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ABSTRACT

Model collapse, the severe degradation of generative models when iteratively
trained on their own outputs, has gained significant attention in recent years. This
paper examines Chain of Diffusion, where a pretrained text-to-image diffusion
model is finetuned on its own generated images. We demonstrate that severe
image quality degradation was universal and identify CFG scale as the key factor
impacting this model collapse. Drawing on an analogy between the Chain of
Diffusion and biological evolution, we then introduce a novel theoretical analysis
based on quantitative trait modeling. Our theoretical analysis aligns with empirical
observations of the generated images in the Chain of Diffusion. Finally, we propose
Reusable Diffusion Finetuning (ReDiFine), a simple yet effective strategy inspired
by genetic mutations. It operates robustly across various scenarios without requiring
any hyperparameter tuning, making it a plug-and-play solution for reusable image
generation.

1 INTRODUCTION

Can state-of-the-art AI models learn from their own outputs and improve themselves? As generative
AI models (e.g., GPT, Diffusion) now churn out uncountable synthetic texts and images, this question
piqued curiosity from many researchers in the past couple of years. While some show positive
results of self-improving (Huang et al., 2022; Gerstgrasser et al., 2024), most report an undesirable

“model collapse”—a phenomenon where a model’s performance degrades when it goes through
multiple cycles of training with the self-generated data (Bertrand et al., 2023; Gillman et al., 2024;
Taori & Hashimoto, 2023; Shumailov et al., 2023; Dohmatob et al., 2024a; Fu et al., 2024; Marchi
et al., 2024; Martı́nez et al., 2023b). When large language models (LLMs) are trained with their
own outputs, it begins to produce low-quality text that has a lot of repetitions (Dohmatob et al.,
2024c), and its linguistic diversity declines rapidly (Guo et al., 2024; Briesch et al., 2023); image
models also show quality degradation (Bohacek & Farid, 2023; Martı́nez et al., 2023a) and loss of
diversity (Alemohammad et al., 2023; Hataya et al., 2023).

The goal of this paper is to investigate model collapse in the practical scenario of finetuning pretrained
text-to-image diffusion models. An end user often wants to finetune the latest model to generate
images with a very specific style (e.g., creating characters in the style of Pokémon). In fact, hundreds
of new finetuned diffusion models are uploaded regularly on platforms like CivitAI1, each designed
to produce different styles of images. When users scrape the Internet to collect images of the style
they want, it becomes almost inevitable that synthetic images will be included in their datasets.

1https://civitai.com/
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This is because the number of real images is limited, while synthetic images can be generated in
massive quantities and dominate online sources. As a result, users will feel compelled to include
more synthetic images in their datasets to keep up with the data demands of these ever-growing,
data-hungry models.

To this end, we conduct a thorough investigation into how various hyperparameters commonly used
during diffusion finetuning (e.g., learning rate, diffusion steps, prompts) impact model collapse. From
our extensive empirical analysis, we make a crucial observation: the classifier-free guidance (CFG)
scale is the most significant factor that influences the rate of model collapse. Moreover, we observe a
fascinating phenomenon that the direction of degradation varies with different CFG values—low CFG
results in low-frequency degradation in images, while high CFG leads to high-frequency degradation.
The critical role of CFG in determining both the rate and direction of model collapse is a novel insight
previously unrecognized in the literature.

To gain a deeper theoretical understanding of this phenomenon, we draw upon the concept of
quantitative trait modeling from statistical genetics. Unlike existing studies that attribute model
collapse to limited sample sizes and conclude it leads to zero variance (Alemohammad et al.,
2023; Bertrand et al., 2023; Shumailov et al., 2023), we propose that the underlying cause is a
truncation-based selection process modulated by CFG. This theoretical model accurately describes
our experimental observations. Moreover, we show that other theoretical work on model collapse can
also be connected to statistical genetics models, such as random genetic drift and its variants (Fisher,
1999; Wright, 1931; Kimura, 1955; Paris et al., 2019). This fresh angle of drawing parallels with
statistical genetics offers a new framework to understand the mechanism of model collapse.

While we have shown the crucial role of CFG in mitigating model collapse both empirically and theo-
retically, searching for the optimal CFG scale over multiple finetuning iterations is computationally
expensive and cumbersome to implement in practice. We propose a simple solution that bypasses
CFG tuning, called Reusable Diffusion Finetuning (ReDiFine). It introduces small modifications in
the finetuning and generation algorithm—condition drop and CFG scheduling—and we demonstrate
that ReDiFine achieves performance comparable to the optimal CFG scale across all hyperparameter
settings we tested.

Our contributions can be summarized as follow:

• We conducted a comprehensive investigation of model collapse when finetuning a diffusion model
on its own outputs, testing a wide range of parameters on four datasets (two digital art and two
natural images). Our results show that CFG scale is the most critical factor, governing both the rate
of model collapse and the type of image degradation (Section 3).

• We provide a novel theoretical analysis of model collapse based on quantitative trait modeling that
can accurately predict how power spectra of generated images evolve over iterations (Section 4).

• We propose ReDiFine, a simple yet effective strategy to achieve a near-optimal reusability-fidelity
trade-off without any hyperparameter tuning. By combining condition drop finetuning and CFG
scheduling, ReDiFine operates robustly across various scenarios—such as synthetic-real mixed
datasets and varying initial CFG settings—across all four datasets we evaluated (Section 5).

2 RELATED WORK

The self-consuming training loop and the associated phenomenon known as “model collapse” have
become significant areas of study in the past two years (Martı́nez et al., 2023a;b; Taori & Hashimoto,
2023; Alemohammad et al., 2023; Bohacek & Farid, 2023; Guo et al., 2024; Bertrand et al., 2023;
Dohmatob et al., 2024a; Briesch et al., 2023; Gillman et al., 2024; Fu et al., 2024; Marchi et al.,
2024). Model collapse, defined as “a degenerative process affecting generations of learned generative
models, where generated data end up polluting the training set of the next generation of models” in
Shumailov et al. (2023), has been observed in both language and image generative models.

Empirical studies on LLMs (Briesch et al., 2023) reveal that linguistic diversity collapses, especially
in high-entropy tasks (Guo et al., 2024), although this can be mitigated with data accumulation (Ger-
stgrasser et al., 2024). In image generation, several works (Martı́nez et al., 2023a;b; Alemohammad
et al., 2023; Hataya et al., 2023; Bohacek & Farid, 2023; Bertrand et al., 2023) note image degrada-
tion when diffusion models are recursively trained with self-generated data. We conduct extensive
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experiments to reveal the key factor causing model collapse in text-to-image diffusion models. Our
findings reveal that while model collapse is universally observed across various datasets and scenarios,
it manifests in three distinct types of image degradation.

Theoretical studies on model collapse largely focused on diversity reduction, typically framed as
either decreasing covariance in continuous domains (Alemohammad et al., 2023; Shumailov et al.,
2024; Bertrand et al., 2023) or shrinking support in discrete domains (Dohmatob et al., 2024c; Marchi
et al., 2024), which aligns with our observations on the decreased recall metric. The finite number
of generated samples has been identified as a key cause of model collapse (Bertrand et al., 2023;
Shumailov et al., 2024; Dohmatob et al., 2024c; Fu et al., 2024), while others (Alemohammad et al.,
2023; Ferbach et al., 2024; Marchi et al., 2024) emphasize that sampling bias reduces the effective
distribution. In contrast, we present a novel framework based on quantitative trait modeling, providing
a fresh direction based on mean drift induced by the selection process. We further demonstrate that
many existing theories of model collapse can be understood through extensions of classical statistical
genetics.

Most existing works echo the importance of incorporating a large proportion of real data (Alemoham-
mad et al., 2023; Bertrand et al., 2023; Fu et al., 2024; Ferbach et al., 2024) or accumulating data over
iterations (Gerstgrasser et al., 2024) to mitigate model collapse. Gillman et al. (2024) instead suggests
a self-correcting self-consuming loop using an expert model, a physics simulator for human motion
generation, to correct synthetic outputs. While promising, an expert model may not be feasible and
too costly for many real-world applications. In our work, we propose an alternative solution through
reusable image generation, and show that it can generate high-quality images comparable to the
optimal hyperparameter without extensive search.

Several concurrent works seek to address model collapse through their theoretical insights. Dohmatob
et al. (2024b) provides a comprehensive analysis of how model collapse behavior varies with model
size and data composition. Feng et al. (2024) emphasizes the importance of data verification in
preventing performance degradation, while Zhu et al. (2024b) introduces a novel token editing strategy
for data curation, both in LLM tasks. On the other hand, Zhu et al. (2024a) and Alemohammad et al.
(2024) propose model-specific solutions leveraging real data to counteract the negative effects of
synthetic data in image-generative models.

3 MODEL COLLAPSE IN SELF-CONSUMING CHAIN OF DIFFUSION
FINETUNING

3.1 PROBLEM SETTING & EXPERIMENTAL SETUP

Chain of Diffusion. We begin with formally defining the self-consuming Chain of Diffusion
finetuning. Given a pretrained generative model M0, an original training image set D0 = {x0,i|i ∈
[0, N − 1]}, and a prompt set P = {yi|i ∈ [0, N − 1]}, where N is the number of total images in the
dataset, each image x0,i is paired with a corresponding text prompt yi. Mk+1 is a model finetuned
from M0 using the generated image set Dk = {xk,i|i ∈ [0, N − 1]} and the prompt set P , which
simulates a fully synthetic loop (Alemohammad et al., 2023). Then, Mk+1 generates a set of images
Dk+1 for the next iteration using the prompt set P :

Mk+1 = Finetune(M0, Dk, P ), (1)

Dk+1 = Generate(Mk+1, P ). (2)

During the Chain of Diffusion, M0 and P are fixed across iterations, and one image is generated per
one prompt to maintain the dataset size for all iterations. The overall pipeline is shown in Figure 1a.
We note that this setting is consistent with Alemohammad et al. (2023); Shumailov et al. (2023); Guo
et al. (2024); Fu et al. (2024); Briesch et al. (2023).

Model and datasets. We use Stable Diffusion v1.5 (Rombach et al., 2022) as the pretrained model
M0 and apply LoRA (Hu et al., 2021) to finetune M0 at each iteration. We build our implementation
on kohya-ss and experiment on four datasets: Pokemon (Pokémon, 2023), Kumapi (Ihelon, 2022),
Butterfly (Veeralakrishna, 2020), and CelebA-1k (Liu et al., 2015) to investigate various domains
including animation, handwriting, and real pictures. M0 is finetuned for 100 epochs during each
iteration. More details can be found in Appendix A.1 and A.2.
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(a) Self-Consuming Chain of Diffusion Finetuning. (b) Image degradation in the Chain of Diffu-
sion.

Figure 1: (a) Overall pipeline of the Chain of Diffusion. Given a pretrained text-to-image diffusion
model M0 and a prompt set P , a finetuned model Mk is trained using Dk−1 generated at the previous
iteration k − 1. Then, Mk generates Dk using the same prompt set P , building a fully synthetic
loop. Chain of diffusion begins with the original real dataset D0. (b) Image degradation universally
occurs across multiple domains, and low and high CFG scales lead to blurry images and
high-frequency degradation, respectively. As the Chain of Diffusion progresses, the severity of
image degradation intensifies, which holds consistently across four datasets and 11 scenarios in
Section 3.2. CFG 2.5 for Pokemon and 1.5 for CelebA exhibit an ideal middle ground where both
types of degradation slow down. More images in Appendix B.

Evaluation metrics. We use Frechet Inception Distance (FID) (Heusel et al., 2017) to measure image
quality. Following Stein et al. (2024), we use DiNOv2 (Oquab et al., 2023) as a feature extractor since
it is more consistent with our visual inspection than Inception-V3 network (Szegedy et al., 2016).
With a slight abuse of terms, we will still refer to the Frechet distance with DiNOv2 as the FID score.
Additional experiments with other metrics (CLIP score (Radford et al., 2021), Sample-wise Feature
Distance (SFD), and recall) are presented in Appendix E.5.

We propose a new metric to quantify the reusability of generated images. We define collapse rate as
the performance degeneration per iteration in the Chain of Diffusion:

collapse rate = ∆FID =
FIDK − FID1

K − 1
, (3)

where FIDk stands for the FID between k-th iteration set and the original training set. We use FID
as a performance metric here, but this can be any other performance metric of interest. Note that a
low collapse rate indicates more reusable images since the model does not degrade much. We have
K = 6 for the rest of the paper.

3.2 MODEL COLLAPSE IN THE CHAIN OF DIFFUSION

In this section, we make a series of observations regarding the model collapse behavior in the Chain
of Diffusion. We conduct extensive investigations to reveal the most impactful factor in the model
collapse and analyze how this factor contributes to the Chain of Diffusion.

Observation 1: Model collapse is universal in the Chain of Diffusion. We observe significant
image degradation in all four datasets in the Chain of Diffusion (see Figure 1b). The quality of gener-
ated images begins to deteriorate in the third iteration and drops even more rapidly once the visible
degradation emerges, reaching an unrecognizable level in two or three additional iterations. Quantita-
tive evaluation (FID, CLIP score, SFD, recall) also indicates this quality degradation (Appendix E.5).
Also we note that we observed significant drops in recall in all our experiments, indicating diversity
reduction as discussed in several recent works.

2C, W, S, and L for Combine, Waifu, Short, and Long, respectively. We concatenate BLIP and Waifu captions
as default setting, referred to as Combine. Short and Long prompts are BLIP captions generated with limitations
in the lengths of captions. More details can be found in Appendix C.4.

3We do not display scenarios that change the training dataset size, such as Img/Prompt and Dataset Size, as
varying sizes result in FID scores on different scales. The related results are presented in the Appendix C, where
we observe similar image degradation.
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Figure 2: Left: Description of 11 potential factors (excluding CFG) that we examined as candidate
sources for model collapse. All experiments were conducted on Pokemon except for the dataset
size. For dataset size, we use CelebA since its original dataset is bigger, and we can subsample
500, 1000, and 2000 images. For prompt, we concatenate prompts with different lengths2. Center:
All hyperparameter settings other than changing CFG show a high collapse rate greater than 1.0,
i.e., FID score increases by ∼2x in 6 iterations, indicating severe image degradation. The x-axis
represents FID1, quantifying the generation performance at the first iteration and the y-axis represents
the collapse rate defined in equation 3. For both FID1 and collapse rate, lower is better3. Right:
Quantitative comparison for FID ↓ (Pokemon). CFG 2.5 achieves the most robust performance. CFG
1.0 degrades from the beginning of the chain while CFG 7.5 begins to degrade in the third iteration,
which aligns with the visual inspection in Figure 1b.

We then investigated a variety of different scenarios (summarized in Figure 2) to see if this degradation
is an anomaly of specific hyperparameter settings or if it is a ubiquitous phenomenon. We tested
various dataset sizes for D0 and Dk, increasing the size of Dk by generating more than one image per
prompt, mixing real images from D0 to Dk, changing the descriptiveness of prompts, freezing U-Net
or text encoder, and various other hyperparameters (# sampling steps, # epochs, learning rate, and
CLIP skip). We also tested adding a small Gaussian noise in each image in the original set D0 to see
if having small random perturbations can improve reusability, and merging all four datasets into one
to see whether the extended domain can delay model collapse (Cross-domain data). In all settings we
tested, image degradation was universally present and very fast. We plot the trade-off for Pokemon on
Figure 2 where y-axis is collapse rate and x-axis is the FID1 (better when closer to the origin). While
adding noise to images and mixing 90% real images to every iteration as proposed by Alemohammad
et al. (2023); Bertrand et al. (2023); Fu et al. (2024); Ferbach et al. (2024); Gerstgrasser et al. (2024)
show the lowest collapse rate, they still exhibit significant degradation (FID score has been doubled
in 6 iterations).

Moreover, this degradation is unavoidable even for Stable Diffusion XL (Appendix C.11). We further
examined slightly different settings from the literature where all previously generated images are
accumulated (data accumulation (Gerstgrasser et al., 2024), Appendix C.12) or the same model is
iteratively finetuned (iterative retraining (Bertrand et al., 2023; Martı́nez et al., 2023a), Appendix E.4),
and consistently observed model collapse.

Observation 2: CFG is the most significant factor that impacts the model collapse. Throughout
all our experiments, classifier-free guidance (CFG) had the biggest impact on the speed of model
collapse. CFG scale was first introduced in Ho & Salimans (2022) to modulate the balance between
unconditional score (Uncond) and conditional score (Cond) at each diffusion step as follows:

Total Score = Uncond + CFG · (Cond − Uncond). (4)

High CFG emphasizes the conditional score for the given prompt, which pushes the generation to
align better with the prompt and often leads to higher-fidelity images. On the other hand, lower
CFG places less weight on the conditional score and provides more diversity in generated images.
For those familiar with temperature sampling (Ackley et al., 1985), CFG plays a similar role as
temperature, which adjusts the trade-off between fidelity and diversity.

Figure 2 shows that as we increase the CFG scale, the image quality in the first iteration improves
(smaller FID1 on x-axis), which is expected from our understanding of CFG. A more surprising part
is that this comes at the cost of a worse collapse rate (an increase on the y-axis). Also, when the CFG
scale is as high as 7.5 or 10.0, the improvement in FID1 plateaus, and increased CFG worsens both
FID1 and collapse rate. Similarly, when the CFG scale is too low—below 2.0—the improvement
in collapse rate plateaus, and both FID1 and collapse rate begin to increase. There is an optimal
region of CFG values (near 2.5, specific to Pokemon), where we achieve a low collapse rate while
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(a) t-SNE of images. (b) Selection mechanism. (c) Power spectra of images vs. Mean of phenotypes.

Figure 3: (a) t-SNE plot visualizes how generated images evolve from the original distribution
(black) and shows distinct paths for three CFG scales (Pokemon). Different CFG scales and itera-
tions are differentiated with different colors and transparency. Arrows indicate how the distributions
of generated images move for different CFG scales. While CFG 2.5 (blue) stays near the original
images (black), high and low CFG scales (1.0 and 7.5) deviate fast, indicating image degradation. (b)
Selection mechanism with two-sided truncation. r1 and r2 ratios of samples are truncated from the
left and right tails, and the remaining r = 1− r1 − r2 ratio of samples is selected. (c) Power spectra
for different CFGs (Pokemon) and quantitative trait modeling results align well for different
selection strategies. Directional selections with truncation can effectively explain our observations
in Section 3: the behaviors of high- and low-frequency degradation and optimal CFG scale. Detailed
settings are provided in Appendix D.2.

maintaining a good quality in the first iteration as well. Moreover, Figure 2 presents FID for Pokemon
to demonstrate how different CFG scales affect performance. CFG scale 2.5 achieves the most robust
performance for all metrics. Interestingly, optimal CFG scales differ for different styles: 2.5 for
animated or hand-writing datasets (Pokemon and Kumapi) and 1.5 for photo datasets (CelebA and
Butterfly) as shown in Appendix B.

Observation 3: High CFG scales cause high-frequency degradation and low CFG scales cause
low-frequency degradation. CFG scale does not only affect the speed of model collapse, but also
the pattern of model collapse. As shown in Figure 1b, CFG 1.0 makes the images progressively
more blurry in the Chain of Diffusion, eventually collapsing to images without any structure, which
we refer to low-frequency degradation. On the other hand, for CFG 7.5 how images degrade looks
completely different: some features start to be emphasized excessively, repetitive patterns begin to
appear, and the overall color distribution becomes saturated. The t-SNE plot in Figure 3a clearly
demonstrates that the distribution shift over iterations follows distinct paths for high, low, and medium
CFG scales. These patterns were consistent in all four datasets (Appendix B). In Section 4, we detail
how different patterns of power spectra in high-frequency regions from different CFG scales can be
understood using the framework from genetic biology.

Implications of our observations. Our extensive investigations show that a high CFG of 7.5, a
common choice to generate visually appealing images, significantly increases collapse rate to achieve
slightly better FID1. Sampling for maximizing the perceptual quality was coined as ‘sampling
bias’ in Alemohammad et al. (2023). While they reported a monotonic increase in collapse rate as
CFG increased from 1.0 to 2.0, we show that the holistic picture is not entirely monotonic when
we look at a wider range of CFG scales from 1.0 to 10.0. It shows an intriguing trade-off between
perceptual quality and reusability. This suggests that developers concerning reusability of images can
substantially improve future generations by carefully choosing CFG.

4 QUANTITATIVE TRAIT MODELS FOR FULLY-SYNTHETIC TRAINING LOOPS

This section introduces a novel perspective to understand model collapse in generative models by
drawing parallels between genetic biology and the Chain of Diffusion. Distinguishable iterations
in the Chain of Diffusion—where each iteration is separable with no duplicated individual, and the
current iteration originates from the previous one—mirror genetic processes involving successive
iterations of parents and offspring. By applying quantitative trait modeling from statistical genetics,
we provide a framework to describe how images evolve across iterations in the Chain of Diffusion.

We begin by introducing quantitative trait modeling and its underlying mathematical assumptions.
Based on them, we derive a theorem showing that the mean trait value exhibits linear drift, while the
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variance stabilizes over time. This model can successfully capture the three key behaviors observed
in Section 3: high-frequency degradation, low-frequency degradation, and optimal CFG scale. This
suggests that different CFG scales in the Chain of Diffusion can be viewed as varying selection
strategies, with power spectra corresponding to quantitative traits. We use the term “iteration” instead
of “generation” for genetic generation to avoid confusion with image generation.

4.1 QUANTITATIVE TRAIT MODELING

Quantitative trait (QT) modeling in statistical genetics explores the evolution of quantitative phe-
notypes (e.g., height, weight, or color), which are complexly decided by multiple genetic and
environmental factors. They are typically assumed to follow a Gaussian distribution, with discrete
iterations where parents and offspring are distinguishable (t- and t + 1-th iterations are clearly
separable).

Let the distribution of phenotypes at the t-th iteration be denoted as N (µt, σ
2
P,t) where µt and σ2

P,t

are the mean and variance of quantitative phenotypes. The phenotypic variance σ2
P,t is the sum of the

(additive) genetic variance σ2
G,t and the environmental variance σ2

E , i.e., σ2
P,t = σ2

G,t +σ2
E (Falconer,

1996)4. When selection occurs in each iteration, whether natural (e.g., faster animals surviving
predators) or artificial (e.g., breeding livestock for higher milk production), it affects the distribution
of the effective population that influences the next iteration. We consider directional selection with
truncation as shown in Figure 3b, where r ratio of the samples is selected by truncating r1 from the
left and r2 from the right side of the distribution. Here, r + r1 + r2 = 1 and larger phenotype values
are preferred when r1 > r2.

The (narrow-sense) heritability5, which is defined as the proportion of phenotypic variance attributable
to additive genetic factors, can also be represented using the Breeder’s Eqn. (Lush, 2013) as:

h2
t =

σ2
G,t

σ2
P,t

=
σ2
G,t

σ2
G,t + σ2

E

=
µt+1 − µt

µ′
t − µt

, (5)

where the mean phenotype of the next iteration µt+1 is represented using the mean phenotype
of selected individuals µ′

t, the mean phenotype of the entire population µt, and heritability h2
t .

We assume the genetic variance for the next iteration is determined by the variance of selected
individuals σ2

G,t+1 = σ′2
P,t. We prove the behaviors of mean and variance of phenotypes under this

setting: Suppose the distributions of phenotypes follow Gaussian distribution and directional selection
truncates individuals on both sides with ratios r1 and r2. Then mean of phenotypes asymptotically
increases (decreases) by c1c2√

1−c2
σE per iteration and the variance converges to 1

1−c2
σ2
E when r1 > r2

(r2 < r1), where c1 and c2 are constants that depend on r1 and r2. The proof of Theorem 4.1 is
provided in Appendix D.1.

4.2 EXPLAINING THE CHAIN OF DIFFUSION WITH QUANTITATIVE TRAIT MODELING

Just as phenotypes evolve through hidden genotypes in QT modeling, image features similarly
evolve in the Chain of Diffusion. We identify high-frequency power spectra as a crucial phenotype,
influenced by CFG scale as a selection mechanism. Using 2D Fourier transforms, we analyze
high-frequency components above a certain threshold. Different CFG scales correspond to different
selection strategies: a high CFG selects individuals in the right tail of the distribution, favoring more
detailed features with reduced diversity, while a low CFG selects from the left tail.

Figure 3c compares the evolution of power spectra in the Chain of Diffusion (solid line) with the
phenotype mean modeled by Eqn. 10 (dotted lines). The simulation parameters, including initial
mean µ0 and genetic deviation σG,0, are set to match the original image set at iteration 0. Three ratio
configurations, r1 and r2, effectively model the power spectra distribution: CFG 7.5 is modeled as
selecting the top 5%, CFG 2.5 selects 50% of the samples slightly favoring higher frequency, and
CFG 1.0 selected the lower 30%. This modeling accurately captures power spectra evolution over six
iterations of the Chain of Diffusion. More details can be found in Appendix D.2.2.

4Genetic variance is composed of additive, dominance, and interaction variance. Here, we only consider
additive variance, which is a common assumption in the field.

5The heritability is narrow-sense when the genetic variance is restricted to additive variance.
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Figure 4: ReDiFine significantly improves the baseline without extensive hyperparameter tuning
in the Chain of Diffusion. It performs robustly across multiple datasets, resolving high-frequency
degradation observed in the baseline with the default configuration.

4.3 STATISTICAL GENETICS AS A LENS TO MODEL COLLAPSE

QT modeling, a tool borrowed from statistical genetics, serves as a solid theoretical framework for
interpreting our experimental results. Given the parallels between genetic processes and the Chain of
Diffusion, we find that key concepts from mathematical genetics align closely with existing theoretical
work on model collapse. For instance, the traditional Wright-Fisher model (Wright, 1931) describes
how traits evolve from one generation to the next in a finite population. Due to randomness in the
sampling process, the composition of traits within a finite population drifts over time and eventually
collapses to a single phenotype. The Wright-Fisher model and its continuous variants (Tataru et al.,
2017) are exactly equivalent to the collapse behavior modeled with simple categorical or Gaussian
distributions in Alemohammad et al. (2023); Bertrand et al. (2023); Shumailov et al. (2023; 2024).
Given its widespread use in genetics, many extensions of the Wright-Fisher model continue to be an
active area of research, such as including different mechanisms of selection (He et al., 2017; Kaj et al.,
2024) or mutations (Charlesworth, 2020). Beyond the current work and existing theoretical studies on
model collapse, we believe that statistical genetics offers a unified perspective to understand model
collapse by reducing the complex dynamics of the self-consuming loop of generative model training
to a small number of parameters, from which we can gain valuable insights.

5 REUSABLE IMAGE GENERATION WITH REDIFINE

In the previous sections, we have discovered a significant role of CFG in model collapse and that
a good choice of CFG can mitigate the collapse while preserving the first iteration FID. However,
the optimal CFG value differs for each dataset (e.g., 1.5 for CelebA, 2.5 for Pokemon). There is
no efficient way of finding an optimal CFG other than iteratively finetuning the diffusion model to
evaluate the collapse rate on each configuration to perform a grid search. In practical scenarios, it is
unlikely that non-expert end users will go through such a process just to prevent a potential model
collapse. This raises the question: How can we design a user-friendly finetuning and generation
strategy that can slow down model collapse without CFG tuning?

To address this question, we again draw inspiration from the evolution process in nature where
mutations naturally counteract genetic drift and preserve diversity. Furthermore, selection in nature is
often a soft process rather than a hard truncation illustrated in Figure 3b. This soft selection allows
for the inclusion of outliers, thereby maintaining the overall genetic diversity. We connect these
biological inspirations with two strategies: condition drop finetuning to include more randomness
and CFG scheduling during generation to transform hard selection to a softer one6. We propose
Reusable Diffusion Finetuning (ReDiFine) which integrates these two ideas and achieves a collapse
rate similar to the optimal CFG, producing reusable images with minimal extra effort.

Condition drop finetuning. We introduce condition drop finetuning, which randomly drops the text
condition during finetuning to update both the conditional and unconditional scores. Although condi-

6We show a modified quantitative trait modeling result with these two modifications in Appendix D.2 and
show that it captures the ReDiFine experimental results effectively. In this section, we focus on the image
generation results with ReDiFine. We refer the curious readers to the appendix.
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(a) Pokemon. (b) CelebA-1k. (c) Kumapi. (d) Butterfly.

Figure 5: ReDiFine performs comparably to the optimal CFG scale, outperforming the baseline
(CFG=7.5) on collapse-FID trade-off across all four datasets. While the optimal CFG scale varies
for different datasets, ReDiFine consistently achieves low collapse rate and FID at the same time
(lower is better). Note that the differences in FID are relatively smaller than those in collapse rate,
supporting the necessity to evaluate collapse rate in the Chain of Diffusion.

tion drop was suggested in the original CFG paper (Ho & Salimans, 2022), it is not a common practice
during finetuning since we can achieve good images without it in the first iteration where model col-
lapse is yet to happen (see Figure 1b). However, the small Diff (= Cond Score − Uncond Score) can
accumulate over multiple iterations, leading to a significant gap as the Chain of Diffusion progresses.
On the other hand, condition drop finetuning with drop probability 0.2 preserves the norm of Diff
over the iterations (see Figure 36b).

CFG Scheduling. We propose gradually reducing the CFG scale during diffusion steps to mitigate
the impacts of overemphasizing the conditional score in later stages, which can lead to high-frequency
degradation. Specifically, we exponentially decrease the CFG scale s during T diffusion steps as
s = s0 × e−α×t/T , where s0 is the initial CFG scale and α is the rate of exponential decay. This
scheduling approach is consistent with findings by Balaji et al. (2022), which suggest that different
diffusion steps contribute uniquely to the generation process. We note here that ReDiFine adopts
exponential decrease of CFG scale for simplicity, but any advanced CFG scheduling methods (Sadat
et al., 2023; Karras et al., 2024; Kynkäänniemi et al., 2024) can be explored in future research.

ReDeFine Results. We present the generated images and quantitative metrics for ReDiFine, showing
its robust performance without hyperparameter tuning in all four datasets. We use the default
initial CFG scale s0 = 7.5, decay rate α = 2, and condition drop probability 0.2, except in the
robustness comparison and ablation study. Figure 4 shows that ReDiFine generates significantly better
images compared to the baselines (CFG=7.5), and performs comparably to the optimal CFG scales.
In addition to the visual comparison, Figure 5 quantitatively shows the collapse-FID trade-off of
ReDiFine. In all four datasets, ReDiFine shows substantially lower collapse rate (y-axis), compared
to the baseline case (CFG=7.5). Furthermore, the performance of ReDiFine is close to the optimal
Pareto curve spanned by different CFG scales, achieving similar performance as the optimal CFG
values, demonstrating its effectiveness as a universal and user-friendly solution. In contrast, using
a fixed CFG scale that works well for one dataset often fails on others: CFG 2.5 is optimal for
Pokemon but performs poorly for CelebA-1k and Butterfly, and CFG 1.5 is optimal for CelebA-1k
but performs poorly for Pokemon and Kumapi. Further experimental results of ReDiFine for six
additional iterations, cross-domain data, and iterative retraining can be found in Appendix E.

Ablation study & Further analyses. We conducted an ablation study to understand the contributions
of condition drop finetuning and CFG scheduling to ReDiFine. We plot the results of using only
condition drop and CFG scheduling in green triangles on Figure 5. In Pokemon, using only one of
those strategies outperforms ReDiFine, but in all other datasets, using only one strategy shows higher
collapse rate than ReDiFine. Especially in CelebA-1k, using either one of them showed significantly
worse performance than ReDiFine. It suggests that combining condition drop and CFG scheduling
builds robustness to the method, making ReDiFine effective across all tested datasets. We conducted
further analyses on ReDiFine, examining the distribution of latent features, the evolution of the norm
of Diff, the power spectra using 2D Fourier transforms, and forensic fingerprints based on prior
studies (Corvi et al., 2023a;b). Our analysis shows that ReDiFine effectively preserves the latent
distribution and the norms of Diff over six iterations, with forensic fingerprints closely resembling
those of the optimal CFG case. Detailed results are provided in Appendix G.
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6 CONCLUSION

The influx of AI-generated data into the world is inevitable and training sets that consist of synthetic
data will be part of the AI development pipeline. In this paper, we empirically and theoretically
studied the scenario of finetuning a model with its own generated data, where a gradual degradation
called “model collapse” happens. We (1) identify the most impactful factor through comprehensive
empirical investigations, (2) develop a novel theoretical perspective inspired by statistical genetics
to explain model collapse, and (3) propose ReDiFine strategy for diffusion finetuning to slow down
image quality degradation in model collapse.

We started this paper with a question: can current AI models learn from their own output and improve
themselves? Our paper shows a glimpse that widely-used text-to-image models are not ready to
improve from their own creation quite yet. While we presented one solution focused on generating
reusable data, many open directions remain, such as developing algorithms that can distinguish
between real and synthetic data and apply different learning techniques accordingly.
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A EXPERIMENTAL SETUP

A.1 HYPERPARAMETERS

We finetune Stable Diffusion v1.5 (Rombach et al., 2022) using LoRA (Hu et al., 2021) at each itera-
tion, with ft-MSE (StabilityAI, 2022) as a fixed VAE to project images into latent space. Horizontal
flip is the only image augmentation applied. Our implementation follows kohya-ss and is built on
PyTorch v2.2.2 (Ansel et al., 2024), with torchvision 0.17.2, running on CUDA 12.4 using NVIDIA
A-100 and L40S GPUs. All default hyperparameters are listed in Table 1.

Table 1: Default hyperparameters used for the Chain of Diffusion.

Hyperparameter Value
Optimizer AdamW
Learning Rate - Unet 0.0001
Learning Rate - CLIP 0.00005
LoRA Weight Scaling 8
LoRA Rank 32
Batch Size 6
Max Epochs 100
CLIP Skip 2
Noise Offset 0.0
Mixed Precision fp16
Loss Function MSE
Min SNR gamma 5.0
Max Gradient Norm Clipping 1.0
Caption Dropout Rate 0.0
Sampler Euler A
Classifier-Free Guidance Scale 7.5
Number of Diffusion Steps 30
Number of Images per Prompt 1

A.2 DATASETS

We use four image datasets to demonstrate the universal nature of degradation: Pokemon (Pokémon,
2023), Kumapi (Ihelon, 2022), Butterfly (Veeralakrishna, 2020), and CelebA-1k (Liu et al., 2015),
covering animation, handwriting, and real images. All images are resized to 512× 512 pixels. Text
prompts are generated using BLIP captioner (Li et al., 2022) and Waifu Diffusion v1.4 tagger (Hakurei,
2022). Sample images and prompts can listed in Table 2.

Pokemon. The Pokemon dataset (Pokémon, 2023) contains 1008 images indexed by number, with
prompts combining BLIP captions (length 50-75 words) and Waifu Diffusion tagger.

CelebA-1k. CelebA-1k is a subsample of 1000 images from CelebA (Liu et al., 2015), with BLIP
captions (25-50 words).

Kumapi. Kumapi (Ihelon, 2022) includes 391 handwriting-style images, with Waifu-generated
prompts and manual adjustments.

Butterfly. Butterfly (Veeralakrishna, 2020) includes 832 real picture images across 8 species, using
BLIP captions (length 50-75 words) and species descriptions.

A.3 EVALUATION METRICS

FID The Fréchet Inception Distance (FID) (Heusel et al., 2017) is a widely used metric for
evaluating the quality of generative models. It measures the similarity between the distributions
of generated images and real images by comparing their feature representations extracted from a
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Table 2: Sample images and prompts for Pokemon, CelebA-1k, Kumapi, and Butterfly datasets.

Pokemon
a green pokemon with red eyes and a leaf on the back of its head and tail, an

image of the pokemon character with a red eye and big green tail, all set up to
look like it is holding a lea, ultra-detailed, high-definition, high quality,

masterpiece, sugimori ken (style), solo, smile, open mouth, simple background,
red eyes, white background, standing, full body, pokemon (creature), no humans,

fangs, transparent background, claws, Bulbasaur
a very cute looking pokemon with a big leaf on its back and a big leaf on its

head, a very cute little pokemon character with leaves in the back ground around
his chest and hea, white background, ultra-detailed, high-definition, high quality,
masterpiece, sugimori ken (style), solo, red eyes, closed mouth, standing, full
body, pokemon (creature), no humans, fangs, transparent background, claws,

outline, white outline, animal focus, fangs out

CelebA-1k

a woman with brown hair smiling and posing for a picture in front of a mirror
and gold and white stripes

a woman with a very long red hair smiles and laughs on a city street and other
people in the background

Kumapi

solo, simple background, food, donut, grey background, no humans, food focus,
still life, Kumapi style

solo, looking at viewer, cute yellow figure, two tiny hands and feet, simple
background, black dot eyes, white background, grey background, no humans,

Kumapi style

Butterfly

a crimson patched longwing butterfly with a red and black stripe on its wings,
wings are long, narrow, rounded, black, crossed on fore wing by broad crimson

patch, and on hind wing by narrow yellow line

a Common Buckeye butterfly is sitting on a flower in the sun, wings scalloped
and rounded except at drawn-out fore wing tip, on hind wing, 1 large eyespot

near upper margin and 1 small eyespot below it. Eyespots are black,
yellow-rimmed, with iridescent blue and lilac irises, on fore wing, 1 very small

near tip and 1 large eyespot in white fore wing bar.

pretrained Inception network. Following Stein et al. (2024), we use DiNOv2 feature extractor (Oquab
et al., 2023) instead of Inception, as it aligns better with human evaluation for high-quality images.
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CLIP score The CLIP score is a metric used to evaluate the alignment between an image and a text
description, leveraging the pretrained CLIP (Contrastive Language-Image Pre-training) model (Rad-
ford et al., 2021). CLIP is designed to encode both images and text into a shared embedding space,
where semantically related image-text pairs have high cosine similarity. Based on this embedding
space, the CLIP score measures the text-alignment capability of text-to-image generative models by
computing cosine similarities of generated images and text descriptions used for generations.

SFD We suggest and compute the average sample-wise feature distance (SFD) between a pair of
images corresponding to the same text prompt as the fidelity metric applicable for text-to-image
generation. It computes text-prompt-wise similarities of the real image and generated image, more
directly comparing two pairs of images while other metrics compares the overall distribution of
datasets. We calculate

SFDk =
1

N

∑
d(f(xk,i), f(x0,i)) (6)

to evaluate each iteration k. SFD overcomes the problem of FID being sensitive to the number of
images to compare.

Recall As a key metric for evaluating the diversity of generative models, recall measures the fraction
of the real data distribution that is captured by the generated data distribution. Following the method
proposed by Kynkäänniemi et al. (2019), we utilize the DiNOv2 feature extractor and set the number
of neighbors to 5 for our evaluations.

B DIFFERENT CFG SCALES

This section presents images from Chain of Diffusion at various CFG scales for the four datasets.
Figure 6, 7, 8, and 9 corresponds to Pokemon, CelebA-1k, Kumapi, and Butterfly, respectively. Each
dataset shows results for five CFG scales, covering high, medium, and low values. The optimal
medium CFG scale is 2.5 for Pokemon and Kumapi, and 1.5 for CelebA-1k and Butterfly. Lower-
than-optimal CFG scales lead to low-frequency degradations, while higher-than-optimal scales result
in high-frequency degradations with saturated colors and repetitive patterns. Notably, the optimal
CFG for Pokemon and Kumapi causes severe degradation in CelebA-1k and Butterfly.

Figure 6: Chain of Diffusion for Pokemon at various CFG scales. The optimal CFG scale is 2.5.

16



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

Figure 7: Chain of Diffusion for CelebA-1k at various CFG scales. The optimal CFG scale is 1.5.

Figure 8: Chain of Diffusion for Kumapi at various CFG scales. The optimal CFG scale is 2.5.

C HYPERPARAMETER INVESTIGATIONS TO UNVEIL THE MOST SIGNIFICANT
FACTOR OF DEGRADATION

This section presents experimental results identifying the most significant factors contributing to
degradation in the Chain of Diffusion. We systematically vary each hyperparameter from Figure 2,
using the default settings from Table 1, to assess their impact on degradation. The CFG scale is fixed
at 7.5 for all cases.

C.1 TRAINING SET SIZE

We used CelebA dataset (Liu et al., 2015) to examine how training set size (both D0 and Dk) impacts
degradation in the Chain of Diffusion. By subsampling, we adjusted the training set to 100, 250, 500,
and 2000 images. Degradation occurs regardless of dataset size, as shown in Figure 10, but appears
earlier with smaller sets. By the 6th iteration, images degrade severely for all cases. The number of
parameter updates was kept constant across all dataset sizes.
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Figure 9: Chain of Diffusion for Butterfly at various CFG scales. The optimal CFG scale is 1.5.

Figure 10: Chain of Diffusion on CelebA dataset with varying training set sizes. Degradation occurs
faster with smaller sets, but all result in severe degradation by the 6th iteration.

C.2 NUMBER OF IMAGES PER PROMPT

Generating multiple images per prompt is a simple way to increase training set diversity and can
be considered as a solution to mitigate degradation in the Chain of Diffusion. We tested this by
generating 5 times more images. As shown in Figure 11, while degradation is slightly delayed (by one
iteration), it remains unmitigated, and the high computational cost makes this approach impractical.

Figure 11: Chain of Diffusion on Pokemon dataset with multiple images generated per prompt.
Increasing the training set size in this way does not mitigate degradation.
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C.3 MIXING REAL IMAGES TO SYNTHETIC SETS

Many previous works suggest augmenting the training set with real images to mitigate degradation
during iterative training. We investigated whether mixing images from the original training set into
the synthetic set at each iteration could alleviate this issue. At each iteration, images are randomly
replaced with corresponding real images. Figure 12 and 13 show how degradation in the Chain
of Diffusion varies when 50%, 90%, 95%, 98% and 99% of images are replaced for Pokemon
and CelebA-1k datasets, respectively. Notably, even 5% synthetic images are sufficient to induce
degradation, and 50% replacement rarely slows it down. CelebA-1k dataset appears to be significantly
more susceptible to degradation. Importantly, using only 5% and 2% synthetic images is sufficient
to trigger model collapse in Pokemon and CelebA-1k datasets. This demonstrates the catastrophic
impact of synthetic data on diffusion finetuning and raises the question of whether synthetic data
detection can be a safe solution.

Figure 12: Chain of Diffusion on Pokemon dataset with real images randomly replacing synthetic
images at each iteration. A 50% replacement rarely slows degradation, while 10% synthetic images
are sufficient to initiate it.

C.4 PROMPT SET

We hypothesized that the descriptiveness of prompts influences degradation in the Chain of Diffusion.
We tested various prompt sets for Pokemon and CelebA-1k datasets. For Pokemon dataset, the default
prompt set consists of concatenated Waifu and BLIP captions, with BLIP captions ranging from
50 to 75 words. Figure 14 shows how using only Waifu prompts and varying BLIP caption lengths
affect degradation. Notably, different styles of high-frequency degradation were observed; shorter
prompts reduced repetitive patterns but decreased diversity. In CelebA-1k dataset, varying BLIP
caption lengths resulted in similar degradation levels, but prompts that were either insufficiently or
excessively descriptive caused the images to deviate from the originals, as shown in Figure 15.

C.5 U-NET AND TEXT-ENCODER

Figure 16 illustrates the Chain of Diffusion with either the U-Net or text encoder finetuned. When
the text encoder is not updated (second row), similar degradation occurs. However, the degradation
pattern changes when the U-Net is not updated, as the model’s ability to generate images remains
unchanged. In contrast, updating the text encoder results in a loss of image content preservation.
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Figure 13: Chain of Diffusion on CelebA-1k dataset with real images randomly replacing synthetic
images at each iteration. A 50% replacement rarely slows degradation, while 5% synthetic images
are sufficient to initiate it. It suffers from more severe degradation than Pokemon dataset as compared
with Figure 12.

Figure 14: Chain of Diffusion on Pokemon dataset with different prompts. The default prompts
are concatenations of BLIP captions (50-75 words) and Waifu captions. We compare the Chain of
Diffusion using default captions, Waifu captions, short (less than 25 words) and long (50-75 words)
BLIP captions.

Figure 15: Chain of Diffusion on CelebA-1k dataset with different prompts. The default prompts
range from 25 to 50 words. We compare the Chain of Diffusion using longer prompts (over 50 words)
and shorter prompts (under 25 words).
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Figure 16: Chain of Diffusion on Pokemon dataset with either the U-Net or text encoder finetuned.

C.6 NUMBER OF DIFFUSION STEPS

We investigated whether an insufficient number of diffusion steps during generation contributes to
degradation. Figure 17 shows that increasing the number of diffusion steps does not enhance the
Chain of Diffusion.

C.7 NUMBER OF EPOCHS

We also examined whether insufficient or excessive training affects our default setting. As shown
in Figure 17, images from the initial iterations exhibit similar quality, resulting in comparable
degradations. We set the default finetuning to 100 epochs since loss values continue to decrease after
50 epochs.

Figure 17: Chain of Diffusion on Pokemon dataset with varying diffusion steps and training epochs.
Both increased diffusion steps and differing training epochs fail to mitigate degradation, resulting in
similar patterns.

C.8 LEARNING RATE

Similarly, we assessed finetuning adequacy in Figure 18 by adjusting the learning rates for the U-Net
and text encoder by x10 and x0.1. Images from the initial iterations show that the default values
are suitable for finetuning. Although the styles are different, degradation consistently occurs across
different learning rates.

C.9 CLIP SKIP

We investigated the impact of the CLIP skip hyperparameter on degradation. The CLIP skip de-
termines which intermediate feature from the CLIP text encoder is used as the text embedding for
conditional generation, with smaller values selecting features closer to the output and larger values
selecting those nearer to the input text. As shown in Figure 19, this hyperparameter has minimal
effect on degradation patterns.
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Figure 18: Chain of Diffusion on Pokemon dataset with varying learning rates and added Gaussian
noise to the original training set.

Figure 19: Chain of Diffusion on Pokemon dataset using different CLIP skip hyperparameters. The
CLIP skip hyperparameter shows a negligible effect on degradation.

C.10 ADDING GAUSSIAN NOISE TO THE ORIGINAL TRAINING SET

We examined whether differences between real and synthetic images contribute to degradation by
adding random Gaussian noise to the original training set D0. Figure 18 illustrates that while the
characteristics of the original training set have some effect, degradation still occurs. This supports
our findings that degradations are universal across real, animation, and handwritten images.

C.11 STABLE DIFFUSION XL

We investigated image degradation for a different Stable Diffusion model, noting that the optimal
hyperparameters for finetuning SDXL using LoRA are not well established. Consequently, we applied
the same hyperparameters used for Stable Diffusion v1.5, which may be suboptimal. To manage
space complexity, we reduced the batch size to 2 and maintained a resolution of 512× 512, as the
first iteration images exhibit impressive quality. Results are presented in Figure 20.

C.12 DATA ACCUMULATION

Data accumulation experiments aim to investigate whether concept overfitting and disappearing are
major reasons for model collapse. The training set for iteration t is the combination of all previously
generated sets, including the original training set. The number of training epochs is controlled
accordingly to maintain the total number of updates.
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Figure 20: Chain of Diffusion of SDXL on four datasets. Due to insufficient investigation into optimal
hyperparameters for finetuning SDXL, our experiments largely rely on those from Stable Diffusion
v1.5.

Figure 21: Chain of Diffusion on Pokemon dataset when training set is accumulated from previous
iterations. All concepts from previous iterations are preserved for finetuning.

Figure 22: Chain of Diffusion on CelebA-1k dataset when training set is accumulated from previous
iterations. All concepts from previous iterations are preserved for finetuning.

D QUANTITATIVE TRAIT MODELING

D.1 PROOF OF THEOREM 4.1

Proof. The difference between the successive means in quantitative trait modeling is given by:

∆µt = µt+1 − µt = h2
t (µ

′
t − µt). (7)

When Gaussian distribution with mean µ and variance σ2 is truncated on both sides with r1 and r2
ratios, the mean and variance of truncated Gaussian distribution are expressed as:

µtrun = µ− φ(β)− φ(α)

Φ(β)− Φ(α)
σ, (8)
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σ2
trun = (1− βφ(β)− αφ(α)

Φ(β)− Φ(α)
− (

φ(β)− φ(α)

Φ(β)− Φ(α)
)2)σ2, (9)

where φ and Φ are the probability density function (PDF) and cumulative distribution function (CDF)
of the standard normal distribution, and α = Φ−1(r1) and β = Φ−1(1 − r2). Accordingly, given
µ = µt and σ2 = σ2

P,t with µ′
t = µtrun and σ2

G,t+1 = σ′2
P,t = σ2

trun, we have

∆µt = h2
t (µ

′
t − µt) =

σ2
G,t

σ2
P,t

c1σP,t = c1
σ′2
P,t−1

σ2
P,t

σP,t = c1c2
σ2
P,t−1

σ2
P,t

σP,t, (10)

where c1 = | φ(β)−φ(α)
Φ(β)−Φ(α) | and c2 = 1 − βφ(β)−αφ(α)

Φ(β)−Φ(α) − ( φ(β)−φ(α)
Φ(β)−Φ(α) )

2 when r1 > r2. On the other
hand, the mean phenotypes decreases when r1 < r2 as:

∆µt = −c1c2
σ2
P,t−1

σ2
P,t

σP,t. (11)

Furthermore, the phenotype variance converges over time as:

σ2
P,t = σ2

G,t + σ2
E = σ′2

P,t−1 + σ2
E = c2σ

2
P,t−1 + σ2

E . (12)

σ2
P,t −

σ2
E

1− c2
= c2(σ

2
P,t−1 −

σ2
E

1− c2
) = · · · = ct2(σ

2
P,0 −

σ2
E

1− c2
). (13)

As a result, the phenotype variance converges to σ2
E

1−c2
for 0 < c2 < 1 (the variance of truncated

distribution is smaller than the variance of the original distribution), and the mean asymptotically
increases (decreases) by c1c2√

1−c2
σE per iteration when r1 > r2 (r2 > r1). □

D.2 SIMULATION SETUP

Our simulation aims to demonstrate that our experimental results can be modeled using quantitative
trait modeling. We show that the radial sum of power spectra of images is one of the phenotypes
explained by our theoretical analysis.

D.2.1 COMPUTING THE RADIAL SUM OF POWER SPECTRA.

The power spectra of images are computed as the square of the magnitude of the 2D Fourier transform.
Here, we demonstrate how to compute the radial sum of power spectra in order to use the sum of
radial power spectra above a certain threshold. Given a set of images {Ii} where i ∈ {1, 2, · · · , N},
the 2D Discrete Fourier Transform (DFT) of an image Ii of size M ×N is computed as:

Fi(u, v) =

M−1∑
x=0

N−1∑
y=0

Ii(x, y)e
−2πj(ux

M + vy
N ) (14)

where Fi(u, v) represents the frequency component at coordinates (u, v). The power spectrum of
an image Ii at (u, v) is the square of the magnitude of its Fourier transform Pi(u, v) = |Fi(u, v)|2.
We compute the radial sum of the power spectra using a norm of each frequency component (u, v)
as r(u, v) =

√
( u
M )2 + ( v

N )2. Given the threshold frequency τ , we compute the radial sum of the
high-frequency power spectra of an image Ii as

Si =

M−1∑
u=0

N−1∑
v=0

Pi(u, v) · I(r(u, v) > τ) (15)

where I(·) is an indicator function. We compute the sum of high-frequency components because
low-frequency components tend to be noisy and use the threshold frequency of 0.02. Then, the total
sum of power spectra for all images can be written as:

S =

N∑
i=0

Si =

N∑
i=0

M−1∑
u=0

N−1∑
v=0

Pi(u, v) · I(r(u, v) > τ). (16)

Practically, we shift the Fourier transform maps so that the frequency norm larger than 1√
2

is
considered to be in the opposite direction. Code for detailed implementation comes from the official
code of Corvi et al. (2023a).
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Figure 23: Results comparing the simulation for mutations and power spectra of images generated
by ReDiFine (with CFG scale 7.5). Power spectra and simulation are plotted in solid and dotted
lines, respectively. Our modifications to heritability and selection process successfully demonstrate
changes occur to images by ReDiFine.

D.2.2 SIMULATION PARAMETERS MATCHING DIFFERENT CFG SCALES.

We simulate different selection strategies using truncation ratios r1 and r2. To model high, medium,
and low CFG scales from our experiments, we apply (0.025, 0.675), (0.5, 0.09), and (0.95, 0.0002)
for (r1, r2), respectively, which correspond to CFG scales of 7.5, 2.5, and 1.0. For initial values
in the simulation, we compute the mean (0.027) and standard deviation (0.056) from the original
training set (iteration 0), using them as the initial values for mean and genetic standard deviation for
our simulation. We set the environmental standard deviation to 0.25.

D.2.3 REDIFINE AND MUTATIONS.

ReDiFine combines condition drop finetuning and CFG scheduling, inspired by the mutation mecha-
nism that compensates for distribution shift and maintains genetic distributions in population genetics.
We apply two modifications to our theoretical analysis of Section 4—adding mutation variance to
heritability and smoothing truncations—to simulate the effects of ReDiFine in the Chain of Diffusion.
Specifically, we add the mutation standard deviation σM of 0.1 to heritability as:

h2
t =

σ2
G,t

σ2
P,t + σ2

M

=
σ2
G,t

σ2
G,t + σ2

E + σ2
M

, (17)

representing the randomness added to each iteration due to mutations. This influences the effects
of previous iteration to current iteration, which reflect finetuning. Moreover, we apply exponential
tails to truncations instead of cut-off thresholds where samples outside the truncation area can be
randomly selected with exponential distribution (e−αd(x) where d(x) is a distance to truncation zone
and we use α = 0.1). This modified selection simulates the effect of CFG scheduling during image
generation.

Figure 23 shows the effects of two modifications to our simulation results, and they closely align with
the power spectra of images generated by ReDiFine. This demonstrates that the effects of ReDiFine
can be understood as interference similar to mutations in population genetics. This suggests further
research on model collapse motivated from other fields like biology.

E REDIFINE

E.1 VISUAL INSPECTIONS

Figure 24, 25, 26, and 27 show how robust ReDiFine is to different CFG scales. It successfully
mitigates the high-frequency degradations for a wide range of CFG scales.

E.2 FURTHER ITERATIONS

We conduct additional experiments to compare the baseline with the optimal CFG scale and ReDiFine
over extended iterations. As shown in Figure 28, ReDiFine consistently generates images of similar
quality up to 12 iterations, whereas the optimally tuned CFG scale fails to sustain image quality.
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Figure 24: Chain of Diffusion of ReDiFine with different CFG scales on Pokemon dataset. ReDiFine
successfully achieves robust image qualities for varying CFG scales.

Figure 25: Chain of Diffusion of ReDiFine with different CFG scales on CelebA-1k dataset. ReDiFine
successfully achieves robust image qualities for varying CFG scales.

Figure 26: Chain of Diffusion of ReDiFine with different CFG scales on Kumapi dataset. ReDiFine
successfully achieves robust image qualities for varying CFG scales.

Figure 27: Chain of Diffusion of ReDiFine with different CFG scales on Butterfly dataset. ReDiFine
successfully achieves robust image qualities for varying CFG scales.

This decline suggests that repeated hyperparameter searches are necessary to identify suitable CFG
scales for subsequent iterations. Such an approach becomes increasingly impractical as the number of
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iterations grows, highlighting the limitations of relying on the optimal CFG scale to mitigate model
collapse.

Figure 28: Chain of Diffusion of baseline with the optimal CFG scale and ReDiFine for more
iterations. The generation quality of ReDiFine is preserved for additional iterations while optimally
found CFG scale 2.5 fails to maintain the image qualities. Similar high-frequency degradation is
observed.

E.3 CROSS-DOMAIN DATA

We additionally conduct experiments when the training dataset is the cross-domain set of four datasets
(Pokemon, CelebA-1k, Kumapi, and Butterfly) to investigate whether having a broader range of
concepts impact model collapse. The merged dataset serves as the original training set, while the
combined captions are used for image generation at each iteration. The results, presented in Figure 29,
show that despite the increased number of images and the inclusion of diverse concepts and domains,
model collapse persists at both low and high CFG scales. Moreover, no single CFG scale (e.g., 1.5
or 2.5) can consistently produce high-quality, reusable images across all datasets, highlighting the
limitations of relying on an optimal CFG scale for diverse domains. In contrast, ReDiFine leverages
the increased conceptual diversity in the original training set, generating more reliable images across
all datasets. To ensure a fair comparison, we control the number of training epochs to maintain
consistent updates across experiments.

Figure 29: Chain of Diffusion with the multi-domain set of datasets (Pokemon, CelebA-1k, Kumapi,
and Butterfly) used for finetuning. Model collapse remains evident at low and high CFG scales. A
single CFG scale (e.g., 1.5 or 2.5) fails to achieve optimal performance across both the Pokemon
and CelebA-1k datasets. In contrast, ReDiFine successfully generates high-quality, reusable images
simultaneously. While images for Kumapi and Butterfly datasets are not displayed due to space
constraints, they are included in the finetuning process along with the other datasets.

E.4 ITERATIVE RETRAINING

Some prior works on model degeneration examine scenarios in which a single model is continually
trained on synthetic data it has generated. To adapt our Chain of Diffusion framework to this setting,
we consider a setup where the same model is finetuned iteratively across multiple iterations. At each
iteration, the model generates a fixed number of images using a predefined prompt set, and these
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generated images are then used to further finetune the model. Figure 30 demonstrates how images
degrade under this setting across different CFG scales and ReDiFine. While severe degradation is
observed for low and high CFG scales, the optimal CFG scale and ReDiFine are able to mitigate model
collapse, generating high-quality images. This indicates that the effect of ReDiFine is maintained
even when a single model is continually finetuned.

Figure 30: Chain of Diffusion where a single model is continually finetuned across multiple iterations.
Model collapse is observed consistently at CFG scales of 1.0 and 7.5, while the baseline with a CFG
scale of 2.5 and ReDiFine effectively mitigate model collapse. This demonstrates that model collapse
is a universal phenomenon across different settings, and the effect of ReDiFine is effective robustly.

E.5 QUANTITATIVE RESULTS

In addition to visual inspections for images generated using ReDiFine, we compare the quantitative
results of ReDiFine to baselines with different CFG scales across FID, CLIP score, SFD, and recall.
Details about each metric are provided in Appendix A.3. DiNOv2 features are used to compute
FID, recall, and SFD. We follow Kynkäänniemi et al. (2019) to compute recall and set the number
of neighbors for computing recall 5. The results, shown in Figure 31, demonstrate that ReDiFine
achieves performance comparable to the optimal CFG scales (2.5 for Pokemon and Kumapi, 1.5 for
CelebA-1k and Butterfly) across different datasets and metrics.

F ABLATION STUDY

This section provides an ablation study to understand how condition drop finetuning and CFG
scheduling contribute to the success of ReDiFine.

F.1 CONDITION DROP FINETUNING

We conducted an ablation study to understand how the probability of dropping text embedding during
finetuning affects the image quality in the Chain of Diffusion. We examine 0.1, 0.2, and 0.4 as
Stable Diffusion is trained using 0.1 or 0.2. For both Pokemon and CelebA-1k datasets, a probability
of 0.2 works the best, as shown in Figure 32 and Figure 33, respectively. Interestingly, condition
drop finetuning helps to mitigate the color saturation problem, but its effect decreases with a higher
probability. For both of these datasets, condition drop finetuning can mitigate image degradation to
some degree, but still, there is a large quality degradation that needs to be improved.

F.2 CFG SCHEDULING

We also evaluated how different CFG scale decreasing strategies impact image degradation in the
Chain of Diffusion. We experimented with two different exponential decay rates and compared
them with a linear decreasing strategy. Figure 34 demonstrates that CFG scheduling is effective
for Pokemon dataset, generating high-quality images comparable to those generated by ReDiFine.
However, as shown in Figure 35, it fails to enhance image quality on CelebA-1k dataset. This

28



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

0 2 4 6
Iterations

0

5

10

15

20

25

30

CFG 1.0
CFG 1.5
CFG 2.5
CFG 7.5
ReDiFine

(a) Pokemon, CLIP.

0 2 4 6
Iterations

0

5

10

15

20

25

(b) CelebA-1k, CLIP.

0 2 4 6
Iterations

0

5

10

15

20

25

(c) Kumapi, CLIP.

0 2 4 6
Iterations

0

5

10

15

20

25

30

(d) Butterfly, CLIP.

0 2 4 6
Iterations

0

50

100

150

200

250

(e) Pokemon, FID.

0 2 4 6
Iterations

0

25

50

75

100

125

150

(f) CelebA-1k, FID.

0 2 4 6
Iterations

0

100

200

300

(g) Kumapi, FID.

0 2 4 6
Iterations

0

100

200

300

(h) Butterfly, FID.

0 2 4 6
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(i) Pokemon, SFD.

0 2 4 6
Iterations

0

1

2

3

(j) CelebA-1k, SFD.

0 2 4 6
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(k) Kumapi, SFD.

0 2 4 6
Iterations

0

1

2

3

(l) Butterfly, SFD.

0 2 4 6
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

(m) Pokemon, recall.

0 2 4 6
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

(n) CelebA-1k, recall.

0 2 4 6
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

(o) Kumapi, recall.

0 2 4 6
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

(p) Butterfly, recall.

Figure 31: Quantitative results of ReDiFine and baselines (different CFG scales).

highlights the necessity of condition drop finetuning for achieving universal improvements in the
Chain of Diffusion across various datasets.

G ANALYSIS

In this section, we present a series of analyses of images generated through the Chain of Diffusion.
Specifically, we examine the distribution of latent values and the differences between conditional and
unconditional scores. Additionally, we analyze the power spectra of the images using 2D Fourier
transforms and explore fingerprints through forensic analysis (Corvi et al., 2023a;b).

G.1 LATENT ANALYSIS

Figure 36a illustrates how the distribution of latent values evolves across different iterations. The
histograms show the final latent vectors before decoding into pixel space, comparing various CFG
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Figure 32: Chain of Diffusion with condition drop finetuning on Pokemon dataset.

Figure 33: Chain of Diffusion with condition drop finetuning on CelebA-1k dataset.

Figure 34: Chain of Diffusion with CFG scheduling on Pokemon dataset.

scales and ReDiFine. For a CFG of 1.0, the latent distribution rapidly converges into a Gaussian-
like shape, with its variance shrinking over iterations. This behavior is consistent with previous
work (Bertrand et al., 2023; Alemohammad et al., 2023; Dohmatob et al., 2024c), which theoretically
predicted that the self-consuming loop progressively trims the tails of the distribution, reducing output
diversity until it collapses to a single mode. We hypothesize that this narrowing in the latent space
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Figure 35: Chain of Diffusion with CFG scheduling on CelebA-1k dataset.
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Figure 36: Histogram of latent values and Diffs during diffusion steps for Pokemon dataset. (a)
Latent distribution shrinks over iteration for low CFG and expands with high CFG. Larger
values in latent vectors are more likely to occur with high CFG, gradually increasing the tail of
the distribution. (b) Differences between conditional and unconditional scores increase as the
training set is more degraded. Especially, high differences in the later diffusion steps can be a cause
of high-frequency degradation.

leads to blurrier, more homogeneous outputs in pixel space. Conversely, at a CFG scale of 7.5, the
latent distribution develops longer tails and tends toward a more uniform spread across space. A
CFG scale of 2.5, which demonstrates the best reusability among the three, better preserves the latent
distribution over iterations. ReDiFine further enhances this preservation, maintaining the histogram
from the first to the last iteration, thus achieving both high fidelity in the first iteration and better
reusability.

G.2 DIFFERENCES BETWEEN CONDITIONAL AND UNCONDITIONAL SCORES

Next, we plot the evolution of the average norm of Diff (= Cond Score − Uncond Score) across
diffusion steps for different iterations in Figure 36b. In the first iteration, the highest Diff value
is observed for CFG 1.0, followed by CFG 2.5 and CFG 7.5. This behavior can be interpreted as
the models’ adaptive behavior to preserve the values added to the latent vectors, Diff multiplied by
CFG scale, at each step. However, this trend shifts in later iterations. The Diff value for CFG 7.5
continues to grow with each iteration, and by iteration 6, we see elevated Diff values throughout the
entire diffusion steps, creating a significant gap compared to CFG 2.5 and 1.0. We conjecture that
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this accumulation of Diff is the responsible for the high-frequency degradation in images generated
with CFG 7.5. In contrast, the Diff value for CFG 1.0 remains relatively stable or even decreases
across iterations. The deviation of Diff among different iterations is minimized by ReDiFine, which
explains its ability to preserve image quality in later iterations. While condition drop finetuning
helps reduce the Diff in the earlier iterations, it fails to prevent accumulations in later iterations. This
limitation is also evident in the ablation study, where condition drop finetuning alone was insufficient
to prevent model collapse. Notably, ReDiFine produces significantly smaller Diff values compared to
the baseline with CFG scale 2.5, comparable to CFG scale 1.0 even when using a high CFG scale
7.5. This underscores the importance of combining condition drop finetuning with CFG scheduling.

G.3 POWER SPECTRA OF 2D FOURIER TRANSFORMS

Figure 37 demonstrates the radial and angular spectrum power density of both the original and
synthetic images. It is evident that ReDiFine closely maintains the radial spectrum power density
of the original training set, whereas even a CFG scale 2.5 falls short. Additionally, ReDiFine
demonstrates stable angular spectra throughout the Chain of Diffusion, even though they differ from
those of the original training set. Pokemon dataset is used for power spectra analysis.

(a) Radial spectrum power density. (b) Angular spectrum power density.

Figure 37: Power spectrum density of the original training set and synthetic sets for Pokemon dataset.
Images generated by ReDiFine maintain power density distribution during Chain of Diffusion
while baselines fail. Even CFG scale 2.5 cannot maintain the distribution for the last iteration.
(a) Radial spectrum power density. ReDiFine shows a density distribution similar to that of the
original training set. (b) Angular spectrum power density. Power density of generated images by
ReDiFine remains during the iterations while baselines cannot maintain angular distribution.

G.4 FINGERPRINTS FOR FORENSIC ANALYSIS

Several works (Corvi et al., 2023a;b) aim to identify fingerprints of synthetic images. High-quality
synthetic images from different generative models have clearly distinct fingerprints, showing the
potential to be used for synthetic image detection. We analyze fingerprints of synthetic images for
different CFG scales and iterations, and compare them to fingerprints of the original training set.
Both autocorrelation and average power spectra show clear differences between the original training
set and synthetic images, as shown in Figure 38. Moreover, how the fingerprints of synthetic images
evolve throughout the Chain of Diffusion differ for ReDiFine and different CFG scales. Specifically,
fingerprints of synthetic images from ReDiFine are similar to those of images from CFG scale 2.5,
while other CFG scales (1.0 and 7.5) make fingerprints different from the first iteration as iterations
proceed. Horizontal and vertical lines in autocorrelation gradually disappear and central regions in
power spectra vary for further iterations. Also, the varying central regions in power spectra imply that
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(a) Autocorrelation. (b) Average power spectra.

Figure 38: The fingerprints of the original training set and synthetic sets show clear differences,
and ReDiFine produces fingerprints similar to CFG scale 2.5. (a) Autocorrelation of image
fingerprints. Horizontal and vertical lines gradually disappear for CFG scales 1.0 and 7.5 while they
are maintained for CFG scale 2.5 and ReDiFine. (b) Average power spectra of images. Central
regions are amplified or diminished for CFG scales 1.0 and 7.5, demonstrating low and high-frequency
degradation.

low frequency features increase and decrease for CFG scale 1.0 and 7.5, respectively, aligning with
visual inspections. Generating images with fingerprints similar to those of the original real images
can be an interesting future direction to reduce the degradation in the Chain of Diffusion. Pokemon
dataset is used for fingerprint analysis.
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