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Abstract

Missing values are a common problem that poses significant challenges to data1

analysis and machine learning. This problem necessitates the development of an2

effective imputation method to fill in the missing values accurately, thereby en-3

hancing the overall quality and utility of the datasets. Existing imputation meth-4

ods, however, fall short of considering the ‘missingness’ information in the data5

during initialization and modeling the entangled feature and sample correlations6

explicitly during the learning process, thus leading to inferior performance. We7

propose M3-Impute, which aims to leverage the missingness information and such8

correlations with novel masking schemes. M3-Impute first models the data as a9

bipartite graph and uses an off-the-shelf graph neural network, equipped with a10

refined initialization process, to learn node embeddings. They are then optimized11

through M3-Impute’s novel feature correlation unit (FCU) and sample correlation12

unit (SCU) that enable explicit consideration of feature and sample correlations13

for imputation. Experiment results on 15 benchmark datasets under three different14

missing patterns show the effectiveness of M3-Impute by achieving 13 best and 215

second-best MAE scores on average.16

1 Introduction17

Missing values in a dataset are a pervasive issue in real-world data analysis. They arise for various18

reasons, ranging from the limitations of data collection methods to errors during data transmission19

and storage. Since many data analysis algorithms cannot directly handle missing values, the most20

common way to deal with them is to discard the corresponding samples or features with missing21

values, which would compromise the quality of data analysis. To tackle this problem, missing value22

imputation algorithms have been proposed to preserve all samples and features by imputing missing23

values with estimated ones based on the observed values in the dataset, so that the dataset can be24

analyzed as a complete one without losing any information.25

The imputation of missing values usually requires modeling of correlations between different fea-26

tures and samples. Feature-wise correlations help predict missing values from other observed fea-27

tures in the same sample, while sample-wise correlations help predict them in one sample from other28

similar samples. It is thus important to jointly model the feature-wise and sample-wise correlations29

in the dataset. In addition, the prediction of missing values also largely depends on the ‘missingness’30

of the data, i.e., whether a certain feature value is observed or not in the dataset. Specifically, the31

missingness information directly determines which observed feature values can be used for imputa-32

tion. For example, even if two samples are closely related, it may be less effective to use them for33

imputation if they have missing values in exactly the same features. It still remains a challenging34

problem how to jointly model feature-wise and sample-wise correlations with such data missingness.35

Among existing methods for missing value imputation, statistical methods [4, 9, 14, 16, 18, 19, 22,36

28, 30, 31, 37, 43] extract data correlations with statistical models, which are generally not flexible37
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in handling mixed data types and struggles to scale up to large datasets. Learning-based imputation38

methods [10, 24, 27, 29, 33, 42, 50, 51, 53], instead, take advantage of the strong expressiveness39

and scalability of machine/deep learning algorithms to model data correlations. However, most of40

them are still built upon the raw tabular data structure as is, which greatly restricts them from jointly41

modeling the feature-wise and sample-wise correlations. In light of this, graph-based methods [52,42

54] have been proposed to model the raw data as a bipartite graph, with samples and features being43

two different types of nodes. A sample node and a feature node are connected if the feature value44

is observed in that sample. The missing values are then predicted as the inner product between45

the embeddings of the corresponding sample and feature nodes. However, this simple prediction46

does not consider the specific missingness information as mentioned above. For instance, the target47

feature to impute may have different correlations with features in the samples which have different48

kinds of missingness; however, the same feature-node embedding is still used for their imputation.49

A similar issue also arises for sample-node embeddings.50

In this work, we address these problems by proposing M3-Impute, a mask-guided representation51

learning method for missing value imputation. The key idea behind M3-Impute is to explicitly52

utilize the data-missingness information as model input with our proposed novel masking schemes53

so that it can accurately learn feature-wise and sample-wise correlations in the presence of different54

kinds of data missingness. M3-Impute first builds a bipartite graph from the data as used in [52].55

In the embedding initialization for graph representation learning, however, we not only use the the56

relationships between samples and their associated features but also the missingness information so57

as to initialize the embeddings of samples and features jointly and effectively. We then propose novel58

feature correlation unit (FCU) and sample correlation unit (SCU) in M3-Impute to explicitly take59

feature-wise and sample-wise correlations into account for imputation. FCU learns the correlations60

between the target missing feature and observed features within each sample, which are then further61

updated via a soft mask on the sample missingness information. SCU then computes the sample-62

wise correlations with another soft mask on the missingness information for each pair of samples63

that have values to impute. We then integrate the output embeddings of FCU and SCU to estimate64

the missing values in a dataset. We carry out extensive experiments on 15 open datasets. The results65

show that M3-Impute outperforms state-of-the-art methods in 13 of the 15 datasets on average under66

three different settings of missing value patterns, achieving up to 11.47% improvement in MAE67

compared to the second-best method.68

2 Related Work69

Statistical methods: These imputation approaches include joint modeling with expectation-70

maximization (EM) [9, 16, 22], k-nearest neighbors (kNN) [14, 43], and matrix completion [5,71

6, 18, 32]. However, joint modeling with EM and matrix completion often lack the flexibility to72

handle data with mixed modalities, while kNN faces scalability issues due to its high computational73

complexity. In contrast, M3-Impute is scalable and adaptive to different data distributions.74

Learning-based methods: Iterative imputation frameworks [1, 2, 15, 20, 23, 24, 35, 41, 44, 45],75

such as MICE [45] and HyperImpute [23], have been extensively studied. These iterative frame-76

works apply different imputation methods for each feature and iteratively estimate missing val-77

ues until convergence. In addition, for deep neural network learners, both generative mod-78

els [27, 29, 36, 50, 51, 53], such as GAIN [50] and MIWAE [29], and discriminative mod-79

els [10, 24, 48], such AimNet [48], have also been proposed. However, these methods are built80

upon raw tabular data structures, which fall short of capturing the complex correlations in features,81

samples, and their combination [54]. In contrast, M3-Impute is based on the bipartite graph model-82

ing of the data, which is more suitable for learning the data correlations for imputation.83

Graph neural network-based methods: GNN-based methods [40, 52, 54] are proposed to address84

the drawbacks mentioned above due to their effectiveness in modeling complex relations between85

entities. Among them, GRAPE [52] transforms tabular data into a bipartite graph where features are86

one type of node and samples are the other. A sample node is connected to a feature node only if the87

corresponding feature value is present. This transformation allows the imputation task to be framed88

as a link prediction problem, where the inner product of the learned node embeddings is computed89

as the predicted values. IGRM [54] further enhances the bipartite graph by explicitly introducing90

linkages between sample nodes to facilitate message propagation between samples. However, these91

methods do not effectively encode the missingness information of different samples and features into92
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Figure 1: Overview of the M3-Impute model.

the imputation process, which can impair their imputation accuracy. In contrast, M3-Impute enables93

explicit modeling of missingness information through novel masking schemes so that feature-wise94

and sample-wise correlations can be accurately captured in the imputation process.95

3 M3-Impute96

3.1 Overview97

We here provide an overview of M3-Impute to impute the missing value of feature f for a given98

sample s, as depicted in Figure 1. Initially, the data matrix with missing values is modeled as an99

undirected bipartite graph, and the missing value is imputed by predicting the edge weight êsf of100

its corresponding missing edge (Section 3.2). M3-Impute next employs a GNN model, such as101

GraphSAGE [17], on the bipartite graph to learn the embeddings of samples and features. These102

embeddings, along with the known masks of the data matrix (used to indicate which feature values103

are available in each sample), are then input into our novel feature correlation unit (FCU) and104

sample correlation unit (SCU), which shall be explained in Section 3.3 and Section 3.4, to obtain105

feature-wise and sample-wise correlations, respectively. Finally, M3-Impute takes the feature-wise106

and sample-wise correlations into a multi-layer perceptron (MLP) to predict the missing feature107

value êsf (Section 3.5). The whole process, including the embedding generation, is trained in an108

end-to-end manner.109

3.2 Initialization Unit110

Let A ∈ Rn×m be an n × m matrix that consists of n data samples and m features, where Aij111

denotes the j-th feature value of the i-th data sample. We introduce an n × m mask matrix M ∈112

{0, 1}n×m for A to indicate that the value of Aij is observed when Mij = 1. In other words, the113

goal of imputation here is to predict the missing feature values Aij for i and j such that Mij = 0.114

We define the masked data matrix D to be D = A⊙M, where ⊙ is the Hadamard product, i.e., the115

element-wise multiplication of two matrices.116

As used in recent studies [52, 54], we model the masked data matrix D as a bipartite graph and tackle117

the missing value imputation problem as a link prediction task on the bipartite graph. Specifically,118

D is modeled as an undirected bipartite graph G = (S ∪ F , E), where S = {s1, s2, . . . , sn} is the119

set of ‘sample’ nodes and F = {f1, f2, . . . , fm} is the set of ‘feature’ nodes. Also, E is the set120

of edges that only exist between sample node s and feature node f when Dsf ̸= 0, and each edge121

(s, f) ∈ E is associated with edge weight esf , which is given by esf = Dsf . Then, the missing122

value imputation problem becomes, for any missing entries in D (where Dsf = 0), to predict their123

corresponding edge weights by developing a learnable mapping F (·), i.e.,124

êsf = F (G, (s, f) ̸∈ E). (1)
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The recent studies that use the bipartite graph modeling [52, 54] initialize all sample node embed-125

dings as all-one vectors and feature node embeddings as one-hot vectors, which have a value 1 in the126

positions representing their respective features and 0’s elsewhere. We observe, however, that such an127

initialization does not effectively utilize the information from the masked data matrix, which leads128

to inferior imputation accuracy, as shall be demonstrated in Section 4.3. Thus, in M3-Impute, we129

propose to initialize each sample node embedding based on its associated (initial) feature embed-130

dings instead of initializing them separately. While the feature embeddings are randomly initialized,131

the sample node embeddings are initialized in a way that reflects the embeddings of the features132

whose values are available in their corresponding samples.133

Let h0
f be the initial embedding of feature f , which is a randomly initialized d-dimensional vector,134

and define H0
F = [h0

f1
h0
f2
. . .h0

fm
] ∈ Rd×m. Also, let ds ∈ Rm be the s-th column vector of D⊤,135

which is a vector of the feature values of sample s, and let ms ∈ Rm be its corresponding mask136

vector, i.e., ms = cols(M⊤), where cols(·) denotes the s-th column vector of the matrix. We then137

initialize the embedding h0
s of each sample node s as follows:138

h0
s = ϕ

(
H0

F

[
ds + ϵ(1−ms)

])
, (2)

where 1 ∈ Rm is an all-one vector, and ϕ(·) is an MLP. Note that the term ds+ ϵ(1−ms) indicates139

a vector that consists of observable feature values of s and some small positive values ϵ in the places140

where the feature values are unavailable (masked out).141

3.3 Feature Correlation Unit142

To improve the accuracy of missing value imputation, we aim to fully exploit feature correlations143

which often appear in the datasets. While the feature correlations are naturally captured by GNNs,144

we observe that there is still room for improvement. We propose FCU as an integral component of145

M3-Impute to fully exploit the feature correlations.146

To impute the missing value of feature f for a given sample s, FCU begins by computing the147

feature ‘context’ vector of sample s in the embedding space that reflects the correlations between148

the target missing feature f and observed features. Let hf ∈ Rd be the learned embedding vector149

of feature f from the GNN, and let HF be the d ×m matrix that consists of all the learned feature150

embedding vectors. We first obtain dot-product similarities between feature f and all the features151

in the embedding space, i.e., H⊤
Fhf . We then mask out the similarity values with respect to non-152

observed features in sample s. Here, instead of applying the mask vector ms of sample s directly,153

we use a learnable ‘soft’ mask vector, denoted by m′
s, which is defined to be m′

s = σ1(ms) ∈ Rm,154

where σ1(·) is an MLP with the GELU activation function [21]. In other words, we obtain feature-155

wise similarities with respect to sample s, denoted by rfs , as follows:156

rfs = σ2

(
(H⊤

Fhf )⊙m′
s

)
∈ Rd, (3)

where σ2(·) denotes another MLP with the GELU activation function. FCU next obtains the157

Hadamard product between the learned embedding vector of sample s, hs, and the feature-wise158

similarities with respect to sample s, rfs , to learn their joint representations in a multiplicative man-159

ner. Specifically, FCU obtains the feature context vector of sample s, denoted by cfs , as follows:160

cfs = σ3

(
hs ⊙ rfs

)
∈ Rd, (4)

where σ3(·) is also an MLP with the GELU activation function. That is, FCU fuses the represen-161

tation vector of s and the vector that has embedding similarity values between the target feature f162

and the available features in s through the effective use of the soft mask m′
s. From (3) and (4), the163

operations of FCU can be written as164

cfs = FCU(hs,ms,HF ) = σ3

(
hs ⊙ σ2

(
(H⊤

Fhf )⊙ σ1(ms)
))

. (5)

3.4 Sample Correlation Unit165

To measure similarities between s and other samples, a common approach would be to use the166

dot product or cosine similarity between their embedding vectors. This approach, however, fails167

to take into account the observability or availability of each feature in a sample. It also does168
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not capture the fact that different observed features are of different importance to the target fea-169

ture to impute when it comes to measuring the similarities. We introduce SCU as another inte-170

gral component of M3-Impute to compute the sample ‘context’ vector of sample s by incorpo-171

rating the embedding vectors of its similar samples as well as different weights of observed fea-172

tures. SCU works based on the two novel masking schemes, which shall be explained shortly.173

SCU

FCU FCU

dot product

weighted sum

MLP

masking

Figure 2: SCU.

174

Suppose we are to impute the missing value of feature f for a given sample175

s. SCU aims to leverage the information from the samples that are similar176

to s. As a first step to this end, we create a subset of samples P ⊂S that177

are similar to s. Specifically, we randomly choose and put a sample into178

P with probability that is proportional to the cosine similarity between s179

and the sample. This operation is repeated without replacement until P180

reaches a given size.181

Mutual Sample Masking: Given a subset of samples P that include s,182

we first compute the pairwise similarities between s and other samples in183

the subset P . While they are computed in a similar way to FCU, we only184

consider the commonly observed features (or the common ones that have185

feature values) in both s and its peer p ∈ P \ {s}, to calculate their pair-186

wise similarity in the sense that the missing value of feature f is inferred.187

Specifically, we compute the pairwise similarity between s and p∈P\{s},188

which is denoted by sim(s, p | f), as follows:189

sim(s, p | f) = FCU(hs,mp,Hf ) · FCU(hp,ms,Hf ) ∈ R, (6)
where hs and hp are the learned embedding vectors of samples s and p from the GNN, respectively,190

and ms and mp are their respective mask vectors. Note that the multiplication in the RHS of (6) is191

the dot product.192

Irrelevant Feature Masking: After we obtain the pairwise similarities between s and other samples193

in P , it would be natural to consider a weighted sum of their corresponding embedding vectors, i.e.,194 ∑
p∈P\{s} sim(s, p | f) hp, in imputing the value of the target feature f . However, we observe that195

hp contains the information from the features whose values are available in p as well as possibly196

other features as it is learned via the so-called neighborhood aggregation mechanism that is central197

to GNNs, but some of the features may be irrelevant in inferring the value of feature f . Thus, instead198

of using {hp} directly, we introduce a d-dimensional mask vector rfp for hp, which is to mask out199

potentially irrelevant feature information in hp, when it comes to imputing the value of feature f .200

Specifically, it is defined by201

rfp = σ4 ([mp;mf ]) ∈ Rd, (7)
where mf is an m-dimensional one-hot vector that has a value 1 in the place of feature f and 0’s202

elsewhere, [· ; ·] denotes the vector concatenation operation, and σ4(·) is an MLP with the GELU203

activation function. Note that the rationale behind the design of rfp is to embed the information on204

the features whose values are present in p as well as the information on the target feature f to impute.205

The mask rfp is then applied to hp to obtain the masked embedding vector of p as follows:206

ϕp(hp, r
f
p) = σ5

(
hp ⊙ rfp

)
∈ Rd, (8)

where σ5(·) is also an MLP with the GELU activation function. Once we have the masked embed-207

ding vectors of samples (excluding s) in P , we finally compute the sample context vector of sample208

s, denoted by zfs , which is a weighted sum of the masked embedding vectors with weights being the209

pairwise similarity values, i.e.,210

zfs = σ6

 ∑
p∈P\{s}

sim(s, p | f) ϕp(hp, r
f
p)

 ∈ Rd, (9)

where σ6(·) is again an MLP with the GELU activation function. From (6)–(9), the operations of211

SCU can be written as212

zfs = SCU(HP ,MP ,HF ) = σ6

 ∑
p∈P\{s}

sim(s, p | f) σ5 (hp ⊙ σ4 ([mp;mf ]))

 , (10)

where HP = {hp, p ∈ P} and MP = {mp, p ∈ P}.213
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Algorithm 1 Forward computation of M3-Impute to impute the value of feature f for sample s.

1: Input: Bipartite graph G, initial feature node embeddings H0
F , GNN model (e.g., GraphSAGE) GNN(·),

known mask matrix M, and a subset of samples P ⊂ S .
2: Output: Predicted missing feature value êsf .
3: Obtain initial sample node embeddings H0

S according to Equation (2).
4: HS ,HF = GNN(H0

S ,H
0
F ,G). ▷ Perform graph representation learning

5: cfs = FCU(hs,ms,HF ).
6: zfs = SCU(HP ,MP ,HF ).
7: Predict the missing feature value êsf using Equation (11).

3.5 Imputation214

For a given sample s, to impute the missing value of feature f , M3-Impute obtains its feature context215

vector cfs and sample context vector zfs through FCU and SCU, respectively, which are then used216

for imputation. Specifically, it is done by predicting the corresponding edge weight êsf as follows:217

êsf = ϕα

(
(1− α)cfs + αzfs

)
, (11)

where ϕα(·) denotes an MLP with a non-linear activation function (i.e., ReLU for continuous values218

and softmax for discrete ones), and α is a learnable scalar parameter. This scalar parameter α is219

introduced to strike a balance between leveraging feature-wise correlation and sample-wise correla-220

tion. It is necessary because the quality of zfs relies on the quality of the samples chosen in P , so221

overly relying on zfs would backfire if their quality is not as desired. To address this problem, instead222

of employing a fixed weight α, we make α learnable and adaptive in determining the weights for223

cfs and zfs . Note that this kind of learnable parameter approach has been widely adopted in natural224

language processing [26, 34, 38, 46] and computer vision [8, 55, 56], showing superior performance225

to its fixed counterpart. In M3-Impute, the scalar parameter α is learned based on the similarity226

values between s and its peer samples p ∈ P \ {s} as follows:227

α = ϕγ

(
∥

p∈P\{s}

sim (s, p | f)
)
, (12)

where ∥ represents the concatenation operation, and ϕγ(·) is an MLP with the activation function228

γ(x) = 1 − 1 / e|x|. The overall operation of M3-Impute is summarized in Algorithm 1. To learn229

network parameters, we use cross-entropy loss and mean square error loss for imputing discrete and230

continuous feature values, respectively.231

4 Experiments232

4.1 Experiment Setup233

Datasets: We conduct experiments on 15 open datasets. These real-world datasets consist of mixed234

data types with both continuous and discrete values and cover different domains including civil235

engineering (CONCRETE, ENERGY), physics and chemistry (YACHT), thermal dynamics (NAVAL),236

etc. Since the datasets are fully observed, we introduce missing values by applying a randomly237

generated mask to the data matrix. Specifically, as used in prior studies [23, 24], we apply three238

masking generation schemes, namely missing completely at random (MCAR), missing at random239

(MAR), and missing not at random (MNAR).1 We use MCAR with a missing ratio of 30%, unless240

otherwise specified. We follow the preprocessing steps adopted in [52, 54] to scale feature values241

to [0, 1] with a MinMax scaler [25]. Due to the space limit, we below present the results of eight242

datasets that are used in Grape [52] and report the other results in Appendix.243

Baseline models: M3-Impute is compared against popular and state-of-the-art imputation methods,244

including statistical methods, deep generative methods, and graph-based methods listed as follows:245

MEAN: It imputes the missing value êsf as the mean of observed values in feature f from all246

the samples. K-nearest neighbors (kNN) [43]: It imputes the missing value êsf using the kNNs247

that have observed values in feature f with weights that are based on the Euclidean distance to248

sample s. Multivariate imputation by chained equations (Mice) [45]: This method runs multiple249

regressions where each missing value is modeled upon the observed non-missing values. Iterative250

1More details about the datasets and mask generation for missing values can be found in Appendix.

6



Table 1: Imputation accuracy in MAE. MAE scores are enlarged by 10 times.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Mean 2.09 0.98 1.79 1.85 3.10 2.31 2.50 1.68
Svd [18] 2.46 0.92 1.94 1.53 2.24 0.50 3.67 2.33
Spectral [30] 2.64 0.91 1.98 1.46 2.26 0.41 2.80 2.13
Mice [45] 1.68 0.77 1.34 1.16 1.53 0.20 2.50 1.16
kNN [43] 1.67 0.72 1.16 0.95 1.81 0.10 2.77 1.38
Gain [50] 2.26 0.86 1.67 1.23 1.99 0.46 2.70 1.31
Miwae [29] 4.68 1.00 1.81 3.81 2.79 2.37 2.57 1.74
Grape [52] 1.46 0.60 0.75 0.64 1.36 0.07 2.50 1.00
Miracle [24] 42.97 1.13 1.71 42.23 41.43 0.17 2.49 1.15
HyperImpute [23] 1.76 0.67 0.84 0.82 1.32 0.04 2.58 1.06

M3-Impute 1.33 0.60 0.71 0.60 1.32 0.06 2.50 0.99

SVD (Svd) [18]: It imputes missing values by solving a matrix completion problem with iterative251

low-rank singular value decomposition. Spectral regularization algorithm (Spectral) [30]: This252

matrix completion algorithm uses the nuclear norm as a regularizer and imputes missing values with253

iterative soft-thresholded SVD. Miwae [29]: It works based on an autoencoder generative model254

trained to maximize a potentially tight lower bound of the log-likelihood of the observed data and255

Monte Carlo techniques for imputation. Miracle [24]: It uses the imputation results from naive256

methods such as MEAN and refines them iteratively by learning a missingness graph (m-graph) and257

regularizing an imputation function. Gain [50]: This method trains a data imputation generator with258

a generalized generative adversarial network in which the discriminator aims to distinguish between259

real and imputed values. Grape [52]: It models the data as a bipartite graph and imputes missing260

values by predicting the weights of the missing edges, each of which is done based on the inner261

product between the embeddings of its corresponding sample and feature nodes. HyperImpute [23]:262

HyperImpute is a framework that conducts an extensive search among a set of imputation methods,263

selecting the optimal imputation method with fine-tuned parameters for each feature in the dataset.264

Model configurations: Parameters of M3-Impute are updated by the Adam optimizer with a learn-265

ing rate of 0.001 for 40,000 epochs. For graph representation learning, we use a variant of Graph-266

SAGE [17], which not only learns node embeddings but also edge embeddings via the neighborhood267

aggregation mechanism, as similarly used in [52]. We consider its three-layer GNN model. We em-268

ploy mean-pooling as the aggregation function and use ReLU as the activation function for the GNN269

layers. We set the embedding dimension d to 128. It is known that randomly dropping out a subset270

of observable edges during training improves the model’s generalization ability. We also leverage271

the observation and randomly drop 50% of observable edges during training. For each experiment,272

we conduct five runs with different random seeds and report the average results.273

4.2 Overall Performance274

We first compare the feature imputation performance of M3-Impute with popular and state-of-the-275

art imputation methods. As shown in Table 1, M3-Impute achieves the lowest imputation MAE276

for six out of the eight examined datasets and the second-best MAE scores in the other two, which277

validates the effectiveness of M3-Impute. For KIN8NM dataset, M3-Impute underperforms Miracle.278

It is mainly because each feature in KIN8NM is independent of the others, so none of the observed279

features can help impute missing feature values. For NAVAL dataset, the only model that outperforms280

M3-Impute is HyperImpute [23]. In the NAVAL dataset, nearly every feature exhibits a strong linear281

correlation with the other features, i.e., every pair of features has correlation coefficient close to282

one. This allows HyperImpute to readily select a linear model from its model pool for each feature283

to impute. Nonetheless, M3-Impute exhibits overall superior performance to the baselines as it284

can be well adapted to each dataset that possesses different amounts of correlations over features285

and samples. In other words, M3-Impute benefits from explicitly incorporating feature-wise and286

sample-wise correlations together with our carefully designed mask schemes. Furthermore, we287

evaluate the performance of M3-Impute under MAR and MNAR settings. We observe that M3-288

Impute consistently outperforms all the baselines under all datasets and achieves a larger margin in289

the improvement compared to the case with MCAR setting. This implies that M3-Impute is also290

effective in handling different patterns of missing values in the input data. Comprehensive results291

are provided in Appendix.292
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Table 2: Ablation study. M3-Uniform stands for M3-Impute with the uniform sampling strategy.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

HyperImpute 1.76 ± .03 0.67 ± .01 0.84 ± .02 0.82 ± .01 1.32 ± .02 0.04 ± .00 2.58 ± .05 1.06 ± .01
Grape 1.46 ± .01 0.60 ± .00 0.75 ± .01 0.64 ± .01 1.36 ± .01 0.07 ± .00 2.50 ± .00 1.00 ± .00

Architecture

Init Only 1.43 ± .01 0.60 ± .00 0.74 ± .00 0.63 ± .01 1.35 ± .01 0.06 ± .00 2.50 ± .00 0.99 ± .00
Init+FCU 1.35 ± .01 0.61 ± .00 0.72 ± .03 0.61 ± .02 1.32 ± .00 0.07 ± .01 2.50 ± .00 0.99 ± .00
Init+SCU 1.37 ± .01 0.60 ± .00 0.73 ± .00 0.63 ± .01 1.30 ± .00 0.09 ± .01 2.50 ± .00 1.00 ± .00
M3-Impute 1.33 ± .04 0.60 ± .00 0.71 ± .01 0.60 ± .00 1.32 ± .01 0.06 ± .00 2.50 ± .00 0.99 ± .00

Sampling Strategy

M3-Uniform 1.34 ± .01 0.60 ± .00 0.73 ± .01 0.61 ± .00 1.31 ± .00 0.06 ± .00 2.50 ± .00 0.99 ± .00

4.3 Ablation Study293

To study the effectiveness of three integral components of M3-Impute, we consider three variants of294

M3-Impute, each with a subset of the components, namely initialization only (Init Only), initializa-295

tion + FCU (Init + FCU), and initialization + SCU (Init + SCU). The performance of these variants296

are evaluated against the top-performing imputation baselines such as Grape and HyperImpute. As297

shown in Table 2, the three variants derived from M3-Impute achieve lower MAE values than both298

baselines in most datasets, demonstrating the effectiveness of our novel components in M3-Impute.299

Specifically, for initialization only, the key difference between M3-Impute and Grape lies in our300

refined initialization process of feature-node and sample-node embeddings. The reduced MAE val-301

ues observed by the Init Only variant demonstrate that our proposed initialization process is more302

effective in utilizing information between samples and their associated features, including missing303

ones, as compared to the basic initialization used in [52]. In addition, we observe that when FCU or304

SCU is incorporated, MAE values are further reduced for most datasets. This validates that explicitly305

modeling feature-wise or sample-wise correlations through our novel masking schemes can improve306

imputation accuracy. When all the three components are combined together as in M3-Impute, they307

work synergistically to lower MAE values, validating the efficacy of explicit consideration of both308

sample-wise and feature-wise correlations (in addition to the refined initialization process) for miss-309

ing data imputation.310

4.4 Robustness311

Missing ratio: In practice, datasets may possess different missing ratios. To validate the model’s312

robustness under such circumstances, we evaluate the performance of M3-Impute and other baseline313

models with varying missing ratios, i.e., 0.1, 0.3, 0.5, and 0.7. Figure 3 shows their performance. We314

use the MAE of HyperImpute (HI) as the reference performance and offset the performance of each315

model by MAEx − MAEHI , where x represents the considered model. For clarity, we here only316

report the results of four top-performing models. As shown in Figure 3, M3-Impute outperforms317

other baseline models for almost all the cases, especially under YACHT, CONCRETE, ENERGY,318

and HOUSING datasets. It is worth noting that modeling feature correlations in these datasets is319

particularly challenging due to the presence of considerable amounts of weakly correlated features,320

along with a few strongly correlated ones. Nonetheless, FCU and SCU in M3-Impute were able321

to better capture such correlations with our efficient masking schemes, thereby resulting in a large322

improvement in imputation accuracy. In addition, for KIN8NM dataset, M3-Impute ties with the323

second-best model, Grape. As mentioned in Section 4.2, each feature in KIN8NM is independent324

of the others, so none of the observed features can help impute missing feature values. For NAVAL325

dataset, where each feature strongly correlates with the others, M3-Impute surpasses Grape but falls326

short of HyperImpute, due to the same reason as discussed above. Overall, M3-Impute is robust to327

various missing ratios. Comprehensive results for all the baseline models can be found in Appendix.328

Sampling strategy in SCU: While SCU uses a sampling strategy based on pairwise cosine similari-329

ties to construct a subset of samples P , the simplest sampling strategy to build P would be to choose330

samples uniformly at random without replacement (M3-Uniform). Intuitively, this approach cannot331

identify similar peer samples accurately and thus would lead to inferior performance. Nonetheless,332

as shown in Table 2, even with this naive uniform sampling strategy, M3-Uniform still outperforms333

the two leading imputation baselines.334
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Figure 3: Model performance vs. missing ratios. MAE scores are offset by HyperImpute [23].

Size of P in SCU: Intuitively, neither an excessively small nor overly large size of the sample subset335

P is optimal. Too few peer samples leave SCU with insufficient information to learn sample-wise336

correlations, while too many peer samples may include quite a few dissimilar ones, which may337

introduce significant noise to the computation of SCU and thus degrade the performance. Table 3338

shows the performance of M3-Impute with varying numbers of peer samples. In general, the trends339

agree with our intuition. Although the optimal size varies across different datasets, we observe that340

having the number of peer samples to be 5 to 10 achieves the overall best imputation accuracy.341

Table 3: MAE scores for varying peer-sample size (|P|−1) and different values of ϵ.

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Peer = 1 1.34 ± .00 0.60 ± .00 0.73 ± .00 0.61 ± .01 1.32 ± .00 0.06 ± .00 2.5 ± .00 0.99± .00
Peer = 2 1.35 ± .01 0.61 ± .00 0.72 ± .01 0.59 ± .01 1.32 ± .00 0.06 ± .00 2.5 ± .00 1.00 ± .00
Peer = 5 1.33 ± .04 0.60 ± .00 0.71 ± .01 0.60 ± .00 1.32 ± .01 0.06 ± .00 2.5 ± .00 0.99± .00
Peer = 10 1.33 ± .01 0.61 ± .00 0.71 ± .01 0.60 ± .01 1.31 ± .01 0.07 ± .00 2.5 ± .00 1.00 ± .00
Peer = 15 1.34 ± .00 0.61 ± .00 0.72 ± .01 0.60 ± .00 1.31 ± .00 0.07 ± .00 2.5 ± .00 0.99 ± .00
Peer = 20 1.34 ± .04 0.61 ± .00 0.72 ± .01 0.60 ± .01 1.31 ± .00 0.07 ± .00 2.5 ± .00 1.00 ± .00

ϵ = 0 1.34 ± .01 0.61 ± .00 0.71 ± .01 0.60 ± .01 1.30 ± .00 0.06 ± .00 2.50 ± .00 0.99 ± .00
ϵ = 10−5 1.31 ± .01 0.61 ± .00 0.71 ± .00 0.60 ± .01 1.30 ± .00 0.07 ± .00 2.50 ± .00 1.00 ± .00
ϵ = 10−4 1.33 ± .04 0.60 ± .00 0.71 ± .01 0.60 ± .00 1.30 ± .00 0.06 ± .00 2.50 ± .00 0.99 ± .00
ϵ = 10−3 1.33 ± .04 0.60 ± .00 0.72 ± .01 0.60 ± .01 1.30 ± .00 0.07 ± .01 2.50 ± .00 0.99 ± .00

Initialization parameter ϵ: We also evaluate whether a non-zero value of ϵ in the initialization342

process of M3-Impute indeed lead to an improvement in imputation accuracy. As shown in Table 3,343

for YACHT and WINE datasets, the introduction of a non-zero value of ϵ results in lower MAE scores.344

Another insight that we have from Table 3 is that ϵ should not be set too large, as a large value of ϵ345

might impose incorrect weights to the features with missing values. We observe that it is an overall346

good choice to set ϵ to 1×10−5 or 1×10−4.347

5 Conclusion348

We have presented M3-Impute, a mask-guided representation learning for missing data imputation.349

M3-Impute improved the initialization process by considering the relationships between samples and350

their associated features (including missing ones) even in initializing the embeddings. In addition,351

for more effective representation learning, we introduced two novel components in M3-Impute –352

FCU and SCU, which learn feature-wise and sample-wise correlations, respectively, to capture data353

correlations explicitly and leverage them for imputation. Extensive experiment results demonstrate354

the effectiveness of M3-Impute. M3-Impute achieves overall superior performance to popular and355

state-of-the-art methods on 15 open datasets, with 13 best and two second-best MAE scores on356

average under three different settings of missing value patterns.357
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A Appendix528

Table 4: Overview of Datasets.
Concrete Housing Wine Yacht Energy Kin8nm Naval Power

# Samples 1030 506 1599 308 768 8192 11934 9568
# Features 8 13 11 6 8 8 16 4
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Figure 4: Pearson correlation coefficients of UCI datasets.

In this section, we discuss further experimental details. We first give an overview of the dataset529

details in Section A.1, followed by the implementation of different missing types and present corre-530

sponding imputation performance under MAR and MNAR settings (Section A.2). We then provide531

the comprehensive results of the robustness experiments (Section A.3). Finally, we extend our eval-532

uation of M3-Impute to seven additional datasets (Section A.4) and elaborate on the computational533

resources in Section A.5.534

A.1 Dataset Details535

Table 4 presents the statistics of the eight UCI datasets [11] used throughout Section 4. Figure 4 il-536

lustrates the Pearson correlation coefficients among the features. In the Kin8nm dataset, all features537

are linearly independent, whereas the Naval dataset exhibits strong correlations among its features.538

Under the MCAR setting, M3-Impute performs comparably to the baseline imputation methods on539

these two datasets (shown in Table 1). However, in real-world scenarios, features are not always540

entirely independent or strongly correlated. In the other six datasets, we observe a mix of weakly541

correlated features along with a few that are strongly correlated. In these cases, M3-Impute consis-542

tently outperforms all baseline methods.543

A.2 Detailed Results of Different Missing Types544

We adopt the same procedure outlined in [52, 54] to generate missing values under different settings.545

• MCAR: A n×m matrix is sampled from a uniform distribution. Positions with values no greater546

than the ratio of missingness are viewed as missing and the remaining positions are observable.547

• MAR: First, a subset of features is randomly selected to be fully observed. Then, these remaining548

features have values removed according to a logistic model with random weights, using the fully549

observed feature values as input. The desired rate of missingness is achieved by adjusting the bias550

term.551

• MNAR: This is done by first apply the MAR mechanism above. Then, the remaining feature552

values are masked out by the MCAR mechanism.553
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Table 5: MAE scores under MAR setting.
Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Mean 2.20 1.09 1.79 2.02 3.26 2.75 2.49 1.81
Svd [18] 2.64 1.04 2.32 1.71 3.68 0.52 2.69 2.37
Spectral [30] 3.06 0.91 2.12 1.84 2.88 1.29 3.56 3.37
Mice [45] 1.79 0.79 1.27 1.22 1.12 0.27 2.51 1.16
Knn [43] 1.69 0.66 0.89 0.89 1.61 0.07 2.94 1.11
Gain [50] 2.07 1.13 1.87 0.92 2.26 0.91 2.93 1.42
Miwae [29] 3.47 1.04 1.87 3.79 3.82 3.78 2.57 2.07
Grape [52] 1.20 0.60 0.77 0.66 1.05 0.07 2.49 1.06
Miracle [24] 44.33 1.70 3.08 48.63 38.20 48.77 2.82 0.86
HyperImpute [23] 2.06 0.78 1.30 1.05 1.11 1.01 3.07 1.07

M3-Impute 1.09 0.60 0.77 0.60 0.98 0.07 2.49 1.01

Table 6: MAE scores under MNAR setting.
Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Mean 2.18 1.04 1.80 1.95 3.17 2.60 2.49 1.76
Svd [18] 2.61 1.06 2.24 1.58 3.55 0.53 2.69 2.27
Spectral [30] 2.75 1.01 1.86 1.60 2.50 1.35 3.34 3.14
Mice [45] 1.91 0.77 1.37 1.22 1.57 0.21 2.50 1.08
Knn [43] 1.92 0.75 1.15 0.95 1.96 0.08 3.06 1.65
Gain [50] 2.34 0.92 1.80 1.08 1.92 1.12 2.78 1.22
Miwae [29] 3.77 1.02 1.86 3.80 2.74 3.79 2.58 1.93
Grape [52] 1.23 0.61 0.73 0.61 1.16 0.08 2.46 1.02
Miracle [24] 43.57 1.03 2.15 46.17 39.37 46.50 2.64 1.06
HyperImpute [23] 1.95 0.72 0.88 0.85 1.19 0.85 2.71 1.09

M3-Impute 1.15 0.60 0.68 0.54 1.09 0.08 2.46 1.00

In addition to the results for MCAR setting presented in Table 4.2, Table 5 and Table 6 present the554

MAE scores under MAR and MNAR settings, respectively. M3-Impute consistently outperforms all555

baseline methods in both scenarios.556

A.3 Robustness against Various Ratios of Missingness557

Table 8 presents the performance of various imputation methods across different ratios of missing-558

ness. M3-Impute achieves the lowest MAE scores in most cases and the second-best MAE scores in559

the remaining ones.560

A.4 Further Evaluation on Seven Additional Datasets561

Table 7: Overview of seven additional datasets.
airfoil blood wine-white ionosphere breast iris diabetes

# Samples 1503 748 4899 351 569 150 442
# Features 6 4 12 34 30 4 10

In this experiment, we further evaluate M3-Impute on seven datasets: Airfoil [3], Blood [49], Wine-562

White [7], Ionosphere [39], Breast Cancer [47], Iris [13], and Diabetes [12]. An overview of dataset563

details is provided in Table 7, and feature correlations are illustrated in Figure 5. We simulate564

missingness in data under MCAR, MAR, and MNAR conditions, each with a missing ratio of 0.3.565

Results are demonstrated in Table 9. Across all three types of missingness, M3-Impute achieves five566

best and two second-best MAE scores on average.567
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Figure 5: Pearson correlation coefficient of 7 extra datasets.

A.5 Computational Resources568

All our experiments are conducted on a GPU server running Ubuntu 22.04, with PyTorch 2.1.0569

and CUDA 12.1. We train and test M3-Impute using a single NVIDIA A100 80G GPU. With the570

experimental setup described in Section 4.1, the total runtime (including both training and testing)571

for each of the five repeated runs ranged from 1 to 5 hours, depending on the scale of the datasets.572
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Table 8: MAE scores across different levels of missingness.
Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 10%

Mean 2.22 ± 0.05 0.96 ± 0.02 1.81 ± 0.02 1.84 ± 0.01 3.09 ± 0.07 2.30 ± 0.01 2.50 ± 0.01 1.68 ± 0.00
Svd 1.92 ± 0.16 0.88 ± 0.03 2.04 ± 0.04 1.69 ± 0.11 1.75 ± 0.10 0.34 ± 0.00 5.04 ± 0.06 2.26 ± 0.04
Spectral 2.24 ± 0.12 0.76 ± 0.02 1.84 ± 0.05 1.28 ± 0.04 1.76 ± 0.08 0.38 ± 0.01 2.71 ± 0.02 1.77 ± 0.02
Mice 1.38 ± 0.13 0.62 ± 0.01 0.97 ± 0.04 0.98 ± 0.04 1.28 ± 0.07 0.13 ± 0.00 2.50 ± 0.01 1.01 ± 0.01
Knn 1.40 ± 0.17 0.49 ± 0.01 0.58 ± 0.05 0.74 ± 0.04 1.42 ± 0.05 0.03 ± 0.00 2.53 ± 0.01 1.26 ± 0.00
Gain 2.30 ± 0.04 0.83 ± 0.04 1.62 ± 0.05 1.16 ± 0.05 1.95 ± 0.05 0.45 ± 0.01 2.74 ± 0.02 1.22 ± 0.00
Miwae 4.57 ± 0.09 0.98 ± 0.01 1.85 ± 0.03 3.78 ± 0.10 2.77 ± 0.16 2.36 ± 0.00 2.56 ± 0.00 1.74 ± 0.00
Grape 1.00 ± 0.00 0.48 ± 0.00 0.45 ± 0.01 0.49 ± 0.00 1.19 ± 0.00 0.05 ± 0.00 2.49 ± 0.00 0.85 ± 0.03
Miracle 44.77 ± 0.05 0.97 ± 0.19 1.91 ± 0.07 43.90 ± 0.33 41.43 ± 0.34 0.12 ± 0.00 2.48 ± 0.00 1.07 ± 0.05
HyperImpute 1.50 ± 0.11 0.52 ± 0.00 0.51 ± 0.04 0.75 ± 0.04 1.18 ± 0.05 0.06 ± 0.04 2.50 ± 0.00 0.84± 0.00

M3-Impute 0.96 ± 0.00 0.47 ± 0.01 0.41 ± 0.01 0.45 ± 0.00 1.15 ± 0.00 0.05 ± 0.00 2.49 ± 0.00 0.84 ± 0.01

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 30%

Mean 2.09 ± 0.04 0.98 ± 0.01 1.79 ± 0.01 1.85 ± 0.00 3.10 ± 0.04 2.31 ± 0.00 2.50 ± 0.00 1.68 ± 0.00
Svd 2.46 ± 0.16 0.92 ± 0.01 1.94 ± 0.02 1.53 ± 0.03 2.24 ± 0.06 0.50 ± 0.00 3.67 ± 0.06 2.33 ± 0.01
Spectral 2.64 ± 0.11 0.91 ± 0.01 1.98 ± 0.04 1.46 ± 0.03 2.26 ± 0.09 0.41 ± 0.00 2.80 ± 0.01 2.13 ± 0.01
Mice 1.68 ± 0.05 0.77 ± 0.00 1.34 ± 0.01 1.16 ± 0.03 1.53 ± 0.04 0.20 ± 0.01 2.50 ± 0.00 1.16 ± 0.01
Knn 1.67 ± 0.02 0.72 ± 0.00 1.16 ± 0.03 0.95 ± 0.01 1.81 ± 0.03 0.10 ± 0.00 2.77 ± 0.01 1.38 ± 0.01
Gain 2.26 ± 0.11 0.86 ± 0.00 1.67 ± 0.03 1.23 ± 0.02 1.99 ± 0.03 0.46 ± 0.02 2.70 ± 0.00 1.31 ± 0.05
Miwae 4.68 ± 0.16 1.00 ± 0.00 1.81 ± 0.01 3.81 ± 0.04 2.79 ± 0.04 2.37 ± 0.00 2.57 ± 0.00 1.74 ± 0.00
Grape 1.46 ± 0.01 0.60 ± 0.00 0.75 ± 0.01 0.64 ± 0.01 1.36 ± 0.01 0.07 ± 0.00 2.50 ± 0.00 1.00 ± 0.00
Miracle 42.97 ± 0.53 1.13 ± 0.00 1.71 ± 0.05 42.23 ± 0.31 41.43 ± 0.34 0.17 ± 0.00 2.49 ± 0.00 1.15 ± 0.01
HyperImpute 1.76 ± 0.03 0.67 ± 0.01 0.84 ± 0.02 0.82 ± 0.01 1.32 ± 0.02 0.04 ± 0.00 2.58 ± 0.05 1.06 ± 0.01

M3-Impute 1.33 ± 0.04 0.60 ± 0.00 0.71 ± 0.01 0.60 ± 0.00 1.32 ± 0.01 0.06 ± 0.00 2.50 ± 0.00 0.99 ± 0.00

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 50%

Mean 2.12 ± 0.02 0.98 ± 0.01 1.81 ± 0.01 1.84 ± 0.01 3.08 ± 0.02 2.31 ± 0.00 2.50 ± 0.00 1.67 ± 0.00
Svd 3.00 ± 0.11 1.18 ± 0.00 2.19 ± 0.01 1.88 ± 0.01 2.88 ± 0.04 0.87 ± 0.00 3.30 ± 0.01 2.92 ± 0.02
Spectral 3.17 ± 0.13 1.13 ± 0.00 2.31 ± 0.01 1.76 ± 0.03 3.03 ± 0.02 0.46 ± 0.00 3.02 ± 0.00 2.98 ± 0.02
Mice 1.99 ± 0.08 0.83 ± 0.00 1.59 ± 0.03 1.33 ± 0.02 2.13 ± 0.12 0.31 ± 0.01 2.50 ± 0.00 1.32 ± 0.01
Knn 2.08 ± 0.02 0.98 ± 0.01 1.40 ± 0.02 1.37 ± 0.01 2.21 ± 0.01 0.76 ± 0.01 2.65 ± 0.00 1.80 ± 0.01
Gain 2.33 ± 0.03 1.18 ± 0.15 2.20 ± 0.17 1.43 ± 0.09 2.58 ± 0.09 0.56 ± 0.03 2.86 ± 0.06 1.36 ± 0.00
Miwae 4.57 ± 0.06 1.01 ± 0.01 1.85 ± 0.02 3.79 ± 0.01 2.83 ± 0.05 2.38 ± 0.00 2.58 ± 0.00 1.73 ± 0.00
Grape 1.89 ± 0.02 0.75 ± 0.01 1.24 ± 0.00 0.83 ± 0.01 1.63 ± 0.01 0.09 ± 0.00 2.50 ± 0.00 1.19 ± 0.00
Miracle 40.77 ± 0.34 1.08 ± 0.00 2.00 ± 0.08 39.40 ± 0.33 37.40 ± 0.22 0.24 ± 0.00 2.82 ± 0.06 1.29 ± 0.00
HyperImpute 2.07 ± 0.11 0.85 ± 0.00 1.33 ± 0.08 1.06 ± 0.11 1.70 ± 0.05 0.07 ± 0.00 2.96 ± 0.04 1.29 ± 0.01

M3-Impute 1.74 ± 0.01 0.74 ± 0.00 1.19 ± 0.02 0.79 ± 0.01 1.57 ± 0.00 0.08 ± 0.00 2.50 ± 0.00 1.19 ± 0.00

Yacht Wine Concrete Housing Energy Naval Kin8nm Power

Missing 70%

Mean 2.16 ± 0.06 0.99 ± 0.00 1.81 ± 0.01 1.83 ± 0.02 3.08 ± 0.01 2.31 ± 0.00 2.50 ± 0.00 1.67 ± 0.00
Svd 3.78 ± 0.06 1.63 ± 0.02 2.53 ± 0.03 2.58 ± 0.07 3.65 ± 0.09 1.56 ± 0.00 3.58 ± 0.00 3.88 ± 0.01
Spectral 4.17 ± 0.10 1.67 ± 0.02 2.75 ± 0.01 2.59 ± 0.05 4.00 ± 0.03 1.04 ± 0.00 3.73 ± 0.01 4.33 ± 0.01
Mice 2.21 ± 0.10 0.93 ± 0.01 1.72 ± 0.02 1.54 ± 0.04 2.71 ± 0.15 0.53 ± 0.00 2.62 ± 0.08 1.46 ± 0.00
Knn 2.62 ± 0.08 1.05 ± 0.00 1.60 ± 0.01 1.43 ± 0.02 2.54 ± 0.04 1.08 ± 0.00 2.84 ± 0.01 2.73 ± 0.00
Gain 3.07 ± 0.08 1.61 ± 0.15 2.84 ± 0.04 3.09 ± 0.04 3.83 ± 0.15 1.07 ± 0.02 3.31 ± 0.21 1.51 ± 0.05
Miwae 4.56 ± 0.07 1.02 ± 0.00 1.84 ± 0.01 3.78 ± 0.02 3.02 ± 0.07 2.38 ± 0.00 2.58 ± 0.00 1.72 ± 0.00
Grape 2.14 ± 0.01 0.88 ± 0.01 1.64 ± 0.02 1.12 ± 0.01 2.10 ± 0.01 0.17 ± 0.00 2.49 ± 0.00 1.37 ± 0.00
Miracle 38.37 ± 0.38 1.03 ± 0.00 2.45 ± 0.21 36.23 ± 0.21 33.93 ± 0.17 0.53 ± 0.00 3.09 ± 0.02 1.92 ± 0.04
HyperImpute 2.49 ± 0.08 0.92 ± 0.02 1.71 ± 0.01 1.12 ± 0.13 2.16 ± 0.06 0.15 ± 0.00 3.15 ± 0.03 1.54 ± 0.02

M3-Impute 2.14 ± 0.00 0.87 ± 0.00 1.56 ± 0.01 1.08 ± 0.00 2.05 ± 0.00 0.17 ± 0.00 2.49 ± 0.00 1.37 ± 0.00
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Table 9: MAE scores on seven additional datasets
airfoil blood wine-white ionosphere breast iris diabetes

MCAR

Mean 2.32 ± 0.05 1.14 ± 0.01 0.76 ± 0.00 2.01 ± 0.03 1.06 ± 0.00 2.15 ± 0.09 1.78 ± 0.03
Svd 2.76 ± 0.05 0.97 ± 0.04 0.87 ± 0.00 1.26 ± 0.03 0.58 ± 0.00 1.70 ± 0.07 1.76 ± 0.02
Spectral 2.30 ± 0.07 0.94 ± 0.03 0.78 ± 0.01 1.38 ± 0.02 0.38 ± 0.00 1.48 ± 0.13 1.48 ± 0.03
Mice 1.97 ± 0.04 0.69 ± 0.01 0.61 ± 0.01 1.37 ± 0.03 0.34 ± 0.01 1.07 ± 0.09 1.29 ± 0.05
Knn 2.18 ± 0.04 0.93 ± 0.01 0.64 ± 0.01 1.07 ± 0.03 0.53 ± 0.01 1.54 ± 0.22 1.71 ± 0.04
Gain 2.22 ± 0.06 1.26 ± 0.04 0.73 ± 0.01 1.50 ± 0.01 0.51 ± 0.01 1.29 ± 0.07 1.47 ± 0.06
Miracle 2.13 ± 0.05 43.17 ± 0.05 0.60 ± 0.00 37.70 ± 0.22 35.07 ± 0.41 45.13 ± 0.42 41.00 ± 0.14
Grape 1.16 ± 0.02 0.68 ± 0.00 0.52 ± 0.00 1.08 ± 0.01 0.37 ± 0.00 0.82 ± 0.00 1.31 ± 0.00
Miwae 2.36 ± 0.06 2.03 ± 0.05 0.77 ± 0.00 5.14 ± 0.06 1.89 ± 0.02 4.60 ± 0.17 5.05 ± 0.04
HyperImpute 1.09 ± 0.02 0.63 ± 0.02 0.55 ± 0.00 1.18 ± 0.04 0.33 ± 0.01 1.04 ± 0.11 1.17 ± 0.02

M3-Impute 1.09 ± 0.03 0.67 ± 0.00 0.52 ± 0.00 1.01 ± 0.01 0.36 ± 0.01 0.82 ± 0.00 1.29 ± 0.01

MAR

Mean 2.33 ± 0.14 0.91 ± 0.02 0.87 ± 0.01 2.02 ± 0.08 1.13 ± 0.03 1.99 ± 0.25 1.74 ± 0.33
Svd 2.99 ± 0.83 0.91 ± 0.07 0.78 ± 0.05 1.40 ± 0.08 0.61 ± 0.03 1.85 ± 0.42 2.09 ± 0.02
Spectral 2.01 ± 0.60 1.22 ± 0.36 0.99 ± 0.23 1.50 ± 0.02 0.46 ± 0.04 1.62 ± 0.13 1.32 ± 0.20
Mice 2.16 ± 0.28 1.00 ± 0.40 0.63 ± 0.04 1.43 ± 0.08 0.32 ± 0.07 0.85 ± 0.09 1.33 ± 0.23
Knn 1.59 ± 0.70 0.90 ± 0.25 0.53 ± 0.02 1.09 ± 0.03 0.53 ± 0.03 0.91 ± 0.08 1.43 ± 0.23
Gain 2.29 ± 0.09 1.01 ± 0.15 0.65 ± 0.11 1.71 ± 0.10 0.69 ± 0.05 1.25 ± 0.04 1.34 ± 0.04
Miracle 2.08 ± 0.26 42.30 ± 0.22 1.05 ± 0.05 26.60 ± 0.37 39.53 ± 0.17 49.60 ± 1.14 41.83 ± 0.09
Grape 1.57 ± 0.02 0.29 ± 0.01 0.48 ± 0.00 1.17 ± 0.03 0.39 ± 0.00 0.86 ± 0.02 1.12 ± 0.01
Miwae 2.56 ± 0.01 2.03 ± 0.03 0.69 ± 0.01 6.10 ± 0.04 2.17 ± 0.03 3.46 ± 0.13 4.26 ± 0.06
HyperImpute 1.21 ± 0.21 0.88 ± 0.33 0.57 ± 0.08 1.30 ± 0.03 0.34 ± 0.02 1.05 ± 0.11 1.46 ± 0.10

M3-Impute 1.54 ± 0.02 0.28 ± 0.01 0.48 ± 0.00 1.07 ± 0.01 0.37 ± 0.01 0.82 ± 0.03 1.07 ± 0.00

MNAR

Mean 2.36 ± 0.11 0.98 ± 0.05 0.82 ± 0.01 2.04 ± 0.06 1.11 ± 0.02 2.06 ± 0.09 1.77 ± 0.20
Svd 2.98 ± 0.52 0.98 ± 0.09 0.82 ± 0.04 1.36 ± 0.07 0.60 ± 0.03 1.66 ± 0.20 1.93 ± 0.02
Spectral 2.64 ± 0.18 1.40 ± 0.18 0.88 ± 0.13 1.46 ± 0.02 0.41 ± 0.03 1.35 ± 0.11 1.51 ± 0.13
Mice 2.07 ± 0.14 0.76 ± 0.17 0.62 ± 0.02 1.44 ± 0.07 0.33 ± 0.02 0.99 ± 0.11 1.27 ± 0.16
Knn 2.11 ± 0.27 1.04 ± 0.12 0.60 ± 0.02 1.12 ± 0.03 0.55 ± 0.02 1.53 ± 0.52 1.60 ± 0.17
Gain 2.21 ± 0.05 1.09 ± 0.06 0.69 ± 0.01 1.55 ± 0.03 0.62 ± 0.02 1.26 ± 0.04 1.43 ± 0.06
Miracle 1.72 ± 0.08 42.90 ± 0.14 0.59 ± 0.01 30.70 ± 0.57 37.30 ± 0.29 47.37 ± 0.90 41.60 ± 0.37
Grape 1.46 ± 0.03 0.42 ± 0.00 0.49 ± 0.00 1.15 ± 0.01 0.38 ± 0.00 0.89 ± 0.02 1.21 ± 0.01
Miwae 2.47 ± 0.03 1.99 ± 0.04 0.72 ± 0.00 5.66 ± 0.02 2.05 ± 0.00 3.98 ± 0.32 4.62 ± 0.08
HyperImpute 1.23 ± 0.04 0.82 ± 0.18 0.58 ± 0.05 1.28 ± 0.02 0.36 ± 0.03 1.07 ± 0.07 1.30 ± 0.19

M3-Impute 1.46 ± 0.01 0.41 ± 0.00 0.49 ± 0.00 1.06 ± 0.02 0.36 ± 0.01 0.87 ± 0.00 1.19 ± 0.00
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NeurIPS Paper Checklist573

1. Claims574

Question: Do the main claims made in the abstract and introduction accurately reflect the575

paper’s contributions and scope?576

Answer: [Yes]577

Justification: In the abstract and introduction sections, we clearly define the scope of this578

paper, focusing on missing value imputation. We propose M3-Impute, a mask-guided im-579

putation method designed to compute feature-wise and sample-wise correlations based on580

missing data patterns. A concise summary of the experimental results is provided at the581

end of both sections.582

Guidelines:583

• The answer NA means that the abstract and introduction do not include the claims584

made in the paper.585

• The abstract and/or introduction should clearly state the claims made, including the586

contributions made in the paper and important assumptions and limitations. A No or587

NA answer to this question will not be perceived well by the reviewers.588

• The claims made should match theoretical and experimental results, and reflect how589

much the results can be expected to generalize to other settings.590

• It is fine to include aspirational goals as motivation as long as it is clear that these591

goals are not attained by the paper.592

2. Limitations593

Question: Does the paper discuss the limitations of the work performed by the authors?594

Answer: [Yes]595

Justification: In Section 4.2, we discussed two cases of MAE degradation for the KIN8NM596

and NAVAL datasets. It is mainly because 1. Each feature in KIN8NM is independent of the597

others, so none of the observed features can help impute missing feature values. 2. In the598

NAVAL dataset, nearly every feature exhibits a strong linear correlation with the other fea-599

tures. While it is true that M3-Impute does not achieve the best MAE on these two datasets,600

our model has outperformed all the other baselines on the majority of datasets. This demon-601

strates the unique strengths of graph modeling in M3-Impute over tabular data modeling in602

baselines like Hyperimpute. In real-world scenarios, the correlation structure of datasets is603

often unpredictable, and such extreme cases are relatively rare. Thus, we design a scheme604

to handle general cases for data imputation tasks. The empirical evidence suggests that our605

approach has been quite successful and exhibits overall superior performance to the base-606

lines as it can be well adapted to each dataset that possesses different levels of correlations607

over features and samples.608
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• The answer NA means that the paper has no limitation while the answer No means610

that the paper has limitations, but those are not discussed in the paper.611
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thors should reflect on how these assumptions might be violated in practice and what616

the implications would be.617

• The authors should reflect on the scope of the claims made, e.g., if the approach was618

only tested on a few datasets or with a few runs. In general, empirical results often619

depend on implicit assumptions, which should be articulated.620

• The authors should reflect on the factors that influence the performance of the ap-621

proach. For example, a facial recognition algorithm may perform poorly when image622

resolution is low or images are taken in low lighting. Or a speech-to-text system might623

not be used reliably to provide closed captions for online lectures because it fails to624

handle technical jargon.625
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• The authors should discuss the computational efficiency of the proposed algorithms626

and how they scale with dataset size.627

• If applicable, the authors should discuss possible limitations of their approach to ad-628
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• While the authors might fear that complete honesty about limitations might be used by630

reviewers as grounds for rejection, a worse outcome might be that reviewers discover631

limitations that aren’t acknowledged in the paper. The authors should use their best632

judgment and recognize that individual actions in favor of transparency play an impor-633

tant role in developing norms that preserve the integrity of the community. Reviewers634

will be specifically instructed to not penalize honesty concerning limitations.635
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Question: For each theoretical result, does the paper provide the full set of assumptions and637

a complete (and correct) proof?638

Answer: [NA]639

Justification: This paper does not present theoretical results. We do not assume that the640

data is missing under MCAR, MAR, or MNAR conditions for M3-Impute to be effective.641

Instead, M3-Impute demonstrates robust performance across all three settings.642
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referenced.646
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4. Experimental Result Reproducibility655

Question: Does the paper fully disclose all the information needed to reproduce the main656

experimental results of the paper to the extent that it affects the main claims and/or conclu-657

sions of the paper (regardless of whether the code and data are provided or not)?658

Answer: [Yes]659

Justification: In Section 3, we explain the computational pipeline of the proposed model660

in detail and provide a pseudo-code to better outline the methodology. The experimental661

setup is comprehensively described in Section 4.1. In addition, supplementary materials662

include our complete codebase to reproduce the results presented in this paper, including663

the model implementation, training and testing pipeline, configuration files, and execution664

scripts.665

Guidelines:666

• The answer NA means that the paper does not include experiments.667

• If the paper includes experiments, a No answer to this question will not be perceived668
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whether the code and data are provided or not.670
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taken to make their results reproducible or verifiable.672

• Depending on the contribution, reproducibility can be accomplished in various ways.673
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the same dataset, or provide access to the model. In general. releasing code and data677

is often one good way to accomplish this, but reproducibility can also be provided via678
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(c) If the contribution is a new model (e.g., a large language model), then there should689

either be a way to access this model for reproducing the results or a way to re-690
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In the case of closed-source models, it may be that access to the model is limited in695
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GitHub following the conclusion of the anonymity period.707

Guidelines:708

• The answer NA means that paper does not include experiments requiring code.709

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/710

public/guides/CodeSubmissionPolicy) for more details.711

• While we encourage the release of code and data, we understand that this might not712

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not713

including code, unless this is central to the contribution (e.g., for a new open-source714

benchmark).715

• The instructions should contain the exact command and environment needed to run to716

reproduce the results. See the NeurIPS code and data submission guidelines (https:717

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.718

• The authors should provide instructions on data access and preparation, including how719

to access the raw data, preprocessed data, intermediate data, and generated data, etc.720

• The authors should provide scripts to reproduce all experimental results for the new721

proposed method and baselines. If only a subset of experiments are reproducible, they722

should state which ones are omitted from the script and why.723

• At submission time, to preserve anonymity, the authors should release anonymized724

versions (if applicable).725

• Providing as much information as possible in supplemental material (appended to the726

paper) is recommended, but including URLs to data and code is permitted.727

6. Experimental Setting/Details728

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-729

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the730

results?731

Answer: [Yes]732
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Justification: Experimental setup is detailed in Section 4.1 and Appendix A.2. We also733

explore the hyperparameters utilized in M3-Impute. Results are presented in Table 3.734

Guidelines:735

• The answer NA means that the paper does not include experiments.736

• The experimental setting should be presented in the core of the paper to a level of737

detail that is necessary to appreciate the results and make sense of them.738

• The full details can be provided either with the code, in appendix, or as supplemental739

material.740

7. Experiment Statistical Significance741

Question: Does the paper report error bars suitably and correctly defined or other appropri-742

ate information about the statistical significance of the experiments?743

Answer: [Yes]744

Justification: We conduct all the experiments over five runs and report the mean MAE745

scores, along with the standard deviations.746

Guidelines:747

• The answer NA means that the paper does not include experiments.748

• The authors should answer "Yes" if the results are accompanied by error bars, confi-749

dence intervals, or statistical significance tests, at least for the experiments that support750

the main claims of the paper.751

• The factors of variability that the error bars are capturing should be clearly stated (for752

example, train/test split, initialization, random drawing of some parameter, or overall753

run with given experimental conditions).754

• The method for calculating the error bars should be explained (closed form formula,755

call to a library function, bootstrap, etc.)756

• The assumptions made should be given (e.g., Normally distributed errors).757

• It should be clear whether the error bar is the standard deviation or the standard error758

of the mean.759

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-760

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of761

Normality of errors is not verified.762

• For asymmetric distributions, the authors should be careful not to show in tables or763

figures symmetric error bars that would yield results that are out of range (e.g. negative764

error rates).765

• If error bars are reported in tables or plots, The authors should explain in the text how766

they were calculated and reference the corresponding figures or tables in the text.767

8. Experiments Compute Resources768

Question: For each experiment, does the paper provide sufficient information on the com-769

puter resources (type of compute workers, memory, time of execution) needed to reproduce770

the experiments?771

Answer: [Yes]772

Justification: We train and test M3-Impute on a single Nvidia A100 80G GPU (Detailed773

setup described in A.5). With the experimental setup described in Section 4.1, the total774

running time (including training and testing) for one of the five repeated runs varies from 1775

to 5 hours, depending on the scale of the datasets.776

Guidelines:777

• The answer NA means that the paper does not include experiments.778

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,779

or cloud provider, including relevant memory and storage.780

• The paper should provide the amount of compute required for each of the individual781

experimental runs as well as estimate the total compute.782

• The paper should disclose whether the full research project required more compute783

than the experiments reported in the paper (e.g., preliminary or failed experiments784

that didn’t make it into the paper).785
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9. Code Of Ethics786

Question: Does the research conducted in the paper conform, in every respect, with the787

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?788

Answer: [Yes]789

Justification: Our paper adheres to the NeurIPS Code of Ethics in every respect. 1. We790

ensured fair wages for all human participants involved in our study, abiding by regional791

minimum hourly rates. 2. Our research methodology adhered to institutional protocols for792

human subjects and data privacy. 3. We obtained informed consent from all participants793

and minimized exposure of personally identifiable information. 4. The datasets used are794

publicly available and have not been deprecated, with all copyrights respected. 5. We795

have transparently communicated the societal impact of our research, considering potential796

misuse and its effects on discrimination, surveillance, and environmental impact. 6. We797

have also reflected on the biases in our models and datasets and taken steps to mitigate them.798

7. Our data and models are documented and released with appropriate licenses, and we’ve799

employed secure data storage and distribution practices. 8. We ensured legal compliance800

and provided all necessary elements for the reproducibility of our research.801

Guidelines:802

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.803

• If the authors answer No, they should explain the special circumstances that require a804

deviation from the Code of Ethics.805

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-806

eration due to laws or regulations in their jurisdiction).807

10. Broader Impacts808

Question: Does the paper discuss both potential positive societal impacts and negative809

societal impacts of the work performed?810

Answer: [NA]811

Justification: The method proposed in this work is only applicable for missing value impu-812

tation and is unlikely to have a negative social impact.813

Guidelines:814

• The answer NA means that there is no societal impact of the work performed.815

• If the authors answer NA or No, they should explain why their work has no societal816

impact or why the paper does not address societal impact.817

• Examples of negative societal impacts include potential malicious or unintended uses818

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations819

(e.g., deployment of technologies that could make decisions that unfairly impact spe-820

cific groups), privacy considerations, and security considerations.821

• The conference expects that many papers will be foundational research and not tied822

to particular applications, let alone deployments. However, if there is a direct path to823

any negative applications, the authors should point it out. For example, it is legitimate824

to point out that an improvement in the quality of generative models could be used to825

generate deepfakes for disinformation. On the other hand, it is not needed to point out826

that a generic algorithm for optimizing neural networks could enable people to train827

models that generate Deepfakes faster.828

• The authors should consider possible harms that could arise when the technology is829

being used as intended and functioning correctly, harms that could arise when the830

technology is being used as intended but gives incorrect results, and harms following831

from (intentional or unintentional) misuse of the technology.832

• If there are negative societal impacts, the authors could also discuss possible mitiga-833

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,834

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from835

feedback over time, improving the efficiency and accessibility of ML).836

11. Safeguards837
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Question: Does the paper describe safeguards that have been put in place for responsible838

release of data or models that have a high risk for misuse (e.g., pretrained language models,839

image generators, or scraped datasets)?840

Answer: [NA]841

Justification: The model we propose does not carry the risk of misuse; the datasets were842

selected under fair use conditions, from publicly available sources with undisputed licenses.843

Therefore, our work does not require additional safeguard protections.844

Guidelines:845

• The answer NA means that the paper poses no such risks.846

• Released models that have a high risk for misuse or dual-use should be released with847

necessary safeguards to allow for controlled use of the model, for example by re-848

quiring that users adhere to usage guidelines or restrictions to access the model or849

implementing safety filters.850

• Datasets that have been scraped from the Internet could pose safety risks. The authors851

should describe how they avoided releasing unsafe images.852

• We recognize that providing effective safeguards is challenging, and many papers do853

not require this, but we encourage authors to take this into account and make a best854

faith effort.855

12. Licenses for existing assets856

Question: Are the creators or original owners of assets (e.g., code, data, models), used in857

the paper, properly credited and are the license and terms of use explicitly mentioned and858

properly respected?859

Answer: [Yes]860

Justification: In our research, we have carefully credited all the code and data used, provid-861

ing explicit citations for each. The licenses for this code and data are notably permissive,862

including MIT, BSD 3-clause, and CC BY 4.0. In accordance with these licenses, we have863

properly acknowledged the contributions of the original authors.864

Guidelines:865

• The answer NA means that the paper does not use existing assets.866

• The authors should cite the original paper that produced the code package or dataset.867

• The authors should state which version of the asset is used and, if possible, include a868

URL.869

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.870

• For scraped data from a particular source (e.g., website), the copyright and terms of871

service of that source should be provided.872

• If assets are released, the license, copyright information, and terms of use in the pack-873

age should be provided. For popular datasets, paperswithcode.com/datasets has874

curated licenses for some datasets. Their licensing guide can help determine the li-875

cense of a dataset.876

• For existing datasets that are re-packaged, both the original license and the license of877

the derived asset (if it has changed) should be provided.878

• If this information is not available online, the authors are encouraged to reach out to879

the asset’s creators.880

13. New Assets881

Question: Are new assets introduced in the paper well documented and is the documenta-882

tion provided alongside the assets?883

Answer: [Yes]884

Justification: We have detailed the new datasets employed in this research in Appendix A.4.885

We commit to making these datasets publicly accessible following the anonymity period to886

foster transparency and reproducibility.887

Guidelines:888

• The answer NA means that the paper does not release new assets.889
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• Researchers should communicate the details of the dataset/code/model as part of their890

submissions via structured templates. This includes details about training, license,891

limitations, etc.892

• The paper should discuss whether and how consent was obtained from people whose893

asset is used.894

• At submission time, remember to anonymize your assets (if applicable). You can895

either create an anonymized URL or include an anonymized zip file.896

14. Crowdsourcing and Research with Human Subjects897

Question: For crowdsourcing experiments and research with human subjects, does the pa-898

per include the full text of instructions given to participants and screenshots, if applicable,899

as well as details about compensation (if any)?900

Answer: [NA]901

Justification: Our work does not involve crowdsourcing nor research with human subjects.902

Guidelines:903

• The answer NA means that the paper does not involve crowdsourcing nor research904

with human subjects.905

• Including this information in the supplemental material is fine, but if the main contri-906

bution of the paper involves human subjects, then as much detail as possible should907

be included in the main paper.908

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-909

tion, or other labor should be paid at least the minimum wage in the country of the910

data collector.911

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human912

Subjects913

Question: Does the paper describe potential risks incurred by study participants, whether914

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)915

approvals (or an equivalent approval/review based on the requirements of your country or916

institution) were obtained?917

Answer: [NA]918

Justification: Our work does not involve crowdsourcing nor research with human subjects.919

Guidelines:920

• The answer NA means that the paper does not involve crowdsourcing nor research921

with human subjects.922

• Depending on the country in which research is conducted, IRB approval (or equiva-923

lent) may be required for any human subjects research. If you obtained IRB approval,924

you should clearly state this in the paper.925

• We recognize that the procedures for this may vary significantly between institutions926

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the927

guidelines for their institution.928

• For initial submissions, do not include any information that would break anonymity929

(if applicable), such as the institution conducting the review.930

25


	Introduction
	Related Work
	M3-Impute
	Overview
	Initialization Unit
	Feature Correlation Unit
	Sample Correlation Unit
	Imputation

	Experiments
	Experiment Setup
	Overall Performance
	Ablation Study
	Robustness

	Conclusion
	Appendix
	Dataset Details
	Detailed Results of Different Missing Types
	Robustness against Various Ratios of Missingness
	Further Evaluation on Seven Additional Datasets
	Computational Resources


