
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFYING BACK-PROPAGATION AND FORWARD-
FORWARD ALGORITHMS THROUGH MODEL PREDIC-
TIVE CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a Model Predictive Control (MPC) framework for training deep
neural networks, systematically unifying the Back-Propagation (BP) and Forward-
Forward (FF) algorithms. At the same time, it gives rise to a range of intermediate
training algorithms with varying look-forward horizons, leading to a performance-
efficiency trade-off. We perform a precise analysis of this trade-off on a deep linear
network, where the qualitative conclusions carry over to general networks. Based
on our analysis, we propose a principled method to choose the optimization horizon
based on given objectives and model specifications. Numerical results on various
models and tasks demonstrate the versatility of our method.

1 INTRODUCTION

Neural Networks (NN) are rapidly developing in recent years and have found widespread application
across various fields. While Back-Propagation (BP) (Rumelhart et al.) stands as the predominant
training method, its high memory requirements limit its application to deep model, large batch sizes,
and memory-constrained devices, such as those encountered in large language models (Touvron et al.,
2023; OpenAI et al., 2023; Gu & Dao, 2023). To address these limitations, recent research has sought
to mitigate the drawbacks associated with BP or explore alternative training methods altogether.
Notably, Hinton (2022) proposed a Forward-Forward (FF) algorithm that uses layer-wise local loss
to avoid backward propagation through layers. Xiong et al. (2020) also proposed a local loss learning
strategy. Local loss methods are theoretically more memory-efficient and biologically realizable than
BP. However, the performance of FF algorithms is often inferior to that of BP, particularly in deep
models. Moreover, the mechanism of FF is unclear, and lacks understanding of why and when FF
can work.

Is there an optimization method that can balance the memory usage and accuracy? Inspired by the
parallels between Back-Propagation and the Pontryagin Maximum Principle (Li et al., 2017), we
discover the similarity between local loss and the greedy algorithm. Utilizing the concept of the Model
Predictive Control (MPC), we introduce the MPC framework for deep learning. In this framework,
FF and BP are firstly unified, representing two extremes under this framework. Some other previous
works (Xiong et al., 2020; Nøkland & Eidnes, 2019; Belilovsky et al., 2019) (Remark 3.1) are also
incorporated in this framework. This framework offers not only a spectrum of optimization algorithms
with varying horizons to balance performance and memory demand but also a dynamical viewpoint to
understand the FF algorithm. Additionally, our theoretical analysis of the deep linear neural network
shows that the gradient estimation converges polynomially as the horizon approaches full back-
propagation (Theorem 3.4), leading to diminishing returns for sufficiently large horizons. However,
the memory demand grows constantly with respect to the horizon, indicating an intermediate region
offering a favorable trade-off between memory and accuracy. Based on this analysis, we propose
horizon selection algorithms for different objectives to balance the accuracy-efficiency trade-off.

The contributions of this paper are summarized as follows:

• We propose a novel MPC framework for deep neural network training, unifying BP and FF
algorithms and providing a range of optimization algorithms with different accuracy-memory
balances.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We analyze the accuracy-efficiency trade-off within the MPC framework, providing theoreti-
cal insights into gradient estimations and memory usage.

• We propose an objective-based horizon selection algorithm based on the previous theoretical
result that gives the optimal horizon under the given objective.

• The theoretical finding and the horizon selection algorithm are validated under various
models, tasks, and objectives, illustrating the efficacy of our MPC framework.

The remainder of this paper is structured as follows: Section 2 provides a review of relevant literature.
In Section 3, we briefly review the BP and FF algorithms, and then present our proposed framework
together with its analysis. Section 4 introduces the proposed horizon selection algorithm based on the
previous theoretical analysis. The results of numerical experiments are shown in Section 5. Finally,
we conclude the paper and discuss avenues for future research in Section 6.

2 LITERATURE REVIEW

Despite its great success in deep learning, it has been argued that Back-Propagation is memory
inefficient and biologically implausible (Hinton, 2022). Recently, numerous studies have been
focused on addressing the shortcomings of BP, such as direct feedback alignment algorithm (Nøkland,
2016), synthetic gradient (Jaderberg et al., 2017), and LoCo algorithm (Xiong et al., 2020). Notably,
Hinton (2022) proposed a forward-forward algorithm that uses layer-wise local loss to avoid backward
propagation through layers. Although these methods mitigate the memory inefficiency of BP, they
often suffer from inferior performance or introduce additional structures to the models and the
theoretical understanding of when and why these methods work is insufficient.

The connection and comparison between residual neural networks and control systems were observed
by E. Subsequently, Li et al. (2017) used relationships between Back-Propagation and the Pontryagin
maximum principle in optimal control theory to develop alternative training algorithms. Following
this, several works have introduced control methods aimed at enhancing optimization algorithms
in neural network training (Li et al., 2017; Weng et al.; Nguyen et al., 2024). These prior works
have primarily relied on powerful PID controllers or optimal control theory, which, in practice,
are rooted in the concept of backward propagation and thus inherit the drawbacks associated with
BP. Conversely, MPC (Grüne & Pannek), another well-known controller, has yet to be extensively
explored in the realm of deep learning (Weinan et al.).

The analysis of deep linear networks has been extensively explored in the literature like (Cohen
et al., 2022; Arora et al., 2018b). Furthermore, research has investigated the convergence rates of
coarse gradients in various contexts, such as quantifying neural networks (Long et al.), zeroth-order
optimization methods (Chen et al., 2023; Zhang et al., 2024), and truncated gradients in recurrent
neural networks (Aicher et al., 2019). Our work builds upon these analyses combine insights from
both domains to analyze the performance of the proposed MPC framework on deep linear networks.

3 THE MODEL PREDICTIVE CONTROL FRAMEWORK

This section offers a brief overview of the traditional Back-Propagation (BP) algorithm and the novel
Forward-Forward (FF) algorithm. We then establish connections between BP and FF algorithms
using the MPC concept, introducing an MPC framework for deep learning models. Finally, we give
a theoretical analysis of the MPC framework on linear neural networks, providing insights into the
influence of horizon.

In the paper, we focus on the deep feed-forward neural networks, which have the following form:

x(t+ 1) = ft(x(t), u(t)), (1)

where t ∈ {0, ..., T − 1} denotes the block index, x(t) ∈ Rnt denotes the input of the t-th block ,
and u(t) ∈ Rmt represents vectorized trainable parameters in the t-th block, nt,mt are dimensions
of x(t) and u(t), ft : Rnt × Rmt → Rnt+1 denotes the forward mapping of the t-th block. In deep
learning training, the primary objective is to minimize the empirical loss using gradient:

J(u) = L(x(T)), uτ+1 = uτ − ηg(uτ), (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where u ≜ (u(0)⊤, · · · , u(T − 1)⊤)⊤ ∈ Rm denotes all trainable parameters in the neural network,
m =

∑T−1
t=0 mt is the number of trainable parameters in the model and g(u) represents the gradient,

η denotes the learning rate, and L(x(T)) : RnT → R represents the loss on the final output x(T)1, τ
denotes the iteration index and. In this paper, we further assume the loss to be compatible with the
state x(t) for all t = 1, · · · , T , i.e. either x(t) maintains the same dimension for all t = 1, · · · , T or
there is a linear projection (e.g. Pooling layer) that unifies x(t) to the same dimension in the loss.

3.1 BACK-PROPAGATION AND FORWARD-FORWARD ALGORITHM

The Back-Propagation algorithm (Rumelhart et al.) computes the gradient of the loss function for the
weights of the neural network:

gBP(u(t)) = ∇u(t)J(u) = ∇u(t)L(x(T)). (3)

Recently, Hinton (2022) proposed the Forward-Forward (FF) algorithm as an alternative to BP. The
FF algorithm computes gradients using the local loss function of the current block:

gFF(u(t)) = ∇u(t)L(x(t+ 1)). (4)

In the original paper (Hinton, 2022), the author used the Euclidean norm of the layer output as a loss,
but here we use the more general form of the loss function.

While the FF algorithm is more memory-efficient than BP, its performance may be worse due to the
lack of global information. In contrast, BP is typically more accurate but demands more memory.
Moreover, the theoretical understanding of when and why FF might perform well remains limited.
Leveraging the concept of MPC in deep learning models, we propose a novel MPC framework that
unifies the BP and FF algorithms. This framework offers a spectrum of optimization algorithms with
varying horizons, allowing for a balance between performance and memory demand.

3.2 ADOPTING MPC FOR DEEP LEARNING

In this section, we introduce the classical Model Predictive Control (MPC) (Grüne & Pannek) and
explore its connection with deep learning models. Subsequently, we propose an MPC framework
tailored to deep learning models and demonstrate how it unifies BP and FF algorithms within this
framework

MPC is an optimization-based method for the feedback control of dynamic systems. In the infinite
horizon control problem, which is commonly considered in the control field, the trajectory loss is
used, i.e.:

J(u) =

∞∑
t=0

l(t, x(t), u(t)), (5)

where l(t, ·, ·) : Rnt × Rmt → R is the trajectory loss for state x(t) and control u(t) on time t. Due
to the computational complexity of obtaining optimal control for an infinite time horizon, a truncated
finite-time control problem is solved at each time step:

Jh(t, z, uh
t) =

t+h−1∑
s=t

l(s, x(s), u(s))

s.t. x(t) = z, x(s+ 1) = fs(x(s), u(s)),∀s = t, · · · , t+ h− 1,

(6)

where h is the horizon considered by MPC at each time step, uh
t ≜ {u(t), · · · , u(t+ h− 1)}. The

solution uh∗
t = argminuh

t
Jh(t, x(t), uh

t) is applied to the current state:

x(t+ 1) = ft(x(t), u
h∗
t (t)). (7)

To apply the concept of MPC to deep learning models, we consider the deep learning model as
a dynamic system governed by the underlying dynamic function ft (1), where the block index t

1Here, the loss is the average of loss in training dataset, we ignore the data index for brevity. We also ignore
regularization terms and other possible parameters and labels in the loss function, focusing solely on the loss
function that depends on the final output x(T).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Diagram of MPC framework on a 4-block model: black arrows denote the forward pass
and red arrows denote the backward pass, ∇t ≜ gh(u(t)) is the gradient of t-th block. MPC uses
partial gradient propagation. We can see that BP can be seen as MPC with the full horizon (h = T),
while FF is MPC with horizon 1 (h = 1)

corresponds to the time index in control systems. The weights u(t) and input x(t) of the t-th block
are analogous to the control and state at time t (E; Li et al., 2017).

Since deep learning problems typically involve only a terminal loss applied at the end of the network,
we need to define an effective trajectory loss l(t, x(t), u(t)) for each block t that add up to the desired
terminal loss (2). One particular choice is as follows:

l(t, x(t), u(t)) ≜ L(ft(x(t), u(t)))− L(x(t)) = L(x(t+ 1))− L(x(t)). (8)

We demonstrate that the terminal loss L(x(T)) is equivalent to the sum of trajectory loss∑T−1
t=0 l(t, x(t), u(t)) up to a constant (see Appendix C.1).

Using a similar definition of Jh in (6), we propose the MPC framework for deep learning models in
the form of:

gh(u(t)) = ∇u(t)J
h(t, x(t), uh

t), (9)

where uh
t = {u(t), ..., u(min(t+ h− 1, T))}

Instead of evaluating the entire model as BP or only the local loss of the current block as FF, MPC
considers a horizon h from the present block. Moreover, as illustrated in Figure 1, MPC provides a
family of training algorithms with different horizons h, and both the FF and BP algorithms can be
seen as extreme cases of the MPC framework with horizon h = 1 and h = T respectively,

gFF(u(t)) = g1(u(t)), gBP(u(t)) = gT (u(t)). (10)

A detailed example is provided in the Appendix A for a better understanding of the MPC framework.

Remark 3.1 Other algorithms using local loss (e.g. (Nøkland & Eidnes, 2019; Belilovsky et al.,
2019)) can also be seen as MPC framework with horizon h = 1. Moreover, LoCo algorithm (Xiong
et al., 2020) can be seen as the MPC framework with horizon h = 2 under larger blocks (each stage
in the ResNet-50 be seen as a block, refer to Appendix B).

Remark 3.2 Noted that L(x(t)) in the (8) is independent of u(t), and Jh(t, x(t), uh
t) =∑t+h−1

s=t l(s, x(s), u(s)) = L(x(t+h))−L(x(t)) where only L(x(t+h)) depends on u(t). Therefore,
in practice, there is no need to compute L(x(t)) for Jh

The MPC framework, akin to the FF algorithm, is advantageous in terms of memory usage since
it considers only part of the model in the computation of Jh. In practice, the memory demand for
training a deep learning model largely depend on the need to store intermediate value for Back-
Propagation, theoretically proportional to the depth of the model. Therefore, the memory usage will
be of linear growth in horizon h, i.e.:

M(h) = ah+ b, (11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where M(h) is memory usage for horizon h, and a, b are independent of h2. Numerical experiments
also verify the linear dependency of the horizon (Appendix E.1).

Empirically, the MPC framework realizes the trade-off between performance and memory demand by
providing a spectrum of optimization algorithms with varying horizons h. A larger horizon provides
an accurate gradient, while a smaller horizon gives memory efficiency. This idea helps to understand
the validity of the FF algorithm and its reduced accuracy compared to BP. However, there is still
a lack of theoretical analysis on the influence of horizon h on accuracy. In the following sections,
we provide theoretical results on the influence of horizon h on deep linear networks and propose a
horizon selection algorithm for the given objective.

Remark 3.3 In the traditional control field, finite time problems are rarely studied especially for the
MPC method. The existing results on the performance of MPC are primarily either asymptotic or rely
on properties that are challenging to verify or not suitable for deep learning. For a more detailed
introduction to traditional MPC methods, interested readers may refer to Grüne & Pannek.

3.3 THEORETICAL ANALYSIS ON DEEP LINEAR NETWORKS

From the previous discussion, we conjectured that a larger horizon will give better performance. In
this section, we theoretically investigate the influence of horizon h on linear neural networks.

Considering a simple Linear NN problem with linear fully connected layers and quadratic loss, which
is widely used in the theoretical analysis of deep learning (Arora et al., 2018b; Cohen et al., 2022).
The parameter u(t) is the weight W (t) in the t-th layer, omitting bias for brevity:

ft(x(t), u(t)) = W (t)x(t), L(x(T)) =
1

2
∥x(T)− y∥22, (12)

where (x(0), y) ∈ Rn × Rn is one sample input-label pair in the dataset, x(t) ∈ Rn has the same
dimension for all 0 ≤ t ≤ T , W (t) ∈ Rn×n.

We aim to analyze the deviation between the gradient obtained by the MPC framework gh and the true
gradient gT . Considering that the difference in the scale of the gradient norm can be compensated by
adjusting the learning rate, the minimum deviation between the rescaled gradient gh and true gradient
gT can be determined by the angle between these two vectors.

min
ch
∥chgh − gT ∥2 =

∥∥∥∥∥gT ∥2∥gh∥2
cos(θh)gh − gT

∥∥∥∥
2

= sin(θh)∥gT ∥2, (13)

where θh = arccos(
g⊤
h gT

∥gh∥2∥gT ∥2
) denotes the angle between gh and gT .

We further assume the dataset is whitened, i.e. the empirical (uncentered) covariance matrix for
input data {x(0)} is equal to identity as (Arora et al., 2018a). In this case, the problem is equivalent
to L(u) = 1

2∥W − Φ∥2F , where W ≜ W (T − 1) · · ·W (0), Φ is the empirical (uncentered) cross-
covariance matrix between inputs {x(0)} and labels {y}. We have the following result for the
asymptotic gradient deviation in the deep linear network at Gaussian initialization.

Theorem 3.4 ((Informal) Gradient Deviation in Deep Linear Network) Let W (t) = I +
1
T W̃ (t), {W̃ (t)} are matrices with bounded 2-norm, i.e. ∃c > 0 such that ∥W̃ (t)∥2 ≤ c,∀t. Denote
θh the angle between gh and gT . When T →∞, h→∞, h

T = α, 1− cos2(θh) = O((1− h
T)

3) as
h
T → 1.

The proof estimate the norm of gradient to bound cos(θh) for h
T → 1. The complete statement and

the proof is in Appendix C.2. The polynomial relationship between cos(θh) and h is also observed
for nonlinear cases (refer to Section 5.1). Further using the previous study of biased gradient descent,
we can get the linear convergence to a non-vanishing right-hand side for strong convex loss with rate
O(cos2(θh)) (see Appendix C.3), i.e. the loss decrease speed is linear with cos2(θh):

r(h) =
ln(Jh(τ)/J0)

ln(JT (τ)/J0)
= O(cos2(θh)), (14)

2Influence of other factors like batch size are assumed to be constant and absorbed in coefficients a and b.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3.4 indicates that the gradient deviation between gh and gT aligns with the growth of the
horizon h, leading to an improved performance, which verifies the previous conjecture. However, the
performance gain diminishes cubicly as the horizon approaches the full horizon T , suggesting that
excessively increasing the horizon may not bring significant performance improvements. Nevertheless,
memory usage continues to increase linearly with the horizon, indicating a non-trivial optimal horizon
in the middle. When horizon approach 1, the numerical experiments show that cos(θh) has non-fixed
value and non-zero derivative (Section 5.1). This observation underscores the importance of selecting
an optimal horizon to balance accuracy and memory efficiency, as illustrated in the following example.

For instance, if we weigh the performance and cost linearly with memory usage, i.e. C(M(h)) =
M(h) = ah+b, where M(h) is the memory usage for horizon h. Assuming cos2(θh) = 1−c(1− h

T)
3

and target objective is −r(h) + λC(M(h)) where a, b, c > 0. If 3c
aT 2 < λ < 3c(T−2)2

aT 2 , we can get

the optimal horizon h∗ = T (1−
»

aλ
3c) and 2 ≤ h∗ ≤ T − 1, the optimal horizon will neither be 1

(FF) nor T (BP).

This example illustrates that the optimal horizon depends on various factors such as the model,
dataset, task, and objective. In the subsequent section, we will provide horizon selection algorithms
for different objectives to navigate the accuracy-efficiency trade-off.

4 OBJECTIVE-BASED HORIZON SELECTION ALGORITHM OF MPC
FRAMEWORK

From the previous section, we know the optimal horizon will depend on both the deep learning
problem and objective function. Utilizing the above theoretical results, in this section we propose a
horizon selection algorithm for the given objective, aimed at achieving the balance between accuracy
and memory efficiency.

There are a variety types of objectives that consider accuracy and efficiency. In this paper, we consider
objectives that are functions of the relative rate of loss decrement r(h) (14), and the memory-depend
cost C(M). From the analysis in Section 3.3, we may use cos(θh) to approximate r(h). As for
cosine similarity cos(θh) and memory usage M(h), these properties are hard to analyze but easy to
compute and fit using polynomial fitting with low degree (order 3 for cos(θh) and order 1 for M(h))
on just a few horizons and batches of data based on (11) and Theorem 3.4, i.e.

cos(θ̂h) = Polyfit(H, {cos(θh)}h∈H , order = 3)(h) (15)

M̂(h) = Polyfit(H, {M(h)}h∈H , order = 1)(h). (16)

When it comes to the cost C(M), the practical significance of this consideration is that memory
usage is related to the cost on the device in practice3. Though any cost function is applicable, for
simplicity we consider following two kinds of cost functions: 1) Linear cost function C(M) = c M

M0
,

where M0 is the memory of one node (e.g. GPU) and c is the unit cost, corresponding to the ideal
case where computing resources can be divided unlimited; 2) Ladder cost function C(M) = c⌈ M

M0
⌉,

reflecting a more realistic situation where only an integer number of GPUs are allowed.

Since the limited memory resource case will be trivial and we just need to select the largest horizon
under the memory limitation, we consider the following two objectives that are more general and
practical: accuracy constraint and weighted objective.

Objective 1: Accuracy Constraint
max
h∈H

C(M(h))

s.t. r(h) ≥ 1− ϵ.
(17)

In this case, we want to get a good performance using minimum cost. The algorithm selects the
smallest horizon that can meet the accuracy constraint using the proposed loss estimation.

3The popular cloud platforms now all provide pay-per-use mode which the pricing is mainly linear with
the memory of GPUs, like Google Cloud https://cloud.google.com/vertex-ai/pricing#
text-data and Huawei Cloud https://www.huaweicloud.com/intl/en-us/pricing/#/
ecs

6

https://cloud.google.com/vertex-ai/pricing#text-data
https://cloud.google.com/vertex-ai/pricing#text-data
https://www.huaweicloud.com/intl/en-us/pricing/#/ecs
https://www.huaweicloud.com/intl/en-us/pricing/#/ecs

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Objective 2: Weighted Objective We can also consider the case when there is no hard constraint,
but the objective is a weighted sum of performance and memory efficiency:

max
h∈H

−r(h) + λC(M(h)). (18)

The horizon selection algorithm (Algorithm 1) first compute the true cosine similarity cos(θh) and
memory usage M(h) in the subset H , and fit for other horizon by polynomial; then the optimal
horizon h∗ 4 for the given objective is solved using a traditional optimization algorithm (e.g. brute
force search).

Algorithm 1 Horizon Selection Algorithm

Require: Objective O(r, c), Cost function C(M), Dataset D, Subset of horizon H , (Optional)
1: for h in H do
2: M(h)← memory usage for horizon h
3: end for
4: for h ∈ {1, · · · , T} do
5: M̂(h)← Polyfit(H, {M(h)}h∈H , order = 1)(h) (Eq. (16))
6: end for
7: for h in H do
8: for batch b in D do
9: gh,b ← ∇uJ

h using Eq. (9) and Lemma C.1 on batch b
10: end for
11: cos(θh)← E[b in D]

g⊤
h,bgT,b

∥gh,b∥2∥gT,b∥2

12: end for
13: for h ∈ {1, · · · , T} do
14: cos(θ̂h)← Polyfit(H, {cos(θh)}h∈H , order = 3)(h) (Eq. (15))
15: end for
16: r̂(h)← cos2(θ̂h) (Eq. (14))
17: ĥ∗ ← argminh O(r̂(h), C(M̂(h)))

18: return ĥ∗

5 EXPERIMENT RESULTS

To evaluate the effectiveness of the proposed MPC framework for deep learning models, we conduct
some distinct experiments: 1) linear residual Neural Network (Res Linear NN); 2) residual MLP
(Res MLP); 3) 62-layer ResNet model (Sec 4.2 (He et al., 2016)) (ResNet-62); 4) fine-tuning ResNet-
50 (He et al., 2016) and ViT-b16 (Dosovitskiy et al., 2021). Detailed model structure, dataset, and
training settings can be found in Appendix D, and all the experiments are conducted in NVIDIA
GeForce RTX 3090 using TensorFlow (Abadi et al., 2016).

In summary, our findings reveal that:

1. The theoretical result of the linear NN model is qualitatively consistent with numerical
experiments on nonlinear models with respect to polynomial convergence of gradient and
the linear growth of memory usage (Section 5.1).

2. The performance of larger horizons will be better and will converge to the results of BP
algorithm (Full horizon) quickly (Section 5.2).

3. The optimal horizon depends on the task, model structure, and objective. Both BP and
FF algorithms can be optimal horizons, but in most cases, an intermediate horizon will
be the best choice. The proposed horizon selection algorithm can help select the horizon
throughout many cases, especially for difficult tasks (Section 5.3).

These experiments collectively demonstrate that the proposed MPC framework is applicable across
various deep learning models and tasks, particularly for large-scale deep learning models where
memory demands during training are significant.

4If Eq. (11) and Eq. (14) are correct, the returned horizon will be optimal.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.1 QUALITATIVE VERIFICATION FOR POLYNOMIAL CONVERGENCE OF gh AND MEMORY
USAGE

10 2 10 1 100

1 h/T

10 4

10 3

10 2

10 1

100
1

co
s(

h)
Linear Residual NN

2
8
14
20

10 1 100

1 h/T

10 2

10 1

1
co

s(
h)

Residual MLP

2
8
14
20

10 1 100

1 h/T

10 2

10 1

100

1
co

s(
h)

ResNet-62

2
8
14
20

Figure 2: Relationship Between gh and h on different models.
The x-axis shows T − h and y-axis shows 1− cos(θh). Each line represents a different training

epoch. Left: Linear residual NN, Middle: Residual MLP, Right: ResNet-62

To verify the angle θh between gh and gT for different horizons, we trained a series of neural networks
on the first three tasks. The results are depicted in Figure 2. The results demonstrate that the gradient
convergence rate is polynomial for all models throughout the entire training process, consistent with
our theoretical analysis, despite that the order might not be as high as observed in simple linear
models. Furthermore, the angle of the same horizon tends to increase during training, suggesting that
a small horizon can be efficient in the early training epochs but not in the later training epochs.

Further, in Section 3.3, we have argued that the memory usage is linear with respect to the horizon
h. To verify this, we trained both the classic ResNet-50 model He et al. (2016) and the Vision
Transformer (ViT) model Dosovitskiy et al. (2021) on CIFAR100 dataset. We use the same batch size
to train the models in different horizons. Under the hypothesis that the memory usage is linear with
respect to the horizon, the batch size should be reciprocal to the horizon, and the results depicted in
Figure 3 demonstrate it. Since the memory usage is halfed after a downsampling operation in the
resnet-50 model (the width and height are halfed while the number of channel is doubled) to maintain
the flops constant, the memory usage is not linear in the resnet-50 model but still increasing with
horizon being larger. However, for the ViT model, the memory usage is linear as each transformer
block has the same size. Further discussion on the memory usage can be found in Appendix E.1.

1 5 10 17
horizon

0.5

0.6

0.7

0.8

va
l_a

cc

0

1000

2000

3000

4000

5000

m
em

or
y

(M
B)

ResNet-50

1 2 5 10 12
horizon

0.65

0.70

0.75

0.80

0.85

0.90

va
l_a

cc

0

1000

2000

3000

4000

5000

m
em

or
y

(M
B)

ViT LoRA

Figure 3: Test accuracy and memory usage of full tuning ResNet-50 and LoRA tuning ViT-b16 on
CIFAR100. Dark line shows the loss of final epoch and shallow bars shows the memory usage of the

horizon. The maximum
Left: ResNet-50, Right: ViT-b16

5.2 PERFORMANCE OF DIFFERENT HORIZONS

From Figure 3, we can also observe that for large horizons, the performance will converge to the full
horizon (BP) case, which is consistent with the convergence of the gradient (Thm 3.4) and indicates

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2.5 5.0 7.5 10.0 12.5 15.0
horizon

10 1

100

lo
ss

ResNet-50
epoch

0
4
8
12
16

2 4 6 8 10 12
horizon

100lo
ss

ViT-LoRA
epoch

0
4
8
12
16

Figure 4: Full tuning ResNet-50 and LoRA tuning ViT-b16 with different horizons
Left: ResNet-50, Right: ViT-b16

M
1-

C1
-O

1-
0.

25
M

1-
C1

-O
1-

0.
65

M
1-

C1
-O

1-
0.

95
M

1-
C2

-O
1-

0.
25

M
1-

C2
-O

1-
0.

65
M

1-
C2

-O
1-

0.
95

M
2-

C1
-O

1-
0.

25
M

2-
C1

-O
1-

0.
65

M
2-

C1
-O

1-
0.

95
M

2-
C2

-O
1-

0.
25

M
2-

C2
-O

1-
0.

65
M

2-
C2

-O
1-

0.
95

M
3-

C1
-O

1-
0.

25
M

3-
C1

-O
1-

0.
65

M
3-

C1
-O

1-
0.

95
M

3-
C2

-O
1-

0.
25

M
3-

C2
-O

1-
0.

65
M

3-
C2

-O
1-

0.
95

M
1-

C1
-O

2-
0.

3
M

1-
C1

-O
2-

0.
6

M
1-

C1
-O

2-
1.

0
M

1-
C2

-O
2-

0.
3

M
1-

C2
-O

2-
0.

6
M

1-
C2

-O
2-

1.
0

M
2-

C1
-O

2-
0.

3
M

2-
C1

-O
2-

0.
6

M
2-

C1
-O

2-
1.

0
M

2-
C2

-O
2-

0.
3

M
2-

C2
-O

2-
0.

6
M

2-
C2

-O
2-

1.
0

M
3-

C1
-O

2-
0.

3
M

3-
C1

-O
2-

0.
6

M
3-

C1
-O

2-
1.

0
M

3-
C2

-O
2-

0.
3

M
3-

C2
-O

2-
0.

6
M

3-
C2

-O
2-

1.
0

av
er

ag
e

BP

FF

loco 3

loco 5

select (ours)

×× ××
×× ××
×× ××

0.0

0.2

0.4

0.6

0.8

1.0

Res Linear NN Res MLP ResNet-62
model

0.0

0.5

1.0

1.5

Re
l(a

)

Objective 1
algo

BP
FF
loco 3
loco 5
select (ours)

Res Linear NN Res MLP ResNet-62
model

0.0

0.2

0.4

0.6

0.8

1.0

Re
l(a

)

Objective 2

Figure 5: Relative performance Rel(a) of different algorithms on various models, costs, and
objectives. Up: Heatmap of relative objective value of baselines and horizon selection algorithms

and objectives, y-axis: different algorithms, x-axis: models, tasks, and objectives (refer to Table D3),
color: relative objective value, cross notation ’×’: infeasible solution. Bottom: Average relative
performance of different algorithms on different models (the infeasible solution is treated as 1.5)

the possibility of optimality in the intermediate horizon. The results reveal that the performance of
the MPC framework is highly dependent on the horizon. We further show the detailed snapshows in
different training procedure in Figure 4. We find that, in the early training epochs, the loss decrement
is aligned for different horizons. However, as training progresses, the loss decrement of different
horizons diverges especially for small horizons. The convergence of large horizons to BP algorithm
is also observed. Further results of the performance of different horizons on the first three tasks can
be found in Appendix E.2.

5.3 VALIDATION OF HORIZON SELECTION ALGORITHM

Relative Performance Since the objective value varies from different models, tasks, costs, and
objective parameters, we transform the results to relative performance for comparison. Denoting
O(a) be the objective value using algorithm a, the relative performance is calculated by mapping the
best result mina O(a) to the worst result maxa O(a) onto [0, 1], i.e.

Rel(a) =
O(a)−mina O(a)

maxa O(a)−mina O(a)
. (19)

To demonstrate the effectiveness of the proposed horizon selection algorithm, we trained neural
networks on the first three tasks using three selection algorithms and tested its objectives with the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

baseline (BP and FF algorithm and LoCo algorithm). The results, depicted in Figure 5, demonstrate
that our proposed algorithms can achieve better objective values compared to BP. Since FF utilizes
only one block each time, its memory usage will be minimal, leading to its relatively low objective
value, especially in objective 1, while it also might not be able to satisfy the constraints. As for
the LoCo algorithm, which can still be seen as a fixed horizon algorithm, it might also violate the
constraints and is less flexible among different models and tasks. As illustrated in Figure 5 our
proposed horizon selection algorithm is more efficient than BP and more stable than FF and gets
comparable average performance for the LoCo algorithms. We also find that the horizon selection
algorithm gets better results on difficult tasks, e.g. the training of ResNet-62. Since the inaccuracy
of loss decreases speed estimation, the horizon selection algorithm tends to select a relatively larger
horizon to satisfy the constraint, thus it gets poor results in Objective 1 compared to 2.

6 DISCUSSION

This study presents a systematic framework that integrates the Forward-Forward algorithm with
Back-Propagation, offering a family of algorithms to train deep neural networks. Theoretical analysis
on deep linear networks demonstrates a polynomial convergence of gradients concerning the horizon
and the diminished return for large horizons. Based on the analysis result and various objectives,
we propose an objective-based horizon selection algorithm to balance performance and memory
efficiency. Additionally, numerical experiments across various tasks verify the qualitative alignment
of theory and underscore the significant impact of horizon selection. However, many phenomena in
the MPC framework are not fully analyzed or understood. Here are some limitations of this study.

Firstly, the analysis is primarily based on deep linear networks, but analyzing nonlinear deep networks
remains challenging, and existing results heavily rely on the BP algorithm and are thus not applicable
to the proposed framework. Nevertheless, numerical experiments show that our theoretical result
qualitatively complies with the behavior observed in nonlinear models and the analysis provides
enough insight for the horizon selection algorithm.

Secondly, while the numerical result demonstrates the significant potential of the MPC framework,
our proposed horizon selection algorithm involves simplifications and empirical fittings. However,
loss estimation is not our primary focus, and the experiments show that the proposed algorithm
achieves a good balance between performance and memory efficiency compared to baselines. Future
studies could refine this algorithm with more precise loss estimation techniques.

Thirdly, our research focuses solely on the horizon’s influence, neglecting other MPC framework
hyperparameters like block selection and loss splitting methods which are also important. We leave
these for the future studies.

REFERENCES

Martín Abadi, P. Barham, Jianmin Chen, Z. Chen, Andy Davis, J. Dean, M. Devin, Sanjay Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, Sherry Moore, D. Murray, Benoit Steiner,
P. Tucker, Vijay Vasudevan, Pete Warden, M. Wicke, Yuan Yu, and Xiaoqiang Zhang. Tensorflow:
A system for large-scale machine learning. USENIX Symposium on Operating Systems Design and
Implementation, 2016.

Christopher Aicher, Nicholas J. Foti, and Emily B. Fox. Adaptively truncating backpropagation
through time to control gradient bias. In Proceedings of the Thirty-Fifth Conference on Uncertainty
in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, volume 115, 2019. URL
http://proceedings.mlr.press/v115/aicher20a.html.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. International Conference on Learning Representations,
2018a.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80,
2018b. URL http://proceedings.mlr.press/v80/arora18a.html.

10

http://proceedings.mlr.press/v115/aicher20a.html
http://proceedings.mlr.press/v80/arora18a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, 2019. URL http://proceedings.
mlr.press/v97/belilovsky19a.html.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. ArXiv preprint, abs/1606.04838, 2016. URL https://arxiv.org/abs/1606.
04838.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. DeepZero: Scaling up
zeroth-order optimization for deep model training. ArXiv preprint, abs/2310.02025, 2023. URL
https://arxiv.org/abs/2310.02025.

Jie Chen and Ronny Luss. Stochastic gradient descent with biased but consistent gradient estimators.
ArXiv preprint, abs/1807.11880, 2018. URL https://arxiv.org/abs/1807.11880.

Nadav Cohen, Govind Menon, and Zsolt Veraszto. Deep linear networks for matrix completion – an
infinite depth limit. ArXiv preprint, abs/2210.12497, 2022. URL https://arxiv.org/abs/
2210.12497.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

Weinan E. A proposal on machine learning via dynamical systems. 5(1):1–11. ISSN 2194-
6701, 2194-671X. doi: 10/ggrtrp. URL http://link.springer.com/10.1007/
s40304-017-0103-z.

Lars Grüne and Jürgen Pannek. Nonlinear Model Predictive Control. Communications and Control
Engineering. Springer International Publishing. ISBN 978-3-319-46023-9 978-3-319-46024-
6. doi: 10.1007/978-3-319-46024-6. URL http://link.springer.com/10.1007/
978-3-319-46024-6.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. ArXiv
preprint, abs/2312.00752, 2023. URL https://arxiv.org/abs/2312.00752.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. ArXiv preprint,
abs/2212.13345, 2022. URL https://arxiv.org/abs/2212.13345.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, 2017.
URL http://proceedings.mlr.press/v70/jaderberg17a.html.

Qianxiao Li, Long Chen, Cheng Tai, and Weinan E. Maximum principle based algorithms for deep
learning. J. Mach. Learn. Res., 2017.

Ziang Long, Penghang Yin, and Jack Xin. Learning quantized neural nets by coarse
gradient method for nonlinear classification. 8(3):48. ISSN 2522-0144, 2197-9847.
doi: 10.1007/s40687-021-00281-4. URL https://link.springer.com/10.1007/
s40687-021-00281-4.

11

http://proceedings.mlr.press/v97/belilovsky19a.html
http://proceedings.mlr.press/v97/belilovsky19a.html
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/2310.02025
https://arxiv.org/abs/1807.11880
https://arxiv.org/abs/2210.12497
https://arxiv.org/abs/2210.12497
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://link.springer.com/10.1007/s40304-017-0103-z
http://link.springer.com/10.1007/s40304-017-0103-z
http://link.springer.com/10.1007/978-3-319-46024-6
http://link.springer.com/10.1007/978-3-319-46024-6
https://arxiv.org/abs/2312.00752
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2212.13345
http://proceedings.mlr.press/v70/jaderberg17a.html
https://link.springer.com/10.1007/s40687-021-00281-4
https://link.springer.com/10.1007/s40687-021-00281-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tam Nguyen, César A. Uribe, Tan M. Nguyen, and Richard G. Baraniuk. PIDformer: Transformer
meets control theory. ArXiv preprint, abs/2402.15989, 2024. URL https://arxiv.org/
abs/2402.15989.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Neural
Information Processing Systems, 2016.

Arild Nøkland and L. Eidnes. Training neural networks with local error signals. International
Conference on Machine Learning, 2019.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, et al. GPT-4
technical report. ArXiv preprint, abs/2303.08774, 2023. URL https://arxiv.org/abs/
2303.08774.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. 323(6088):533–536. ISSN 1476-4687. doi: 10.1038/323533a0. URL
https://www.nature.com/articles/323533a0. Publisher: Nature Publishing Group.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv preprint, abs/2302.13971, 2023. URL https://arxiv.org/abs/2302.
13971.

E Weinan, Jiequn Han, and Jihao Long. Empowering optimal control with machine learning: A
perspective from model predictive control. 55(30):121–126. doi: 10/gsmnbx. URL https:
//www.sciencedirect.com/science/article/pii/S2405896322026672.

Boxi Weng, Jian Sun, Alireza Sadeghi, and Gang Wang. AdaPID: An adaptive PID optimizer for
training deep neural networks. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3943–3947. doi: 10/gsmnbq. ISSN: 2379-190X.

Yuwen Xiong, Mengye Ren, and Raquel Urtasun. Loco: Local contrastive representation learning. In
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen.
Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: A benchmark. ArXiv
preprint, abs/2402.11592, 2024. URL https://arxiv.org/abs/2402.11592.

12

https://arxiv.org/abs/2402.15989
https://arxiv.org/abs/2402.15989
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://www.nature.com/articles/323533a0
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://www.sciencedirect.com/science/article/pii/S2405896322026672
https://www.sciencedirect.com/science/article/pii/S2405896322026672
https://arxiv.org/abs/2402.11592

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A AN EXAMPLE OF THE MPC FRAMEWORK

In this section, we give a detailed example of 5-layer residual MLP with MSE loss and h = 1, 3, 5(=
T) to illustrate the MPC framework.

Structure Each layer of the network is a fully-connected layer with activation and residual connec-
tion. We take each layer to be a block in the MPC framework, i.e. T = 5.

ft(x(t), u(t)) = x(t) + σ(Linear(x(t);u(t))),∀t = 0, · · · , 4,

L(x) = MSE(x, y)

Note that we keep x in loss L and ignore other possible parameters and labels.

Trajectory loss Trajectory loss l(t, x(t), u(t)) is defined as loss decrement between block input
x(t) and block output x(t+ 1):

l(t, x(t), u(t)) = L(x(t+1))−L(x(t)) = MSE(ft(x(t), u(t)), y)−MSE(x(t), y),∀t = 0, · · · , 4.

Horizon h = 3 case The truncated loss Jh(t, x(t), uh
t) is defined as partial sum of the trajectory

loss.

J3(0, x(0), u3
0) =

2∑
t=0

l(t, x(t), u(t)) = L(x(3))− L(x(0))

= MSE(f2(·, u(2)) ◦ f1(·, u(1)) ◦ f0(·, u(0))(x(0)), y)−MSE(x(0), y)

where u3
0 = {u(0), u(1), u(2)}, and ◦ means composition of functions in argument · , i.e. g(·) ◦

f(x, ·)(y) ≜ g(f(x, y)). Similarly,

J3(1, x(1), u3
1) = L(x(4))− L(x(1)), J3(2, x(2), u3

2) = L(x(5))− L(x(2)),

J3(3, x(3), u3
3) = L(x(5))− L(x(3)), J3(4, x(4), u3

4) = L(x(5))− L(x(4)).

The gradient is defined as

g3(u(0)) = ∇u(0)J
3(0, x(0), u3

0) = ∇u(0)L(x(3)),

Second equality is because x(0) is independent with u(0), thus ∇u(0)L(x(0)) = 0. Similarly,

g3(u(1)) = ∇u(1)L(x(4)), g3(u(2)) = ∇u(2)L(x(5)),

g3(u(3)) = ∇u(3)L(x(5)), g3(u(4)) = ∇u(4)L(x(5)).

Horizon h = 1 (FF) case When h = 1, the truncated loss Jh(t, x(t), uh
t) is the current trajectory

loss:
J1(t, x(t), u1

t) = l(t, x(t), u(t)) = L(x(t+ 1))− L(x(t)),∀t = 0, · · · , 4,
and thus

g1(u(t)) = ∇u(t)J
1(t, x(t), u1

t) = ∇u(t)L(ft(x(t), u(t))),∀t = 0, · · · , 4,

which is the gradient of a local loss as the Forward-Forward algorithm.

Horizon h = 5 = T (BP) case When h = T , the truncated loss Jh(t, x(t), uh
t) is the sum of the

following trajectory loss:

JT (t, x(t), uT
t) =

T−1∑
s=t

l(s, x(s), u(s)) = L(x(T))− L(x(t)),∀t = 0, · · · , 4,

and
gT (u(t)) = ∇u(t)L(x(T)),∀t = 0, · · · , 4,

which has the same gradient as traditional Back-Propagation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure B1: Left: (Part of Figure 1 in Xiong et al. (2020)) Diagram of LoCo, Right:(Part of Figure 1)
Diagram of MPC framework with h = 2.

B COMPARISON OF LOCO AND MPC FRAMEWORK WITH h = 2

In this section, we demonstrates that LoCo is included in the MPC framework with h = 2. As shown
in Figure B1, we can find that the structure of LoCo is identical with the MPC framework with h = 2
(refer to Figure 1) if we rotate their diagram clockwise for 90 degrees. The only difference is that
LoCo computes the gradient of the intermediate stage twice in each step, i.e.

gLoCo(u(t)) = ∇u(t)L(x(t+ 1)) +∇u(t)L(x(t+ 2)),∀t = 1, · · · , t− 2. (20)
This can be realized in the MPC framework by changing trajectory loss to:

l(t, x(t), u(t)) =

®
0, t = 0

L(x(t+ 1)), t > 0
(21)

However, this change leads to the sum of trajectory loss not equal to the terminal loss, i.e.
JT (t, x(t), uT

t) ̸= L(x(T)). For the consistency of the paper, we use the "split loss" for the
LoCo structure in our paper.

C PROOF OF THEOREM

C.1 EQUIVALENCE OF TERMINAL LOSS AND TRAJECTORY LOSS

In this section, we prove the equivalence of terminal loss and trajectory loss. We use Jtra(u) to
denote the trajectory loss and Jter(u) to denote the terminal loss in the section to distinguish.

Trajectory Loss to Terminal Loss To transform trajectory loss to terminal loss, we need to add an
auxiliary state x0 and let the auxiliary state x0 record the accumulation of trajectory loss and x0(T)
be considered as the terminal loss:

x0(t+ 1) = x0(t) + l(t, x(t), u(t)), x0(0) = 0 (22)
Jter(u) = L(x(T), u) = x0(T). (23)

It is easy to prove using induction on x0(t) that

Jter(u) = x0(T) =

T−1∑
t=0

l(t, x(t), u(t)) = Jtra(u). (24)

Terminal Loss to Trajectory Loss On the other hand, to turn terminal loss to trajectory loss,
we use split loss (8) l(t, x(t), u(t)) ≜ L(x(t + 1)) − L(x(t)). The terminal loss will become
the accumulation of loss decreases for each block, and the equivalence can be proven by simple
calculation:

Jtra(u) =

T−1∑
t=0

l(t, x(t), u(t))

=

T∑
t=1

(L(x(t))− L(x(t− 1)))

= L(x(T))− L(x(0)) = Jter(u)− L(x(0)).

(25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Since L(x(0)) only depends on input and is unrelated to the model, it is a constant for the model.

C.2 PROOF OF THEOREM 3.4

We formally state the Theorem 3.4 and prove it here.

Theorem 3.4 (Formal) Gradient Deviation in Deep Linear Network Let W (t) = I + 1
T W̃ (t),

{W̃ (t)} are matrices with bounded 2-norm, i.e. ∃ c > 0 such that ∥W̃ (t)∥2 ≤ c for all t. Denote θh
the angle between gh and gT . Then ∃ C1, C2 > 0 such that:

lim
α→1

lim inf
T→∞,h=αT

1− cos2(θh)

(1− α)3
= C1,

lim
α→1

lim sup
T→∞,h=αT

1− cos2(θh)

(1− α)3
= C2

(26)

To simplify notation, denoting that W t2
t1 ≜ W (t2 − 1)W (t2 − 2) · · ·W (t1), 0 ≤ t1 < t2 ≤ T . We

can get dL
dW t = (W t

0 − Φ) for the given constant Φ being the covariance matrix of x, y. The gradient
of control u(t) = W (t) for horizon h can be derived as:

dLh

du(t)
=


(W t+h

t+1)
⊤ dL

dW t+h
(W t−1

0)⊤, 0 ≤ t < T − h

(WT
t+1)

⊤ dL

dWT
(W t−1

0)⊤, T − h ≤ t < T,
(27)

In the following, we omit the round down for W t2
t1 and W (t), i.e. W βT

αT ≜ W
⌊βT⌋
⌊αT⌋ and W (αT) ≜

W (⌊αT ⌋) ∀0 ≤ α ≤ β ≤ 1.

To prove the theorem, we use the following lemmas:

Lemma C.1 Under the condition in Theorem 3.4, ∃ −∞ < λ1 ≤ λ2 < ∞, such that ∀0 ≤ β ≤
γ ≤ 1:

∥W γT
βT ∥F ≥ σmin(W

γT
βT) ≥ e(γ−β)λ1 , ∥W γT

βT ∥F ≤ e(γ−β)λ2 . (28)

and

Lemma C.2 Under the condition in Theorem 3.4, ∃ λ1, λ2, y1, y2 ∈ R, such that λ1 ≤ λ2, ∀β ∈
(0, 1− α] ∥∥∥∥ dLαT

du(βT)

∥∥∥∥
F

≥ (e(α+β)λ1 − y1)e
(α+β)λ1∥∥∥∥ dLαT

du(βT)

∥∥∥∥
F

≤ (e(α+β)λ2 − y2)e
(α+β)λ2 .

(29)

Lemma C.3 Under the condition in Theorem 3.4, and the same λ1, λ2, y1, y2 ∈ R as in Lemma C.2,
∀β ∈ (1− α, 1] ∥∥∥∥ dLαT

du(βT)

∥∥∥∥
F

≥ (eλ1 − y1)e
λ1∥∥∥∥ dLαT

du(βT)

∥∥∥∥
F

≤ (eλ2 − y2)e
λ2 .

(30)

Lemma C.4 Under the condition in Theorem 3.4, ∀ϵ > 0, ∃ α0(ϵ) > 0, such that ∀α > α0(ϵ), T >
0,

∥I −WT
αT ∥F ≤ ϵ. (31)

Lemma C.5 For arbitrary fixed constant c, y ∈ R, denoting gαT (·; c, y) a function of β in [0, 1]:

gαT (β; c, y) =

®
ec(α+β)(ec(α+β) − y), 0 < β < 1− α

ec(ec − y), 1− α ≤ β ≤ 1.
(32)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and then define f(·; c, y) : R→ R

f(α; c, y) ≜

∫ 1

0
gαT (β; c, y)gT (β; c, y) dβ»∫ 1

0
g2αT (β; c, y) dβ

»∫ 1

0
g2T (β; c, y) dβ

. (33)

Then:
f2(α; c, y) = 1 +O((1− α)3), as α→ 1. (34)

The proof of these lemmas is postponed after the proof of the Theorem 3.4. Assuming we have all
the lemmas above, we can prove Theorem 3.4

Proof of Theorem 3.4 First we need to get the bound of the cosine similarity cos(θh). The upper
bound of cos(θh) can be derived by the Frobenius norm:

cos(θh) =

∑T−1
t=0 tr((dLh

du(t))
⊤ dLT

du(t))√∑T−1
t=0 ∥

dLh

du(t)∥
2
F

√∑T−1
t=0 ∥

dLT

du(t)∥
2
F

≤
∑T−1

t=0 ∥
dLh

du(t)∥F ∥
dLT

du(t)∥F√∑T−1
t=0 ∥

dLh

du(t)∥
2
F

√∑T−1
t=0 ∥

dLT

du(t)∥
2
F

.

(35)

As for the lower bound, since dLh

du(t) and dLT

du(t) will align when h
T = α→ 1, we can still use rescaled

Frobenius norm to get the lower bound.

For any c1 ∈ [0, 1], denoting λ2 the larger one in LemmaC.1 and Lemma C.2 and λ1 be the smaller
one, using Lemma C.4 we have ∀ϵ > 0, ∃ α0(ϵ) > 0, such that ∀α > α0(ϵ), T > 0,

∥I −WT
αT ∥F ≤ ϵ. (36)

Combined with Lemma C.1 we can get: ∀0 ≤ β ≤ 1− α

∥W (α+β)T
βT −WT

βT ∥F ≤ ∥W
(α+β)T
βT (I −WT

(α+β)T)∥F ≤ ∥W
(α+β)T
βT ∥F ∥I −WT

(α+β)T ∥F ≤ ϵeαλ2 ,

(37)∥∥∥∥ dL

dW (α+β)T
− dL

dWT

∥∥∥∥
F

= ∥W (α+β)T (I −WT
(α+β)T)∥F ≤ ϵeλ2 . (38)

Then using Lemma C.2, (37) and (38)∥∥∥∥ dLαT

du(βT)
− dLT

du(βT)

∥∥∥∥
F

≤ ∥W βT ∥F
Å
∥W (α+β)T

βT ∥F
∥∥∥∥ dL

dW (α+β)T
− dL

dWT

∥∥∥∥
F

+

∥∥∥∥ dL

dWT

∥∥∥∥
F

∥W (α+β)T
βT −WT

βT ∥F
ã

≤ e(α+β+1)λ2(1 + eλ2 − y2)ϵ ≤ e2λ2(1 + eλ2 − y2)ϵ,
(39)

let ϵ =
√
1− c21e

−2λ2(1 + eλ2 − y2)
−1 minγ{(eγλ1 − y1)e

γλ1} ≤
√
1− c2e−2λ2(1 + eλ2 −

y2)
−1∥ dLT

du(t)∥F we can get:∥∥∥∥ dLαT

du(βT)
− dLT

du(βT)

∥∥∥∥
F

≤
»
1− c21

∥∥∥∥ dLT

du(βT)

∥∥∥∥
F

, (40)

thus Å
vec

Å
dLαT

du(βT)

ãã⊤
vec

Å
dLT

du(βT)

ã
≥ c1

∥∥∥∥ dLαT

du(βT)

∥∥∥∥
F

∥∥∥∥vec dLT

du(βT)

∥∥∥∥
F

, (41)

where vec(·) stands for matrix vectorization in column-first order. Eq. (41) is due to ∥vec(A)∥2 =

∥A∥F and the following fact. For arbitrary two vector a, b ∈ Rn, if ∥a− b∥2 ≤
√

1− c21∥b∥2 then

∥a∥22 − 2a⊤b+ ∥b∥22 ≤ 1− c21∥b∥22
=⇒ 2a⊤b ≥ c21∥b∥22 + ∥a∥22
=⇒ a⊤b ≥ |c1|∥a∥2∥b∥2.

(42)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Then we have the lower bound for cos(θαT) for all α > α0 and uniformly in T :

cos(θαT) ≥
c1

∑T−1
t=0 ∥

dLαT

du(t) ∥F ∥
dLT

du(t)∥F√∑T−1
t=0 ∥

dLαT

du(t) ∥
2
F

√∑T−1
t=0 ∥

dLT

du(t)∥
2
F

. (43)

which again induce similar equation as (35) with additional scalor c1.

Let T →∞, since we can multiply both numerator and denominator by 1
T and ∥dLαT

du(t) ∥F , ∥
dLT

du(t)∥F
are bounded uniformly in α, T, t, we have for all α ∈ (0, 1],

lim
T→∞

∣∣∣∣∣∣∣
∑T−1

t=0 ∥
dLαT

du(t) ∥F ∥
dLT

du(t)∥F√∑T−1
t=0 ∥

dLαT

du(t) ∥
2
F

√∑T−1
t=0 ∥

dLT

du(t)∥
2
F

−

∫ 1

0
∥ dLαT

du(βT)∥F ∥
dLT

du(βT)∥F dβ√∫ 1

0
∥ dLαT

du(βT)∥
2
F dβ

√∫ 1

0
∥ dLT

du(βT)∥
2
F dβ

∣∣∣∣∣∣∣ = 0,

(44)
uniformly in α.

Since the result of LemmaC.5 holds for arbitrary c and y, ∃ C ′
1, C

′
2, such that

lim
α→1

lim inf
T→∞

1− cos2(θαT)

(1− α)3
≥ min

λ∈[λ1,λ2],y∈[y1,y2]
lim
α→1

1− f2(α;λ, y)

(1− α)3
= C ′

1,

lim
α→1

lim sup
T→∞

c1 − cos2(θαT)

(1− α)3
≤ max

λ∈[λ1,λ2],y∈[y1,y2]
lim
α→1

c1(1− f2(α;λ, y))

(1− α)3
= C ′

2.

(45)

The Compactness of [λ1, λ2], [y1, y2] and the continuity of g thus f on c and y ensure the existence
and bounded limit. Let c→ 1, we know that ∃ C1, C2 such that

C ′
1 ≤ C1 = lim

α→1
lim inf
T→∞

1− cos2(θαT)

(1− α)3
≤ lim

α→1
lim sup
T→∞

1− cos2(θαT)

(1− α)3
= C2 ≤ C ′

2. (46)

□
Below we prove the previous lemmas

Proof of Lemma C.1: Since {W̃ (t)} have bounded 2-norm ∥W̃ (t)∥2 ≤ c for all t, the norm of the
multiplication of W (t) can be bounded, i.e. ∀0 ≤ β ≤ γ ≤ 1:

∥W γT
βT ∥2 ≤ ΠγT−1

t=βT ∥W (t)∥2 ≤ (1 +
c

T
)(γ−β)T < e(γ−β)c. (47)

For the lower bound, since for arbitrary matrices A,B ∈ Rn×n and non-zero vector u ∈ Rn, the
following inequality holds:

∥BAu∥2 ≥ σmin(B)∥Au∥2 ≥ σmin(B)σmin(A)∥u∥2, (48)

where σmin(A) denotes the minimum singular value of matrix A, thus

∥BA∥2 = sup
u̸=0

∥BAu∥2
∥u∥2

≥ inf
u̸=0

∥BAu∥2
∥u∥2

= σmin(BA) ≥ σmin(B)σmin(A), (49)

and we can get the following result:

∥W γT
βT ∥2 ≥ σmin(W

γT
βT) ≥ ΠγT−1

t=βT σmin(W (t)) ≥ (1− c

T
)(γ−β)T > e−(γ−β)c, (50)

for all 0 ≤ β ≤ γ ≤ 1, . By equivalence between matrix norms, ∃ −∞ < λ1 ≤ λ2 <∞ such that:

∥W γT
βT ∥F ≥ e(γ−β)λ1 , ∥W γT

βT ∥F ≤ e(γ−β)λ2 . (51)

hold for all 0 ≤ β ≤ γ ≤ 1 □

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof of Lemma C.2 Given constant Φ, we have:

|∥W t+h∥F − ∥Φ∥F | ≤ ∥W t+h − Φ∥F =

∥∥∥∥ dL

dW t+h

∥∥∥∥
F

≤ ∥W t+h∥F + ∥Φ∥F (52)

σmin(
dL

dW t+h
) ≥ σmin(W

t+h)− σmax(Φ) (53)

Eq. (53) can be derived from the following argument: for arbitrary matrix A,B ∈ Rn×n and non-zero
vector u ∈ Rn:

σmin(A−B) = min
u ̸=0,∥u∥2=1

∥(A−B)u∥2

≥ min
u ̸=0,∥u∥2=1

∥Au∥2 − max
u̸=0,∥u∥2=1

∥Bu∥2

=(σmin(A)− σmax(B)).

(54)

Denoting β = t
T , α = h

T , from Lemma C.1, ∃ −∞ < λ1 ≤ λ2 <∞, such that ∀0 ≤ β ≤ γ ≤ 1

∥W γT
βT ∥F ≥ σmin(W

γT
βT) ≥ e(γ−β)λ1 , ∥W γT

βT ∥F ≤ e(γ−β)λ2 . (55)

Combine (52), (53) and (55) let λ1 = σmax(Φ), λ2 = −∥Φ∥F we can get: ∀β ∈ (0, 1]∥∥∥∥ dLαT

du(βT)

∥∥∥∥
F

≥ σmin(W
t+h
t)σmin(

dL

dW t+h
)σmin(W

t−1
0) ≥ (e(α+β)λ1 − y1)e

(α+β)λ1 ,∥∥∥∥ dLαT

du(βT)

∥∥∥∥
F

≤ ∥W t+h
t ∥F ∥

dL

dW t+h
∥F ∥W t−1

0 ∥F ≤ (e(α+β)λ2 − y2)e
(α+β)λ2 .

(56)

□

Proof of Lemma C.3 Substitute W t+h,W t+h
t in Lemma C.2 to WT ,WT

t and we can get the
result.

Proof of Lemma C.4 For arbitrary matrices A,B ∈ Rn×n and arbitrary matrix norm ∥ · ∥

∥AB − I∥ ≤ ∥AB −B∥+ ∥B − I∥ ≤ ∥B∥∥A− I∥+ ∥B − I∥. (57)

For arbitrary α ∈ [0, 1], substituting A with WT
αT+1, B with W (αT) and use 2-norm we have:

∥WT
αT −I∥2 ≤ ∥WT

αT+1−I∥2∥W (αT)∥2+∥W (αT)−I∥2 ≤ ∥WT
αT+1−I∥2(1+

c

T
)+

c

T
. (58)

By induction we can derive that:

∥WT
αT − I∥2 ≤

c

T

(1 + c
T)

(1−α)T − 1
c
T

= (1 +
c

T
)(1−α)T − 1 ≤ e(1−α)c − 1, (59)

then ∀ϵ, let α0 = 1−
ln(1+ ϵ√

n
)

c , ∀α > α0 we can get:

∥WT
αT − I∥F ≤

√
n∥WT

αT − I∥2 ≤
√
n(e(1−α)c − 1) ≤

√
n(e(1−α0)c − 1) ≤ ϵ. (60)

□

Lemma C.5 Since the result of LemmaC.5 can be derived from direct computation, we omit it.

Remark C.6 The result can be extended to any other random matrix ensemble as long as Lemma
C.1 and Lemma C.2 holds.

Remark C.7 Noted that the estimation of general inner product between dLh

du(t) and dLh

du(t) is hard,
so we cannot get the expression for α→ 0, while the numerical experiments show that the case of
α→ 0 is trivial, i.e. limα→0+ cos(θαT) ̸= 0 and limα→0+

d cos(θαT)
dα ̸= 0

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.3 THEORY FOR LOSS DECREASE SPEED

Once the cosine similarity and the norm of the rescaled gradient gh are specified, we can use the result
of biased gradient descent (Theorem 4.6 Bottou et al. (2016) or Theorem 4 Chen & Luss (2018)) to
get a linear convergence to a non-vanishing right-hand side for strong convex loss:

Theorem C.8 (Theorem 4.6 Bottou et al. (2016)) Assuming that J(u) is c-strong convex, bounded
below J(u) ≥ J(u∗),∇J(u) is L-Lipschitz continuous, i.e. ∀u, u′ ∈ Rm

J(u′) ≥ J(u) +∇J(u)⊤(u′ − u) +
c

2
∥u− u′∥22 (61a)

∥∇J(u)−∇J(u′)∥2 ≤ l∥u− u′∥2. (61b)

Further assume that the stochastic gradient estimation g(u; ξ) satisfies ∃ µG ≥ µ ≥ 0 and M ≥ 0,
MV ≥ 0, such that ∀τ ∈ N

∇J(uτ)⊤Eξ[g(u
τ ; ξ)] ≥ µ∥∇J(uτ)∥22 (62a)

∥Eξ[g(u
τ ; ξ)]∥2 ≤ µG∥∇J(uτ)∥2 (62b)

Vξ[g(u
τ ; ξ)] ≤M +MV ∥∇J(uτ)∥22. (62c)

Then for fixed learning rate 0 < η ≤ µ
L(MV +µ2

G)
, the following inequality holds for all τ ∈ N

J(uτ)− J(u∗) ≤ (1− ηcµ)τ−1(J(u0)− J(u∗)− ηLM

2cµ
) +

ηLM

2cµ
. (63)

In our case, let the gradient estimator be the rescaled gradient for horizon h, i.e. g(u) = gh(u), then
µ = cos2(θh), so the linear decrease rate is ln(1− ηcµ) = O(µ) = O(cos2(θh))

D TRAINING DETAILS

D.1 ARCHITECTURE

Linear Residual NN and Residual MLP 15-layer Fully connected neural networks with the same
width 10 in each layer. Residual connection is applied to every layer except the first layer and last
layer. For the linear residual NN, there is no activation function and bias in the fully connected layer.
For the residual NNs, the activation function is ReLU and there is bias in the fully-connected layer.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

ResNet-62 Each block has two convolution layers with batch
normalization and activation. For each stage, before the first
block, there will be a convolution layer with a specific stride to
half the width and height of the feature. Since each convolution
residual block has two convolution layers, the origin paper He
et al. (2016) counts the number of convolution layers instead of
the residual block.

Table D1: CNN structure
Stage Operator #Chennels #Blocks Strides
stem Input 3 - -

1 ConvResBlock 16 10 1
2 ConvResBlock 32 10 2
3 ConvResBlock 64 10 2

LoCo 3 and LoCo 5 As discussed in the Remark 3.1 and Ap-
pendix B, LoCo algorithm is a variant of the MPC framework
with horizon 2 for larger blocks. In order to apply LoCo algo-
rithm to the linear residual NN, residual MLP and ResNet-62, we
implement two version of LoCo: LoCo 3 and LoCo 5, where the
number indicates the total block of the model, and each block
contains the same number of layers. For example, LoCo 5 has
5 blocks, and each block has 3 layers for 15-layer residual MLP,
and for LoCo3 on ResNet-62, each stage is viewed as a block.

D.2 TRAINING SETTINGS

General training settings For all experiments, we employ SGD
as the optimizer, and decrease the learning rate by 0.9 when-
ever the loss of the current epoch increases. We evaluate the
performance using MSE loss for the first two experiments and
cross-entropy loss and accuracy for the latter two experiments.
The training settings are shown in Table D2.

Figure D1: Diagram of Con-
vResBlockHe et al. (2016)

Table D2: Training settings for all tasks

Settings Res Linear NN Res MLP ResNet Fine-tuning

Learning Rate 0.03 0.01 0.01 0.001

Batch Size 100 100 32 64

Epoch 40 40 40 30

Sample Size 10000 100000 45000 50000

Optimizer SGD SGD SGD Adam

Dataset linear dataset1 trigonometric datase2t CIFAR10 CIFAR100
1 Synthetic dataset, y = W0x for Gaussian randomized matrix W0, w0,ij ∼ N(0, N− 1

2),
xi ∼ N(0, N− 1

2)
2 Synthetic dataset, y = (1 + ϵ) ∗ (cos(πx), sin(πx), cos(2πx), sin(2πx))⊤, x ∼
U([−2, 2]), ϵ ∼ N(0, 0.03)

D.3 NOTATIONS FOR FIGURE 5

Table D3 shows the notation used in the Figure 5

E FURTHER EXPERIMENTS

Here we supplement the two numerical experiments of the verification of the relationship memory
M(h) and horizon h, and the performance of different horizons in the first three experiments.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table D3: Notations of Models, Costs, Objectives, and Parameters

Model Cost1 Objective

Notation Meaning Notation Meaning Notation Meaning Parameter

M1 Linear Residual NN C1 C(M) = c M
M0

O1 Objective 1 1− ϵ

M2 Residual MLP C2 C(M) = c⌈ M
M0

⌉ O2 Objective 2 λ

M3 ResNet-62
1 In the experiment, we use c = 1 and M0 = maxh{M(h)} for linear cost (C1) and M0 =
0.3maxh{M(h)} for ladder cost (C2).

E.1 RELATIONSHIP BETWEEN MEMORY(h) AND h

0.0 0.2 0.4 0.6 0.8 1.0
h/T

0.2

0.4

0.6

0.8

1.0

M
(h

)/M
(T

)

Linear Residual NN
Residual MLP
ResNet-62

0.0 0.2 0.4 0.6 0.8 1.0
h/T

0.0

0.2

0.4

0.6

0.8

1.0

M
(h

)/M
(T

)
Linear Residual NN
Residual MLP
ResNet-62

Figure E1: Relationship between M(h) and h
x-axis is h

T , y-axis is memory usage ratio
Left: Memory usage for different horizon under eager mode, Right: Memory usage for different

horizon under static mode

We also verify the memory usage on the first three tasks. In TensorFlow 2.0 or above versions, there
are two modes: eager mode and static mode. The eager mode will release memory efficiently and
give the theoretical linear dependency between memory usage and horizon, while the static mode
will create the whole computation graph, causing every back-propagation to be counted, resulting
in O(h(T − h+ 1)) memory usage (refer to Figure 1). In the paper, we hypothesis that the model
is running in the eager mode, i.e. the memory is efficiently used thus linear/affine with respect to
horizon h.

E.2 PERFORMANCE FOR DIFFERENT HORIZONS IN LINEAR RESIDUAL NN, RESIDUAL MLP,
AND RESNET-62

Figure E2 illustrates the performance of different horizons on the three tasks. The results reveal that
the performance of the MPC framework is highly dependent on the horizon. In the early training
epochs, the loss decrease is aligned for different horizons, which is obvious in the residual NN case,
indicating that the MPC framework can serve as an efficient warm-up training strategy. However, as
training progresses, the loss decrease of different horizons diverges. Especially for small horizons,
the loss might remain high, highlighting the importance of selecting the optimal horizon. These two
findings are consistent with the deductions in the previous section. Furthermore, the comparison of
the three tasks demonstrates that the performance of the same horizon varies across different models
and tasks.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

5 10 15
horizon

10 2

10 1

lo
ss

Linear Residual NN
epoch

6
12
18
24
30
36

5 10 15
horizon

3 × 10 1

4 × 10 1

lo
ss

Residual MLP
epoch

6
12
18
24
30
36

0 10 20 30
horizon

10 3

10 2

10 1

100

lo
ss

ResNet-62
epoch

6
12
18
24
30
36

Figure E2: Training loss for different horizons
Left: Linear residual NN on linear regression, Middle: Residual MLP on trigonometric regression,

Right: ResNet-62 on CIFAR-10

22

	Introduction
	Literature Review
	The Model Predictive Control Framework
	Back-Propagation and Forward-Forward Algorithm
	Adopting MPC for Deep Learning
	Theoretical Analysis on Deep Linear Networks

	Objective-based Horizon Selection Algorithm of MPC framework
	Experiment Results
	Qualitative Verification for Polynomial Convergence of gh and Memory Usage
	Performance of Different Horizons
	Validation of Horizon Selection Algorithm

	Discussion
	An example of the MPC framework
	Comparison of LoCo and MPC framework with h=2
	Proof of Theorem
	Equivalence of Terminal Loss and Trajectory Loss
	Proof of Theorem 3.4
	Theory for Loss Decrease Speed

	Training Details
	Architecture
	Training Settings
	Notations for Figure 5

	Further Experiments
	Relationship Between Memory(h) and h
	Performance for Different Horizons in Linear Residual NN, Residual MLP, and ResNet-62

