cost critic param-
eters ¢, fori = 1,...,m; Initialize dual variables \; <= Ajpiy > Ofori=1,...,m

2: for iteration k = 0,1,2,... do
3 Reset buffers {s;, as, r4, C,El), done;, log 70, Vi VS Y2 b s« € reset()
4: fort=0,...,T7—1do
5: Sample a; ~ (- | 8¢); log 7 < log ma(ay | s¢); V7 = Vi(s4564)
6: fori=1,...,mdo
7 VE & V(565 0)
8: end for _
9: Se41,T1, {;” ™, done; < E.step(ay)
10: Store (s¢, ag, r¢ {c(i)} doney, log w9, V", {V,*}) in buffer
ty Uty 1ty t 9 9 t Yt t
11: end for
12: if s is terminal then
13: Vi<« 0, V7«0V
14: else
15: Vi < Vi(sT; ¢r)
16: Vit < Ve, (s7; dc,) Vi
17: end if
18:  Initialize A’ <— 0 and A7 « 0 forall
19: fort=T—-1,...,0do
20: (5{ —ry + ’}/(1 — dOIleH,l)‘/tll — ‘/;T
21: Ag — (5{ + 'Y)\GAE(l — dOIlet+1)A§+1
22: fori=1,...,mdo
23: O + c§“ +7(1 —done; 1)V, — V&
24 A? — (Stc1 + ’Y/\GAE(I — donet+1)A§;1
25: end for
26: Ry + A+ V", Ry + A7 + V& Vi
27: end for
28: fort=0,..., 7T —1do
29: APE o A7 ST N A
30: end for
31: for PPO epoche=1,..., K do
32: for minibatch M do
33: for (s;, az,log 79, A*¢) € M do
34: log 7 <+ log mo(as | st)
35: pt < exp(log m; — log 79'4)
36: L; + min (ptAi‘ag, clip(pe, 1 — 6,1+ e)Ai‘ag)
37: end for .
38: La ¢ =1 Zsem L
39: Update 0 + 0 — a, VoL,
40: Ly« o Siem (Valsii o) — R
41: for:=1,...,mdo
42: Ly ﬁ et (Ve (st e,) — R?)2
43: end for
44: Ly < Ly, +> " Ly
45: Update ¢, {¢c1} — O, {‘ﬁci} —ayVLy
46: end for
47: end for
48: Gold — 0
49: fori=1,...,mdo
50: Estimate average cost fc — % ;‘tol c§”
51: Ai +max (0, \; + ax(Je, — d;))
52: end for
53: end for
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J EXPERIMENT DETAILS - CASE 1

J.1 SYSTEM DESCRIPTION

‘We model a radial distribution network with high rooftop PV penetration, where a set of community
battery energy storage systems (CBESSs) are coordinated to ensure operational safety and effi-
ciency. Each CBESS is constrained by efficiency, power, and state-of-charge (SOC) limits, and can
exchange energy with the upstream grid within trading bounds, incurring both trading and degra-
dation costs. When storage is saturated, PV curtailment at the bus level is introduced with fairness
considerations to avoid disproportionate restrictions. The distribution network is described using the
LinDistFlow approximation, including power balance, voltage regulation, and branch thermal limits.
Voltage violations and line loading are penalized in the objective. The overall scheduling problem
minimizes the aggregated penalties and costs associated with CBESS operations, grid trading, and
PV curtailment fairness.

We consider a radial distribution network (A, £) operated by a DNSP over intra-day periods ¢t €
T ={1,...,T}. The system model consists of CBESS operation, PV curtailment, and PDN-level
constraints.

J.1.1 CBESS

Let M denote the set of CBESSs. Each CBESS m € M is connected to bus {(m), with charg-
ing/discharging efficiencies (7", %), charging and discharging limits (TDCh Fdls) and SOC range

[soc,,,S0C,,]. The Charglng/dlscharging power are pih , and p ;. the reactive support is g5,

and stored energy is E,, ; with capacity ES™. Their dynamics are:

1
Em,t-l—l = E ,t + 77217:2 tAt - ndlspg"l:tAt’ (423.)
Eﬂ’L el
SOCyn,s = EC;;, 50C,, < SOCy; < SOC, (42b)
0<ph, <P 0<pl, <P (42¢)
Pon - pf,l:t =0, (42d)
(P, — P )%+ (ahy)® < (S50)2, (42e)
Emo=En". (42f)

CBESSs also trade with the main grid through a ratio p‘f;;‘df € [0, 1]. With buy/sell prices (¢, puy , 5,
the trading cost is:

ET trade
t = E mt 2 (43a)
meM
trade __ ;buy ch trade sell dl§ trade
mit — Pt PmtPmit — Pt Pm,tPmts (43b)
r: dde —trade,ch dis _tr ade —trade,dis
0 < pm tp S P ’ O < m tp S P (43C)

Battery degradation is approximated linearly:

P = Z e (pm ¢+ p;j:: t)s (44a)
meM

where ¢2 > 0 is the degradation cost coefficient.
J.1.2 PV CURTAILMENT

When all CBESSs are full, PV generation is curtailed via ratio ~y; , € [0, 1]:

By = (1= i )ppys (452)
0<y,: <1 (45b)
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Fairness is enforced by comparing each bus’s curtailed ratio 7$"" with its proportional target 7i":

fPVF — Z(ﬂ_gurt _ ﬂ_;ar)Q. (46)

iEN
J.1.3 PDN

The PDN is described by lossless LinDistFlow. For each branch (i, j) € L:

Pyt = Y, Pkt +P = D (pf,‘ft Pin 1), (47a)
k:(j,k)eL m:€(m)=j
Gje= Y, Gretdi - Y anBt (47b)
k:(j,k)EL m:£(m)=j
Voltage drop is given by:
Vie = Vig — 2(rijpije + ijQije), (48)

with bounds V' <V, ; < V. Penalties for voltage violations are:

Y=Y (Vi = VIT+ [V = Vi), (49a)

1EN
N=S (Vi >V Vi, < V). (49b)

iEN

Line loading penalty is:
2 2
p,,,7t —+ q; it
= Z rij—2l It 7 S (50a)
(i,7)€L

P, +dh, <S5 (50b)

J.1.4 OBIJECTIVE

The goal is to coordinate CBESS operation under PV-rich PDNs to ensure network safety and effi-
ciency. At each time step, CBESSs decide charging/discharging and grid trading ratios. The opti-
mization problem is:

min § (£P+ N+ 5+ 122+ 5T + Y (51a)
pch pdls qCB p!rade 7_
m,t? te

s.t. equation[42] equation equation[43] equation [#7] and equation (51b)

J.2 CMDP MODELING WITH DEDICATED-CRITIC LAGRANGIAN RL

We cast the CBESS coordination as a constrained Markov decision process (CMDP)
(S, A, P,r,{c;}™,7,{d;}" ), where S and A denote the state and action spaces, P(:|s,a) the
transition kernel, v € (0, 1) the discount factor, 7(s, a) the reward, and ¢;(s, a) the cost signal for
constraint ¢ with threshold d;. Given a stochastic policy 7y (als), define the discounted returns

—Ea| 375000, e (m0) =B 30 A cils1,00)]. (52)
t=0 t=0
The CMDP objective is
max Jr(mg) st Je(mg) <d;, i=1,...,m. (53)
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Reward & costs from the PDN model Let the instantaneous penalties/costs at time ¢ be those

defined in the system model: fYP, f¥N, fit. fBP fET and the daily PV-curtailment fairness term
fPVE. A practical partition is:
(st ar) = —(asp fP° + aprf), (54)
a(se,a) = f°, calsear) = 7N, es(se ar) = fi" (55)
and an episodic fairness constraint
Cy(r) & fPYF with E-[Cy(1)] < du, (56)

where 7 denotes a full episode (day). If desired, fF¥F can be spread as a per-step density c4(s;, a;)

so that ), vca(s¢, a;) recovers the same daily target. The weights app, agr > 0 reflect economic
preferences. Alternative partitions (e.g., moving fFT into constraints) are also supported without
changing the derivations below.

Lagrangian relaxation with per-constraint critics. Introduce multipliers A = (A1,...,An) = 0
and define

m

L(0,)) = ZA o (o) — dy). (57)

We perform the standard primal—dual updates:

0 update: VoL(0,\) = VoJ,(m5) Z)\ Ve, (T9), (58)
i=1
Aupdate: A; < TIjg x,.. (/\i + B [Je; (o) — di])’ (59)

where II denotes projection to stabilize A.

Signal-wise value functions and advantages. For each signal = € {r,cy,..., ¢, } define
Qi(‘&a) = Eﬂ[zvtx(staat) S():S,a():ai|, (60)
t=0
V:(S) = ]EG.NW[Qi(S7 G,)], Afr(sa a) = Qi(sv (L) - V:(S) (61)
Using the policy score function, the actor gradient becomes
m
VoL(0,)) =Ex[Vologmg(als) (AL(s,a) — Z A% (s, a))]. (62)
Z,r (s,a)
Per-constraint critics. We learn one critic per signal « € {r, ¢y, ..., ¢, } with parameters w,.:
Qu, (s,a) = Q7(s,a), 0f = 4 + 7 Qu, (St41, at41) — Qu, (51, ar), (63)

and minimize E[(67)?] (or use GAE to reduce variance). Advantages are estimated by A? (e.g.,
GAE())) and plugged into equation [62]

PPO-style actor (with dedicated-critic advantage). Let r:(0) = % and A, = A —
ola L@t St
> AiAg". The clipped surrogate is
Joro(0) = E[ min (r¢(0) Ay, clip(r4(6), 1—¢, 14¢) L)] + nE[H(mg(-]5¢))], (64)

where H is policy entropy and 1 > 0.

Episodic fairness constraint. If keeping fFVF as episodic, use the per-episode estimator fc4 =
+ ij:l C4(7™) in equation A practical alternative is to define a per-step density c4(s¢, a;)
whose discounted sum equals the daily fairness value, enabling a standard critic update as in equa-

tion[87]
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Table 1: Key hyperparameters, reward, and CMDP constraints for the energy management case
study.

Category Hyperparameter / Term Value Notes / Definition

Reward & constraints

Reward 7 — fEr - D D ( oy peh | plde

(Zﬁell pdis . ptradte)

Constraint 1 ¢;™ ﬁ S I(Vie ¢ [V, V) [0,1] Count of voltage violations (normal-
- ized by bus count)

Constraint 2 ¢y Si(Vie=V]T+[V—-Vi]t) - Degree of voltage violation (no extra

_ scaling)
Constraint 3 c/™ 2l bist — iine ]+ - Line thermal overload beyond thresh-

) old (p.u. or %)
Z'm (pgyl.,t + pg;:,t)At

Constraint 4 cf° —5 [0,1] Battery degradation (throughput, nor-
IM|P At malized)
Constraint 5 ¢;*© var({yi.i}izo) [0, 1] PV curtailment unfairness (variance
0.25 normalized by max 0.25)

Lag-PPO constraint ¢y~ + ;> + - +EP + £VF - Summation of all constraints
General training parameters
Learning rate o/ - 3e-4 Shared by actor/critic
Clip coefficient - 0.2 Ratio clipping [1 — €, 1 + €]
Target KL - 0.015 Early stop when approx-KL exceeds

threshold
Value loss coeff. - 0.5 Weight on value loss
Entropy coeff. - 0.0 Entropy regularization
Grad norm clip - 0.5 Global gradient clipping
Hidden sizes - (256, MLP for actor/critic

256)
Init log-std - -0.5 Gaussian policy init
Discount v, GAE - 0.99, For returns and advantages
0.95

Dual learning rate A — Se-3 Step size for dual updates in La-

grangian RL paradigm
) init / max - 0.0/10* Projected to [0, Amax]
Training schedule & environment
PPO episodes - 2000 Total training episodes
Steps / episode - 288 At = 5 min = one day per episode
Env time step - 5 min Day length = 288 steps

Concrete instantiation for this problem. With equation [74}-equation [56] we have m € {3,4}
constraints:

Critics: Q. forreward, Q. ;Qu.,, chs (and Qu,, if episodic fairness is densified); (65)
Advantage: A, = A7 — A\ A — My AP — Mg A (=M, A% if used); (66)
Dual: s o s, (N + B = di]), i=1,...,m. (67)

Notes on stability and practice. (i) Use separate target networks or Polyak averaging for each
critic to stabilize TD. (ii) Normalize every A} before forming A, to balance scales across constraints.
(iii) Choose d; from engineering limits (e.g., allowable daily voltage violation budget, line loading
budget); start with conservative d; then relax. (iv) Bound X via projection or log-parameterization
to avoid runaway dual ascent; optionally add a small L2 penalty on \. (v) For mixed episodic/step
constraints, update episodic multipliers once per episode and stepwise ones per minibatch.

J.3 EXPERIMENTAL PARAMETERS

Symbols. The key parameters of the power system management case study are provided in Table[3]
o, ¢3e!l: upstream buy/sell prices; pl € [0, 1]: trading ratio for CBESS m; [2]* = max{z,0};

I(-): indicator; V, V: voltage bounds (e.g., [l — v, 1 + v] p.u., v > 0); V; ;: bus-i voltage; £;;
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loading of line (i,7) (p.u. or %); 7!": overload threshold (default 0); ~; ; € [0, 1]: PV curtailment
ratio at bus 7; At: step duration (5 min); 7": daily horizon (288 steps); |A|: number of buses; | M |:

—CB . . L
number of CBESS; P : nameplate active-power rating for normalization.

J.4 TwO-TIERED STATISTICS

The two-tiered statistical results in Table[2]highlight a clear trade-off between economic performance
and system safety. Specifically, the DC-Lag-PPO variant achieves substantial improvements across
all five constraint metrics. The violation ratio (c1) and violation degree (c2) of bus voltages are
reduced by approximately 33% and 52%, respectively, while the line loading rate (c3) decreases by
11.6%. Similarly, the battery degradation cost (c4) drops by 46%, and the PV curtailment unfairness
(c5) improves by 52.7%. These reductions indicate that DC-Lag-PPO enforces network security and
operational fairness more effectively than the baseline Lag-PPO.

In contrast, the reward, which reflects the economic cost, declines significantly (-87.2%). Since
higher reward is preferred, this suggests that DC-Lag-PPO sacrifices economic efficiency to achieve
stronger compliance with safety and fairness constraints. The mechanism is likely due to more
conservative charging, discharging, and trading behaviors encouraged by the tightened constraint
handling.

In terms of stability, the across-run standard deviations of cl, c2, and c3 decrease considerably,
demonstrating more consistent performance in voltage and line-loading metrics. However, the stan-
dard deviation of PV curtailment fairness (c5) increases, implying reduced consistency across dif-
ferent runs in this aspect. This suggests that while DC-Lag-PPO reliably improves most safety
indicators, its fairness outcomes may vary depending on specific training trajectories.

Overall, DC-Lag-PPO demonstrates its effectiveness as a safer policy with stronger constraint satis-
faction, albeit at the cost of economic performance. Future work may seek to balance this trade-off
by tuning constraint thresholds, adjusting the dual update step size, or normalizing advantage signals
across constraints to prevent overly conservative policies.

Table 2: Two-tiered test statistics, where across-run mean =+ across-run std; The higher reward is
better, while the lower constraints are better. A = (DC-Lag-PPO — Lag-PPO). Positive improve-
ment % is computed as Lag-PPO — DC-Lag-PPO /Lag-PPO x 100%.

Metric Lag-PPO (n=9) DC-Lag-PPO (n=9) A Improvement %
Economic cost (reward)  25.95 4+ 63.25 3.32 4+ 34.68 -22.64 -87.23%
Volt. vio. ratio (cl) 62.96 + 29.41 42.17 £ 11.61 -20.80 +33.03%
Volt. vio. degree (c2) 54.77 4+ 36.31 26.47 £+ 10.69 -28.30 +51.67%
Line load rate (c3) 0.405 £ 0.062 0.358 4+ 0.024 -0.047 +11.59%
Battery degradation (c4)  32.23 £ 13.47 1735+ 11.21 -14.88 +46.17 %

PV curt. unfairness (¢5)  210.95 + 23.09 99.82 £ 62.79 -111.13 +52.68 %

J.5 TRAINING CURVES

As shown in Fig. [7]-[I2] the training curves across multiple runs consistently highlight the strengths
of DC-Lag-PPO in terms of constraint satisfaction. While the reward trajectories show that DC-Lag-
PPO tends to converge to lower economic returns compared to the baseline Lag-PPO, the improve-
ment in constraint metrics is substantial.

First, the voltage violation metrics (both ratio and degree) are markedly reduced under DC-Lag-
PPO. The curves demonstrate faster convergence to lower levels of violations and maintain stability
across episodes, especially in Fig. [TT]and[T2] This indicates that the dual-critic structure effectively
penalizes unsafe voltage states, leading to more secure system operation.

Second, the line loading rates remain consistently lower for DC-Lag-PPO. Although the difference
is modest compared to voltage metrics, the reduced variance in the curves reflects more stable uti-
lization of line capacity, especially in Fig. [§|and 10}
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Third, battery degradation under DC-Lag-PPO is substantially lower. The curves show that the al-
gorithm learns to avoid excessive charging and discharging cycles, which not only improves system
longevity but also reduces long-term operational costs.

Finally, PV curtailment unfairness also benefits significantly from DC-Lag-PPO. Although variance
is occasionally higher across runs, the overall trajectory converges to much lower unfairness com-
pared to Lag-PPO. This suggests that DC-Lag-PPO is able to balance curtailment more evenly across
the network, enhancing fairness.

Overall, the training results confirm that DC-Lag-PPO enforces operational safety and fairness more
effectively than the baseline. The cost of this improvement is a reduction in reward, implying that
the method prioritizes constraint satisfaction over immediate economic gains. From a practical
perspective, this trade-off can be acceptable or even desirable in safety-critical power systems, where
violations may carry severe penalties or risks.

Future extensions could explore adaptive balancing mechanisms, such as dynamic adjustment of
dual learning rates or reward re-weighting—to recover part of the economic performance while
maintaining the strong safety guarantees observed here.
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Additionally, J. curves are demonstrated in Fig. [I3}I8] Across all parameter settings, the plots
consistently show a clear difference between Lag-PPO and our DC-Lag-PPO. The J. curve of Lag-
PPO represents the summed constraint cost, and it frequently drifts far above the allowed threshold,
exhibiting large fluctuations during training (e.g., group 1 and group 5). This indicates that a single
shared Lagrange multiplier cannot effectively regulate multiple heterogeneous constraints.

In contrast, DC-Lag-PPO decomposes the constraint cost into five independent components, each
with its own critic. The corresponding J. curves tightly track their respective thresholds across
all settings, for large thresholds (e.g., 18, 20, 30) and even for very small ones (d = 0.1). This
demonstrates precise constraint satisfaction and significantly improved stability. Therefore, the de-
composed multi-critic structure is fundamentally more effective for enforcing multi-constraint safety
compared to the single-critic Lag-PPO.
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Figure 13: Training curves of J. on Lagrangian cost threshold set: [9,9,0.1,30,30].
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Figure 18: Training curves of J. on Lagrangian cost threshold set: [7,7,0.1,15,15].

J.6  LAGRANGIAN MULTIPLIER LEARNING CURVES

As shown in Fig. [T9] the trajectories of the Lagrange multipliers provide insight into how Lag-PPO
and DC-Lag-PPO enforce constraints during training. In the baseline Lag-PPO, the single multiplier
tends to grow rapidly and exhibit instability, reflecting difficulty in balancing multiple heterogeneous
constraints with a single aggregated signal. In contrast, DC-Lag-PPO assigns a dedicated multiplier
to each constraint, and the resulting curves show more moderate growth and better separation among
the multipliers. This indicates that the algorithm is able to distinguish between constraints of varying
tightness and adjust enforcement accordingly.

Although some multipliers in DC-Lag-PPO still reach relatively high values, the spread across con-
straints suggests that the framework avoids over-penalizing all dimensions uniformly. Instead, it
allocates stricter penalties only where violations are more prevalent. This aligns with the earlier
observation that DC-Lag-PPO substantially reduces voltage violations, line overloads, and battery
degradation, even though economic rewards are diminished.

Overall, the Lagrange multiplier dynamics confirm that DC-Lag-PPO enforces constraints in a more
structured and interpretable way than Lag-PPO. By disentangling constraint signals, it achieves
stronger and more balanced compliance with operational limits, providing a safer and more reliable
control policy for power system management.
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Figure 19: Lagrangian multiplier A learning curves.

J.7  PARETO FRONTS

Across all Pareto fronts shown in test cases in Fig. which are obtained from different training
runs, the DC-Lag-PPO fronts are typically shifted toward lower constraint values for the same (or
nearby) reward levels, especially on the voltage metrics (violation ratio c1 and degree c2), indicating
stronger constraint satisfaction without requiring large additional sacrifices in reward at the efficient
frontier. This shift is visible in the reward-c1/c2 plots and also in the cl-c2, cl-c3, and cl-c4
pairings, where the dedicated-critic front envelopes or nearly envelopes the single-critic front.

A consistent pattern also emerges when examining the .J. — d Pareto views across all parameter
settings, where the points are the .J. values of each constraint cost, and d, the black dotted line, is
the target threshold of each constraint (see Figs. 28}{33). For every constraint dimension, the DC-
Lag-PPO solutions cluster tightly around, or slightly below, the threshold d, forming a compact
Pareto front near the lower-left region. In contrast, Lag-PPO’s J, values frequently lie well above
the thresholds, and its Pareto front stretches diagonally upward, revealing strong trade-off tensions
that arise from using a single shared multiplier. These .J. — d relations provide direct evidence that
DC-Lag-PPO not only finds better reward-constraint trade-offs but also fundamentally attains closer
adherence to the prescribed limits on every constraint dimension.

Knee regions and policy selection Several plots exhibit knee points on the DC-Lag-PPO front
(most clearly on voltage and line-loading axes), where a small relaxation in reward yields a dis-
proportionate drop in violations. These knees are natural operating points for deployment, offering
strong safety gains at modest economic cost.

In the J. — d space, knee behavior manifests as sharp transitions where J,. collapses rapidly once
the policy enters the feasible region. These knees appear consistently in DC-Lag-PPO but rarely
in Lag-PPO, further indicating that decomposed critics create a more controllable and interpretable
constraint landscape.

Voltage safety trade-offs (C1, C2) For voltage ratio and degree, DC-Lag-PPO consistently at-
tains lower violations at comparable reward, producing a “left/downward” movement of the frontier
relative to Lag-PPO. The paired-constraint views (C1 vs. C2) show a visibly tighter cloud and a
frontier closer to the origin, suggesting better joint compliance.

The corresponding J. — d results reinforce this pattern: across all runs, DC-Lag-PPO keeps J.. (C1)
and .J. (C2) very near the voltage thresholds, whereas Lag-PPO exhibits persistent overshoot. This
aligns with the training curves and confirms that decomposed voltage critics effectively isolate and
regulate the two voltage-related risks during testing.
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Line loading and degradation (C3, C4) On line loading (C3) and battery degradation (C4), DC-
Lag-PPO fronts again tend to sit below the Lag-PPO fronts for similar reward ranges, implying
reduced thermal stress and milder throughput for batteries. The cross-constraint plots (e.g., C2-C3,
C3-C4) also show that dedicated-critic solutions better balance these two operational risks simulta-
neously.

The J. — d plots show the same effect: DC-Lag-PPO pushes J.(C3) and .J.(C4) tightly toward their
respective thresholds, often forming extremely compact clusters around d, while Lag-PPO’s distri-
butions remain dispersed and systematically above the limits. This confirms that multi-critic La-
grangian updates mitigate cross-constraint interference that otherwise destabilizes single-multiplier
methods.

PV curtailment unfairness (C5) In the reward C5 panels and the mixed-constraint views in-
volving C5, the dedicated-critic frontier usually dominates or matches the single-critic frontier for
a broad range, indicating more equitable PV curtailment at similar reward. That said, dispersion
varies across runs, hinting that fairness may remain sensitive to training seed or tariff profiles.

The J. — d comparisons show that DC-Lag-PPO frequently holds J.(C5) near the fairness threshold,
whereas Lag-PPO often overshoots or displays large variance. This confirms that separating the fair-
ness critic prevents it from being overshadowed by voltage/thermal constraints during optimization.

Discussion DC-Lag-PPO delivers stronger and more balanced constraint satisfaction than Lag-
PPO, most prominently on voltage safety and with consistent advantages on line loading, degrada-
tion, and fairness. The additional J. — d evidence strengthens this conclusion: the dedicated-critic
design yields systematically lower .J. values tightly aligned with target thresholds, while the single-
critic baseline exhibits structural difficulty simultaneously controlling heterogeneous constraints.
The Pareto frontier shifts indicate that many safe operating points do not require drastic reward
compromises once the policy is tuned to the knee region. Fairness (C5) gains are evident, though
variability suggests room for additional stabilization (e.g., densifying episodic fairness or smoothing
dual updates) in future runs.
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Figure 22: Pareto fronts from the test results on Lagrangian cost threshold set [15,15,0.1,20,30].
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Figure 23: Pareto fronts from the test results on Lagrangian cost threshold set [18,18,0.1,20,30].

=]
g8 o

©
3

straint 1 (volt. vio. ratio)
=
3

N
s O

2 = B[ emm—— H —

B 2 < g
3 o % £ <
x J kS s & E
. g E e AR 3 z
= 2 El
s £ g S
— £ ; - g z
< X%, E I -
& 2 =

- 3 - (o] 2 £ XA IR g

200 100 0 200 100 0 200 100 0 © 200 100 0 © 200 100 0

@ Con:

Reward (cconomic cos)

Reward (cconomic cos)

Reward (cconomic cos)

Reward (economic cost)

Reward (economic cos) |

= z 2 =
0 — 8 —— A 2

5150 2 E £ £ | e

2 = " £ & £

= 9 e 5 E g

g < g o E 5 |

Z 100 2 = B ] H

3 E ] & 5

& g ] > >

Bt 2 =3 & &

= 50 8 <« w v

= = - = =

K - Z z = £

& ofm St z L‘—N H -, Z M

0 50 100 0 50 100 ) 50 100 © 0 0 100 © 30

0

Constraint I (volt. vio. ratio)

Constraint I (volt. vio. ratio)

Constraint I (volt. vio. ratio)

Constraint 1 (volt. vio. ratio) |

e

3 40
Constraint 4 (battery degradation]

5050
045
040

0.35

e
o
S

straint 3 (line load rate

5
So02s

g [—— 2 [ g — [ p—

z £ 5 £

e E g E 2

=0 g &b s

g g g

S S z < -

- S e g :

g 3 g H

H > g >

g £ k] £

3 b 3 -

E E E E

= g g ]

: £ 5 7L 7
| s | — : : e
50 100150 © 0 50100150 © S0 100150 © 03 04 05 © 03 04 05

X

0
Constraint 2 (volt. vio. degree)

Constraint 2 (volt. vio. degree)

0
Constraint 2 (volt. vio. degree) |®

Constraint 3 (line load rate)

Constraint 3 (line load rate) |

Lag-PPO points

—s— Lag-PPO front

DC-Lag-PPO points

—=— DC-Lag-PPO front

Figure 24: Pareto fronts from the test results on Lagrangian cost threshold set [9,9,0.1,30,20].
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Figure 25: Pareto fronts from the test results on Lagrangian cost threshold set [12,12,0.1,30,20].
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Figure 26: Pareto fronts from the test results on Lagrangian cost threshold set [9,9,0.1,20,20].
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Figure 27: Pareto fronts from the test results on Lagrangian cost threshold set [7,7,0.1,15,15].
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Figure 28: Pareto fronts from the test results of J, on Lagrangian cost threshold set [9,9,0.1,30,30],
where the black dotted lines are the thresholds d.
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Figure 31: Pareto fronts from the test results of J. on Lagrangian cost threshold set
[18,18,0.1,20,30], where the black dotted lines are the thresholds d.
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Figure 32: Pareto fronts from the test results of J, on Lagrangian cost threshold set [9,9,0.1,30,20],
where the black dotted lines are the thresholds d.

40



Under review as a conference paper at ICLR 2026

0.16 —
40 30
x 40 o 80
230 8 oo |Boae T Bas g
] 230 S ¥ ° £
E E o5 2 g £
B « ER) > 2o 32 °
g g S 3 40
Z 10 7 S0 5 o010 s ¢
F P I ———
ole 04e ~ 10 20
0 20 40 0 20 40 0 2 40 0 2 40 0 20 40
) Te(CT volt ratio) Je(CT volt ratio) JE(CT volt ratio) TS(CT volt ratio) Te(CT volt ratio) ]
0.16 — 0.16
40 . %0
§30 * %"014 e g5 £ ;fa:”mzx
£ E ! g £® <
= g 8
20 2012 52 : 2012
% 10 g % 15 g g £
= = 0.1 = g ammmmscacas [+ 0-10
rd = #
0 10 20 .
0 20 40 20 40 0 20 40 0 2 40 010012 014 016
&) Te(C2 volt degree) Te(C2 volt degree) Je(C2 voll degree) TE(C2 volt degree) e Te(C3 line loading) |
30 80 s0] = 80 "
= o) ) E ]
g g I E H
2 260 E 260 260
Z20 B £20 3 g
H z 2 = =
3 w7 40 3 ' 40 40
s ¢ e ¢ ¢
2 am— 2 | 2 x
0 U — lolx 20 20
010 012014 016 000 012014 016 10 20 30 10 20 30 20 40 60 80
@ To(C3 Tine Toading) To(C3 Tine Toading) Jo(CA battery deg) e To(CA battery deg) To(CS pv curtunfan) |

Lag-PPOpts  —e— Lag-PPO front

Figure 33: Pareto fronts from the test results of

DC-Lag-PPO pts

—+— DC-Lag-PPO front

J. on Lagrangian

[12,12,0.1,30,20], where the black dotted lines are the thresholds d.

cost threshold set

[ ——
70
50 0.16 -
2% £} el e e Mo =
3 8 2 Pis £ 60
g 540 5 3 g
Z30 3 » £ 0.14 g 50
S = s 2
z EA b z0 2 | p——
g g Sw v 5 s
3 7 5 ~ Z s £30
’ 0 3
10 i 0.10 ol 2
20 40 20 40 20 40 20 40 20 40
) Jo(CT volt ratio) Jo(CT volt ratio) Te(CT volt ratio) Te(CT volt ratio) Te(CT volt ratio) ]
20 . ————_,
"SO x ?AJOIG Cal ‘ i) e GBI ROV 'E ?0016 ’
B & E P15 £ 60 £
B40 H 3 5 z
< 2014 g 50 20.14
330 P 10 [ P — £ 4
Q = = .40 - &
S 20 e 0124y < 4 S o2 E
2 P = 25 530 2
10 -
. 0.1 o L 0.1
20 40 20 40 20 40 20 40 010 012 014 016
(@] Jo(C2 volt degree) Jo(C2 volt degree) To(C2 volt degree) To(C2 volt degree) [ Te(C3 Tine loading) ]
0 7 e—— 70 L 70 4
I~ esagen = . P = o)
215 g 60 215 g0 g0
E 50 E 50 50
,‘E 10 : esmeese—a g 1o 3 L 3 -
= E.40 = .40 240
& g & g g
25 530 25 530 530
0 ooy 0 3
010 012 014 016 010 012 014 016 10 20 0 10 20 20 40 60
@ Te(C3 Tine loading) Te(C3 Tine loading) To(C4 battery deg) [©) To(C4 battery deg) Jo(C3 pv curt unfain)

Lag-PPOpts ~ —— Lag-PPO front

DC-Lag-PPO pts

—e— DC-Lag-PPO front

Figure 34: Pareto fronts from the test results of J, on Lagrangian cost threshold set [9,9,0.1,20,20],

where the black dotted lines are the thresholds d.
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Figure 35: Pareto fronts from the test results of J. on Lagrangian cost threshold set [7,7,0.1,15,15],
where the black dotted lines are the thresholds d.
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K EXPERIMENT DETAILS - CASE 2

We extend our experiments to a more complex electric vehicle charging station (EVCS) problem
to further evaluate how well the dedicated-critic approach scales and whether its benefits persist in
realistic multi-constraint settings (Power system environment — observation dimension: 105, action
dimension: 24; Electric Vehicle Charging — Observation dimension: 219; action dimension: 40).
This environment models coordination problems, where the goal is to minimize charging costs while
enforcing multiple charging related constraints, including voltage limits, EV battery degradation,
and charging demand satisfaction. In contrast to the power system problem, this setting involves co-
ordinating multiple EVCSs, each operating dozens of chargers and responding to highly stochastic
and heterogeneous EV behaviours (arrival and departure times, charging demands, battery capaci-
ties, etc.). As a result, both the state and action spaces are substantially higher-dimensional, and the
additional uncertainty introduced by EV dynamics makes the EVCS coordination task considerably
more challenging than community battery scheduling.

K.1 SYSTEM DESCRIPTION

K.1.1 PDN
The power distribution network (PDN) consists of a set of buses A' = {1, ..., N} interconnected
via distribution lines £ C N x N. The system evolves over a discrete time horizon 7 = {1,...,T}.

Ateachbusi € N and time t € T, let p;,¢ and v; ; denote the net active power injection and voltage
magnitude, respectively.

All nodes must satisfy the standard voltage bounds:

ymin <y, SV e N teT. (68)

K.1.2 EVCS DEPLOYMENT AND NEIGHBORHOOD STRUCTURE

The DSO manages a set of EV charging stations (EVCSs) K = {1,..., K}, each equipped with
rooftop PV generation and a set of chargers C;, = {1,...,Cy}. EVCS k is placed at exactly one
PDN bus, represented by the binary deployment matrix K € {0, 1}V <X

K, = 1if EVCS k is located at bus 7, K;; = 0 otherwise,

with the physical constraint that no two EVCSs colocate:

Y Ki<1, VieN.

keKx

For each bus ¢, its one-hop neighborhood is defined as
N = {Ge N (i} | (0,d) € £}.
If EVCS k is located at bus ¢ (K;;, = 1), its accessible neighborhood is
N‘]gl) _ A/;(l)’

representing all physically adjacent buses whose aggregate voltage and load information is available.

K.1.3 EV CHARGING MODEL

Each charger serves EVs that arrive, park for a duration, and leave with a required energy level. Let
T2 and TS°P denote the arrival and departure times of EV ¢, and let SoC%" and Sngfp be the
corresponding SoC levels. Their target SoC trajectory is modeled via linear interpolation:

__ rarr

target _ arr c de arr
SoC™ (1) = SoC + gyt (socckp — SoC ) .
Ck Ck
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Each charger must satisfy:

0 < pil(t) < pehmax, (69a)

0 < plis(t) < Pasmax, (69b)

P () pis(t) = 0, (69c)

SoC™ < SoC, (t) < SoC2™, (69d)
1 .

ASoCe, (t) = n™p(t) — ndisp‘i,‘f(t)- (69)

K.1.4 VOLTAGE VIOLATION METRICS

In addition to total voltage violation, we also consider the number of voltage-violating buses:

fNV(t) _ Z 1{'Ui,t ¢ [Vmin) Vmax]}.

ieN
This discrete stability metric counts the extent of widespread voltage deviations across the PDN.

K.1.5 DEMAND SATISFACTION VIOLATION RATE
Let N®V denote the total number of EVs served during the horizon. Define a violation indicator for
each EV:
5DS — 1{SOCC(TCdep) <0.95 Socjep},
i.e., the EV fails to achieve at least 95% of its desired departure SoC. The demand satisfaction

violation rate is then
NEV

1
VR __ DS
DS =™ NEV Z Oc-
c=1

K.1.6 OPERATIONAL COST FUNCTIONS

At each EVCS k, the DSO controls charging and discharging powers {pS"(t), p2*(t)}c,ec,. The
cost components are:

b
oy _ (AP0, 520 >0
& e pID (1), otherwise,

PO =ac Yy (@) + P @)),

cr€Ck

T = Z ([Ui,t _ ymax]+ g [ymin vi7t]+>’

iEN
PS(t) = > [SoCEet(t) — SoC., (1)] ",
cr€Cy,

with traded power

h dis
pEP () = > (1) — pE(t)) — pry -
ck EC
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K.1.7 OBIJECTIVE
The DSO seeks to minimize aggregated operational costs and violation penalties:
Jmin > | D (B + Bt (0 + BafiS(0) + Buf VIO + BV () | + Befp. (T0)
’ teT Lkek

This objective captures energy costs, degradation, voltage safety, spatial extent of voltage violations,
and global demand satisfaction reliability.

K.2 CMDP FORMULATION WITH DEDICATED-CRITIC LAGRANGIAN RL

The EVCS coordination problem is modeled as a constrained Markov decision process (CMDP)
(87 A7 Pa r, {Ci 7117 s {dl}znzl)7

where S and A denote the state and action spaces, P(:|s, a) the transition kernel, r(s, a) the reward
signal, ¢;(s, a) the cost signal for constraint ¢ with threshold d;, and v € (0, 1) the discount factor.

For a policy 7y (als), define the discounted returns:

(oo}
Jr(ﬂ-e) :]Eﬂ' lzvtr(stvat)] ; (71)

t=0

(oo}
Je,(mg) = Ep [thci(st,at)] , i=1,...,m. (72)

t=0

The CMDP objective is

max Jr () s.t. Je,(mg) < diy, i=1,...,m. (73)

Reward and cost signals derived from the system model. Let the instantaneous cost components
from the system description be:

* fVT: total voltage violation magnitude,
o fNV: number of voltage-violating buses,
. tLL: line-loading stress,
o fPS: battery degradation,
o fIP: energy trading cost,

o fPS: per-step EV dissatisfaction,

o fy&: demand satisfaction violation rate (episodic).

A practical reward—cost decomposition aligning with operational goals is:

r(se,ar) = —(arp f° + apc fPC + aps £P9), (74)
ci(se,ar) = ¥, (voltage violation magnitude) (75)
co(st,ap) = tNV, (number of violating buses) (76)
cs(se, ap) = fE°, (line loading) )
ca(s,ap) = ftDG7 (battery degradation) (78)

Additionally, the demand-satisfaction violation rate fy&' is an episodic cost:
Cs(r) £ /38, ExlCs(r)] < ds, (79)

where 7 denotes a full episode. If preferred, fl\)/sR can be distributed as a per-step cost ¢5(s¢, at) such
that its discounted sum recovers the same episodic value.
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Lagrangian relaxation with per-constraint critics. Introduce dual multipliers A =
(M, ..., Am) = 0 and form the Lagrangian:

L(0,N) = To(mg) = > Xi (Je,(m0) — ). (80)
i=1
Primal—dual updates follow:
VoL (0,\) = VoJu(me) = Y N\i VaTo, (mp), (81)
i=1
N Mg l(Xi + 8 (T, — di)), (82)
with II denoting projection for stability.
Value functions and signal-specific advantages. For each signal « € {r,¢1,..., ¢y, }, define:
Qs (s,a) =E, {Z’yt:v(st,at) | so =s,a0 = a], (83)
t=0
Vi(s) = Eanr[@Q7 (5, 0)], (34)
A(s,a) = Q7 (s, a) = Vi (s). (85)
The actor gradient becomes:
VoL(0,)) =E[Vglogm(als) (AL(s,a) — Z)\iAfr"(s, a))]. (86)
i=1
Dedicated critics for each signal. Each signal € {r,¢y,...,¢,,} is assigned a separate critic
Qu,:
0f =@ +7Qu, (5141, 1) — Qu, (8¢, ar), (87)

and the critic minimizes E[(67)?]. Advantage estimates (e.g., GAE) are computed per signal and
combined through the Lagrangian structure.

PPO-style actor update. Let r,(0) = my(a|s;)/mo,,(a|s¢) and
A= A7 =) AT
i=1
The clipped surrogate is

Toro(0) = E[min(rt(H) Ay, clip(r(6), 1—e, 1+e>2t)} Y E[H(m(ls))],  (88)

where H denotes policy entropy.

Instantiated constraints for this problem. With the reward and cost mapping above, we typically
have
m =9,

corresponding to:

s cy: voltage violation magnitude £,
* co: violating node count ftNV,

* c3: line loading fI%,

* c4: battery degradation fPC,

e ¢5: demand-satisfaction violation rate fgg (episodic or densified).
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Table 3: Key hyperparameters, reward structure, and CMDP constraints for the EVCS coordination
case study.

Category Term / Parameter Value Definition / Description

Reward & CMDP constraints

Reward r; - (aTD P + apefP® + - Trading, degradation, and dissatis-
aps ftDS) faction penalties

Constraint ¢; (Volt-  fYT =3, ([vie — V™ T 4 — Voltage violation magnitude across

age magnitude vio- [ymin Ui,t]+) buses

lation)

Constraint e NV = Y. 1w ¢ [0,N] Number of buses violating voltage

(Count of violating [Vmiﬂ’ pmax]l limits

buses)

Constraint c3 (Line  ff* = g g — rline]t Thermal overload above permissi-

loading) ble threshold

Constraint ¢4 (Bat-  fP°¢ = a. Eck( 32 ,t]2 + - Throughput-based quadratic degra-

tery degradation) [pdi=,]2) dation

Constraint c5 (De- f¥§ [0,1] Fraction of EVs leaving with

mand  satisfaction SoC < 0.95SoCdeP

violation rate)

Lag-PPO baseline Z?:l Ci - Single aggregated constraint in

constraint standard Lag-PPO

General training hyperparameters

Learning rate - 3x107* For both actor and critics

PPO clip € - 0.2 Ratio clipping: [1 — €, 1 + €]

Target KL - 0.015 Early stopping threshold

Value loss coeffi- — 0.5 Weight for critic loss

cient

Entropy coefficient — — 0.0 Entropy regularization

Gradient norm clip - 0.5 Global clipping limit

Hidden sizes - (256,256)  MLP layers for all networks

Init log-std - -0.5 Gaussian policy initialization

Discounty/GAE A - 0.99/0.95 Returns and advantage estimation

Dual learning rate - 5% 1073 Step size for multiplier update

A init / max - 0.0/10* Multiplier projection range

Training schedule & environment

Episodes - 2000 Total PPO training episodes

Steps per episode - 288 One full day (5 min resolution)

Environment step - 5 min Sampling interval

The corresponding critics are:

Qurs Quys Qs Quoy s Qs Qo -

The combined advantage is:

Ay = AT — MAST — MgA® — NgAT — NAT — NS AP.
Dual multipliers update via equation 82}

Practical considerations. To stabilize learning: (i) use target networks or Polyak averaging for
each critic; (ii) normalize each advantage Ay' before aggregation; (iii) constrain multipliers via
projection or softplus parameterization; (iv) for episodic costs, update multipliers once per episode;
stepwise costs update per batch.

K.3 EXPERIMENTAL PARAMETERS

Symbols. ¢, ¢5°!: buy/sell electricity prices; [z]t = max(z,0); 1{-}: indicator; v; ;: volt-
age at bus i; pmin j/max, voltage bounds; ¢;;,: loading of line (4,7); rline. gyerload threshold;
pfjjyt, p?}lff charging/discharging powers; ; ;: PV curtailment ratio; At: step duration (5 min); N:

number of buses; |C|: chargers at EVCS k.
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K.4 TwoO-TIERED STATISTICS

See Table[]for details. This table summarizes the two-tiered evaluation statistics, reporting the mean
and standard deviation across three independent training runs. Overall, DC-Lag-PPO consistently
outperforms Lag-PPO across all constraint metrics while also achieving better economic perfor-
mance, confirming that decomposing the critics alleviates the interference between heterogeneous
constraints and stabilizes the dual updates.

DC-Lag-PPO reduces the economic cost substantially, outperforming Lag-PPO by 19.3 units on
average, despite the inherently high variance of cost signals. The improvement of -109% (negative
because higher reward is better) indicates that DC-Lag-PPO not only avoids the reward degradation
often observed in constrained RL, but actually discovers more cost-efficient charging strategies while
still satisfying the operational constraints.

For both voltage violation ratio (cl) and degree (c2), DC-Lag-PPO achieves consistent and sig-
nificant reductions: -23.14 in violation ratio (+16.9% improvement), -44.67 in violation degree
(+22.8% improvement). These gains validate the core motivation of the dedicated-critic design:
each voltage-related critic captures its own risk landscape, preventing the single-critic baseline from
being dominated by a few severe constraints. The larger improvement on violation degree (c2)
suggests that DC-Lag-PPO not only reduces the frequency of violations but also suppresses their
severity, producing safer voltage profiles across the entire PDN.

Battery throughput and degradation drop from 41.43 to 25.62, yielding the largest improvement
among all instantaneous constraints (+38.2%). This indicates that DC-Lag-PPO is better at dis-
tributing the charging/discharging workload across EV chargers, avoiding the overuse of individual
chargers or time windows. The result also aligns with DC-Lag-PPO’s smoother dual updates, which
prevent oscillatory behaviors commonly seen in single-multiplier methods.

The dissatisfaction volume is reduced from 41.07 to 36.72 (+12.2%), demonstrating that DC-Lag-
PPO better supports EV users’ charging requirements. The relatively low variance of DC-Lag-PPO
also implies improved training stability and more consistent performance across runs.

Among all constraints, the dedicated-critic method yields one of the most significant improvements
on dissatisfaction number from 53.13 to 35.44 (+33.9%). This confirms that DC-Lag-PPO not only
reduces instantaneous dissatisfaction but also lowers the probability of EVs failing to meet their
departure SoC requirement, complementing the improvement in dissatisfaction volume.

Table 4: Two-tiered test statistics, where across-run mean =+ across-run std; The higher reward is
better, while the lower constraints are better. A = (DC-Lag-PPO — Lag-PPO). Positive improve-
ment % is computed as (Lag-PPO — DC-Lag-PPO)/Lag-PPO x 100%, except reward where the
value is negated because higher is better.

Metric Lag-PPO (n=3) DC-Lag-PPO (n=3) A Improvement %
Economic cost (reward) 17.66 + 40.88 -1.61 £ 10.02 -19.27 -109.18%
Volt. vio. ratio (cl) 136.67 £ 6.61 113.53 £ 10.72 -23.14 +16.93%
Volt. vio. degree (c2) 196.41 £+ 14.06 151.74 +£ 47.41 -44.67 +22.75%
Battery deg. (c3) 41.43 +4.86 25.62 + 7.81 -15.82 +38.18%
Dissat. vol. (c3) 41.07 £9.01 36.72 + 3.16 -9.89 +12.17%
Dissat. num. (c5) 53.13 +8.25 3544 +£5.22 -11.68 +33.87%

K.5 TRAINING CURVES

See Figure [36] and Figure [37] for detail. It can be seen that DC-Lag-PPO learns faster, stabilizes
earlier, satisfies constraints better, and avoids the late-stage divergence exhibited by Lag-PPO.

First, DC-Lag-PPO achieves lower and more stable economic cost, whereas Lag-PPO exhibits
large oscillations and late-stage degradation. Second, for all constraint metrics, including volt-
age ratio/degree, line loading, battery degradation, and demand dissatisfaction, DC-Lag-PPO main-
tains lower violation levels throughout training, with clearly reduced variance. In contrast, Lag-
PPO’s curves drift upward or fluctuate heavily, indicating unstable constraint handling under the
aggregated-critic formulation.
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The J. curves further confirm this advantage: every DC-Lag-PPO constraint return steadily moves
toward its target threshold d crosses it, and eventually stabilizes near or below the limit. Lag-PPO,
however, shows a single aggregated .J.. that quickly rises above the feasibility threshold and fails to
recover, demonstrating an inability to control multiple constraints simultaneously.

In summary, DC-Lag-PPO learns faster, stabilizes earlier, satisfies constraints more reliably, and
avoids the divergence observed in Lag-PPO, showing clear benefits of using dedicated critics for
multi-constraint RL.

Case 2, Reward (Group 2)

Case 2, Constraint 1 (Group 2)

Case 2, Constraint 2 (Group 2)
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Figure 36: Training curves on Lagrangian cost threshold set: [30,39,20,20,30].
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Figure 37: Training curves of J. on Lagrangian cost threshold set: [30,39,20,20,30].

K.6 LAGRANGIAN MULTIPLIER LEARNING CURVES
See Figure[38a

K.7 PARETO FRONTS

See Fig.[39] Across all reward-constraint and constraint-constraint pairs in this figure, DC-Lag-PPO
exhibits consistently superior Pareto fronts. Its frontier lies uniformly closer to the lower-left region,
indicating lower violations for comparable (or better) economic cost. Reward vs. all constraint: DC-
Lag-PPO achieves strict dominance, producing solutions with both lower cost and lower violations,
whereas Lag-PPO spreads widely and lacks a coherent frontier. Voltage-related pairs (c1-c2): DC-
Lag-PPO forms a tighter and clearly improved front, showing better joint voltage safety. Battery
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Lagrange Multipliers (1) — para_set=5

—— DC-Lag:PPO: 11

7501 —

500 : DC-Lag-PPO: 45

< === Lag-PPO: A1
250
0
0 500 1000 1500 2000
Episode

(a) Lagrangian cost threshold set
[30,39,20,20,30].

Figure 38: Lagrangian multiplier A learning curves.

degradation & dissatisfaction (c3-c4-c5): DC-Lag-PPO consistently pushes the front downward,
reducing both degradation and unmet demand simultaneously. Lag-PPO fronts are often fragmented
or upward-sloping, reflecting unstable trade-offs caused by aggregated-critic interference. Overall,
the DC-Lag-PPO front either envelops or strictly improves upon Lag-PPO across all dimensions,
confirming its ability to maintain safer and more efficient trade-offs under multi-constraint settings.
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Figure 39: Pareto fronts from the test results on Lagrangian cost threshold set [30,39,20,20,30],
where the black dotted lines are the thresholds d.
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L NOTATION SUMMARY

We summarize the key notations used throughout the paper.

Symbol

Meaning

o

Vo logmg(als)
Jm(ﬂ'g)

L(0,))

A= (A1, Am)
Qr (s, a)

T

#(s,a) € R?

o
Qu(s,a) = ¢(s,a)Tw
D

A(6)
b*(0)

State space of the CMDP.
Action space of the CMDP.
Transition kernel, probability of next state given (s, a).

Discount factor.
Reward function.

Cost function for constraint i € {1,...,
Threshold for constraint 7.

m}.

Stochastic policy parameterized by 6.

Policy score function.

Expected discounted return of signal x.

Lagrangian objective.
Vector of Lagrange multipliers.

State—action value function for signal  under 7.

Bellman operator for signal .

Feature vector for linear function approximation.
Feature matrix stacking ¢(s, a) for all (s, a).

Linear critic parameterized by w.

Diagonal weighting matrix with stationary distribution d (s,
System matrix ® " D(I — v P, )®.
Right-hand side vector ® ' D z.
PBE solution for signal z: A(0)w®
Mixed critic solution.

Critic stepsize.
Actor stepsize.
Dual stepsize.

Actor parameters at iteration ¢.
Dual variables at iteration .
Critic parameters at iteration ¢.

() = b(6).

Instantaneous mixed-critic target at iteration ¢,

Mixed critic error: e; = wy — wy.

Dedicated critic error: ef = wf — w®(0;).

Martingale-difference noise terms in critic updates.

Variation from changes in 6, eq. equationE}

Drift term for dedicated critic x.
True actor gradient at iteration ¢.

Actor gradient estimate using mixed critic.
Actor gradient estimate using dedicated-critic, eq. equation
Actor-gradient bias (mixed critic): g; — g;.

Actor-gradient bias (dedicated-critic

) ’\mulll

Uniform bound on || Vg log 7 (a|s)|].

Uniform bound on ||¢(s, a)]|.

Uniform lower bound on eigenvalues of A(f).
Lipschitz / drift constants from error bounds.

*

— 9t -

a).
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Table 6: Performance comparison between dedicated-critic PPO-Lag and mixed-critic PPO-Lag.
Values are mean =+ standard deviation over evaluation episodes.

Env Dedicated critics Mixed critic

Reward Cost Reward Cost
SafetyCarGoal1-v0 14.56 £+ 8.97 21.72 4+ 32.06 1.124+9.23 55.34 + 102.32
SafetyCarButton1-v0 0.36 = 1.81 51.40 4+ 82.14 1.51 +3.64 107.14 £ 132.22
Safety AntVelocity-v1 3324.67 £ 83.21 13.01 £6.32 2821.72 £201.91 28.52 4+ 8.37

SafetyHalfCheetahV-v1 3035.76 £ 287.42 4.14 £2.37 2234.245 + 345.73 45.82 £ 7.15
SafetyHopperVelocity-vl ~ 1002.73 4 723.64 14.87 £20.74  1238.83 + 465.35 17.21 +£12.23
SafetyPointGoal1-v0 13.03 £7.15 23.97 £ 33.16 15.78 £ 3.18 52.81 £17.10

M ADDITIONAL EXPERIMENTS FOR THE ENVIRONMENT WITH SINGLE
CONSTRAINTS

To assess the practical impact of critic design on safe RL performance, we compare our dedicated-
critic PPO-Lagrangian (separate value functions for reward and constraint cost) against a standard
mixed-critic PPO-Lagrangian baseline across a diverse set of Safety-Gymmnasium and velocity-
control benchmarks. Specifically, we evaluate on the navigation tasks SafetyCarGoall-vO0,
SafetyCarButtonl-v0, and SafetyPointGoall-v0, as well as the continuous-
control environments SafetyAntVelocity-vl, SafetyHalfCheetahVelocity-vl
(SafetyHalfCheetahV-v1), and SafetyHopperVelocity-v1, which together span both sparse
goal-reaching rewards with collision costs and dense velocity-tracking settings with safety penalties.
For each environment and method, we report the mean =+ standard deviation of episodic reward and
episodic cost over multiple evaluation rollouts after training, so that higher reward and lower cost
indicate a better reward—safety trade-off. As summarised in Table[6] these experiments allow us to
directly test whether separating reward and cost critics improves constraint satisfaction and stabilises
learning compared to the widely used mixed-critic formulation.

Across all six benchmarks, the dedicated-critic PPO-Lagrangian consistently improves safety
and often improves reward relative to the mixed-critic baseline. On the navigation tasks,
SafetyCarGoall-v0 shows the clearest win: separating reward and cost critics raises the
mean return from 1.12 to 14.56 while also reducing mean cost from 55.34 to 21.72, and it sub-
stantially shrinks the very large cost variance of the mixed critic. A similar pattern appears on
SafetyCarButtonl-v0: both methods obtain very low rewards (reflecting task difficulty),
but the dedicated critic roughly halves the average cost (51.4 vs. 107.14) and reduces variabil-
ity, indicating more reliable constraint satisfaction even when the policy is far from optimal. On
SafetyPointGoall-v0, the mixed critic achieves slightly higher reward (15.78 vs. 13.03) but
at the price of more than double the mean cost (52.81 vs. 23.97), so the dedicated critic offers a
strictly safer solution with only a modest reward gap.

The MuJoCo velocity environments highlight the benefit of dedicated critics even more
strongly. On SafetyAntVelocity-vl, the dedicated-critic agent improves reward from
2821.72 to 3324.67 and cuts mean cost by more than half (28.52 to 13.01). On
SafetyHalfCheetahVelocity-vl, the effect is even more pronounced: reward increases
from 2234.25 to 3035.76, while cost drops from 45.82 to 4.14, giving a dramatically better re-
ward—safety trade-off. SafetyHopperVelocity—-vl is the only case where the mixed critic
slightly outperforms in reward (1238.83 vs. 1002.73), but the dedicated critic still attains lower cost
(14.87 vs. 17.21) and comparable variance. Overall, these results align with our theoretical claim:
by removing the A-induced target drift, dedicated critics provide more stable value estimates, which
in practice translates into systematically lower constraint violations and, in most tasks, equal or
higher task performance than the mixed-critic formulation.

N ASYMPTOTIC VANISHING OF MIXED—CRITIC BIAS

Remark N.1 (Asymptotic vanishing of mixed—critic bias). Under Assumption 4.1, the step—size
ratios satisfy ay/n; — 0 and B;/n: — 0 as ¢ — oo. Hence both limsup terms on the right-hand
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Figure 40: Robbins—Monro Lag-PPO in a two-constraint CMDP: comparison between mixed and
dedicated critics

side of Theorem 4.7 are zero, and we obtain limsup,_, .. E[[|[B:||] = 0. That is, in the idealised
linear SA regime of Assumption 4.1, the mixed—critic actor-gradient bias vanishes asymptotically, so
mixed—critic Lag-PPO and its dedicated—critic variant coincide in the limit. By contrast, this regime
requires Robbins—Monro step sizes and strong timescale separation between critic, actor, and dual,
which is not how deep PPO-Lagrangian is used in practice with (effectively) constant learning rates
and Adam. Our experiments follow this practical setting, where a non-negligible mixed—critic bias
can persist, which is why Theorem 4.7 is stated in terms of the ratios S; /n; and oy /n:, keeping the
bound informative for realistic, non-asymptotic schedules.

To more directly connect our empirical results to the asymptotic setting in Assumption 4.1 and
Theorem 4.7, we also study a Robbins—Monro (RM) variant in a simplified, idealised environment.
The goal of these experiments is to approximate the stochastic-approximation regime assumed in
the theory and to compare mixed and dedicated critics under those conditions.

Experimental design. We consider a small constrained MDP with two constraints and a low-
dimensional state and action space, for which we can reliably measure reward, total constraint vio-
lation, and dual-variable behaviour over training(same as Appendix H). In this setting we implement
two variants:

* Mixed RM: a single mixed critic trained on the scalarised signal ry = — ) . \;c;.

* Dedicated RM: separate critics V,. and V, trained on reward and each constraint cost,
respectively.

Both variants use the same data (trajectories), and differ only in how the value function is parame-
terised. To align with Assumption 4.1, we use Robbins—Monro learning-rate schedules for the actor,
critics, and dual variables:

Bo
1+ kyt’

@ 7o

:mv Ut:ma B =

673
chosen such that Y, a; = oo, >, @ < oo (and similarly for 7, 3;), and with a clear time-scale
separation 7; > ay > ;. All other hyperparameters are held fixed across the two variants. We
track three metrics over training:

1. expected reward (per step),
2. total constraint violation (per step),

3. the absolute difference between dual variables (to monitor symmetry of the Lagrange mul-
tipliers in the two-constraint case).

Figure[d0]shows these three quantities for both Mixed RM and Dedicated RM.

In this idealised, near-linear Robbins—Monro setting, the mixed-critic and dedicated-critic variants
behave very similarly. Their reward curves almost overlap, both methods achieve comparable levels
of constraint satisfaction, and the dual variables converge to a very similar symmetric configuration.
This is consistent with Theorem 4.7: when the learning rates satisfy the stochastic-approximation
conditions and the critics can track their targets on the fastest time scale, the additional dual-induced
drift term in the mixed critic does not translate into a noticeable difference in the limiting behaviour.
In other words, this toy Robbins—Monro experiment can be seen as a direct empirical realisation
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of the asymptotic linear-theory predictions, and it serves as a sanity check that our finite-sample
implementation matches the behaviour analysed in the theoretical section.

O ROBBINS—-MONRO LAG-PPO

In RM Lag-PPO, we replace Adam with plain SGD and use diminishing step-size schedules for
the actor, critic, and dual updates. The data-collection and PPO objective remain unchanged; only
the optimiser and step-size schedules differ. We instantiate a mixed RM Lag-PPO, Lag-PPO (one
critic) and a Dedicated RM variant (separate critics), and train them on the complex power system
environments. However, as we cannot run for effectively unlimited time, and strict Robbins—Monro
schedules cause step sizes to become very small within a realistic training budget, the RM Lag-
PPO variant performs quite similarly with the standard constant—stepsize Lag-PPO(Figure[#1)). This
similarity is further reinforced by PPO’s ratio clipping (and gradient clipping), which effectively
bounds the size of each policy update even under a nominally constant learning rate, making standard
Lag-PPO behave in practice like a conservatively damped method whose effective step sizes are not
far from those induced by a Robbins—Monro schedule over a finite training horizon.
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Figure 41: Training curves of Lag-PPO.

P STATEMENT ON LLM USAGE

Large language models (LLMs), such as ChatGPT, were used solely for editorial assistance in this
work. Their role was limited to improving grammar, rephrasing sentences, and enhancing clarity and
readability of the authors’ original text. No LLM was used to generate original scientific content,
analysis, or results. The authors take full responsibility for the integrity and validity of the work
presented.
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