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ABSTRACT

We introduce a Model Predictive Control (MPC) framework for training deep
neural networks, systematically unifying the Back-Propagation (BP) and Forward-
Forward (FF) algorithms. At the same time, it gives rise to a range of intermediate
training algorithms with varying look-forward horizons, leading to a performance-
efficiency trade-off. We perform a precise analysis of this trade-off on a deep linear
network, where the qualitative conclusions carry over to general networks. Based
on our analysis, we propose a principled method to choose the optimization horizon
based on given objectives and model specifications. Numerical results on various
models and tasks demonstrate the versatility of our method.

1 INTRODUCTION

Neural Networks (NN) are rapidly developing in recent years and have found widespread application
across various fields. While Back-Propagation (BP) (Rumelhart et al.) stands as the predominant
training method, its high memory requirements limit its application to deep model, large batch sizes,
and memory-constrained devices, such as those encountered in large language models (Touvron et al.,
2023; OpenAI et al., 2023; Gu & Dao, 2023). To address these limitations, recent research has sought
to mitigate the drawbacks associated with BP or explore alternative training methods altogether.
Notably, Hinton (2022) proposed a Forward-Forward (FF) algorithm that uses layer-wise local loss
to avoid backward propagation through layers. Xiong et al. (2020) also proposed a local loss learning
strategy. Local loss methods are theoretically more memory-efficient and biologically realizable than
BP. However, the performance of FF algorithms is often inferior to that of BP, particularly in deep
models. Moreover, the mechanism of FF is unclear, and lacks understanding of why and when FF
can work.

Is there an optimization method that can balance the memory usage and accuracy? Inspired by the
parallels between Back-Propagation and the Pontryagin Maximum Principle (Li et al., 2017), we
discover the similarity between local loss and the greedy algorithm. Utilizing the concept of the Model
Predictive Control (MPC), we introduce the MPC framework for deep learning. In this framework,
FF and BP are firstly unified, representing two extremes under this framework. Some other previous
works (Xiong et al., 2020; Nøkland & Eidnes, 2019; Belilovsky et al., 2019) (Remark 3.1) are also
incorporated in this framework. This framework offers not only a spectrum of optimization algorithms
with varying horizons to balance performance and memory demand but also a dynamical viewpoint to
understand the FF algorithm. Additionally, our theoretical analysis of the deep linear neural network
shows that the gradient estimation converges polynomially as the horizon approaches full back-
propagation (Theorem 3.4), leading to diminishing returns for sufficiently large horizons. However,
the memory demand grows constantly with respect to the horizon, indicating an intermediate region
offering a favorable trade-off between memory and accuracy. Based on this analysis, we propose
horizon selection algorithms for different objectives to balance the accuracy-efficiency trade-off.

The contributions of this paper are summarized as follows:

• We propose a novel MPC framework for deep neural network training, unifying BP and FF
algorithms and providing a range of optimization algorithms with different accuracy-memory
balances.
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• We analyze the accuracy-efficiency trade-off within the MPC framework, providing theoreti-
cal insights into gradient estimations and memory usage.

• We propose an objective-based horizon selection algorithm based on the previous theoretical
result that gives the optimal horizon under the given objective.

• The theoretical finding and the horizon selection algorithm are validated under various
models, tasks, and objectives, illustrating the efficacy of our MPC framework.

The remainder of this paper is structured as follows: Section 2 provides a review of relevant literature.
In Section 3, we briefly review the BP and FF algorithms, and then present our proposed framework
together with its analysis. Section 4 introduces the proposed horizon selection algorithm based on the
previous theoretical analysis. The results of numerical experiments are shown in Section 5. Finally,
we conclude the paper and discuss avenues for future research in Section 6.

2 LITERATURE REVIEW

Despite its great success in deep learning, it has been argued that Back-Propagation is memory
inefficient and biologically implausible (Hinton, 2022). Recently, numerous studies have been
focused on addressing the shortcomings of BP, such as direct feedback alignment algorithm (Nøkland,
2016), synthetic gradient (Jaderberg et al., 2017), and LoCo algorithm (Xiong et al., 2020). Notably,
Hinton (2022) proposed a forward-forward algorithm that uses layer-wise local loss to avoid backward
propagation through layers. Although these methods mitigate the memory inefficiency of BP, they
often suffer from inferior performance or introduce additional structures to the models and the
theoretical understanding of when and why these methods work is insufficient.

The connection and comparison between residual neural networks and control systems were observed
by E. Subsequently, Li et al. (2017) used relationships between Back-Propagation and the Pontryagin
maximum principle in optimal control theory to develop alternative training algorithms. Following
this, several works have introduced control methods aimed at enhancing optimization algorithms
in neural network training (Li et al., 2017; Weng et al.; Nguyen et al., 2024). These prior works
have primarily relied on powerful PID controllers or optimal control theory, which, in practice,
are rooted in the concept of backward propagation and thus inherit the drawbacks associated with
BP. Conversely, MPC (Grüne & Pannek), another well-known controller, has yet to be extensively
explored in the realm of deep learning (Weinan et al.).

The analysis of deep linear networks has been extensively explored in the literature like (Cohen
et al., 2022; Arora et al., 2018b). Furthermore, research has investigated the convergence rates of
coarse gradients in various contexts, such as quantifying neural networks (Long et al.), zeroth-order
optimization methods (Chen et al., 2023; Zhang et al., 2024), and truncated gradients in recurrent
neural networks (Aicher et al., 2019). Our work builds upon these analyses combine insights from
both domains to analyze the performance of the proposed MPC framework on deep linear networks.

3 THE MODEL PREDICTIVE CONTROL FRAMEWORK

This section offers a brief overview of the traditional Back-Propagation (BP) algorithm and the novel
Forward-Forward (FF) algorithm. We then establish connections between BP and FF algorithms
using the MPC concept, introducing an MPC framework for deep learning models. Finally, we give
a theoretical analysis of the MPC framework on linear neural networks, providing insights into the
influence of horizon.

In the paper, we focus on the deep feed-forward neural networks, which have the following form:

x(t+ 1) = ft(x(t), u(t)), (1)

where t ∈ {0, ..., T − 1} denotes the block index, x(t) ∈ Rnt denotes the input of the t-th block ,
and u(t) ∈ Rmt represents vectorized trainable parameters in the t-th block, nt,mt are dimensions
of x(t) and u(t), ft : Rnt × Rmt → Rnt+1 denotes the forward mapping of the t-th block. In deep
learning training, the primary objective is to minimize the empirical loss using gradient:

J(u) = L(x(T )), uτ+1 = uτ − ηg(uτ ), (2)
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where u ≜ (u(0)⊤, · · · , u(T − 1)⊤)⊤ ∈ Rm denotes all trainable parameters in the neural network,
m =

∑T−1
t=0 mt is the number of trainable parameters in the model and g(u) represents the gradient,

η denotes the learning rate, and L(x(T )) : RnT → R represents the loss on the final output x(T )1, τ
denotes the iteration index and. In this paper, we further assume the loss to be compatible with the
state x(t) for all t = 1, · · · , T , i.e. either x(t) maintains the same dimension for all t = 1, · · · , T or
there is a linear projection (e.g. Pooling layer) that unifies x(t) to the same dimension in the loss.

3.1 BACK-PROPAGATION AND FORWARD-FORWARD ALGORITHM

The Back-Propagation algorithm (Rumelhart et al.) computes the gradient of the loss function for the
weights of the neural network:

gBP(u(t)) = ∇u(t)J(u) = ∇u(t)L(x(T )). (3)

Recently, Hinton (2022) proposed the Forward-Forward (FF) algorithm as an alternative to BP. The
FF algorithm computes gradients using the local loss function of the current block:

gFF(u(t)) = ∇u(t)L(x(t+ 1)). (4)

In the original paper (Hinton, 2022), the author used the Euclidean norm of the layer output as a loss,
but here we use the more general form of the loss function.

While the FF algorithm is more memory-efficient than BP, its performance may be worse due to the
lack of global information. In contrast, BP is typically more accurate but demands more memory.
Moreover, the theoretical understanding of when and why FF might perform well remains limited.
Leveraging the concept of MPC in deep learning models, we propose a novel MPC framework that
unifies the BP and FF algorithms. This framework offers a spectrum of optimization algorithms with
varying horizons, allowing for a balance between performance and memory demand.

3.2 ADOPTING MPC FOR DEEP LEARNING

In this section, we introduce the classical Model Predictive Control (MPC) (Grüne & Pannek) and
explore its connection with deep learning models. Subsequently, we propose an MPC framework
tailored to deep learning models and demonstrate how it unifies BP and FF algorithms within this
framework

MPC is an optimization-based method for the feedback control of dynamic systems. In the infinite
horizon control problem, which is commonly considered in the control field, the trajectory loss is
used, i.e.:

J(u) =

∞∑
t=0

l(t, x(t), u(t)), (5)

where l(t, ·, ·) : Rnt × Rmt → R is the trajectory loss for state x(t) and control u(t) on time t. Due
to the computational complexity of obtaining optimal control for an infinite time horizon, a truncated
finite-time control problem is solved at each time step:

Jh(t, z, uh
t ) =

t+h−1∑
s=t

l(s, x(s), u(s))

s.t. x(t) = z, x(s+ 1) = fs(x(s), u(s)),∀s = t, · · · , t+ h− 1,

(6)

where h is the horizon considered by MPC at each time step, uh
t ≜ {u(t), · · · , u(t+ h− 1)}. The

solution uh∗
t = argminuh

t
Jh(t, x(t), uh

t ) is applied to the current state:

x(t+ 1) = ft(x(t), u
h∗
t (t)). (7)

To apply the concept of MPC to deep learning models, we consider the deep learning model as
a dynamic system governed by the underlying dynamic function ft (1), where the block index t

1Here, the loss is the average of loss in training dataset, we ignore the data index for brevity. We also ignore
regularization terms and other possible parameters and labels in the loss function, focusing solely on the loss
function that depends on the final output x(T ).
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Figure 1: Diagram of MPC framework on a 4-block model: black arrows denote the forward pass
and red arrows denote the backward pass, ∇t ≜ gh(u(t)) is the gradient of t-th block. MPC uses
partial gradient propagation. We can see that BP can be seen as MPC with the full horizon (h = T ),
while FF is MPC with horizon 1 (h = 1)

corresponds to the time index in control systems. The weights u(t) and input x(t) of the t-th block
are analogous to the control and state at time t (E; Li et al., 2017).

Since deep learning problems typically involve only a terminal loss applied at the end of the network,
we need to define an effective trajectory loss l(t, x(t), u(t)) for each block t that add up to the desired
terminal loss (2). One particular choice is as follows:

l(t, x(t), u(t)) ≜ L(ft(x(t), u(t)))− L(x(t)) = L(x(t+ 1))− L(x(t)). (8)

We demonstrate that the terminal loss L(x(T )) is equivalent to the sum of trajectory loss∑T−1
t=0 l(t, x(t), u(t)) up to a constant (see Appendix C.1).

Using a similar definition of Jh in (6), we propose the MPC framework for deep learning models in
the form of:

gh(u(t)) = ∇u(t)J
h(t, x(t), uh

t ), (9)

where uh
t = {u(t), ..., u(min(t+ h− 1, T ))}

Instead of evaluating the entire model as BP or only the local loss of the current block as FF, MPC
considers a horizon h from the present block. Moreover, as illustrated in Figure 1, MPC provides a
family of training algorithms with different horizons h, and both the FF and BP algorithms can be
seen as extreme cases of the MPC framework with horizon h = 1 and h = T respectively,

gFF(u(t)) = g1(u(t)), gBP(u(t)) = gT (u(t)). (10)

A detailed example is provided in the Appendix A for a better understanding of the MPC framework.

Remark 3.1 Other algorithms using local loss (e.g. (Nøkland & Eidnes, 2019; Belilovsky et al.,
2019)) can also be seen as MPC framework with horizon h = 1. Moreover, LoCo algorithm (Xiong
et al., 2020) can be seen as the MPC framework with horizon h = 2 under larger blocks (each stage
in the ResNet-50 be seen as a block, refer to Appendix B).

Remark 3.2 Noted that L(x(t)) in the (8) is independent of u(t), and Jh(t, x(t), uh
t ) =∑t+h−1

s=t l(s, x(s), u(s)) = L(x(t+h))−L(x(t)) where only L(x(t+h)) depends on u(t). Therefore,
in practice, there is no need to compute L(x(t)) for Jh

The MPC framework, akin to the FF algorithm, is advantageous in terms of memory usage since
it considers only part of the model in the computation of Jh. In practice, the memory demand for
training a deep learning model largely depend on the need to store intermediate value for Back-
Propagation, theoretically proportional to the depth of the model. Therefore, the memory usage will
be of linear growth in horizon h, i.e.:

M(h) = ah+ b, (11)

4
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where M(h) is memory usage for horizon h, and a, b are independent of h2. Numerical experiments
also verify the linear dependency of the horizon (Appendix E.1).

Empirically, the MPC framework realizes the trade-off between performance and memory demand by
providing a spectrum of optimization algorithms with varying horizons h. A larger horizon provides
an accurate gradient, while a smaller horizon gives memory efficiency. This idea helps to understand
the validity of the FF algorithm and its reduced accuracy compared to BP. However, there is still
a lack of theoretical analysis on the influence of horizon h on accuracy. In the following sections,
we provide theoretical results on the influence of horizon h on deep linear networks and propose a
horizon selection algorithm for the given objective.

Remark 3.3 In the traditional control field, finite time problems are rarely studied especially for the
MPC method. The existing results on the performance of MPC are primarily either asymptotic or rely
on properties that are challenging to verify or not suitable for deep learning. For a more detailed
introduction to traditional MPC methods, interested readers may refer to Grüne & Pannek.

3.3 THEORETICAL ANALYSIS ON DEEP LINEAR NETWORKS

From the previous discussion, we conjectured that a larger horizon will give better performance. In
this section, we theoretically investigate the influence of horizon h on linear neural networks.

Considering a simple Linear NN problem with linear fully connected layers and quadratic loss, which
is widely used in the theoretical analysis of deep learning (Arora et al., 2018b; Cohen et al., 2022).
The parameter u(t) is the weight W (t) in the t-th layer, omitting bias for brevity:

ft(x(t), u(t)) = W (t)x(t), L(x(T )) =
1

2
∥x(T )− y∥22, (12)

where (x(0), y) ∈ Rn × Rn is one sample input-label pair in the dataset, x(t) ∈ Rn has the same
dimension for all 0 ≤ t ≤ T , W (t) ∈ Rn×n.

We aim to analyze the deviation between the gradient obtained by the MPC framework gh and the true
gradient gT . Considering that the difference in the scale of the gradient norm can be compensated by
adjusting the learning rate, the minimum deviation between the rescaled gradient gh and true gradient
gT can be determined by the angle between these two vectors.

min
ch
∥chgh − gT ∥2 =

∥∥∥∥∥gT ∥2∥gh∥2
cos(θh)gh − gT

∥∥∥∥
2

= sin(θh)∥gT ∥2, (13)

where θh = arccos(
g⊤
h gT

∥gh∥2∥gT ∥2
) denotes the angle between gh and gT .

We further assume the dataset is whitened, i.e. the empirical (uncentered) covariance matrix for
input data {x(0)} is equal to identity as (Arora et al., 2018a). In this case, the problem is equivalent
to L(u) = 1

2∥W − Φ∥2F , where W ≜ W (T − 1) · · ·W (0), Φ is the empirical (uncentered) cross-
covariance matrix between inputs {x(0)} and labels {y}. We have the following result for the
asymptotic gradient deviation in the deep linear network at Gaussian initialization.

Theorem 3.4 ((Informal) Gradient Deviation in Deep Linear Network) Let W (t) = I +
1
T W̃ (t), {W̃ (t)} are matrices with bounded 2-norm, i.e. ∃c > 0 such that ∥W̃ (t)∥2 ≤ c,∀t. Denote
θh the angle between gh and gT . When T →∞, h→∞, h

T = α, 1− cos2(θh) = O((1− h
T )

3) as
h
T → 1.

The proof estimate the norm of gradient to bound cos(θh) for h
T → 1. The complete statement and

the proof is in Appendix C.2. The polynomial relationship between cos(θh) and h is also observed
for nonlinear cases (refer to Section 5.1). Further using the previous study of biased gradient descent,
we can get the linear convergence to a non-vanishing right-hand side for strong convex loss with rate
O(cos2(θh)) (see Appendix C.3), i.e. the loss decrease speed is linear with cos2(θh):

r(h) =
ln(Jh(τ)/J0)

ln(JT (τ)/J0)
= O(cos2(θh)), (14)

2Influence of other factors like batch size are assumed to be constant and absorbed in coefficients a and b.
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Theorem 3.4 indicates that the gradient deviation between gh and gT aligns with the growth of the
horizon h, leading to an improved performance, which verifies the previous conjecture. However, the
performance gain diminishes cubicly as the horizon approaches the full horizon T , suggesting that
excessively increasing the horizon may not bring significant performance improvements. Nevertheless,
memory usage continues to increase linearly with the horizon, indicating a non-trivial optimal horizon
in the middle. When horizon approach 1, the numerical experiments show that cos(θh) has non-fixed
value and non-zero derivative (Section 5.1). This observation underscores the importance of selecting
an optimal horizon to balance accuracy and memory efficiency, as illustrated in the following example.

For instance, if we weigh the performance and cost linearly with memory usage, i.e. C(M(h)) =
M(h) = ah+b, where M(h) is the memory usage for horizon h. Assuming cos2(θh) = 1−c(1− h

T )
3

and target objective is −r(h) + λC(M(h)) where a, b, c > 0. If 3c
aT 2 < λ < 3c(T−2)2

aT 2 , we can get

the optimal horizon h∗ = T (1−
»

aλ
3c ) and 2 ≤ h∗ ≤ T − 1, the optimal horizon will neither be 1

(FF) nor T (BP).

This example illustrates that the optimal horizon depends on various factors such as the model,
dataset, task, and objective. In the subsequent section, we will provide horizon selection algorithms
for different objectives to navigate the accuracy-efficiency trade-off.

4 OBJECTIVE-BASED HORIZON SELECTION ALGORITHM OF MPC
FRAMEWORK

From the previous section, we know the optimal horizon will depend on both the deep learning
problem and objective function. Utilizing the above theoretical results, in this section we propose a
horizon selection algorithm for the given objective, aimed at achieving the balance between accuracy
and memory efficiency.

There are a variety types of objectives that consider accuracy and efficiency. In this paper, we consider
objectives that are functions of the relative rate of loss decrement r(h) (14), and the memory-depend
cost C(M). From the analysis in Section 3.3, we may use cos(θh) to approximate r(h). As for
cosine similarity cos(θh) and memory usage M(h), these properties are hard to analyze but easy to
compute and fit using polynomial fitting with low degree (order 3 for cos(θh) and order 1 for M(h))
on just a few horizons and batches of data based on (11) and Theorem 3.4, i.e.

cos(θ̂h) = Polyfit(H, {cos(θh)}h∈H , order = 3)(h) (15)

M̂(h) = Polyfit(H, {M(h)}h∈H , order = 1)(h). (16)

When it comes to the cost C(M), the practical significance of this consideration is that memory
usage is related to the cost on the device in practice3. Though any cost function is applicable, for
simplicity we consider following two kinds of cost functions: 1) Linear cost function C(M) = c M

M0
,

where M0 is the memory of one node (e.g. GPU) and c is the unit cost, corresponding to the ideal
case where computing resources can be divided unlimited; 2) Ladder cost function C(M) = c⌈ M

M0
⌉,

reflecting a more realistic situation where only an integer number of GPUs are allowed.

Since the limited memory resource case will be trivial and we just need to select the largest horizon
under the memory limitation, we consider the following two objectives that are more general and
practical: accuracy constraint and weighted objective.

Objective 1: Accuracy Constraint
max
h∈H

C(M(h))

s.t. r(h) ≥ 1− ϵ.
(17)

In this case, we want to get a good performance using minimum cost. The algorithm selects the
smallest horizon that can meet the accuracy constraint using the proposed loss estimation.

3The popular cloud platforms now all provide pay-per-use mode which the pricing is mainly linear with
the memory of GPUs, like Google Cloud https://cloud.google.com/vertex-ai/pricing#
text-data and Huawei Cloud https://www.huaweicloud.com/intl/en-us/pricing/#/
ecs
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Objective 2: Weighted Objective We can also consider the case when there is no hard constraint,
but the objective is a weighted sum of performance and memory efficiency:

max
h∈H

−r(h) + λC(M(h)). (18)

The horizon selection algorithm (Algorithm 1) first compute the true cosine similarity cos(θh) and
memory usage M(h) in the subset H , and fit for other horizon by polynomial; then the optimal
horizon h∗ 4 for the given objective is solved using a traditional optimization algorithm (e.g. brute
force search).

Algorithm 1 Horizon Selection Algorithm

Require: Objective O(r, c), Cost function C(M), Dataset D, Subset of horizon H , (Optional)
1: for h in H do
2: M(h)← memory usage for horizon h
3: end for
4: for h ∈ {1, · · · , T} do
5: M̂(h)← Polyfit(H, {M(h)}h∈H , order = 1)(h) (Eq. (16))
6: end for
7: for h in H do
8: for batch b in D do
9: gh,b ← ∇uJ

h using Eq. (9) and Lemma C.1 on batch b
10: end for
11: cos(θh)← E[b in D]

g⊤
h,bgT,b

∥gh,b∥2∥gT,b∥2

12: end for
13: for h ∈ {1, · · · , T} do
14: cos(θ̂h)← Polyfit(H, {cos(θh)}h∈H , order = 3)(h) (Eq. (15))
15: end for
16: r̂(h)← cos2(θ̂h) (Eq. (14))
17: ĥ∗ ← argminh O(r̂(h), C(M̂(h)))

18: return ĥ∗

5 EXPERIMENT RESULTS

To evaluate the effectiveness of the proposed MPC framework for deep learning models, we conduct
some distinct experiments: 1) linear residual Neural Network (Res Linear NN); 2) residual MLP
(Res MLP); 3) 62-layer ResNet model (Sec 4.2 (He et al., 2016)) (ResNet-62); 4) fine-tuning ResNet-
50 (He et al., 2016) and ViT-b16 (Dosovitskiy et al., 2021). Detailed model structure, dataset, and
training settings can be found in Appendix D, and all the experiments are conducted in NVIDIA
GeForce RTX 3090 using TensorFlow (Abadi et al., 2016).

In summary, our findings reveal that:

1. The theoretical result of the linear NN model is qualitatively consistent with numerical
experiments on nonlinear models with respect to polynomial convergence of gradient and
the linear growth of memory usage (Section 5.1).

2. The performance of larger horizons will be better and will converge to the results of BP
algorithm (Full horizon) quickly (Section 5.2).

3. The optimal horizon depends on the task, model structure, and objective. Both BP and
FF algorithms can be optimal horizons, but in most cases, an intermediate horizon will
be the best choice. The proposed horizon selection algorithm can help select the horizon
throughout many cases, especially for difficult tasks (Section 5.3).

These experiments collectively demonstrate that the proposed MPC framework is applicable across
various deep learning models and tasks, particularly for large-scale deep learning models where
memory demands during training are significant.

4If Eq. (11) and Eq. (14) are correct, the returned horizon will be optimal.
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5.1 QUALITATIVE VERIFICATION FOR POLYNOMIAL CONVERGENCE OF gh AND MEMORY
USAGE
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Figure 2: Relationship Between gh and h on different models.
The x-axis shows T − h and y-axis shows 1− cos(θh). Each line represents a different training

epoch. Left: Linear residual NN, Middle: Residual MLP, Right: ResNet-62

To verify the angle θh between gh and gT for different horizons, we trained a series of neural networks
on the first three tasks. The results are depicted in Figure 2. The results demonstrate that the gradient
convergence rate is polynomial for all models throughout the entire training process, consistent with
our theoretical analysis, despite that the order might not be as high as observed in simple linear
models. Furthermore, the angle of the same horizon tends to increase during training, suggesting that
a small horizon can be efficient in the early training epochs but not in the later training epochs.

Further, in Section 3.3, we have argued that the memory usage is linear with respect to the horizon
h. To verify this, we trained both the classic ResNet-50 model He et al. (2016) and the Vision
Transformer (ViT) model Dosovitskiy et al. (2021) on CIFAR100 dataset. We use the same batch size
to train the models in different horizons. Under the hypothesis that the memory usage is linear with
respect to the horizon, the batch size should be reciprocal to the horizon, and the results depicted in
Figure 3 demonstrate it. Since the memory usage is halfed after a downsampling operation in the
resnet-50 model (the width and height are halfed while the number of channel is doubled) to maintain
the flops constant, the memory usage is not linear in the resnet-50 model but still increasing with
horizon being larger. However, for the ViT model, the memory usage is linear as each transformer
block has the same size. Further discussion on the memory usage can be found in Appendix E.1.
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Figure 3: Test accuracy and memory usage of full tuning ResNet-50 and LoRA tuning ViT-b16 on
CIFAR100. Dark line shows the loss of final epoch and shallow bars shows the memory usage of the

horizon. The maximum
Left: ResNet-50, Right: ViT-b16

5.2 PERFORMANCE OF DIFFERENT HORIZONS

From Figure 3, we can also observe that for large horizons, the performance will converge to the full
horizon (BP) case, which is consistent with the convergence of the gradient (Thm 3.4) and indicates
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Figure 5: Relative performance Rel(a) of different algorithms on various models, costs, and
objectives. Up: Heatmap of relative objective value of baselines and horizon selection algorithms

and objectives, y-axis: different algorithms, x-axis: models, tasks, and objectives (refer to Table D3),
color: relative objective value, cross notation ’×’: infeasible solution. Bottom: Average relative
performance of different algorithms on different models (the infeasible solution is treated as 1.5)

the possibility of optimality in the intermediate horizon. The results reveal that the performance of
the MPC framework is highly dependent on the horizon. We further show the detailed snapshows in
different training procedure in Figure 4. We find that, in the early training epochs, the loss decrement
is aligned for different horizons. However, as training progresses, the loss decrement of different
horizons diverges especially for small horizons. The convergence of large horizons to BP algorithm
is also observed. Further results of the performance of different horizons on the first three tasks can
be found in Appendix E.2.

5.3 VALIDATION OF HORIZON SELECTION ALGORITHM

Relative Performance Since the objective value varies from different models, tasks, costs, and
objective parameters, we transform the results to relative performance for comparison. Denoting
O(a) be the objective value using algorithm a, the relative performance is calculated by mapping the
best result mina O(a) to the worst result maxa O(a) onto [0, 1], i.e.

Rel(a) =
O(a)−mina O(a)

maxa O(a)−mina O(a)
. (19)

To demonstrate the effectiveness of the proposed horizon selection algorithm, we trained neural
networks on the first three tasks using three selection algorithms and tested its objectives with the
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baseline (BP and FF algorithm and LoCo algorithm). The results, depicted in Figure 5, demonstrate
that our proposed algorithms can achieve better objective values compared to BP. Since FF utilizes
only one block each time, its memory usage will be minimal, leading to its relatively low objective
value, especially in objective 1, while it also might not be able to satisfy the constraints. As for
the LoCo algorithm, which can still be seen as a fixed horizon algorithm, it might also violate the
constraints and is less flexible among different models and tasks. As illustrated in Figure 5 our
proposed horizon selection algorithm is more efficient than BP and more stable than FF and gets
comparable average performance for the LoCo algorithms. We also find that the horizon selection
algorithm gets better results on difficult tasks, e.g. the training of ResNet-62. Since the inaccuracy
of loss decreases speed estimation, the horizon selection algorithm tends to select a relatively larger
horizon to satisfy the constraint, thus it gets poor results in Objective 1 compared to 2.

6 DISCUSSION

This study presents a systematic framework that integrates the Forward-Forward algorithm with
Back-Propagation, offering a family of algorithms to train deep neural networks. Theoretical analysis
on deep linear networks demonstrates a polynomial convergence of gradients concerning the horizon
and the diminished return for large horizons. Based on the analysis result and various objectives,
we propose an objective-based horizon selection algorithm to balance performance and memory
efficiency. Additionally, numerical experiments across various tasks verify the qualitative alignment
of theory and underscore the significant impact of horizon selection. However, many phenomena in
the MPC framework are not fully analyzed or understood. Here are some limitations of this study.

Firstly, the analysis is primarily based on deep linear networks, but analyzing nonlinear deep networks
remains challenging, and existing results heavily rely on the BP algorithm and are thus not applicable
to the proposed framework. Nevertheless, numerical experiments show that our theoretical result
qualitatively complies with the behavior observed in nonlinear models and the analysis provides
enough insight for the horizon selection algorithm.

Secondly, while the numerical result demonstrates the significant potential of the MPC framework,
our proposed horizon selection algorithm involves simplifications and empirical fittings. However,
loss estimation is not our primary focus, and the experiments show that the proposed algorithm
achieves a good balance between performance and memory efficiency compared to baselines. Future
studies could refine this algorithm with more precise loss estimation techniques.

Thirdly, our research focuses solely on the horizon’s influence, neglecting other MPC framework
hyperparameters like block selection and loss splitting methods which are also important. We leave
these for the future studies.
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A AN EXAMPLE OF THE MPC FRAMEWORK

In this section, we give a detailed example of 5-layer residual MLP with MSE loss and h = 1, 3, 5(=
T ) to illustrate the MPC framework.

Structure Each layer of the network is a fully-connected layer with activation and residual connec-
tion. We take each layer to be a block in the MPC framework, i.e. T = 5.

ft(x(t), u(t)) = x(t) + σ(Linear(x(t);u(t))),∀t = 0, · · · , 4,

L(x) = MSE(x, y)

Note that we keep x in loss L and ignore other possible parameters and labels.

Trajectory loss Trajectory loss l(t, x(t), u(t)) is defined as loss decrement between block input
x(t) and block output x(t+ 1):

l(t, x(t), u(t)) = L(x(t+1))−L(x(t)) = MSE(ft(x(t), u(t)), y)−MSE(x(t), y),∀t = 0, · · · , 4.

Horizon h = 3 case The truncated loss Jh(t, x(t), uh
t ) is defined as partial sum of the trajectory

loss.

J3(0, x(0), u3
0) =

2∑
t=0

l(t, x(t), u(t)) = L(x(3))− L(x(0))

= MSE(f2(·, u(2)) ◦ f1(·, u(1)) ◦ f0(·, u(0))(x(0)), y)−MSE(x(0), y)

where u3
0 = {u(0), u(1), u(2)}, and ◦ means composition of functions in argument · , i.e. g(·) ◦

f(x, ·)(y) ≜ g(f(x, y)). Similarly,

J3(1, x(1), u3
1) = L(x(4))− L(x(1)), J3(2, x(2), u3

2) = L(x(5))− L(x(2)),

J3(3, x(3), u3
3) = L(x(5))− L(x(3)), J3(4, x(4), u3

4) = L(x(5))− L(x(4)).

The gradient is defined as

g3(u(0)) = ∇u(0)J
3(0, x(0), u3

0) = ∇u(0)L(x(3)),

Second equality is because x(0) is independent with u(0), thus ∇u(0)L(x(0)) = 0. Similarly,

g3(u(1)) = ∇u(1)L(x(4)), g3(u(2)) = ∇u(2)L(x(5)),

g3(u(3)) = ∇u(3)L(x(5)), g3(u(4)) = ∇u(4)L(x(5)).

Horizon h = 1 (FF) case When h = 1, the truncated loss Jh(t, x(t), uh
t ) is the current trajectory

loss:
J1(t, x(t), u1

t ) = l(t, x(t), u(t)) = L(x(t+ 1))− L(x(t)),∀t = 0, · · · , 4,
and thus

g1(u(t)) = ∇u(t)J
1(t, x(t), u1

t ) = ∇u(t)L(ft(x(t), u(t))),∀t = 0, · · · , 4,

which is the gradient of a local loss as the Forward-Forward algorithm.

Horizon h = 5 = T (BP) case When h = T , the truncated loss Jh(t, x(t), uh
t ) is the sum of the

following trajectory loss:

JT (t, x(t), uT
t ) =

T−1∑
s=t

l(s, x(s), u(s)) = L(x(T ))− L(x(t)),∀t = 0, · · · , 4,

and
gT (u(t)) = ∇u(t)L(x(T )),∀t = 0, · · · , 4,

which has the same gradient as traditional Back-Propagation.
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Figure B1: Left: (Part of Figure 1 in Xiong et al. (2020)) Diagram of LoCo, Right:(Part of Figure 1)
Diagram of MPC framework with h = 2.

B COMPARISON OF LOCO AND MPC FRAMEWORK WITH h = 2

In this section, we demonstrates that LoCo is included in the MPC framework with h = 2. As shown
in Figure B1, we can find that the structure of LoCo is identical with the MPC framework with h = 2
(refer to Figure 1) if we rotate their diagram clockwise for 90 degrees. The only difference is that
LoCo computes the gradient of the intermediate stage twice in each step, i.e.

gLoCo(u(t)) = ∇u(t)L(x(t+ 1)) +∇u(t)L(x(t+ 2)),∀t = 1, · · · , t− 2. (20)
This can be realized in the MPC framework by changing trajectory loss to:

l(t, x(t), u(t)) =

®
0, t = 0

L(x(t+ 1)), t > 0
(21)

However, this change leads to the sum of trajectory loss not equal to the terminal loss, i.e.
JT (t, x(t), uT

t ) ̸= L(x(T )). For the consistency of the paper, we use the "split loss" for the
LoCo structure in our paper.

C PROOF OF THEOREM

C.1 EQUIVALENCE OF TERMINAL LOSS AND TRAJECTORY LOSS

In this section, we prove the equivalence of terminal loss and trajectory loss. We use Jtra(u) to
denote the trajectory loss and Jter(u) to denote the terminal loss in the section to distinguish.

Trajectory Loss to Terminal Loss To transform trajectory loss to terminal loss, we need to add an
auxiliary state x0 and let the auxiliary state x0 record the accumulation of trajectory loss and x0(T )
be considered as the terminal loss:

x0(t+ 1) = x0(t) + l(t, x(t), u(t)), x0(0) = 0 (22)
Jter(u) = L(x(T ), u) = x0(T ). (23)

It is easy to prove using induction on x0(t) that

Jter(u) = x0(T ) =

T−1∑
t=0

l(t, x(t), u(t)) = Jtra(u). (24)

Terminal Loss to Trajectory Loss On the other hand, to turn terminal loss to trajectory loss,
we use split loss (8) l(t, x(t), u(t)) ≜ L(x(t + 1)) − L(x(t)). The terminal loss will become
the accumulation of loss decreases for each block, and the equivalence can be proven by simple
calculation:

Jtra(u) =

T−1∑
t=0

l(t, x(t), u(t))

=

T∑
t=1

(L(x(t))− L(x(t− 1)))

= L(x(T ))− L(x(0)) = Jter(u)− L(x(0)).

(25)
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Since L(x(0)) only depends on input and is unrelated to the model, it is a constant for the model.

C.2 PROOF OF THEOREM 3.4

We formally state the Theorem 3.4 and prove it here.

Theorem 3.4 (Formal) Gradient Deviation in Deep Linear Network Let W (t) = I + 1
T W̃ (t),

{W̃ (t)} are matrices with bounded 2-norm, i.e. ∃ c > 0 such that ∥W̃ (t)∥2 ≤ c for all t. Denote θh
the angle between gh and gT . Then ∃ C1, C2 > 0 such that:

lim
α→1

lim inf
T→∞,h=αT

1− cos2(θh)

(1− α)3
= C1,

lim
α→1

lim sup
T→∞,h=αT

1− cos2(θh)

(1− α)3
= C2

(26)

To simplify notation, denoting that W t2
t1 ≜ W (t2 − 1)W (t2 − 2) · · ·W (t1), 0 ≤ t1 < t2 ≤ T . We

can get dL
dW t = (W t

0 − Φ) for the given constant Φ being the covariance matrix of x, y. The gradient
of control u(t) = W (t) for horizon h can be derived as:

dLh

du(t)
=


(W t+h

t+1 )
⊤ dL

dW t+h
(W t−1

0 )⊤, 0 ≤ t < T − h

(WT
t+1)

⊤ dL

dWT
(W t−1

0 )⊤, T − h ≤ t < T,
(27)

In the following, we omit the round down for W t2
t1 and W (t), i.e. W βT

αT ≜ W
⌊βT⌋
⌊αT⌋ and W (αT ) ≜

W (⌊αT ⌋) ∀0 ≤ α ≤ β ≤ 1.

To prove the theorem, we use the following lemmas:

Lemma C.1 Under the condition in Theorem 3.4, ∃ −∞ < λ1 ≤ λ2 < ∞, such that ∀0 ≤ β ≤
γ ≤ 1:

∥W γT
βT ∥F ≥ σmin(W

γT
βT ) ≥ e(γ−β)λ1 , ∥W γT

βT ∥F ≤ e(γ−β)λ2 . (28)

and

Lemma C.2 Under the condition in Theorem 3.4, ∃ λ1, λ2, y1, y2 ∈ R, such that λ1 ≤ λ2, ∀β ∈
(0, 1− α] ∥∥∥∥ dLαT

du(βT )

∥∥∥∥
F

≥ (e(α+β)λ1 − y1)e
(α+β)λ1∥∥∥∥ dLαT

du(βT )

∥∥∥∥
F

≤ (e(α+β)λ2 − y2)e
(α+β)λ2 .

(29)

Lemma C.3 Under the condition in Theorem 3.4, and the same λ1, λ2, y1, y2 ∈ R as in Lemma C.2,
∀β ∈ (1− α, 1] ∥∥∥∥ dLαT

du(βT )

∥∥∥∥
F

≥ (eλ1 − y1)e
λ1∥∥∥∥ dLαT

du(βT )

∥∥∥∥
F

≤ (eλ2 − y2)e
λ2 .

(30)

Lemma C.4 Under the condition in Theorem 3.4, ∀ϵ > 0, ∃ α0(ϵ) > 0, such that ∀α > α0(ϵ), T >
0,

∥I −WT
αT ∥F ≤ ϵ. (31)

Lemma C.5 For arbitrary fixed constant c, y ∈ R, denoting gαT (·; c, y) a function of β in [0, 1]:

gαT (β; c, y) =

®
ec(α+β)(ec(α+β) − y), 0 < β < 1− α

ec(ec − y), 1− α ≤ β ≤ 1.
(32)
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and then define f(·; c, y) : R→ R

f(α; c, y) ≜

∫ 1

0
gαT (β; c, y)gT (β; c, y) dβ»∫ 1

0
g2αT (β; c, y) dβ

»∫ 1

0
g2T (β; c, y) dβ

. (33)

Then:
f2(α; c, y) = 1 +O((1− α)3), as α→ 1. (34)

The proof of these lemmas is postponed after the proof of the Theorem 3.4. Assuming we have all
the lemmas above, we can prove Theorem 3.4

Proof of Theorem 3.4 First we need to get the bound of the cosine similarity cos(θh). The upper
bound of cos(θh) can be derived by the Frobenius norm:

cos(θh) =

∑T−1
t=0 tr(( dLh

du(t) )
⊤ dLT

du(t) )√∑T−1
t=0 ∥

dLh

du(t)∥
2
F

√∑T−1
t=0 ∥

dLT

du(t)∥
2
F

≤
∑T−1

t=0 ∥
dLh

du(t)∥F ∥
dLT

du(t)∥F√∑T−1
t=0 ∥

dLh

du(t)∥
2
F

√∑T−1
t=0 ∥

dLT

du(t)∥
2
F

.

(35)

As for the lower bound, since dLh

du(t) and dLT

du(t) will align when h
T = α→ 1, we can still use rescaled

Frobenius norm to get the lower bound.

For any c1 ∈ [0, 1], denoting λ2 the larger one in LemmaC.1 and Lemma C.2 and λ1 be the smaller
one, using Lemma C.4 we have ∀ϵ > 0, ∃ α0(ϵ) > 0, such that ∀α > α0(ϵ), T > 0,

∥I −WT
αT ∥F ≤ ϵ. (36)

Combined with Lemma C.1 we can get: ∀0 ≤ β ≤ 1− α

∥W (α+β)T
βT −WT

βT ∥F ≤ ∥W
(α+β)T
βT (I −WT

(α+β)T )∥F ≤ ∥W
(α+β)T
βT ∥F ∥I −WT

(α+β)T ∥F ≤ ϵeαλ2 ,

(37)∥∥∥∥ dL

dW (α+β)T
− dL

dWT

∥∥∥∥
F

= ∥W (α+β)T (I −WT
(α+β)T )∥F ≤ ϵeλ2 . (38)

Then using Lemma C.2, (37) and (38)∥∥∥∥ dLαT

du(βT )
− dLT

du(βT )

∥∥∥∥
F

≤ ∥W βT ∥F
Å
∥W (α+β)T

βT ∥F
∥∥∥∥ dL

dW (α+β)T
− dL

dWT

∥∥∥∥
F

+

∥∥∥∥ dL

dWT

∥∥∥∥
F

∥W (α+β)T
βT −WT

βT ∥F
ã

≤ e(α+β+1)λ2(1 + eλ2 − y2)ϵ ≤ e2λ2(1 + eλ2 − y2)ϵ,
(39)

let ϵ =
√
1− c21e

−2λ2(1 + eλ2 − y2)
−1 minγ{(eγλ1 − y1)e

γλ1} ≤
√
1− c2e−2λ2(1 + eλ2 −

y2)
−1∥ dLT

du(t)∥F we can get:∥∥∥∥ dLαT

du(βT )
− dLT

du(βT )

∥∥∥∥
F

≤
»
1− c21

∥∥∥∥ dLT

du(βT )

∥∥∥∥
F

, (40)

thus Å
vec

Å
dLαT

du(βT )

ãã⊤
vec

Å
dLT

du(βT )

ã
≥ c1

∥∥∥∥ dLαT

du(βT )

∥∥∥∥
F

∥∥∥∥vec dLT

du(βT )

∥∥∥∥
F

, (41)

where vec(·) stands for matrix vectorization in column-first order. Eq. (41) is due to ∥vec(A)∥2 =

∥A∥F and the following fact. For arbitrary two vector a, b ∈ Rn, if ∥a− b∥2 ≤
√

1− c21∥b∥2 then

∥a∥22 − 2a⊤b+ ∥b∥22 ≤ 1− c21∥b∥22
=⇒ 2a⊤b ≥ c21∥b∥22 + ∥a∥22
=⇒ a⊤b ≥ |c1|∥a∥2∥b∥2.

(42)
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Then we have the lower bound for cos(θαT ) for all α > α0 and uniformly in T :

cos(θαT ) ≥
c1

∑T−1
t=0 ∥

dLαT

du(t) ∥F ∥
dLT

du(t)∥F√∑T−1
t=0 ∥

dLαT

du(t) ∥
2
F

√∑T−1
t=0 ∥

dLT

du(t)∥
2
F

. (43)

which again induce similar equation as (35) with additional scalor c1.

Let T →∞, since we can multiply both numerator and denominator by 1
T and ∥dLαT

du(t) ∥F , ∥
dLT

du(t)∥F
are bounded uniformly in α, T, t, we have for all α ∈ (0, 1],

lim
T→∞

∣∣∣∣∣∣∣
∑T−1

t=0 ∥
dLαT

du(t) ∥F ∥
dLT

du(t)∥F√∑T−1
t=0 ∥

dLαT

du(t) ∥
2
F

√∑T−1
t=0 ∥

dLT

du(t)∥
2
F

−

∫ 1

0
∥ dLαT

du(βT )∥F ∥
dLT

du(βT )∥F dβ√∫ 1

0
∥ dLαT

du(βT )∥
2
F dβ

√∫ 1

0
∥ dLT

du(βT )∥
2
F dβ

∣∣∣∣∣∣∣ = 0,

(44)
uniformly in α.

Since the result of LemmaC.5 holds for arbitrary c and y, ∃ C ′
1, C

′
2, such that

lim
α→1

lim inf
T→∞

1− cos2(θαT )

(1− α)3
≥ min

λ∈[λ1,λ2],y∈[y1,y2]
lim
α→1

1− f2(α;λ, y)

(1− α)3
= C ′

1,

lim
α→1

lim sup
T→∞

c1 − cos2(θαT )

(1− α)3
≤ max

λ∈[λ1,λ2],y∈[y1,y2]
lim
α→1

c1(1− f2(α;λ, y))

(1− α)3
= C ′

2.

(45)

The Compactness of [λ1, λ2], [y1, y2] and the continuity of g thus f on c and y ensure the existence
and bounded limit. Let c→ 1, we know that ∃ C1, C2 such that

C ′
1 ≤ C1 = lim

α→1
lim inf
T→∞

1− cos2(θαT )

(1− α)3
≤ lim

α→1
lim sup
T→∞

1− cos2(θαT )

(1− α)3
= C2 ≤ C ′

2. (46)

□
Below we prove the previous lemmas

Proof of Lemma C.1: Since {W̃ (t)} have bounded 2-norm ∥W̃ (t)∥2 ≤ c for all t, the norm of the
multiplication of W (t) can be bounded, i.e. ∀0 ≤ β ≤ γ ≤ 1:

∥W γT
βT ∥2 ≤ ΠγT−1

t=βT ∥W (t)∥2 ≤ (1 +
c

T
)(γ−β)T < e(γ−β)c. (47)

For the lower bound, since for arbitrary matrices A,B ∈ Rn×n and non-zero vector u ∈ Rn, the
following inequality holds:

∥BAu∥2 ≥ σmin(B)∥Au∥2 ≥ σmin(B)σmin(A)∥u∥2, (48)

where σmin(A) denotes the minimum singular value of matrix A, thus

∥BA∥2 = sup
u̸=0

∥BAu∥2
∥u∥2

≥ inf
u̸=0

∥BAu∥2
∥u∥2

= σmin(BA) ≥ σmin(B)σmin(A), (49)

and we can get the following result:

∥W γT
βT ∥2 ≥ σmin(W

γT
βT ) ≥ ΠγT−1

t=βT σmin(W (t)) ≥ (1− c

T
)(γ−β)T > e−(γ−β)c, (50)

for all 0 ≤ β ≤ γ ≤ 1, . By equivalence between matrix norms, ∃ −∞ < λ1 ≤ λ2 <∞ such that:

∥W γT
βT ∥F ≥ e(γ−β)λ1 , ∥W γT

βT ∥F ≤ e(γ−β)λ2 . (51)

hold for all 0 ≤ β ≤ γ ≤ 1 □
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Proof of Lemma C.2 Given constant Φ, we have:

|∥W t+h∥F − ∥Φ∥F | ≤ ∥W t+h − Φ∥F =

∥∥∥∥ dL

dW t+h

∥∥∥∥
F

≤ ∥W t+h∥F + ∥Φ∥F (52)

σmin(
dL

dW t+h
) ≥ σmin(W

t+h)− σmax(Φ) (53)

Eq. (53) can be derived from the following argument: for arbitrary matrix A,B ∈ Rn×n and non-zero
vector u ∈ Rn:

σmin(A−B) = min
u ̸=0,∥u∥2=1

∥(A−B)u∥2

≥ min
u ̸=0,∥u∥2=1

∥Au∥2 − max
u̸=0,∥u∥2=1

∥Bu∥2

=(σmin(A)− σmax(B)).

(54)

Denoting β = t
T , α = h

T , from Lemma C.1, ∃ −∞ < λ1 ≤ λ2 <∞, such that ∀0 ≤ β ≤ γ ≤ 1

∥W γT
βT ∥F ≥ σmin(W

γT
βT ) ≥ e(γ−β)λ1 , ∥W γT

βT ∥F ≤ e(γ−β)λ2 . (55)

Combine (52), (53) and (55) let λ1 = σmax(Φ), λ2 = −∥Φ∥F we can get: ∀β ∈ (0, 1]∥∥∥∥ dLαT

du(βT )

∥∥∥∥
F

≥ σmin(W
t+h
t )σmin(

dL

dW t+h
)σmin(W

t−1
0 ) ≥ (e(α+β)λ1 − y1)e

(α+β)λ1 ,∥∥∥∥ dLαT

du(βT )

∥∥∥∥
F

≤ ∥W t+h
t ∥F ∥

dL

dW t+h
∥F ∥W t−1

0 ∥F ≤ (e(α+β)λ2 − y2)e
(α+β)λ2 .

(56)

□

Proof of Lemma C.3 Substitute W t+h,W t+h
t in Lemma C.2 to WT ,WT

t and we can get the
result.

Proof of Lemma C.4 For arbitrary matrices A,B ∈ Rn×n and arbitrary matrix norm ∥ · ∥

∥AB − I∥ ≤ ∥AB −B∥+ ∥B − I∥ ≤ ∥B∥∥A− I∥+ ∥B − I∥. (57)

For arbitrary α ∈ [0, 1], substituting A with WT
αT+1, B with W (αT ) and use 2-norm we have:

∥WT
αT −I∥2 ≤ ∥WT

αT+1−I∥2∥W (αT )∥2+∥W (αT )−I∥2 ≤ ∥WT
αT+1−I∥2(1+

c

T
)+

c

T
. (58)

By induction we can derive that:

∥WT
αT − I∥2 ≤

c

T

(1 + c
T )

(1−α)T − 1
c
T

= (1 +
c

T
)(1−α)T − 1 ≤ e(1−α)c − 1, (59)

then ∀ϵ, let α0 = 1−
ln(1+ ϵ√

n
)

c , ∀α > α0 we can get:

∥WT
αT − I∥F ≤

√
n∥WT

αT − I∥2 ≤
√
n(e(1−α)c − 1) ≤

√
n(e(1−α0)c − 1) ≤ ϵ. (60)

□

Lemma C.5 Since the result of LemmaC.5 can be derived from direct computation, we omit it.

Remark C.6 The result can be extended to any other random matrix ensemble as long as Lemma
C.1 and Lemma C.2 holds.

Remark C.7 Noted that the estimation of general inner product between dLh

du(t) and dLh

du(t) is hard,
so we cannot get the expression for α→ 0, while the numerical experiments show that the case of
α→ 0 is trivial, i.e. limα→0+ cos(θαT ) ̸= 0 and limα→0+

d cos(θαT )
dα ̸= 0
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C.3 THEORY FOR LOSS DECREASE SPEED

Once the cosine similarity and the norm of the rescaled gradient gh are specified, we can use the result
of biased gradient descent (Theorem 4.6 Bottou et al. (2016) or Theorem 4 Chen & Luss (2018)) to
get a linear convergence to a non-vanishing right-hand side for strong convex loss:

Theorem C.8 (Theorem 4.6 Bottou et al. (2016)) Assuming that J(u) is c-strong convex, bounded
below J(u) ≥ J(u∗),∇J(u) is L-Lipschitz continuous, i.e. ∀u, u′ ∈ Rm

J(u′) ≥ J(u) +∇J(u)⊤(u′ − u) +
c

2
∥u− u′∥22 (61a)

∥∇J(u)−∇J(u′)∥2 ≤ l∥u− u′∥2. (61b)

Further assume that the stochastic gradient estimation g(u; ξ) satisfies ∃ µG ≥ µ ≥ 0 and M ≥ 0,
MV ≥ 0, such that ∀τ ∈ N

∇J(uτ )⊤Eξ[g(u
τ ; ξ)] ≥ µ∥∇J(uτ )∥22 (62a)

∥Eξ[g(u
τ ; ξ)]∥2 ≤ µG∥∇J(uτ )∥2 (62b)

Vξ[g(u
τ ; ξ)] ≤M +MV ∥∇J(uτ )∥22. (62c)

Then for fixed learning rate 0 < η ≤ µ
L(MV +µ2

G)
, the following inequality holds for all τ ∈ N

J(uτ )− J(u∗) ≤ (1− ηcµ)τ−1(J(u0)− J(u∗)− ηLM

2cµ
) +

ηLM

2cµ
. (63)

In our case, let the gradient estimator be the rescaled gradient for horizon h, i.e. g(u) = gh(u), then
µ = cos2(θh), so the linear decrease rate is ln(1− ηcµ) = O(µ) = O(cos2(θh))

D TRAINING DETAILS

D.1 ARCHITECTURE

Linear Residual NN and Residual MLP 15-layer Fully connected neural networks with the same
width 10 in each layer. Residual connection is applied to every layer except the first layer and last
layer. For the linear residual NN, there is no activation function and bias in the fully connected layer.
For the residual NNs, the activation function is ReLU and there is bias in the fully-connected layer.
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ResNet-62 Each block has two convolution layers with batch
normalization and activation. For each stage, before the first
block, there will be a convolution layer with a specific stride to
half the width and height of the feature. Since each convolution
residual block has two convolution layers, the origin paper He
et al. (2016) counts the number of convolution layers instead of
the residual block.

Table D1: CNN structure
Stage Operator #Chennels #Blocks Strides
stem Input 3 - -

1 ConvResBlock 16 10 1
2 ConvResBlock 32 10 2
3 ConvResBlock 64 10 2

LoCo 3 and LoCo 5 As discussed in the Remark 3.1 and Ap-
pendix B, LoCo algorithm is a variant of the MPC framework
with horizon 2 for larger blocks. In order to apply LoCo algo-
rithm to the linear residual NN, residual MLP and ResNet-62, we
implement two version of LoCo: LoCo 3 and LoCo 5, where the
number indicates the total block of the model, and each block
contains the same number of layers. For example, LoCo 5 has
5 blocks, and each block has 3 layers for 15-layer residual MLP,
and for LoCo3 on ResNet-62, each stage is viewed as a block.

D.2 TRAINING SETTINGS

General training settings For all experiments, we employ SGD
as the optimizer, and decrease the learning rate by 0.9 when-
ever the loss of the current epoch increases. We evaluate the
performance using MSE loss for the first two experiments and
cross-entropy loss and accuracy for the latter two experiments.
The training settings are shown in Table D2.

Figure D1: Diagram of Con-
vResBlockHe et al. (2016)

Table D2: Training settings for all tasks

Settings Res Linear NN Res MLP ResNet Fine-tuning

Learning Rate 0.03 0.01 0.01 0.001

Batch Size 100 100 32 64

Epoch 40 40 40 30

Sample Size 10000 100000 45000 50000

Optimizer SGD SGD SGD Adam

Dataset linear dataset1 trigonometric datase2t CIFAR10 CIFAR100
1 Synthetic dataset, y = W0x for Gaussian randomized matrix W0, w0,ij ∼ N(0, N− 1

2 ),
xi ∼ N(0, N− 1

2 )
2 Synthetic dataset, y = (1 + ϵ) ∗ (cos(πx), sin(πx), cos(2πx), sin(2πx))⊤, x ∼
U([−2, 2]), ϵ ∼ N(0, 0.03)

D.3 NOTATIONS FOR FIGURE 5

Table D3 shows the notation used in the Figure 5

E FURTHER EXPERIMENTS

Here we supplement the two numerical experiments of the verification of the relationship memory
M(h) and horizon h, and the performance of different horizons in the first three experiments.
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Table D3: Notations of Models, Costs, Objectives, and Parameters

Model Cost1 Objective

Notation Meaning Notation Meaning Notation Meaning Parameter

M1 Linear Residual NN C1 C(M) = c M
M0

O1 Objective 1 1− ϵ

M2 Residual MLP C2 C(M) = c⌈ M
M0

⌉ O2 Objective 2 λ

M3 ResNet-62
1 In the experiment, we use c = 1 and M0 = maxh{M(h)} for linear cost (C1) and M0 =
0.3maxh{M(h)} for ladder cost (C2).

E.1 RELATIONSHIP BETWEEN MEMORY(h) AND h

0.0 0.2 0.4 0.6 0.8 1.0
h/T

0.2

0.4

0.6

0.8

1.0

M
(h

)/M
(T

)

Linear Residual NN
Residual MLP
ResNet-62

0.0 0.2 0.4 0.6 0.8 1.0
h/T

0.0

0.2

0.4

0.6

0.8

1.0

M
(h

)/M
(T

)
Linear Residual NN
Residual MLP
ResNet-62

Figure E1: Relationship between M(h) and h
x-axis is h

T , y-axis is memory usage ratio
Left: Memory usage for different horizon under eager mode, Right: Memory usage for different

horizon under static mode

We also verify the memory usage on the first three tasks. In TensorFlow 2.0 or above versions, there
are two modes: eager mode and static mode. The eager mode will release memory efficiently and
give the theoretical linear dependency between memory usage and horizon, while the static mode
will create the whole computation graph, causing every back-propagation to be counted, resulting
in O(h(T − h+ 1)) memory usage (refer to Figure 1). In the paper, we hypothesis that the model
is running in the eager mode, i.e. the memory is efficiently used thus linear/affine with respect to
horizon h.

E.2 PERFORMANCE FOR DIFFERENT HORIZONS IN LINEAR RESIDUAL NN, RESIDUAL MLP,
AND RESNET-62

Figure E2 illustrates the performance of different horizons on the three tasks. The results reveal that
the performance of the MPC framework is highly dependent on the horizon. In the early training
epochs, the loss decrease is aligned for different horizons, which is obvious in the residual NN case,
indicating that the MPC framework can serve as an efficient warm-up training strategy. However, as
training progresses, the loss decrease of different horizons diverges. Especially for small horizons,
the loss might remain high, highlighting the importance of selecting the optimal horizon. These two
findings are consistent with the deductions in the previous section. Furthermore, the comparison of
the three tasks demonstrates that the performance of the same horizon varies across different models
and tasks.
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Figure E2: Training loss for different horizons
Left: Linear residual NN on linear regression, Middle: Residual MLP on trigonometric regression,

Right: ResNet-62 on CIFAR-10
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