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ABSTRACT

Healthcare represents one of the most promising application areas for machine
learning algorithms, including modern methods based on deep learning. Mod-
ern deep learning algorithms perform best on large datasets and on unstructured
modalities such as text or image data; advances in deep learning have often been
driven by the availability of such large datasets. Here, we introduce Multi-Modal
Multi-Task MIMIC-III (M3) — a dataset and benchmark for evaluating machine
learning algorithms in the healthcare domain. This dataset contains multi-modal
patient data collected from intensive care units — including physiological time se-
ries, clinical notes, ECG waveforms, and tabular inputs — and defines six clinical
tasks — including predicting mortality, decompensation, readmission, and other
outcomes — which serve as benchmarks for comparing algorithms. We introduce
new multi-modal and multi-task models for this dataset, and show that they out-
perform previous state-of-the-art results that only rely on a subset of all tasks and
modalities. This highlights the potential of multi-task and multi-modal learning to
improve the performance of algorithms in the healthcare domain. More generally,
we envision M3 as a general resource that will help accelerate research in applying
machine learning to healthcare.

1 INTRODUCTION

Healthcare and medicine are the some of the most promising areas in which machine learning al-
gorithms can have an impact (Yu et al., 2018). Techniques relying on machine learning have found
successful applications in dermatology, ophthalmology, and many other fields of medicine (Esteva
et al., 2017; Gulshan et al., 2016; Hannun et al., 2019).

Modern machine learning techniques — including algorithms based on deep learning — perform
best on large datasets and on unstructured inputs, such as text, images, and other forms of raw signal
data (You et al., 2016; Agrawal et al., 2016). Progress in modern machine learning has in large part
been driven by the availability of these types of large datasets as well as by competitive benchmarks
on which algorithms are evaluated (Deng et al., 2009; Lin et al., 2014).

Recently, machine learning algorithms that combine data from multiple domains and that are trained
to simultaneously solve a large number of tasks have achieved performance gains in domains such
as machine translation and drug discovery (Johnson et al., 2017; Ramsundar et al., 2015). Current
research in this area is driven by widely adopted computational benchmarks, particularly in the field
of natural language processing (Wang et al., 2018a; 2019).

In this paper, we argue that multi-modal and multitask benchmarks can similarly drive progress in
applications of machine learning to healthcare. In many healthcare settings, we have access to data
coming from diverse modalities — including radiology images, clinical notes, wearable sensor data,
and others — and we are solving many tasks — for example, estimating disease risk, predicting
readmission, and forecasting decompensation events. These kinds of settings are naturally suited
to modern deep learning algorithms; developing models that effectively leverage diverse tasks and
modalities has the potential to greatly improve the performance of machine learning algorithms in
the clinical domain.
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As a first step in this research direction, we introduce in this paper Multi-Modal Multi-Task MIMIC-
III (M3)1, a dataset and benchmark for evaluating machine learning algorithms in healthcare that is
inspired by popular multitask benchmarks in other application domains, such as natural language
processing (Wang et al., 2018b; McCann et al., 2018). Previous clinical datasets and benchmarks
have either focused on specific tasks in isolation as in Khadanga et al. (2020) or on multiple tasks
over a single input modality (Harutyunyan et al., 2019). Our work is the first to combine multiple
tasks and modalities into one benchmark.

More specifically, we propose a dataset that is derived from the MIMIC-III database and is com-
prised of data collected from over forty thousand patients who stayed in intensive care units (ICUs)
of the Beth Israel Deaconess Medical Center between 2001 and 2012 (Johnson et al., 2016). As part
of this dataset, we have collected data from four modalities — including physiological time series,
clinical notes, ECG waveforms, and tabular data — and have defined six clinical tasks — mortality
prediction, decompensation, readmission, and others. We also propose an evaluation framework to
benchmark models on this dataset.

As a demonstration of how the M3 benchmark can drive progress in clinical applications of machine
learning, we propose a first set of multi-modal and multitask models and evaluate them on our new
benchmark. We find that these models achieve high performance levels and may serve as strong
baselines for future work. In particular, our models outperform previous state-of-the-art results that
only rely on a subset of all tasks and modalities.

These results highlight the potential of multitask and multi-modal learning to improve the perfor-
mance of algorithms in the healthcare domain. We envision M3 as a general resource that will help
accelerate research in applying machine learning to healthcare. To facilitate such uses, we release
M3 and our models as an easy-to-use open-source package for the research community.

Contributions. In summary, our paper makes the following contributions.

• We define a new benchmark for machine learning algorithms in the clinical domain. It
defines six clinical tasks, and is the first to collect data across multiple modalities.

• We introduce new multi-modal and multitask machine learning models which outperform
previous state-of-the-art methods that only rely on a subset of tasks or modalities. This
highlights the importance of multi-modal and multitask learning in clinical settings.

• We package our benchmark into an easy to use format such that the clinical machine learn-
ing community can further build upon our work.

2 BACKGROUND

Machine Learning in the Clinical Domain. Machine learning has been successfully applied
throughout healthcare, including in areas such as medical imaging, drug discovery, and many others
(Rajpurkar et al., 2017; Vamathevan et al., 2019). In this paper, we restrict our attention to a specific
healthcare setting — intensive care.

The Medical Information Mart for Intensive Care (MIMIC-III) database is one of the most important
resources for applying machine learning to intensive care (Johnson et al., 2016). Data collected in
the ICUs includes vital signs, lab events, medical interventions, and socio-demographic information.

Multi-Modal and Multi-Task Learning. Multitask learning trains models to simultaneously
solve multiple tasks (Ruder, 2017). Successful applications of multitask learning include machine
translation and drug discovery (Johnson et al., 2017; Ramsundar et al., 2015). Current research in
this area is driven by popular benchmarks, particularly in the field of natural language processing
(Wang et al., 2018b; 2019; Rajpurkar et al., 2016).

Multi-modal machine learning combines and models data of different modalities such as vision, lan-
guage, speech. A key challenge in multi-modal learning is to combine representations over diverse
input types. Applications of multi-modal learning include image captioning and visual question
answering (Anderson et al., 2018; Agrawal et al., 2016; Moradi et al., 2018; Nguyen et al., 2019).

1Our code is available here: https://github.com/DoubleBlindGithub/M3

2



Under review as a conference paper at ICLR 2021

Table 1: Overview of the M3 Benchmark. The M3 bencmark is comprised of six tasks — de-
compensation, length of stay, in-hospital (IH) mortality, long-term (LT) mortality, phenotyping,
and readmission. For each task, we specify the number of available labeled training instances, the
time(s) within the ICU stays at which predictions are made, the type of classification task, and the
main metric used for evaluation. The M3 dataset also contains data from four modalities; we specify
the dimensionality of each modality and the number of ICU stays containing data from it.

Task Training Instances Prediction time(s) Type Main metric| Train | | V al | | Test |
Decomp. 2495.8k 360.3k 523.1k every hour binary aucpr
Length of Stay 25.7k 3673 5280 24 hour multiclass aucroc ovr
Mortality (IH) 15.4k 2209 3234 48 hour binary aucpr
Phenotyping 30.7k 4383 6278 discharge time multilabel macro aucroc
Readmission 27.4k 3894 5659 discharge time multiclass aucroc ovr
Mortality (LT) 27.4k 3894 5659 discharge time binary aucpr

Modality ICU stays Dimensionality| Train | | V al | | Test |
time series 30701 4383 6278 59
clinical notes 30507 4368 6247 -
tabular inputs 30701 4383 6278 6
waveforms 5567 686 1060 1

The clinical domain lends itself naturally to multi-modal learning, given the prevalence of data in
different modalities, including physiological signals, clinical notes, medical images, tabular inputs
and genome sequences. In this work, we propose the first multitask and multi-modal benchmark
over this diverse clinical data.

3 THE MULTI-MODAL MULTI-TASK MIMIC BENCHMARK

Next, we introduce Multi-Modal Multi-Task MIMIC-III (M3), a dataset and benchmark for evaluat-
ing machine learning algorithms in healthcare. This dataset is derived from the MIMIC-III database
and is comprised of data collected from over forty thousand patients. It contains data from four
diverse modalities and defines six clinical tasks. It also proposes an evaluation framework to bench-
mark models and comes in an easy-to-use open source package.

Each patient in the dataset completes a number of stays in an ICU, with 13% of patients completing
more than one stay. Over the course of each stay, the ICU collects measurements of vital signs
and other clinical variables at irregular intervals, as well as clinical notes describing the state of the
patient.

3.1 DESIGN PRINCIPLES

The goal of the M3 benchmark is to accelerate progress in applications of machine learning to
healthcare. The design of this benchmark is guided by the principles of multi-modality — we
collect data from diverse and unstructured modalities found in healthcare and that can be leveraged
by modern deep learning algorithms — as well as task relevance, diversity, and evaluability — we
choose diverse real-world clinical tasks that enhance model performance when solved jointly and
that have well-defined success metrics. Finally, we are concerned with accessibility: in order to
ensure that our benchmark can be widely adopted, we base it on datasets that can be obtained with
minimum overhead and that satisfy privacy and legal requirements.

3.2 TASKS

The M3 benchmark includes 6 different clinical prediction tasks. Each task is performed at specific
time points within the ICU stay of a patient.More details can be found in Table 1.
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In Hospital Mortality. We observe the first 48 hours of a patient’s data, and then predict whether
the patient will die by the end of their stay (Harutyunyan et al., 2019; Khadanga et al., 2020; Pu-
rushotham et al., 2017; Wang et al., 2020; Tang et al., 2020). Mortality is one of the major concerns
for any ICU unit, with limiting mortality being an ultimate goal for most ICUs.

Decompensation. Starting from the fifth hour of the stay, a prediction is made at every hour about
whether the patient will die within the next 24 hours given all the data collected to that point. Unlike
in the IHM task, predictions are made on an hourly basis rather than after a set amount of time
and concern the next 24 hours rather than the entire stay. As such, this task may better reflect the
changing landscape of available patient information.

Length of Stay. We predict the total duration time from admission to discharge. This task could
provide useful information for medical resources allocation and scheduling. We formulate this task
as a multiclass classification problem with three classes/bins (0-3 days, 3-7 days, and longer than 7
days) using only data from the 24 hours of the stay.

Phenotyping. A prediction of the patient’s phenotype is made at discharge time. This is a multi-
label classification task. The target label is derived from the billing code at a patients discharge,
which we then convert to our 25 labels following the procedure from Harutyunyan et al. (2019).

Readmission. We predict if another ICU stay will occur to the same patient after the discharge
time of an ICU stay. Predicting readmission is useful to identify higher risk patients and minimize
the waste of financial resources. We define this as a multiclass classification problem with 5 classes
— readmission within 7, 7-30, 30-90, 90-365, and 365+ days or no readmission.

Long-Term Mortality. For each ICU stay, we predict if the patient survives for more than 1 year
after discharge. We frame this as a binary classification problem. Predicting long-term mortality is
useful for assessing patients’ well-being after discharge.

3.3 MODALITIES

Our dataset contains data from four diverse and unstructured modalities that are typically found in
healthcare settings.

Physiological Time Series. We select 59 temporal physiological variables from MIMIC-III, such
as diastolic blood pressure, systolic blood pressure, oxygen saturation. The full list is in Table
8. These physiological variables are recorded irregularly, and they are important indicators of the
patient’s condition during the ICU stay.

Clinical Notes. Clinical notes are written by clinicians and nurses during the ICU stay and usually
summarize topics such as reasons for admission, details of treatment, nutrition, and the patients’
respiratory conditions. These clinical notes are also temporal, and they are charted sporadically.

Tabular Data. For every patient, we have access to their recorded sex, age, height, and weight
upon entry to the ICU, the type of the ICU, and other tabular inputs. We consider only the initial
values upon entry to the ICU. Some of these fields, such as weight, may fluctuate throughout the
ICU stay, and are also part of the time Series data.

Waveforms. Our dataset includes electrocardiogram (ECG) data from MIMIC Waveform (Moody,
2020). About 16% of patient stays have recorded waveform data.

3.4 DATASET AND BENCHMARK

We employed the preprocessing steps described in Harutyunyan et al. (2019), excluding ICU stays
with missing events or missing length-of-stay and excluding patients younger than 18 years old
because of the significant difference between adult and pediatric physiology.
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Figure 1: Multi-modal multi-task models for the M3 benchmark. We propose an architecture con-
sisting of an encoder that outputs multi-modal embeddings based on text, time series, and tabular
inputs as well as recurrent connections from earlier time steps (green horizontal lines). At each
prediction time, these embeddings are used by task-specific components (e.g., ”Decomp model”
and others) to output predictions. Predictions are evaluated by task-specific losses and an overall
multitask loss.

Figure 2: Multi-modal encoder and task-specific components. At each time step t, f (1)t are the
encoded time series features, f (2)t are the encoded tabular inputs, and f (3)t is the encoded clinical
notes. The Ot is a concatenated global embedding.

For binary classification problems, we define AUC-PR and AUC-ROC as the evaluation metrics. For
multiclass classification problems, we define AUC-ROC-OVR (one versus rest), which compares
the AUC of each class against the rest. We use macro AUC-ROC for the multilabel classification
problem; it is the unweighted mean of AUC-ROC for each label.

4 MULTI-MODAL MULTI-TASK CLINICAL MODELS

As a demonstration of how our work can drive progress in clinical applications of machine learning,
we propose a first set of multi-modal and multitask models for our new benchmark.

Our proposed architecture consists of an encoder that outputs multi-modal embeddings based on
text, time series, and tabular inputs as well as recurrent connections from earlier time steps. The
embeddings are fed to task-specific models that perform predictions.

4.1 ENCODERS

The multi-modal encoder is comprised of one child encoder per input modality (Figure 2). The
multi-modal embedding is a concatenation of the outputs from each child encoder. We describe
these below. Note that we do not use waveforms, as we found that we did not have enough inputs of
this modality to improve model performance.
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Time Series. Given a patient’s ICU stay of length of T hours, we resample time series data with
1 hour interval and get [TSt] from t = 1 to t = T. We impute missing values as described in
modalities section. Our time series encoder is an LSTM (Hochreiter & Schmidhuber, 1997). The
input TSt at time step t is directly fed to the LSTM model along with the previous hidden state and
cell state, and the next hidden state is our extracted feature, denoted by f1t . Formally, the feature
extraction step is described as:

f
(1)
t = LSTM(TSt, f

(1)
t−1) (1)

For simplicity, cell states are omitted here.

Clinical Notes For each ICU stay, we have N clinical notes [NoteN
i=1] charted sporadically, the

charted time of these notes are [Time(i)N
i=1], where N is usually smaller than T. We use the text CNN

proposed in Kim (2014) to extract text features. To create embeddings from Nt notes collected at
times Time(i) preceding the current time step t (i.e. Time(i) ≤ t for every i ≤ Nt), we first extract
features [zi]

Nt
i=1 of each note by the text CNN separately, and then average the extracted features

(Khadanga et al., 2020), assigning more weight to recent notes:

zi = TextCNN(Notei) weight(t, i) = exp(−λ(t− Time(i))) f
(2)
t = γ

Nt∑
i=1

weight(t, i) · zi

Here, λ is a scaling factor and γ is a normalization term.

Tabular Data We have a total 6 tabular inputs that are non-temporal. To process the tabular inputs,
we learn an embedding table for every categorical input dimension(de Brébisson et al., 2015). The
embeddings for the tabular features are concatenated into one tabular embedding.

4.2 TASK-SPECIFIC COMPONENTS

Multi-modal embeddings are used as the input to task specific components, of which there is one
per task. Each task specific component is composed of a fully connected layer with ht hidden units,
a dropout layer, a ReLU activation, and an output layer matching the shape of that component’s
respective task. Each task specific component, regardless of architecture, has no explicit connection
to any other task specific layer, but does share the same multi-modal embedding; thus the task
specific components share the multi-modal encoder.

As shown in Figure 1, each task specific component has a task specific loss. To learn across all tasks
simultaneously, we take the weighted sum of all the losses resulting to form the multi-task loss.

5 EXPERIMENTS

We now report performance on the M3 dataset. Our models achieve high performance levels and
represent strong baselines for future work. In particular, we outperform previous state-of-the-art
results that only rely on a subset of all tasks and modalities.

5.1 SETUP

Table 2: Implementation details for tabular encoder and task specific components.

(a) Tabular input features

Tabular Feature num values Embed dim

ICU unit 8 32
Dbsource 4 32

sex 4 32
age 100 32

height 100 32
weight 40 32

(b) Task specific components

Task hidden units(ht) dropout prob(αt)

Decomp. 128 0.8
Mortality (IH) 108 0.85

Pheno. 512 0.1
Len. of Stay 32 0.8

Mortality (LT) 64 0.8
Readm. 128 0.1
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Encoders. We used an 1-layer LSTM with 256 hidden units as the time series encoder. Clinical
notes were mapped to Word2Vec embeddings (Mikolov et al., 2013). The Text CNN has three 1D
kernels of size 2,3 and 4 with 128 filters each. We replaced all missing inputs with zeros.

Task specific components. We have 6 task specific components. Each task specific component
has a linear layer with ht hidden units, followed by a dropout layer with dropout probability αt, a
ReLU and an output layer. See Table 2b for details.

Preprocessing. The 17 clinical variables used by Harutyunyan et al. (2019) were normalized as in
their paper. We imputed missing values during inference, taking the most recent value for the feature
before the current time point. If there is no most recent value, then we impute based on predefined
imputed values. For the additional time series features, we take the raw inputs and impute them in
the same manner. Due to computational limits, we truncated each clinical note to at most 500 tokens
and we limit the number of notes we can process per stay to 150. Inputs were zero-pad as necessary.

Training Every task used the cross entropy loss. To find multitask weights, we used uncertainty
weighting (Cipolla et al., 2018), followed by manual search. We train with the Adam optimizer with
a learning rate of 1e-4. and employ early stopping.

Baselines We compare to Harutyunyan et al. (2019), who report performance on physiological
time series in a multi-task setting using LSTMs and channel-wise LSTMS. We also compared with
Sheikhalishahi et al. (2020) who used BiLSTMs for time series data. For the text modality. We
compared with Grnarova et al. (2016); Khadanga et al. (2020); Boag et al. (2018); Sheikhalishahi
et al. (2020). Additionally, Khadanga et al. (2020) report a multi-modal result using time series and
text. More details are in Table 4.

5.2 MAIN RESULTS

Table 3 details the performance across every task for various input modalities and in both the single
and multitask setting. Having additional modalities improves performance on every task except for
length of stay, where it does not significantly change performance. Multitasking further increases
performance on many tasks, such as in-hospital mortality, readmission, and long term mortality.

Table 4 shows the performance of models from different papers on the same tasks. Our models
outperform both of our state-of-the-art baselines that only rely on a subset of all tasks and modalities.

Table 3: Results on all tasks by input modalities of time series (TS), clinical notes (Text) to tabular
inputs (Tab). Tasks, in order, are Decompensation, In-Hospital Mortality, Phenotyping, Length
of Stay, Long Term Mortality, and Readmission. Error bounds were computed by sampling with
replacement 6000 samples 1000 times from the test set and computing metrics. Reported value is
the median, bounds are based off of the 2.5 and 97.5 percentiles.

Metrics Decomp. Mortality (IH) Pheno. Len. of Stay Mortality (LT) Readm.
Modalities Num Tasks aucpr aucpr macro aucroc aucroc ovr aucpr aucroc ovr

TS ST .299 ±.01 .427 ±.053 .788 ±.004 .722 ±.012 .291 ±.027 .551 ±.02
TS MT .280 ±.01 .427 ±.053 .77 ±.005 .735 ±.012 .366 ±.036 .530 ±.02
TS-Text ST .359 ±.01 .580 ±.052 .794 ±.005 .751 ±.011 .357 ±.030 .700 ±.017
TS-Text MT .409 ±.01 .604 ±.05 .773 ±.005 .754 ±.010 .414 ±.032 .696 ±.017
TS-Text-Tab ST .404 ±.01 .570 ±.051 .813 ±.004 .737 ±.012 .406 ±.031 .695 ±.017
TS-Text-Tab MT .408 ±.01 .600 ±.05 .812 ±.004 .741 ±.011 .450±.033 .708±.016

6 RELATED WORK

The paper by Harutyunyan et al. (2019) is the closest work to ours in the literature. They report
the performance of multi-task models on a dataset derived from MIMIC-III that consists of 4 of our
clinical prediction tasks and a subset of the physiological time series data that we use. Purushotham
et al. (2017) introduced another benchmark covering tasks such as mortality prediction task, ICD
code grouping task, and length-of-stay prediction with a different sets of time series features.
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Models Decomp. Mortality (IH) Pheno. Len. of Stay Mortality (LT) Readm.
aucpr aucpr macro aucroc aucroc ovr aucpr aucroc ovr

Single Modal Time Series
ts-LSTM 0.299 0.427 0.788 0.722 0.291 0.551

cw - LSTM 0.326 0.486 0.788 0.774 0.341 0.594
BiLSTM 0.345 0.458 0.782 0.782 0.336 0.656

Single Modal - Text
LSTM NA NA 0.546 NA NA NA
CNN 0.312 0.517 0.541 0.711 0.269 0.563

Multi Modal - TS + Text
ts-LSTM + CNN 0.359 0.580 0.794 0.751 0.357 0.700
cw-LSTM + CNN 0.387 0.600 0.790 0.760 0.400 0.692

Multi Modal - TS + Text + Tab
ts-LSTM + CNN + Tab 0.404 0.570 0.813 0.737 0.406 0.695

Table 4: Comparing Single modal baselines and increasing modalities. Harutyunyan et al. (2019) use
time series LSTMs(ts-LSTM) and channelwise LSTMs(cw-LSTMs) in their work. Sheikhalishahi
et al. (2020) achieve their best performance with BiLSTMs. For text modality. LSTM text classifier
are reported to achieve state-of-the-art performance on phenotyping task (Grnarova et al., 2016). For
all other tasks, the best model we found in our literature search is Text CNN (Khadanga et al., 2020;
Boag et al., 2018; Sheikhalishahi et al., 2020). Khadanga et al. (2020) reported a TS+Text Multi
Modal model ts-LSTM+CNN.

Khadanga et al. (2020) are the first to consider the multi-modal setting, specifically clinical notes
and time series data. They focus on three of our clinical prediction tasks (decompensation, length
of stay, and in-hospital mortality), but do not perform multi-task learning. Our paper improves over
both Harutyunyan et al. (2019) and Khadanga et al. (2020). We create a benchmark that combines
both multiple modalities (including two modalities not found in Khadanga et al. (2020)) and multiple
tasks (including two new tasks not present in earlier works).

7 DISCUSSION

We release our benchmark in an easy-to-use open source package. This resource may be used to
improve architectures for biomedical multi-modal and multi-task learning, as well as to explore
research directions in causality, generative models, fairness, and other areas.

Future Research Directions. Within the field of causal inference, our dataset can be used to
study ways of inferring latent causal factors from unstructured modalities such as images. It may
also drive experiments in new generative model architectures and ways in which generative models
can address practical problems such as missing data inputs or the estimation of uncertainties in a
multi-task regime. Our diverse dataset may offer insight into questions of fairness and privacy, such
as on the extent to which medical images and clinical notes reveal sensitive patient information such
(e.g., race or gender), and on how to address this leakage. We hope that our benchmark will serve
as a resource to a broad subset of the machine learning community.

8 CONCLUSION

In this paper, we argued that developing new machine learning models in healthcare that effectively
leverage diverse modalities — such radiology images, clinical notes, and sensor data — and that can
simultaneously solve multiple tasks — e.g., estimating disease risk, predicting readmission — has
the potential to significantly impact applications in the clinical domain. We proposed the first bench-
mark for the healthcare domain that focuses on multi-modal and multi-task learning and new models
that outperform previous state-of-the-art methods that only rely on a subset of tasks or modalities.

Our results highlight the importance of multi-modal and multitask learning in clinical settings. More
generally, we envision our work being a general resource that will help accelerate research in apply-
ing machine learning to healthcare.
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A APPENDIX

A.1 FULL PERFORMANCE PER TASK

Table 5: Length of stay

AUCROC ovr AUCROC ovo
TS-ST (ours) 0.722 (0.711, 0.734) 0.692 (0.682, 0.703)
TS-MT (ours) 0.735 (0.723, 0.746) 0.700 (0.690, 0.710)
Ts-Text-ST (ours) 0.751 (0.740, 0.762) 0.730 (0.719, 0.741)
TS-Text-MT (ours) 0.754 (0.743, 0.765) 0.734 (0.723, 0.745)
TS-Text-Tab-ST (ours) 0.737 (0.725, 0.748) 0.713 (0.702, 0.724)
TS-Text-Tab-MT (ours) 0.741 (0.730, 0.752) 0.719 (0.709, 0.730)

Table 6: Long term mortality

AUCROC AUCPR
TS-ST (ours) 0.659 (0.640, 0.677) 0.291 (0.266, 0.318)
TS-MT (ours) 0.736 (0.720, 0.753) 0.366 (0.337, 0.396)
TS-Text-ST (ours) 0.701 (0.683, 0.718) 0.357 (0.328, 0.388)
TS-Text-MT (ours) 0.760 (0.744, 0.775) 0.414 (0.382, 0.445)
TS-Text-Tab-ST (ours) 0.744 (0.728, 0.760) 0.406 (0.375, 0.438)
TS-Text-Tab-MT (ours) 0.784 (0.768, 0.798) 0.450 (0.417, 0.482)

Table 7: Readmission

AUCROC ovr AUCROC ovo
TS-ST (ours) 0.551 (0.532, 0.571) 0.532 (0.517, 0.546)
TS-MT (ours) 0.530 (0.510, 0.550) 0.524 (0.508, 0.540)
TS-Text-ST (ours) 0.700 (0.683, 0.717) 0.600 (0.588, 0.612)
TS-Text-MT (ours) 0.696 (0.679, 0.713) 0.603 (0.590, 0.616)
TS-Text-Tab-ST (ours) 0.695 (0.678, 0.712) 0.603 (0.589, 0.617)
TS-Text-Tab-MT (ours) 0.708 (0.692, 0.725) 0.605 (0.594, 0.617)

A.2 COMPLETE PHYSIOLOGICAL TIME SERIES VARIABLES
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Time series var
Alanine aminotransferase

Albumin
Alkaline phosphate

Anion gap
Asparate aminotransferase

Basophils
Bicarbonate

Bilirubin
,Blood urea nitrogen(BUN)
CO2 (ETCO2; PCO2; etc.)

Calcium
Calcium
Ionized

Calcium ionized
Capillary refill rate

Chloride,Cholesterol
Creatinine

Diastolic blood pressure
Eosinophils

Fraction inspired oxygen
Glascow coma scale eye opening

Glascow coma scale motor response
Glascow coma scale total

Glascow coma scale verbal response
Glucose

Heart Rate
Hematocrit

Hemoglobin
Lactate

Lactate dehydrogenase
Lactic acid,Lymphocytes

Magnesium
Mean blood pressure

Mean corpuscular hemoglobin
Mean corpuscular hemoglobin concentration

Mean corpuscular volume
Monocytes
Neutrophils

Oxygen saturation
Partial pressure of carbon dioxide

Partial pressure of oxygen
Partial thromboplastin time
Peak inspiratory pressure

Phosphate
Platelets

Positive end-expiratory pressure
Potassium

Prothrombin time
Red blood cell count

Respiratory rate
Sodium

Systolic blood pressure
Temperature
Urine output

Weight
White blood cell count

pH

Table 8: List of all used Time series vars
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