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ABSTRACT

Foundation models have emerged as powerful tools for analyzing single-cell RNA
sequencing (scRNA-seq) data. However, selecting informative gene features for
both input to the model and analysis in the output remains a critical challenge. Tra-
ditional feature selection methods filter on the basis of highly variable genes and
analyze them using differential distribution, but they often struggle with scalabil-
ity and robustness in heterogeneous, high-dimensional datasets. In this study, we
explore the limitations of conventional feature selection techniques in the context
of a multimodal foundation model and propose alternative gradient-based attribu-
tion techniques on learned feature embeddings to improve feature selection. We
demonstrate how our selection strategy enhances model performance, overcomes
the limitations of traditional approaches, and holds the potential to reveal the in-
herent polygenicity of diseases. 1

1 MOTIVATION

Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular hetero-
geneity by enabling the measurement of gene expression at the individual cell level. A key challenge
in scRNA-seq analysis is feature selection: identifying genes that reduce dimensionality whilst pre-
serving biological relevance. Traditional methods, such as selecting Highly Variable Genes (HVG)
or Differentially Expressed Genes (DEG), have limitations in modern, large-scale datasets, partic-
ularly when integrated into foundation models trained on data spanning diverse tissues, conditions,
and species.

Conventionally, scRNA-seq feature selection employs HVG selection, assuming these genes drive
cellular heterogeneity. However, this approach has several drawbacks. Specifically, naive variance-
based ranking can overestimate variability (Heumos et al., 2023), exclude contextually variable
housekeeping genes (Yip et al., 2019), and overrepresent cell cycle or stress-related genes, obscur-
ing other signals. Arbitrary variability thresholds further compromise consistency across studies
(Chen et al., 2019). DEG selection between predefined experimental groups is another widely used
approach, as it is designed to pinpoint genes that show significant expression changes between con-
ditions. DEG analysis struggles with diverse scRNA-seq datasets, as it depends on predefined labels
and may miss subtle, context-specific signals (seq, 2014; Corchete et al., 2020; Hoerbst et al., 2025).
Technical noise, including dropouts and amplification bias, further distorts results, especially for
lowly expressed genes (Conesa et al., 2016; McDermaid et al., 2019).

Transformer-based foundation models have emerged to integrate extensive scRNA-seq datasets (Cui
et al., 2024), (Yang et al., 2022). Recently, Khodaee et al. (2025) introduced POLYGENE, a multi-
modal transformer-based scRNA-seq model that incorporates both scRNA-seq data and annotated
phenotypes, enabling the model to learn complex relationships between genotypes and phenotypes.
Building on POLYGENE, we propose a gradient-based gene selection algorithm that prioritizes genes
in the models trained on complete gene sets, avoiding prior assumptions about variability. This
method can be generalized to any foundation model. We identify the most influential genes con-
tributing to the model’s output, and validate our method across multiple downstream tasks, demon-

1Source Code: https://github.com/pakaphholbig/GradGeneSelection
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strating its effectiveness and potential to overcome the limitations of traditional feature selection
techniques in the era of large-scale single-cell analysis.

2 RELATED WORK

Feature selection in scRNA-seq traditionally relies on statistical models that identify genes exhibit-
ing significant variability or differential expression across cell populations. HVG detection methods
(Stuart et al., 2019), (O’Callaghan et al., 2024), (Buettner et al., 2017), play a crucial role in reducing
dimensionality (Yip et al., 2019). Differential expression analysis, conducted using tools like DE-
Seq2 (Love et al., 2014) and edgeR (Alessandrı̀ et al., 2019), identifies genes that exhibit statistically
significant expression differences between conditions (Rosati et al., 2024b). While effective, these
methods often assume specific data distributions and struggle with highly heterogeneous single-cell
datasets as their sizes increase. Deep learning methods have been also used as alternative approaches
(Huang et al., 2023) and have shown promising results Huang et al. (2023). Nonetheless, feature
selection methods haven’t been studied for foundation models.

3 METHODOLOGY

The essence of the proposed method is to assess the attention of a multimodal foundation model,
specifically POLYGENE2 (Khodaee et al., 2025) places on each input feature when predicting phe-
notypic differences between two cells. This method is generalizable to any transformer-based foun-
dation model, depending on its input format. The algorithm comprises two main phases: Gene
Blending and Gene Attributing. Finally, a mapping of genes to their attribution values is gener-
ated, producing a ranked list for gene feature selection.

3.1 PRE-PROCESSING

We predefine a target phenotypic type and a set of controlled phenotypic types for analysis (see
Appendix A.1 for a rigorous definition). The target phenotype serves as the independent variable,
differentiating the input from the baseline, while both share the same controlled phenotypes. This
defines a distribution from which the input is sampled; however, the necessity and choice of baseline
will be explained in Section 4 and Appendix A.3. After this phase, we obtain an input and a baseline
for further analysis.

3.2 GENE BLENDING

While scRNA-seq data are designed to share the same set of phenotypic categories, differences in
gene sets between the input I and baseline B can introduce biases. To address this, we introduce
Gene Blending, a preprocessing step that aligns shared genes in both datasets while preserving
structural consistency. This ensures that genes occupy the same positions across the input and base-
line. (see Figure 1). Genes are divided into three categories: shared, input-only, and baseline-only.
They are then rearranged so that all shared genes are aligned, and padding tokens are used for
input-only and baseline-only genes. This step is crucial for gradient-based attribution tools (e.g.,
DeepLIFT (Shrikumar et al., 2019)) to correctly compare gradients of the same features in both
the input and baseline. A detailed formulation of the Gene Blending algorithm is provided in Ap-
pendix A.2.
3.3 GENE ATTRIBUTING

In this phase, our goal is to identify the genes that are most strongly associated with a target phe-
notype.3 Genes, to which the model assigns significant focus, are likely to serve as markers for the
target phenotype. We refer to this measure of focus as an attribution value. During the analysis,

2The current version of POLYGENE supports six phenotypic types as input: cell type, tissue, disease, de-
velopmental stage, sex, and assay. This flexibility allows us to systematically evaluate gene importance across
different biological conditions, enabling a more nuanced understanding of how genetic features contribute to
phenotypic variation.

3Our question is: If the target phenotype is masked in the cell data, how much focus does the model place
on each gene and controlled variable when making its predictions?

2



Published as a workshop paper at MLGenX 2025

Figure 1: Overview of the proposed gene attribution pipeline. The method consists of two main phases:
(1) Gene Blending, where the input and baseline gene expressions are blended to ensure that all genes are used
during the analysis, and (2) Gene Attributing, where attributions are computed based on the model’s predictions.
The final output is a gene-attribution mapping used for feature selection and downstream analysis.

the target phenotype of the blended input and blended baseline will be masked and simultaneously
fed into POLYGENE. DeepLIFT (Shrikumar et al., 2017)4 and then estimates an attribution value for
each gene by comparing the model’s predictions of the target phenotype of the masked blended input
and baseline. For better efficiency and convergence, we adopt Ancona et al. (2018) implementation
of DeepLIFT. The raw attribution values will be normalized to ensure consistency across all cells
and multiplied by the input to capture global attribution behavior (Ancona et al., 2018). Finally, the
mean of normalized attribution values will be calculated for each feature, across all pairs of input
and baseline.

4 CELL-STATE TRANSITION: BASELINE SELECTION

Motivated by differential gene expression (DGE) analysis for disease biomarker identification
(Rosati et al., 2024a), we choose a healthy cell as the input and a diseased cell as the baseline,
both exhibiting the same controlled phenotypic traits. While we use diseased versus healthy as an
example, the same approach can be generalized to other phenotypic transitions depending on our
choice of target phenotypic type, such as differentiating versus undifferentiated cells, drug-treated
versus untreated cells, or activated versus resting immune cells. The full motivation and formulation
can be found in Appendix A.3.

5 ATTRIBUTION IMPORTANCE: DATA ASYMMETRY

Data asymmetry arises during the gene blending process, as the input and baseline phenotypes typi-
cally do not share the exact same gene set. As discussed in Section 3.2, this is mitigated by applying
padding; however, it is trivial that the attribution values of padding tokens in the input are zero (see
Appendix A.4). To avoid this inherent bias, an additional pass is performed during the gene attri-
bution step by swapping the input and baseline. Specifically, given an input I , a baseline B, and a
function f which f(I,B) assigns attribution values to each feature in the input-baseline pair, we also
compute f(B, I) in addition to f(I,B). We denote the attribution values from f(I,B) as forward
attributions and those from f(B, I) as backward attributions. Then, we compute the attribution
importance for each gene, which is used for downstream analysis, by taking the arithmetic mean
of the forward and backward attributions 5. In Appendix A.7, we propose an alternative method for
handling data asymmetry, which also yields a biologically meaningful set of genes for the biomarker
identification task.

4We also experimented with other gradient-based attribution methods, such as Integrated Gradients (Sun-
dararajan et al., 2017) and SHAP (Lundberg & Lee, 2017). However, due to the deep architecture of POLY-
GENE, the attribution values either failed to converge or required excessive computation time.

5Attribution Importance = f(I,B)+f(B,I)
2
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6 EXPERIMENT

In this work, we use POLYGENE (Khodaee et al., 2025) as our choice of model, and utilize TABULA
SAPIENS (Consortium, 2022), a manually annotated scRNA-seq dataset comprising nearly 500,000
cells across 24 different tissues and organs, as our validation set. For preprocessing and analysis, we
employ the SCANPY package (Wolf et al., 2018), which facilitates the handling of scRNA-seq data,
computation of HVGs, and differential gene expression (DEG) analysis. Total embeddings, the sum
of input and token type embeddings, are the input reference for DeepLIFT (Shrikumar et al., 2019)
analysis.

We select disease as the target phenotypic type, while cell type, tissue, or a combination of both
serve as controlled phenotypic types. Three different selections of target phenotypes and controlled
phenotypes are tested, as outlined in Table 1. In each set of experiments, 5,000 cells are sampled
from the dataset. HVGs are identified by sampling 2 million cells from the entire dataset. To perform
differential gene expression (DEG) analysis, only cells with the target disease and normal conditions
from the specified cell type and tissue are sampled.

Experiment Disease Cell Type Tissue
1 Alzheimer’s Disease Microglial Cell Brain
2 Breast Cancer Fibroblast Breast
3 Dilated Cardiomyopathy Any Heart

Table 1: Selected cell types for downstream analysis across different diseases.

7 EVALUATION AND RESULTS

7.1 SPARSITY OF ATTRIBUTION IMPORTANCE

As discussed in Section 5, we expect both forward and backward attributions to be sparse. We found
that the distribution of attribution importance is also sparse but centered around a non-zero mode,
with a few outliers exhibiting extreme attribution values (see Appendix A.4). This suggests that
certain genes strongly influence the model’s prediction of the target phenotype.

7.2 IDENTIFICATION OF POTENTIAL DISEASE BIOMARKERS

Developed from Section 7.1, we identify genes that play a more significant role in the model’s
predictions. Since the model does not have access to the ground truth disease labels of the cells,
attributions reflect the genes the model considers most important for prediction. Therefore, the idea
of identifying positive outliers as potential disease biomarkers emerges naturally. Specifically, genes
with exceptionally high attributions across multiple conditions are likely to serve as disease markers
(A.5).

7.3 IMPORTANCE OF OUTLIERS: GENE PRUNING

We demonstrate how pruning genes based on different selection heuristics—attribution importance,
forward attribution, HVGs, and random removal—affects the model’s predictive accuracy across
Alzheimer’s disease, breast cancer, and dilated cardiomyopathy. The genes with low importance
scores under each method are removed, and the model’s classification metrics are evaluated. We
refer to this evaluation framework as Gene Pruning. Figure 2 illustrates the relationship between
accuracy and prune ratios across different heuristics, while plots for additional classification metrics
(e.g., F1 score, precision, and recall) are provided in Appendix A.6. The setup of this experiment
remains the same, and we remove a proportion of genes, determined by the prune ratio, that have the
lowest importance scores. We hypothesize that the differing trends observed in each disease reflect
the underlying causes and intrinsic nature of the diseases, as further discussed in Appendix A.6.
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8 DISCUSSION

In this work, we present a gradient-based gene selection method for multimodal scRNA-seq foun-
dation models. We mathematically and theoretically formalize a deep learning-based gene selection
framework that can be generalized to other models. Motivated by cell-state transitions, our baseline
selection strategy captures differential gene expression between an input and a reference. Attribution
Importance is introduced to address data asymmetry, ensuring that all genes contribute meaningfully
to the computed attribution values.

Upon evaluating our method across three different diseases, we found that attribution importance
distributions are sparse, with notable outliers in both tails. This indicates that the model prioritizes
certain genes over others. Nevertheless, only a few show known associations with the disease.
We suspect this discrepancy may be due to experimental bias in the dataset (Megill et al., 2021).
Additionally, some genes remain uncharacterized, motivating further experimental validation.

Although the primary goal of Gene Pruning is to benchmark the impact of gene removal on model
performance, it also provides valuable insights into the underlying genetic interplay associated with
each disease. As shown in Figure 2 and discussed in Appendix A.6, our method outperforms HVG-
based selection in certain diseases. Moreover, the classification plots of the baseline (Figure 2)
and reverse pruning experiments (Figure 13 and 14) further highlight the significance of genes with
high attribution importance. We hypothesize that the differing trends observed reflect intrinsic dis-
ease characteristics, such as heterogeneity and polygenicity, though requires further investigation to
validate.

Our work introduces a gradient-based gene selection framework tailored for multimodal scRNA-seq
foundation models. However, it assumes gene independence in phenotype expression during the
aggregation phase, as attribution values are averaged across all samples. Additionally, we observed
convergence issues with gradient-based attribution tools, particularly when applied to large, deep
transformer-based architectures.

(A) Prediction accuracy of the input after gene pruning.

(B) Prediction accuracy of the baseline after gene pruning .

Figure 2: Gene pruning accuracy comparisons using different heuristics for both input (A) and baseline (B)
across three diseases: (a) Alzheimer’s Disease, (b) Breast Cancer, and (c) Dilated Cardiomyopathy. Different
heuristics, including attribution importance, forward attribution, HVGs, and random selection, are compared
across varying prune ratios.
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9 IMPACT STATEMENT

Our gene selection framework advances the field of single-cell transcriptomics by enabling more
precise and biologically meaningful feature selection for foundation models. The integration of
attribution-based gene selection into large-scale scRNA-seq analysis could lead to more effective
disease classification and efficient biomarker discovery for early diagnosis and therapeutic targets.
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A APPENDIX

A.1 PROBLEM SETUP

Formally, let Pi be the set of phenotypes for phenotypic type i, and G the set of genotypes. An
annotated scRNA-seq dataset D with n phenotypes, and m genotypes is represented as a sequence
(p1, . . . , pn, g1, . . . , gm), where each pi ∈ Pi and each gk denotes the expression value of gene
k ∈ G. It is important to note that we keep n fixed for the entire dataset. In this work, we assume
n is fixed, as phenotypes are manually annotated, while m varies with each cell across the dataset.
Let t ∈ {1, . . . , n} denote a target phenotypic type. Then, the set of controlled phenotypic types C
is defined as a subset of all phenotypic types except the target, specifically C ⊆ {1, . . . , n} \ {t}.

A.2 GENE BLENDING: FORMALIZATION

Let GI and GB be the sets of gene indices that appear in the input and baseline data, respectively.
For simplicity, assume GI ∪GB = {1, 2, . . . ,M}, where M = |GI ∪GB |. We denote the input as
I =

(
pI , gI

)
and the baseline as B =

(
pB , gB

)
, where:

• pI and pB are the phenotype parts (of length n)

• gI and gB are the genotype part (indexed by {1, . . . ,M}).

• If a particular index j is not in GI , then gIj is not applicable (we will pad it as needed).
Likewise for gBj when j /∈ GB .

We form blended version I ′ and B′ by “sharing” genes where they overlap and padding otherwise
(see Figure 1):

I ′ =
(
pI , g′

)
, B′ =

(
pB , g′′

)
(1)

where, for each gene index j ∈ {1, . . . ,M},

g′j =

{
gIj , if j ∈ GI ,
[PAD], otherwise ,

g′′j =

{
gBj , if j ∈ GB ,

[PAD], otherwise .
(2)

• Shared genes (GI ∩GB) get real genotype values in both I ′ and B′.

• Input-only genes (GI\GB) appear normally in I ′ but are padded in B′

• Baseline-only genes (GB\GI) appear normally in B′ but are padded in I ′

This ensures that I ′ and B′ remain aligned across relevant gene positions, with mismatched genes
padded as [PAD].

A.3 CELL-STATE TRANSITION-MOTIVATED BASELINE SELECTION

The choice of baseline determines the semantics of attribution values by assessing the focus the
model places on each feature during prediction. Its primary functions are to prevent misinterpreta-
tion due to inherent attribution values of features and to address issues such as zero gradients and
discontinuities in deep networks. However, selecting an appropriate baseline depends on the specific
task and the underlying structure of the input domain. For example, Shrikumar et al. (2019) used an
all-zero baseline for image data and an ACGT baseline sampled according to its natural frequency
for genomic sequences.

Cell-state transitions are fundamental to cellular processes and serve as indicators of various phe-
notypic changes. Motivated by differential gene expression (DGE) analysis for disease biomarker
identification (Rosati et al., 2024a), we leverage deep learning models to analyze these transitions.
We define a healthy cell as our baseline and a diseased cell as our input. Both share the same
value for certain controlled phenotypic types, while any other phenotypic types are left unspeci-
fied. Formally, let t be the target phenotypic type (diseased status), C be the set of controlled
phenotypic types. u be the target phenotype for the input I and v for the baseline B, and finally

8
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I = (pI1, . . . , p
I
n, g

I
1 , . . . , g

I
m) represents the input cell, B = (pB1 , . . . , p

B
n , g

B
1 , . . . , gBm′) represents

the baseline cell. We set the phenotypic value pBi in the baseline as follows:

pBi =


pIi , if i ∈ C

u ̸= v, if i = t

arbitrary, otherwise
(3)

using these definitions we can compare the relative importance the model assigns to each gene in the
diseased cell (input) versus the healthy cell (baseline) thereby filtering out housekeeping genes. In
this case, we define the phenotypic type as disease, as it provides a more intuitive basis for reasoning.

A.4 SPARSITY OF ATTRIBUTION VALUES

To mitigate the gene asymmetry problem between the input and baseline, gene blending is intro-
duced. As discussed in Section 3.2, padding is applied to the input and baseline to ensure proper
alignment of common genes, with no attention mask imposed. Since we implement the gradient-
based DeepLIFT method proposed by Ancona et al. (2018) to improve latency and convergence, we
observe that the attribution values of genes present only in the input are zero. This occurs because
attention to padding is masked, nullifying its contribution to the model’s computations. As a result,
the attribution value with respect to the masked attention value becomes zero. Thus, we aim to
compare the distribution of forward attribution, backward distribution, and attribution importance.

We plotted the distributions of forward attributions, backward attributions, and attribution impor-
tance for the Alzheimer’s disease experiment. Approximately 59% and 38% of genotypes have zero
forward and backward attributions, respectively, which is expected, as discussed in Section 5. At-
tribution importance successfully addresses this issue, with only around 3% of genes having zero
attribution importance. Despite this improvement, the distribution of attribution importance remains
sparse (see Figure 3).

Figure 3: Distribution of each attribution heuristic in Alzheimer’s disease.

Since genes interact in phenotypic expression, we aggregate attributions by gene and compute their
arithmetic mean to analyze their behavior across different cell states and conditions. The attributions
are visualized in Figure 6, where genes are represented by gene IDs. Genes with exceptionally high
or low attributions are classified as positive and negative outliers, respectively. A significant num-
ber of these outliers exhibit extreme attribution values beyond the 1st–99th percentile range. This
sparsity pattern is also evident in both the breast cancer and dilated cardiomyopathy experiments.
(see Figure 4, 5) We illustrate some possible use cases and interpretations of these outliers in the
following findings.

9
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Figure 4: Distribution of each attribution heuristic in Breast Cancer disease.

Figure 5: Distribution of each attribution heuristic in Dilated Cardiomyopathy disease.

Figure 6: Attributions are grouped by Gene ID, where the purple line represents the 1st percentile and the red
line represents the 99th percentile.

10
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A.5 TOP-30 DISEASE BIOMARKERS COMPARISON

Below is the list of the 30 genes with the highest attribution importance, as referenced in Section
7.2.

Rank Alzheimer’s Disease Breast Cancer Dilated Cardiomyopathy

Attribution DEG Attribution DEG Attribution DEG

1 AC004540.4 ZFHX3 H2AC19 LINC02510 CTB-131B5.5 RP11-
305P14.2

2 RP11-411B6.6 KCNIP4 LMOD2 AC131056.5 RP11-
380M21.4

SNHG14

3 RGPD4-AS1 CSMD1 OR2A1 DRD3 KRT7 DISC2
4 RP11-

422P24.15
PTPRD MTRNR2L1 RP4-739H11.3 LINC00486 RP11-

115H11.1
5 RP11-344F5.1 SNHG14 ALOX15B CHRNA1 H2AC20 ZFPM2-AS1
6 AC005943.2 LINC00486 LINC02015 TOPAZ1 GRXCR2 POLR2J3
7 CTB-131B5.5 RP11-

358F13.1
MTRNR2L10 U95743.1 SAA1 RP11-

692P14.1
8 PARD6G-AS1 LCOR MTRNR2L6 AC079135.1 KRT19 LINC01278
9 MIOX NRG3 H4C14 AC144450.1 RP11-

114H24.7
CHASERR

10 CIART LRRTM4 OPRPN UPK1A-AS1 CSF3 MIR100HG
11 RP11-

958J22.1
DPP10 NPPA C5orf67 RP11-

446E24.4
TPT1-AS1

12 ALB HNRNPU S100A7 RP11-716H6.2 RP11-
1012E15.2

DLEU1

13 CTC-
359D24.6

SPATA13 ADIPOQ RP4-534N18.4 KCNJ1 EIF1B-AS1

14 HPYR1 ERBB4 RHCG OTX1 RP11-513H8.1 PPP3R1
15 AC116366.7 IL1RAPL1 LINC02211 GACAT2 RP11-

108E14.1
PSMA3-AS1

16 RP11-
1035H13.3

CCDC18-AS1 FCGR1B GDPD4 AC114763.1 OIP5-AS1

17 KIF5C-AS1 RALYL CCR1 RP11-61O1.1 RP11-
745L13.2

ZNF544

18 RP4-777O23.3 CCSER1 MTRNR2L11 ELSPBP1 SLC5A3 GARS1-DT
19 CYP39A1 NLGN1 IGLC7 B4GALNT2 ADRA2C CCDC18-AS1
20 FAM157B RP11-

452H21.1
U2AF1L5 RP11-

434D12.1
SLPI TSTD3

21 RP11-
826N14.8

TRAF3IP2-
AS1

RP1-125I3.2 AC006000.5 CTC-
444N24.8

ATP5PO

22 PLA2G5 IQCJ-SCHIP1 MTRNR2L3 DAOA-AS1 CXCL9 HHATL
23 GNAT1 RP1-30E17.2 LVRN CTB-91J4.1 KCNJ16 IRF1-AS1
24 DDIT4 GRIA2 MRPS9-AS2 RP11-

425A23.1
TLR8 DDX39B

25 RP11-
274G22.1

ABHD15-AS1 RP4-549L20.3 RP11-
431M7.2

AC058791.1 MIR3936HG

26 NPPA RYR2 CSNK2A3 IGLV3-1 PMP2 FXYD6
27 SLN SNTG1 RP11-505K9.1 AC068491.2 SERPINE1 NPHP3
28 NUP210L GARS1-DT CH507-

513H4.3
RP11-90E5.1 CTA-276F8.1 ATXN7

29 RP1-111C20.5 NCAM2 SLC28A3 ERP27 STARD13-AS AC009120.6
30 PVALB CNTN5 FKBP5 RP11-

388K12.2
CIDEC RP11-96H17.1

Table 2: Top 30 genes identified by the Attribution-Based and DEG-Based methods across three diseases,
using normal cells as the baseline.
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A.6 GENE PRUNING: CLASSIFICATION METRICS

While forward attribution performs similarly to attribution importance in input prediction, it does
not negatively impact baseline prediction accuracy. Since genes deemed least likely to cause disease
are removed, a substantial drop in accuracy is expected, as seen in Figures 2 (A, b) and (A, c). This
reasoning also extends to random gene removal. Given the hypothesis that only a small subset of
genes serves as biomarkers, randomly removing genes is unlikely to cause a substantial decline in
accuracy. Also, we

Our method still has several limitations. One key assumption is that all genes are independent,
meaning that gene interactions are not explicitly considered. This assumption may overlook complex
regulatory relationships that influence phenotypic expression and disease mechanisms. As a result,
our attributions may be less reliable for diseases without well-defined biomarkers.

Another limitation is that certain diseases, such as dilated cardiomyopathy, are also shaped by en-
vironmental factors, which are inherently challenging to model. We believe this issue, combined
with the independence assumption, contributes to the unexpected trends observed for both forward
attribution and attribution importance in Figure 2 (A, c). Despite these limitations, attribution im-
portance remains a reliable preliminary method for gene selection.

Additionally, we conducted an alternative experiment by removing genes with the highest impor-
tance value first, instead of the lowest to the highest (see Figure 13 and 14). We aim to demonstrate
that the genes with high importance significantly impact the model’s performance. In contrast to
HVG and random selection, the accuracy of the model drops sharply as we remove genes with
either higher attribution or forward importance. Notably, there exists a stable range of prune ra-
tios, where further gene removal does not affect the model’s performance, until the point where the
model’s accuracy degrades due to minimal remaining information.

Figure 7: Prediction F1 Score of the input after gene pruning for three diseases: (a) Alzheimer’s Disease, (b)
Breast Cancer, and (c) Dilated Cardiomyopathy. Different heuristics, including attribution importance, forward
attribution, HVGs, and random selection, are compared across varying prune ratios.

12



Published as a workshop paper at MLGenX 2025

Figure 8: Prediction F1 score of the baseline after gene pruning for three diseases: (a) Alzheimer’s Disease, (b)
Breast Cancer, and (c) Dilated Cardiomyopathy. Different heuristics, including attribution importance, forward
attribution, HVGs, and random selection, are compared across varying prune ratios.

Figure 9: Prediction Recall of the input after gene pruning for three diseases: (a) Alzheimer’s Disease, (b)
Breast Cancer, and (c) Dilated Cardiomyopathy. Different heuristics, including attribution importance, forward
attribution, HVGs, and random selection, are compared across varying prune ratios.

Figure 10: Prediction Recall of the baseline after gene pruning for three diseases: (a) Alzheimer’s Disease, (b)
Breast Cancer, and (c) Dilated Cardiomyopathy. Different heuristics, including attribution importance, forward
attribution, HVGs, and random selection, are compared across varying prune ratios.
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Figure 11: Prediction Precision of the input after gene pruning for three diseases: (a) Alzheimer’s Disease, (b)
Breast Cancer, and (c) Dilated Cardiomyopathy. Different heuristics, including attribution importance, forward
attribution, HVGs, and random selection, are compared across varying prune ratios.

Figure 12: Prediction Precision of the baseline after gene pruning for three diseases: (a) Alzheimer’s Disease,
(b) Breast Cancer, and (c) Dilated Cardiomyopathy. Different heuristics, including attribution importance,
forward attribution, HVGs, and random selection, are compared across varying prune ratios.

Figure 13: Prediction Accuracy of the input after reverse gene pruning (remove genes from high to low
importance) for three diseases: (a) Alzheimer’s Disease, (b) Breast Cancer, and (c) Dilated Cardiomyopathy.
Different heuristics, including attribution importance, forward attribution, HVGs, and random selection, are
compared across varying prune ratios.
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Figure 14: Prediction Accuracy of the baseline after reverse gene pruning (remove genes from high to low
importance) for three diseases: (a) Alzheimer’s Disease, (b) Breast Cancer, and (c) Dilated Cardiomyopathy.
Different heuristics, including attribution importance, forward attribution, HVGs, and random selection, are
compared across varying prune ratios.

A.7 AN ALTERNATIVE METHOD: EMPTY BASELINE

During experimentation, we also tested an alternative method that produces an alternative set of
relevant genes for each disease. This method selects an empty baseline E, defined as a model input
containing only phenotypic information without genotypic data.

Formally, let I = (pI , gI) denote an input sample, where pI represents the phenotype and gI the
genotype. The corresponding empty baseline for I is given by EI = (pI , e), where e is a sequence
of [PAD] tokens of size |gI |.
Unlike in Section 3.2, where attributions are computed based on the probability of the model pre-
dicting the disease, this method calculates attributions with respect to the model’s prediction of
the ground truth label. We expect this approach to yield better convergence, as the model’s high
accuracy suggests that its most probable predictions are strongly associated with high confidence
scores.

Let f ′ denote this modified prediction function. We define forward attribution as f ′(I, EI), and
backward attribution as f ′(B,EB) where B = (pB , gB) is a normal baseline cell as defined in
Section 3.2. The attribution importance using the empty baseline is then computed as:

Attribution Importanceempty =
f ′(I, EI)− f ′(B,EB)

2
.

The reason for the average difference is that we use the ground truth label for attribution calculation.
The interpretation of f ′(I, EI) remains the same as in Section 3.2, while genes with high attribution
in f ′(B,EB) can be interpreted as genes that the model associates with normal cells. Conversely,
genes with negative attributions are likely to indicate that the model does not associate them with
normal cells, suggesting that they may be potential disease biomarkers.

We choose the proposed method over this alternative because genes with low attribution in
f ′(B,EB) do not necessarily imply an association with the target disease. It is possible that they
are linked to other diseases, leading to misinterpretation. Additionally, the concept of biomarkers
is inherently associated with disease states rather than normal cells, making the interpretation of
attributions in f ′(B,EB) less meaningful in the context of disease marker identification.

Furthermore, using the proposed method ensures that attribution importance is derived directly from
the contrast between diseased and normal states, making it more robust for feature selection. While
the empty baseline method offers an interesting perspective, its reliance on normal cell associations
introduces ambiguity in determining disease-specific markers. As a result, we adopt the proposed
attribution method as a more reliable approach for gene selection.

Nevertheless, we find that the list of genes generated by this method is both promising and biologi-
cally reasonable. Please refer to Table 3 for the complete list of identified genes.
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Table 3: Top 30 genes for Alzheimer’s Disease, Breast Cancer, and Dilated Cardiomyopathy given by the
Empty Baseline Method.

Rank Alzheimer’s Disease Breast Cancer Dilated Cardiomyopathy

Attribution DEG Attribution DEG Attribution DEG

1 PCSK1N ZFHX3 ALOX15B LINC02510 NPPA RP11-
305P14.2

2 RP11-
701H24.9

KCNIP4 NPPA AC131056.5 LINC01115 SNHG14

3 CIART CSMD1 MTRNR2L6 DRD3 NPPB DISC2
4 SOX9 PTPRD RP11-46H11.3 RP4-739H11.3 SAA1 RP11-

115H11.1
5 IGF2BP1 SNHG14 RP11-

809O17.1
CHRNA1 H2AC20 ZFPM2-AS1

6 RP4-777O23.3 LINC00486 RNASE10 TOPAZ1 RP11-
380D23.1

POLR2J3

7 DDIT4 RP11-
358F13.1

S100A7 U95743.1 RP11-
701H24.9

RP11-
692P14.1

8 C7orf61 LCOR ZNF229 AC079135.1 AC116366.7 LINC01278
9 UCHL1 NRG3 CTA-212A2.4 AC144450.1 PARD6G-AS1 CHASERR

10 HSPB8 LRRTM4 RP11-76P2.4 UPK1A-AS1 RP11-
114H24.7

MIR100HG

11 RASD1 DPP10 CSNK2A3 C5orf67 OSGIN1 TPT1-AS1
12 ZBTB16 HNRNPU LINC02019 RP11-716H6.2 EDN1 DLEU1
13 ADM SPATA13 NECTIN3-

AS1
RP4-534N18.4 COL3A1 EIF1B-AS1

14 GPX3 ERBB4 MTRNR2L10 OTX1 AP001055.8 PPP3R1
15 CTA-

384D8.34
IL1RAPL1 MTRNR2L1 GACAT2 HSPA6 PSMA3-AS1

16 FXYD6 CCDC18-AS1 RP4-549L20.3 GDPD4 LINGO1 OIP5-AS1
17 LRRC37A RALYL OR4D9 RP11-61O1.1 RP11-

315A19.1
ZNF544

18 IL6 CCSER1 SLC28A3 ELSPBP1 KIF25 GARS1-DT
19 SAP30-DT NLGN1 U2AF1L5 B4GALNT2 RP11-343C2.9 CCDC18-AS1
20 MAS1 RP11-

452H21.1
IQCN RP11-

434D12.1
ST3GAL3 TSTD3

21 HSPB1 TRAF3IP2-
AS1

RP11-
861E21.2

AC006000.5 RP11-813I20.2 ATP5PO

22 LINC02381 IQCJ-SCHIP1 TRIM72 DAOA-AS1 MALAT1 HHATL
23 EFNA3 RP1-30E17.2 SST CTB-91J4.1 RP11-

219A15.1
IRF1-AS1

24 ZNNT1 GRIA2 FGF22 RP11-
425A23.1

CA4 DDX39B

25 HAP1 ABHD15-AS1 IL24 RP11-
431M7.2

GRXCR2 MIR3936HG

26 H2BC21 RYR2 PRANCR IGLV3-1 LVRN FXYD6
27 RP11-138A9.1 SNTG1 ADIPOQ AC068491.2 AC008746.3 NPHP3
28 RP11-

513M16.8
GARS1-DT RP11-577H5.5 RP11-90E5.1 LINC02641 ATXN7

29 OLIG1 NCAM2 XXbac-
BPG252P9.9

ERP27 RP11-
147H23.3

AC009120.6

30 HILPDA CNTN5 LINC02381 RP11-
388K12.2

RP11-
687M24.8

RP11-96H17.1
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