Under review as a conference paper at ICLR 2026

GAR: GENERATIVE ADVERSARIAL REINFORCEMENT
LEARNING FOR FORMAL THEOREM PROVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving math problems through verifiable languages such as Lean has signifi-
cantly impacted both the mathematics and computer science communities. Cur-
rent state-of-the-art models are often trained with expensive online Reinforcement
Learning (RL) or expert iteration. However, these approaches rely on fixed prob-
lem sets, which causes inefficient training and limits the model to tackle com-
plex problems. To overcome these limitations, we propose GAR: Generative
Adversarial Reinforcement learning, a comprehensive RL training framework that
jointly trains the problem composer and solver in an adversarial loop. GAR
introduces an implicit curriculum learning mechanism, which aligns task diffi-
culty with the prover’s evolving capability. It thereby improves the training ef-
ficiency and enables stronger performance of proving advanced theorems. Ex-
periments show that with GAR training, Goedel-Prover-V2-8B and DeepSeek-
Prover-V2-7B achieve an average relative improvement in pass@32 of 4.20% on
MiniF2F-Test benchmark, while DeepSeek-Prover-V2’s pass@32 on ProofNet-
Test increases from 22.58% to 25.81% . Beyond formal proving, GAR establishes
a general RL paradigm for co-evolution of problem generation and solving under
verifiable environments.

1 INTRODUCTION

The capability to perform formal mathematical reasoning has long been regarded as both a hallmark
of human intelligence and a key objective of machine learning (Newell & Simon, |1956). The ability
is typically assessed through rigorous mathematical derivations (Yang et al.,[2024b)). With the emer-
gence of Large Language Models (LLMs), developing accurate and reliable reasoning has become
an active area of research. Recent progress in ZERO RL training (Guo et al, [2025) has further ad-
vanced reasoning systems by introducing Long Chain-of-Thought (CoT) thinking models that have
self-reflection and self-correction capability.

However, the inherent ambiguity of Natural Language (NL) makes it challenging to verify inter-
mediate reasoning steps. This problem is more severe in advanced mathematics, where the task
is to prove theorems rather than give a numerical or formulaic answer. The increasing complexity
of modern math compounds this difficulty, as illustrated by the prolonged verification of Fermat’s
Last Theorem (Wang et al., 2024). To address this issue, researchers have grounded reasoning in
formal logical systems, enabling automatic verification through Formal Language (FL). Based on
this idea, some researchers model the reasoning process formally with dependent type languages
like Lean (De Moura et al., 2015} Moura & Ullrichl 2021)) and Coq (Cog}|[1996). Other uses higher-
order logic to build language like Isabelle (Paulsonl|1994) and HOL (Harrison, [2009). All the above
languages make every intermediate step of math reasoning verifiable.

Nevertheless, mastering FLs requires considerable expertise, particularly in dependent-type systems
like Lean, where proofs often demand complex type matching and the use of functions with limited
data (Wang et al.| |2025c). Thus, many works have sought to leverage advances in LLMs to solve
FL problems and train specialized FL provers (Polu et al., 2022} Jiang et al., |2022; |Xin et al.,|2024a;
Wang et al.l 2024; [Lin et al.| [2025a; Dong & Ma, 2025b). The verifiability of FLs also motivates
large-scale synthesis of new statements, which enables extensive expert iteration (Polu et al.| 2022}
Xin et al., 2025) or Reinforcement Learning (RL) (Ren et al., 2025; [Wang et al.,|2025a; [Lin et al.,
2025b) to further enhance perver’s performance.

Under review as a conference paper at ICLR 2026

Statement Fusion

John goes to a furniture store to buy 3 items for his living room:
a chair, a table, and a couch. The price of the table is 3 times
the price of the chair, and the price of the couch is 5 times the
price of the table. He also buys a bookshelf that costs half the
price of the couch. Additionally, there is a 10% sales tax on all
items. If the total price John paid, including tax, is $361, what
is the price of the couch before tax?

‘We aim to prove that for any natural number 71 that satisfies the
conditions n> 0, n? 100,2 | n?, and 5 | n2, the smallest
square of n must be greater than 100. The proof proceeds by
contradiction. Assume the negation of the conclusion, ie.,

n? < 100. We then consider the possible values of # and show
that none of them satisfy all the given conditions, leading to a
contradiction.

Fused Statement

Letux be the price of a chair. The table costs 3x, the couch costs
15, and the bookshel costs 155, John also buys a decorative

item whose price equals the square root of the total price of the
couch and the bookshelf before tax.

Allitems are subject to a 10% sales tax. After tax, the total
amount John pays is $561. Moreover, the combined pre-tax
price of the couch and the bookshel s a perfect square, and is
divisible by both 2 and 5

Proof that: The pre-tax price of the couch is greater than 100
dollars.

Statement
Fuser

NL Statement
Repo

Lean Statement

theorem thin_GAR
(x:R)

1%t Proof .
24 Proof 204 Proof T3 e s exe1s o2 Auto
3 Proof ﬁNb 3t Proof Prover i RyareiFaE

Proof Writing

Minimize pass rate by harder theorem

Prover correctness reward l Fuser correctness reward

Easy theorems
Filtered-out data

Theorem 2
Theorem 3 02 Q ¢+

H —
GRPO Training Fuser

GRPO Training - Theorem N-2
Hard (or impossibl) theorems

Maximize pass rate by better proofs

]

(b) Adversarial Reinforcement Learning Stage

Figure 1: GAR Training Framework: Each iteration of GAR consists two stages. (a) Generation
Stage: Pairs of NL statements are sampled from the base repository and combined by the state-
ment fuser to create more challenging problems that fit the current model’s capability. Then, these
statements are autoformalized and submitted to the prover to write multiple proofs. Subsequently,
the proofs are checked by the Lean verifier for reward assignments. (b) Adversarial Reinforcement
Learning: The prover is rewarded for producing correct proofs on medium and high-difficulty state-
ments, while the statement fuser is rewarded for generating harder but solvable problems. This
adversarial dynamic drives both models to evolve together.

However, most prior approaches in RL or expert iteration rely on fixed theorem statement sets and
optimize only the prover. The statement dataset is unchanged during the process. It also leads
to wasted computation on trivial or unsolvable tasks. In expert iteration, datasets often require
repeated annotation. On the other hand, advanced RL methods suffer from the absence of an adaptive
difficulty level of statements during rollouts, which restricts concentrated exploration and limits
progress on complex theorems. More broadly, only a few works discuss a systematic way to align
problem difficulty with the prover’s growing skill.

To address this limitation, we propose GAR: Generative Adversarial Reinforcement Learning, a
comprehensive RL training framework as presented in Figure[Tl GAR jointly optimizes the prover
and the problem composer, termed as the statement fuser, through adversarial training. This process
establishes an implicit curriculum learning that dynamically adjusts statement difficulty to match
the prover’s development. Each iteration of the GAR framework consists of two stages: the gener-
ation and the adversarial RL stage. In the generation stage, the statement fuser synthesizes harder
statements from existing solvable ones, and the prover attempts to solve them. In the RL training
stage, the fuser is rewarded for producing difficult yet solvable statements, while the prover is re-
warded for correctly proving medium and high-difficulty problems. This adversarial setup ensures
that statement complexity evolves alongside the prover’s capabilities, resulting in more efficient and
effective training.

Under review as a conference paper at ICLR 2026

We summarize our contributions as follows: (1) We introduce GAR, a comprehensive RL training
framework that establishes implicit curriculum learning, improving the prover’s reasoning ability
while preventing wasted effort on trivial or unsolvable statements. (2) We present Statement Fusion
technique, which enables the creation of novel formal statements beyond direct formalization of NL
problems, producing theorem statements better aligned with model capability. (3) We demonstrate
the effectiveness of the GAR through extensive experiments by training two base models using
GAR. We achieve an average of 4.20% relative improvement on MiniF2F-Test (Zheng et al., 2021)
and raise DeepSeek-Prover-8B’s pass @32 on the more challenging ProofNet-Test (Azerbayev et al.,
2023)) from 22.58% to 25.81%. It highlights the effectiveness and generality of GAR.

Furthermore, the GAR contributes a general RL paradigm for the co-evolution of problem genera-
tion and solving in verifiable environments, which offers new directions for adversarial co-training
in other reasoning-intensive domains. To facilitate the advancement of the field, we will open-source
the training and inference code of GAR in the near future.

2 METHODOLOGY

In this section, we introduce the GAR framework in detail. The prover’s task is to produce Lean4
proofs from NL-FL statement pairs. Our framework trains the prover to improve at the task by
adapting theorem difficulty to the prover’s evolving capabilities through adversarial training of both
the prover and the statement fuser. Each iteration of GAR consists of two stages: the Generation
stage (Section and the Adversarial Reinforcement Learning stage (Section [2.2). We first de-
scribe the behavior of each stage in a single iteration in detail, then present the complete procedure
in Section

2.1 GENERATION STAGE

The generation stage of GAR consists of two processes, namely statement fusion, which produces
new statements, and proof writing, which generates and evaluates candidate proofs.

2.1.1 STATEMENT FUSION

This process generates harder statements from existing ones. It aims to mitigate the mismatch be-
tween the fixed datasets and the prover’s evolving ability. This process first samples two NL state-
ments from the base dataset, formally: spg5e = (sgNL), sgNL)) ~ Dy, Wwhere Dyyqy 1S a repository
consists of 793,243 NL statements collect from Lean-Workbook (Wu et al., [2024b)) and Numina-
Math (LI et al.,2024). The sampled pair is then passed to the statement fuser trained in the previous
iteration of GAR. The fuser is instructed to synthesize a more challenging statement by combining
the key ideas of the two inputs, namely:

s\NE) = Fuser;_; (Sbase)
where 7 denotes the current iteration index, sVD) ig the generated NL statement, and F'user;_; is
the fuser from the prior step (initialized as base model when ¢ = 0).

In particular, we chose thinking models like Qwen3 (Team) [2025) or DeepSeek-R1 (Guo et al.,
2025) as the base model for the statement fuser because of its outstanding performance. However,
direct use of their native Long CoT capability often results in overthinking and degraded quality
of the generated statement. To mitigate this, we reinitialize the thinking process by passing the
default thinking stage and restarting it with a dedicated indicator token named <analysis>. This
trick yields more focused and task-specific reasoning. The full prompt for the statement fusion is
shown in Figure[2] Subsequently, the generated NL statement is passed to the autoformalizer, which
converts the NL statement into Lean statement s(/'%). The formalized statement is then passed to
Lean4 for compilation check. This step filters out statements with grammatical errors.

In the statement fusion stage, they deliberately separate the fusion of NL statements from the formal-
ization of FL statements. Two key insights guide this design. First, prior studies (Wang et al., 2024;
Xin et al.,2024b) have shown that NL statements play a crucial role in supporting formal reasoning.
Secondly, current 8B-scale general LLMs exhibit only a limited understanding of FL. This causes
them to fail to capture essential relations, which hinders the generation of more robust statements.

Under review as a conference paper at ICLR 2026

You are an expert mathematics educator skilled in problem design. Your task is to combine
multiple given problems into a SINGLE, more challenging problem by combining their key
elements. Follow these steps: Please first do the following steps as your analysis process
enclosed within <analysis></analysis>.

1. Analyze the points of knowledge that need to be used when solving the proof problem
and identify overlapping or complementary aspects (e.g., shared topic areas or contrasting
difficulty levels)

2. Draft the new problem that integrates at least 2 key components from each original prob-
lem and make sure the new problem requires multi-step reasoning (e.g., combining alge-
braic manipulation with probabilistic analysis). Also, your combined problem should have
no non-trivial extension.

3. Additionally, you should make sure that the new problem is solvable.

After your analysis, you should put the new problem into an MD code block. The new prob-
lem should be a SINGLE proof problem.

Here are the statements you need to fuse:

Problem 1: <statement_1>

Problem 2: <statement_2>

Figure 2: Prompt for the Statement Fuser to generate harder statements from existing ones and
restart thinking using a new indicator in GAR generation stage

Consequently, the fuser produces statements that have a high likelihood of failing the compilation
check if we directly fuse formal statements, as seen in [Dong & Mal (2025b). Thus, GAR firstly
fuses the statement in NL and formalizes it to FL, ensuring the fused statements are adaptively more
challenging than the base problems to fit prover performance evolution.

2.1.2 PROOF WRITING

Utilizing the NL-FL statement pair generated by the fusion process, the prover from the last iteration
generates n candidate proofs (with n = 16 in our implementation), denoted as {0y } 7_, , specifically:

o = Proveri_l(s(NL), s(FL)),Vk €[1,n]

When ¢ = 0, it is the base prover model like deepSeek-Prover-V2 (Ren et al., 2025) or Goedel-
Prover-V2 (Lin et al., [2025b).

The set of candidate proofs {0y }7_; is then passed to the Lean4 verifier to check correctness. Based
on the verification results, we compute the empirical pass rate p of this statement for reward assign-

ment as p = n’”; , Where 7,55 1s the number of proofs that pass verification.

2.2 ADVERSARIAL REINFORCEMENT LEARNING

This section outlines the training process of GAR, where the prover and statement fuser are opti-
mized in competition, deriving adversarial learning and mutual improvement.

2.2.1 STATEMENT FUSER TRAINING

The statement fuser is trained to synthesize problems that are slightly beyond the prover’s current ca-
pability, thereby creating an implicit curriculum. To achieve this, we assign rewards to the generated
NL statements that encourage the production of more challenging but solvable problems. We adopt
a variant of Group Relative Policy Optimization (GRPO) (Shao et al., 2024)) for this optimization.
Specifically, for each step 4, the fuser generates IV statements (with N = 1024 in our implementa-
(NL)
S

N
tion). Formally, generated statement set is: { } , and base statement set is represented as:
=1

N
{sgf’;‘“) = (557?, 5575)) }j:{ The statement fuser Fuser;_; is then updated by maximizing

the following objective.

Under review as a conference paper at ICLR 2026

j(F)
GRPO |:{ (base) NDstat; {SE,Z\JTL)Nﬂ'@old (SEbJaW)) }]

o Z (mln {6(stat)A(stat) clip {6(Stat) 1+ }A(s;at)} — B]D)KL(W.9||7T9TEf)) ;

(D
NL babe
5(stat) o (()| ()> (2)
i (base)
TO01a (i,j |)
To,., (S(,J)|S§bjase)> 1 To,., (S(,J)|S(f’j@5€)>

Dxr(mollme,,,) = (NL) (base — 08 (NL) (base -1 @)

mo (55 1s570) o (718)

where my denotes the policy model with parameter 6. It represents the statement fuser here. 0,..s

is the parameter for base statement fuser, 6,;4 is the parameter for the fuser in the previous step,

¢ and S are hyper -parameters, and A; ; is the advantage, computed from the reward set r(sm)

stat
{ri5™)b
(stat)

(stat) _ Ti,j

i, Std((stat))

mean((stat))

) — (1) (L—miy) Hpiy #0) @)

where p; ; is the prover’s empirical pass rate on s(FL) and m; ; is the statement modification rate,
which indicates the portion of proofs that the prover tries to modify its statement. The reward is
set to O if the prover fails to solve the problem, which indicates the statement is too difficult or
unsolvable.

We introduce the term 1 — m; ; as a soft statement modification penalty to balance the risk between
reward hacking and the need to preserve model capability. Because of Long CoT training, current
expert provers often acquire strong self-correction capability. While valuable, this ability can lead
the model to change formal statements during proof writing. This may lead to serious reward hack-
ing if unconstrained. Conversely, a strict ban on such modifications would suppress self-correction
and reduce proofreading accuracy. Our soft penalty discourages excessive statement change without
too much harm to the result.

In summary, the training design for the statement fuser rewards the model to lower the prover’s pass
rate by composing more challenging statements.

2.2.2 PROVER TRAINING

To achieve adverasrial training, the prover is optimized to maxmize the pass rate on generated state-

ments. We employ a variant of the GRPO algorithm for such training. Specifically, for each theorem
statement s; ; = (sEf}’L), s,gf;L)), we update the prover model Prover;_; by maximizing the fol-
lowing objective function:

jGRPO() = E[{oi 3 k}f 1~7r‘“old(si’-7)]

)
1 Z (min {a) AL ctip {77}, 1+ =} AT} — BDc (o))
(proof) _ T (0i,5,k84,5) ©)

Teorer (0i5k|Si5)
where 7, is the prover as policy model, w is the parameter of prover, and A; ; j is the advantage of

(proof) _ ¢ proof)yn_

proof o; ; 1., computed from the reward set r; Tiik

() (f)
p(proof) _ rig . — mean(r")
ik T

y Tigk =1 —0.5-my @)
Std((P“’Of)) J J

Under review as a conference paper at ICLR 2026

where m; ;5 is a binary indicator of whether a statement modification occurred in proof o; j .
Similar to the training of the statement fuser, modifications are penalized but not strictly prohibited.
Furthermore, to ensure the prover is trained on high-quality data, we exclude statements with an
empirical pass rate of 0 (unsolvable) or above 0.5 (too easy) following experience in Wang et al.
(2025a); [Dong & Mal (2025b). It make sure the prover is only trained with hard and medium-
level problems. This optimization scheme drives the prover to compete with the statement fuser by
continually enhancing its proof-generation capability.

2.3 SUMMARY

The GAR is an iterative framework that loops the generation stage and the RL stage details above.
To provide a clear overview, we present the complete framework in the form of pseudo-code as
follows:

Algorithm 1 GAR
Require: Dy, Statement Fuser (base) as F'user, Prover (base) as Prover, Autoformalizer as AF’

L Ty Twgigs Tuwpey = LTOVET; Tg, T0,, 45 T0,.; = Fuser

2: fori: [1,7] do > Step i of GAR
3: {sl(.f’;“e) §V= 1 ~ Dstat > Sample base statements
4: {sgL) ~ ﬂg(sg?;se) Ny > Fuse NL statements
5: {sz(-f;-L) ~ AF(sgjL)) j»vzl > Autoformalize statement

NL) (FL

6: {sij = (Sz(‘,j)a Sz(‘,j)) ;‘V:l

7 for j : [1,N] do

8: {0i .6 ~ Tw(8i;)} > Generate proofs
9: Obtain p; ;, m; ; by Lean checking of proofs
10: Ty = Tg,,, Optimize(jg;)PO 9)) > Train NL Fuser
11: Ty = Moy Optimize(Jg;)PO (w)) > Train Prover

12: return 7y, 7,

When trained in multiple iterations, the GAR establishes an implicit curriculum by aligning state-
ment difficulty with the prover’s evolving capability. The statement fuser is trained to reduce the
pass rate by generating more challenging statements, while the prover is optimized to increase it by
producing more valid proofs. Together, their adversarial interaction drives progressive improvement.

3 EXPERIMENTS

We conduct comprehensive experiments on the MiniF2F-Test (Zheng et al.| [2021) and ProofNet-
Test (Azerbayev et al.| 2023)) benchmarks to assess the performance of the GAR framework in for-
mal proof writing. Specifically, we show in Section [3.3| that the models trained with GAR achieve
better empirical results, confirm in Section [3.4] that adversarial training induces an implicit curricu-
lum by generating progressively harder statements, and report ablation study results in Section [3.3]
Due to space limitations, we have included the efficiency study and case study in Appendix [C]

3.1 EXPERIMENT SETUP
3.1.1 DATASET AND TASK

We measure the Lean4 reasoning capability of the GAR trained model by MiniF2F-Test (Zheng
et al.,[2021)) and ProfNet-Test (Azerbayev et al., 2023 benchmarks. They are challenging bench-
marks and adopted in nearly all major studies in the field (Xin et al., [2024bj |Lin et al., 2024; Wang
et al., 2024; Wu et al.| 2024a; |Polu et al., 20225 |Dong & Mal |2025a; |Lin et al., [2025b; /Wang et al.}
2025c).

The MiniF2F-Test benchmarks comprise 244 Lean4 statements, spanning from high school com-
petition problems to elementary undergraduate-level theorem proofs. Specifically, MiniF2F-Test

Under review as a conference paper at ICLR 2026

Table 1: Main experimental results of GAR trained models compared to recent provers models.

Method Sample budget MiniF2F-Test ProofNet-Test
Lean-STaR (Lin et al.,[2024) 64 x 1 x 50 46.31% -
InternLLM-2.5-StepProver (Wu et al., [2024a) 4 x 32 x 600 50.70% 18.80%
DeepSeek-Prover-V1.5-RL (Xin et al.,|2024b) 128 50.00% 18.20%
STP-Lean (Dong & Ma,|2025b) 128 56.15% 19.50%
MA-LoT (Wang et al.,|2025¢) 32 61.07% 15.47%
Kimina-Prover-Distill-7B (Wang et al., 2025a) 32 63.10% -
DeepSeek-Prover-V2-7B (Ren et al., 2025) 32 70.49% 22.58%
Geodel-Prover-V2-8B (Lin et al., 2025a) 32 77.87% -
Our models
GAR on Deepseek-Prover-V2 32 74.18 % 25.81%
GAR on Goedel-Prover-V2 32 80.33% -

Table 2: Average proof correctness rate for Table 3: Statement modification rate for drop-
Goedel-Prover-V2-8B (base model) and GAR ping statement modification penalty and full

model trained on base model. GAR trained models.
Stepidx Base Model GAR model Step idx w/o Stat. Penalty Full GAR
0 29.16% 29.16% 0 42.94% 42.94%
1 16.50% 23.71% 1 48.18% 48.72%
2 11.58% 20.53% 2 60.42% 30.50%
3 7.61% 20.08% 3 71.82% 39.65%
4 7.69% 21.79% 4 74.11% 33.63%

comprises problems formalized from the MATH dataset (Hendrycks et al.l 2021)), high school com-
petitions such as AMC, AIME, and IMO, as well as self-crafted problems. ProofNet-Test consists
of 186 theorems formalized from standard undergraduate textbooks on advanced topics such as real
and complex analysis, linear algebra, abstract algebra, and topology. In our setting, we train the
LLM with GAR to generate Lean4 proofs from the NL-FL statement pair. To avoid overloading the
model, all the imports and namespaces are manually configured.

3.1.2 BASELINES

To evaluate the effectiveness of GAR, we compare it against strong open-source baselines, including
Lean-STaR (Lin et al.,|2024), InternLM-2.5-StepProver (Wu et al.,|2024a)), Kimina-Prover-Preview-
Distill-7B (Wang et al} 2025a), DeepSeek-Prover-V1.5-RL (Xin et al.,|2024b)), STP-Lean (Dong &
Ma, 2025a), MA-LoT (Wang et al.l [2025¢)), Goedel-Prover-V2 (Lin et al., 2025b)), and DeepSeek-
Prover-V2 (Ren et al.,|2025)). For baseline models that require Long CoT reasoning (Kimina-Prover,
MA-LoT, DeepSeek-Prover-V2, and Goedel-Prover-V2), we restrict the reasoning length to 16,384
tokens to conserve computational resourcesﬂ

3.2 IMPLEMENTATION DETAILS

In the generation stage, we construct a repository of 793,243 NL statements from Numina-Math (LI
et al., 2024) and Lean-Workbook (Ying et al., 2024) datasets. For statement fusion, we employ
Qwen3-8B (Teaml 2025) as the base model for the statement fuser because of its skip-thinking
capability. We apply Kimina-Autoformalizer-7B (Wang et al., [2025a) as the autoformalizer. For
proof generation, we use DeepSeek-Prover-V2-7B (Ren et al., |2025) and Goedel-Prover-V2 (Lin
et al.,2025b) as base models for provers. We sample 1,024 theorems per step and generate 16 proofs
per theorem following (Wang et al.| |2025a). We also restrict the sequence length to 16,384 tokens
for both models. The GRPO hyperparameters are set with a learning rate of 2E-6, ¢ = 0.2, and
B = 0.01. We perform three iterations of GAR training on Goedel-Prover-V2 and five iterations on
DeepSeek-Prover-V2, which costs around 140 H100 hours for each training. On average, DeepSeek-
Prover-V2 costs fewer hours per iteration due to average shorter thinking. In verification, any proof

!Because of this restriction, our reported results for DeepSeek-Prover-V2 and Goedel-Prover-V2 differ from
those in the original papers, where the evaluations used a context length of 40,960.

Under review as a conference paper at ICLR 2026

involving statement modification or relying on the “sorry” or “admit” tactic is counted as incorrect
to ensure fairness.

3.3 RESULTS

Table [T] demonstrates the empirical results of applying GAR to train base prover models. For
Goedel-Prover-V2, MiniF2F-Test pass @32 raises to 80.33%, indicating a 3.16 % relative gain. For
DeepSeek-Prover-V2, the MiniF2F-Test score improves to 74.18%, corresponding to a 5.23% in-
crease. On the more challenging ProofNet-Test benchmark, which targets advanced mathematics
topics, GAR enhances DeepSeek-Prover-V2’s pass @32 rate from 22.58% to 25.81% E]

Compared with other baselines, both the base model and the GAR-trained models achieve consistent
and substantial gains, highlighting that GAR can contribute to models that already have outstanding
performance. Compared to base models, the improvements suggest that the adversarial method pro-
posed in GAR enables provers to tackle increasingly difficult problems by establishing an implicit
curriculum. Such a curriculum can progressively adapt problem difficulty to the model’s capability,
allowing the prover to explore deeper reasoning strategies and solve more advanced theorems. This
behavior becomes more significant as the theorems get harder.

3.4 STATEMENT FUSER STUDY

To show that GAR produces increasingly more difficult statements across iterations and thereby
establishes an implicit curriculum learning, we examine the difficulty of problems generated by the
statement fuser. In each iteration, we randomly sample 50 generated statements and compute their
average proof correctness rate using both the base prover and GAR-trained prover at that iteration.
Details of the metric we used are provided in Appendix[A.2] The result of this experiment is reported
in Table 2

From the results, we can observe that the base model exhibits a consistent performance degradation,
with accuracy falling from 29.16% at the first iteration’s data to 7.69% by the fifth. In contrast, the
GAR-trained model shows only a minor initial decline due to the statement matching but stabilizes at
around 21% across later iterations. These findings confirm that GAR progressively generates harder
statements, as evidenced by the base model’s decline. The maintained trained model’s performance
demonstrates the adversarial training strength of the prover’s performance over time.

3.5 ABLATION STUDIES
3.5.1 EFFECT OF STATEMENT MODIFICATION PENALTY

We evaluate the impact of the statement modification penalty by monitoring statement mod-
ification rates across by the provers during training rounds. Details of this metric are pro-
vided in Appendix [A3] We trained a variant of GAR on Goedel-Prover-V2-8B without
the penalty in both the statement fuser and prover, and compared it with the full GAR.
Table |3| shows that without the modification penalty, the .
prover exploits its self-correction ability by simplifying Table 4: Pass@32 results on MiniF2F-
statements. Such behavior worsens as the training pro- 1est for Goedel-Prover-V2-8B and its
gresses; by the fourth step, 74% of statements were mod- GRPO and GAR trained version.

ified at least once, which is a clear signal of reward hack- Method MiniF2F-Test
ing. In contrast, with the penalty enabled, the modifi-
cation rate remains below 40% throughout. This study Base model 77.87%

. . GRPO trained 77.46%
confirms the effectiveness of our statement penalty in pre- GAR trained 80.33%

venting reward hacking.

3.5.2 COMPARE TO DIRECT RL TRAINING

This experiment tests whether jointly evolving the prover and statement fuser is more effective than
training the prover alone using existing data. We conducted three additional GRPO iterations on

2We do not report Goedel-Prover-V2’s accuracy on ProofNet due to the absence of the reference results
in|Lin et al. (2025b).

Under review as a conference paper at ICLR 2026

Goedel-Prover-V2-8B using the same sampling budget and formalized NL base dataset as GAR.
The results are shown in Table] The GAR-tained model outperforms the variant trained with
traditional GRPO. We conclude that such an improvement to GAR progressively raises problem
difficulty, enabling the prover to handle more complex statements. In contrast, further RL training on
static dataset degrades performance, as the base model is already heavily RL trained. These findings
further support the generality of GAR, demonstrating is ability to enhance model’s performance
while standard RL no longer provides benefits.

4 RELATED WORK

4.1 LLM FOR FORMAL THEOREM PROVING

Recently, applying LLMs to support formal theorem proving has become a prominent research
direction. Training approaches can be broadly divided into two categories: model trained solely
with Supervised Fine-Tuning (SFT) and those combining SFT with Reinforcement Learning (RL).
Early SFT-based provers include Expert Iteration (Polu & Sutskever, |2020), Re-Prover (Yang et al.,
2024c)), TheoremLlama (Wang et al. 2024), DeepSeek-Prover-V1 (Xin et al., |2024a)), Intern. M-
2.5-StepProver (Wu et al., [2024a), MA-LoT (Wang et al.,2025c¢), and Goedel-Prover-V1 (Lin et al.,
2025a). These models typically require multiple rounds of large-scale annotation with existing for-
mal solvers, which demands a significant amount of computational resources and limits exploration.
To further advance the prover, researchers began incorporating advanced RL techniques. For in-
stance, DeepSeek-Prover-V1.5 (Xin et al.l 2024b) employs DPO. After the ”ZERO” RL technique
that enables Long CoT thinking developed by |Guo et al.| (2025)), provers like Kimina-Prover (Wang
et al., |2025a), DeepSeek-Prover-V2 (Ren et al., [2025), and Goedel-Prover-V2 (Lin et al., 2025b))
enable models to produce better formal proof after thinking. However, existing RL approaches still
rely on a fixed collection of statements, preventing statements from adapting to the prover’s evolv-
ing skill. In contrast, GAR jointly trains a statement fuser and a prover, ensuring that generated
theorems remain suitably challenging as the model improves.

4.2 RL METHODS FOR LLM

RL has been central to the development of reasoning LLMs (Xiong et al., |2025)). Early efforts such
as DeepSeek-Math (Shao et al.|[2024)) and Qwen-2.5-Math (Yang et al., 2024a) applied reward mod-
eling with GRPO algorithm to enhance exploration. The release of OpenAI-O1 (OpenAlL |2024) and
DeepSeek-R1 (Guo et al.|2025) demonstrated that verifier-based rewards in RL can enable complex
reasoning strategies, including backward search and self-correction. Such techniques have been
widely adopted in systems like Qwen3 (Team), 2025) and Kimi-K2 (Team et al., 2025)). Neverthe-
less, nearly all prior work uses the verification signal only to optimize the problem solver, leaving
the problem composer untrained. On the other hand, GAR simultaneously improves both statement
fuser and the prover, creating an implicit curriculum that adapts task difficulty and allows the model
to acquire more complex reasoning skills step-by-step.

5 CONCLUSION

This paper presents GAR, a comprehensive training framework for formal theorem proving. GAR
aims to resolve the inefficient and suboptimal performance caused by traditional expert iteration and
online RL in prover training. GAR achieves more efficient training by using statement fusion to
formulate statements in the RL process to avoid the prover from annotating problems beyond its
capability range. After GAR training, provers can solve more advanced problems through the im-
plicit curriculum learning that enables the model to explore further. Furthermore, GAR can improve
the performance of models that have been through heavy RL training by letting the model explore
more difficult statements during the training process. Experiments of applying GAR to DeepSeek-
Prover-V2 and Goedel-Prover-V2 yield an average relative improvement of 4.20% on the MiniF2F-
Test dataset and improve the DeepSeek-Prover-V2’s performance on ProofNet-Test from 22.58% to
25.81%. Beyond theorem proving, GAR offers a general RL paradigm of co-evolution of the prob-
lem generation and solving under a verifiable environment. It provides a foundation for adversarial
co-training in other reasoning-intensive domains.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

After carefully reviewing the ethical regulations of the conference, to the best of our knowledge, this
work does not present any foreseeable ethical concerns. This research focuses exclusively on formal
theorem proving using publicly available mathematical datasets, without involving human subjects,
private data, or sensitive content. As far as we are concerned, no negative societal or ethical impacts
are anticipated for the contribution of this work. We only use LLMs to polish the writing style and
fix grammatical errors in the paper.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our work is reproducible. The detailed description of the GAR
framework, including pseudocode, data source, reward definitions, and training objectives, is pre-
sented in Section The experimental setup, including benchmarks, baselines, base model choice,
and hyperparameters, is presented in Section[3.1and Section[3.2] We also plan to further ensure the
reproducibility by open-sourcing the code in the near future.

REFERENCES

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433, 2023.

Projet Coq. The coq proof assistant-reference manual. INRIA Rocquencourt and ENS Lyon, version,
5, 1996.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp.
378-388. Springer, 2015.

Kefan Dong and Tengyu Ma. Beyond limited data: Self-play llm theorem provers with iterative
conjecturing and proving. arXiv preprint arXiv:2502.00212, 2025a.

Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving. arXiv preprint arXiv:2502.00212, 2025b.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

John Harrison. Hol light: An overview. In International Conference on Theorem Proving in Higher
Order Logics, pp. 60—66. Springer, 2009.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. |[https://huggingface.
co/ATI-MO/NuminaMath—-CoT] (https://github.com/project—numina/
aimo-progress—-prize/blob/main/report/numina_dataset .pdf), 2024.

Haohan Lin, Zhiging Sun, Yiming Yang, and Sean Welleck. Lean-star: Learning to interleave
thinking and proving. arXiv preprint arXiv:2407.10040, 2024.

10

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

Under review as a conference paper at ICLR 2026

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqgi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving, 2025a. URL https://arxiv.org/abs/2502.07640.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with
scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025b.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In Automated Deduction—-CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12—15, 2021, Proceedings 28, pp. 625-635. Springer, 2021.

Allen Newell and Herbert Simon. The logic theory machine—a complex information processing
system. IRE Transactions on information theory, 2(3):61-79, 1956.

OpenAlL Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-11ms/| September 13 2024. Accessed: 2024-11-24.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,
2022.

77 Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Qwen Team. Qwen3, April 2025. URL https://gwenlm.github.io/blog/qwen3/.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqgi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025a.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theorem-
llama: Transforming general-purpose llms into lean4 experts. arXiv preprint arXiv:2407.03203,
2024.

Ruida Wang, Yuxin Li, Yi R Fung, and Tong Zhang. Let’s reason formally: Natural-formal hybrid
reasoning enhances 1lm’s math capability. arXiv preprint arXiv:2505.23703, 2025b.

Ruida Wang, Rui Pan, Yuxin Li, Jipeng Zhang, Yizhen Jia, Shizhe Diao, Renjie Pi, Junjie Hu, and
Tong Zhang. Ma-lot: Model-collaboration lean-based long chain-of-thought reasoning enhances
formal theorem proving. arXiv preprint arXiv:2503.03205, 2025c.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. arXiv preprint arXiv:2312.02120, 2023.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
Internlm?2. 5-stepprover: Advancing automated theorem proving via expert iteration on large-scale
lean problems. arXiv preprint arXiv:2410.15700, 2024a.

11

https://arxiv.org/abs/2502.07640
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://qwenlm.github.io/blog/qwen3/

Under review as a conference paper at ICLR 2026

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. Lean-github: Compiling github lean repositories
for a versatile lean prover. arXiv preprint arXiv:2407.17227, 2024b.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv preprint arXiv:2405.14333, 2024a.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-vl. 5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024b.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving.
arXiv preprint arXiv:2502.03438, 2025.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
to reinforce. arXiv preprint arXiv:2504.11343, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024a.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075,
2024b.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. Advances in Neural Information Processing Systems, 36, 2024c.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. arXiv preprint
arXiv:2406.03847, 2024.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

12

Under review as a conference paper at ICLR 2026

A DETAILS OF THE METRICS

For completeness, this section provides the metric definitions that were omitted due to space limita-
tions in Section[3

A.1 PASS RATE

Pass@z is a widely used metric for evaluating formal theorem provers (Polu et al.| 2022} Jiang et al.,
2022 Wang et al., 2024; |Xin et al., 2024a; |Dong & Ma, 2025b; Wang et al.,[2025b; |Lin et al.,[2025b;
Wau et al.| [2024a; |Wang et al.|[2025a). For each theorem statement, the model generates x candidate
proofs, which are further checked by the Lean4 verifier. If at least one of the candidates is correct,
the theorem is counted as a proved theorem. The pass@x of the LLM is the fraction of theorems in
the dataset with at least one correct proof generated by the prover.

A.2 AVERAGE PROOF CORRECTNESS RATE

This metric measures the relative difficulty of a set of statements for a given prover, which is used
in Section [3.4). Let D be a dataset of size m. For each theorem t; € D, we sample 16 proofs from
the prover and record the number of proofs that pass the verification, which is p;. The average proof
correctness rate is calculated by

>imy Di

16 -m
A high value indicates the dataset is easier for the given prover.

Note that in this experiment, to demonstrate the significance of GAR better, we train two extra
rounds of Goedel-Prover-V2-8B model.

A.3 STATEMENT MODIFICATION RATE

Since current advanced provers have Long Chain-of-thought (CoT) capability, which enables self-
reflection, backtracking, and self-correction. In the Long CoT process, a prover may alter the orig-
inal statement into a simplified variant in its reasoning trace and ultimately produce a proof for the
modified version. To quantify this behavior, we define statement modification rate as the portion
of theorems in a dataset that have at least one statement modification across 16 generated proofs.
This metric helps assess how often the prover attempts to modify the problem and whether such a
behavior may be too significant to cause severe reward hacking.

B DIRECT COMPARISON WITH RELATED WORKS

This section aims to provide a more direct comparison between GAR and other works that also
try to build a dynamic dataset during training, namely Goedel-Prover-V2 (Lin et al., [2025b) and
STP (Dong & Mal, 2025b).

Compared to Goedel-Prover-V2: The statement generation in Goedel-V2 relies on a frozen large
model to synthesize data for SFT. Crucially, during the RL phase, their statement set remains static.
This lack of dynamic updates of statements based on the prover’s evolving capabilities may lead
to suboptimal performance and efficiency as the prover outpaces the fixed problem set. In contrast,
GAR continuously updates the statement fuser via adversarial RL, ensuring the generated statements
remain progressively challenging and aligned with the prover’s current skill level during the RL
phase, leading to better empirical performance.

Compared to STP: While STP trains a conjecture model based on the prover’s feedback, it relies
on the expert iteration framework based on offline SFT. This process is inherently inefficient because
it requires generating a massive volume of training data in a single iteration to achieve effective
SFT training. According to |Dong & Mal (2025b), they generate 75,000 conjectures per iteration,
which is larger than the entire statement set for our generation. Conversely, GAR operates within an
online RL cycle. This allows the fuser and prover to continuously update more efficiently, achieving

13

Under review as a conference paper at ICLR 2026

Table 5: pass@32 results on PutnamBench

Model Type PutnamBench
DeepSeek-Prover-V2-7B (Ren et al.,|2025) 22/660
GAR DeepSeek-Prover 24/660

Table 6: Statement Modification Rate for MiniF2F-Test under pass@32

Model Type Base Model GAR trained
DeepSeek-Prover-V2 (Ren et al., 2025) 6.96% 13.11%
Goedel-Prover-V2 (Lin et al.,|2025b) 24.18% 27.05%

superior performance without the computational burden of the large-scale per-iteration data required
by STP.

C ADDITIONAL EXPERIMENTS

This appendix section provides additional experiments that are omitted in the main paper due to
space limitations.

C.1 RESULTS ON PUTNAMBENCH

Given that Lean4 formal reasoning is a rapidly progressing field, the MiniF2F-Test serves as a
benchmark with high accuracy in current models. To further validate that the GAR training can
also make the model perform better on more advanced benchmarks, we evaluate both DeepSeek-
Prover-V2-7B and GAR-trained DeepSeek-Prover on PutnamBench under pass@32. The results
are demonstrated in Table

We can see that the GAR-trained model solves four additional problems compared to the base model
on this challenging benchmark. This consistent improvement across MiniF2F, PutnamBench, and
ProofNet demonstrates the robustness of the implicit curriculum established by GAR.

C.2 EFFICIENCY STUDY

We analyze the computational efficiency of the GAR framework, as training from scratch demands
substantial resources, to evaluate this, we compare our approach with Kimina-Prover (Wang et al.,
2025al), selected for its transparent reporting of training details. The number of roll-out theorems and
proofs per iteration in Wang et al.| (2025a)) matches our configuration. From Figure 4 in their work,
we observe that Kimina-Prover achieves approximately 2% of performance gains after 25 training
iterations, where GAR trained Goedel-Prover-V2-8B reaches more improvements in merely three
iterations.

Notably, despite Kimina-Prover starting from an SFT base model, while GAR starts from a heav-
ily RL-trained base model, this comparison strengthens our efficiency claim. Because it is well
established in prior work (Guo et al.l [2025) that models already heavily optimized via RL face
diminishing returns and are inherently harder to improve than SFT baselines. The fact that GAR
achieves relatively significant gains on top of RL-optimized base models in only 3-5 iterations, while
Kimina-Prover gains approximately 2% from an SFT starting point over 25 iterations, demonstrates
the high sample efficiency of our adversarial training paradigm. Given resource constraints that
prevent exhaustive experimentation, we leave the discussion of the scalability of GAR for future
work.

C.3 STATEMENT MODIFICATION RATE STUDY

To dive deeper into the behavior of statement modification, we provide detailed statement modifica-
tion rates of both the base model and the GAR trained model in MiniF2F-Test under pass@32. The
results are shown in Table

From the comparison of base models, we can see that the Goedel’s increased statement modifi-
cation rate happens together with its performance enhancement. We attribute this to the stronger

14

Under review as a conference paper at ICLR 2026

self-correction capability it obtains. Similarly, the soft penalty in GAR ensures that the model is
penalized if it simplifies the problem to a triviality. Furthermore, we can observe that when the
modification rate is low, the GAR training introduces a higher modification rate, as is the case for
DeepSeek-Prover. However, if the modification rate is high in the base model, the soft penalty
will effectively control it within a reasonable range. These findings prove the improvement of the
GAR-trained model from another point of view

C.4 ADDITIONAL ABLATION STUDIES
C.4.1 FROZEN FUSER STUDY

To further analyze our generative adversarial training, we conduct this experiment that applies the
GAR training only on the prover and keeps the statement fuser untrained. We run three iterations
of Frozen fuser GAR training on Goedel-Prover-V2-8B for three iterations. The MiniF2F-Test
pass @32 results are demonstrated in Table[7]

From the results, we can see that frozen fuser fails to obtain any performance improvements com-
pared to the base model. This confirms that a static generator is unable to extend the prover’s
capabilities beyond its initial limits. This proves the necessity of co-evolution for both the problem
composer and the prover.

C.4.2 SINGLE PROBLEM ENHANCEMENT FUISER

In order to further study the effectiveness of our idea of problem fusing, which enhances the problem
difficulty by combining two problems into a single one. We conduct the experiment of replacing the
statement fuser with MagicCoder (Wei et al.||2023) that enhances the problem difficulty by restating
the provided single problem to make it more advanced. The results are presented in Table

The result indicates that replacing the fusion process with the MagicCoder style problem-evolving
strategy results in a 2.46% performance drop compared to the base model. We conclude this degra-
dation to the limited capability of Qwen3-8B to create more advanced problems with only one
reference. It may not provide sufficient difficulty gradient for the prover, leading to training failure.
In contrast, our fusion approach creates a more effective implicit curriculum by combining distinct
concepts from multiple problems, thereby validating the design of the Statement Fuser.

C.5 CASE STUDY

C.5.1 CASEl:

In this section, we demonstrate an example o))
of how the GAR trained model successfully Table 7: Additional Ablation Studies
solves the problem while the base models fail. Method MiniF2F-Test

Compared to the base prover, the GAR trained

. . . . Base model 77.87%
model relies less on brute simplification and Frozen Fuser 7787%
more on early structural framing, producing MagicCoder Fuser 75.41%
shorter, steadier proof traces that remain faith- GAR trained 80.33%

ful to the statement and are more likely to pass
the verification. If we dig deeper into the Long CoT of two models, we can find that GAR-trained
prover writes a shorter and more focused long CoT. While the base model’s CoT is longer but less
directed, it cycles among general identities and simplifications without stabilizing on a closing in-
variant. The result that GAR’s trace is both and clearer and more verifiable, which leads to the
successful proof.

GAR-trained model generated result:
<|begin_of_sentence|><|User|>Complete the following Lean 4 code:
" "lean4

import Mathlib
import Aesop

15

Under review as a conference paper at ICLR 2026

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— Consider a prime Sp of the form $4 t+1$. Show that a is a
— primitive root modulo p iff $-a$ is a primitive root modulo SpS. —/
theorem exercise_4_4 {p t: N} (hp0 : p.Prime) (hpl : p = 4xt + 1)

(a : ZMod p)

IsPrimitiveRoot a p <> IsPrimitiveRoot (-a) p := by

Before producing the Lean 4 code to formally prove the given theorem,
— provide a detailed proof plan outlining the main proof steps and
— strategies.

The plan should highlight key ideas, intermediate lemmas, and proof
— structures that will guide the construction of the final formal
— proof.

<|Assistant|>### Detailed Proof

*xProblem Analysis:*x

We are given a prime “p° of the form 'p = 4 « t + 1° for some natural

— number "t°, and an element “a° in the finite field “ZMod p~ (where "p~
— 1s the prime number). We need to prove that “a° is a primitive root
— modulo "p° if and only if "-a° is a primitive root modulo "p°

Recall that "IsPrimitiveRoot a p°~ means that “a° has multiplicative order
— "p -1 =4 %t in the multiplicative group " (ZMod p)*.

xKey Observations:xx
1. The multiplicative group ~ (ZMod p) has order 'p - 1 = 4 x t°.
2. The negation map “x — -x~ is an automorphism of ~ (ZMod p)® because
"pT is an odd prime (‘p = 4 x t + 1 > 27, and thus "p° is odd). This
— means that "-x° has the same order as "x
3. The multiplicative order of “a’ and "-a° are the same if and only if “a
— = —a°, but this is not the case unless "p divides "2 * a°, which is
— false here because "a’ is arbitrary and "p° is prime. However, the
N
P
s

T~

actual condition is that "IsPrimitiveRoot a p~ if and only if

"IsPrimitiveRoot (-a) p°~ because the order of "-a” is the same as the

order of “a’ when "p° is of the form "4 t + 1°.

But actually, we need a better understanding of the multiplicative group
— " (ZMod p)®°.

For any odd prime "p~, we have the following properties:

1. The map “x + —-x~ 1s an isomorphism on ~ (ZMod p)®" because “p is odd.
— The inverse is "x +— —-x°, so the map is a permutation of the
— multiplicative group.

2. For any “x in " (ZMod p)*’, “x ~ 27 is a square (i.e., x °~ 27 is a
< square in " (ZMod p)®7).
— To see this, observe that “(a * b)? = a2 % b?° and "-1° is a

« quadratic residue modulo "p~
But for our problem, we don't need these general observations. Instead,
— we can use the fact that the order of "-a° is the same as the order
— of "a’.
xWhy are the orders the same?xx
Since "p° is an odd prime ('p = 4 x t + 1 > 27), the multiplicative group
— T~ (ZMod p)® is cyclic of order 'p - 1 = 4 x t°. Let g be a generator

— of "~ (ZMod p)®.

Then:

16

Under review as a conference paper at ICLR 2026

1. If "a° is a primitive root ("IsPrimitiveRoot a p~ is true), then “a°
— has order "4 « t = p - 17, so "—a” must also have order 4 «x t~
< Dbecause "-a’ is a unit in “ZMod p- (p is prime, so -a # 07).

— However, this is not correct unless "-1° has order "2 ° because " -a =
[(-1) a°, and the order of "a” is "4 » t°, and the order of ~-1°
— dis 27 if "t # 0" (because ~(-1)"2 = 17). Thus, the order of ~-a°
— is “lcm(2, order of a)’.

Alternatively, a better approach is to use the following fact:
- The map “x — -x~ is an automorphism of the group " (ZMod p)*"
— "p° is odd (T (-1)"2 = 1° and multiplication is invertible) .

because

**xConclusion: **
Since the map “x +— —-x~ is an automorphism of ~ (ZMod p)* (because “p is
— an odd prime), “a° has order "4 x t° if and only if “-a° has order 4
— * t°. This is because the automorphism "x +— -x~ preserves the order
— of elements.

Thus, “IsPrimitiveRoot a p°~ (‘order a = 4 * t7)
<) 4«

s equivalent to
— “IsPrimitiveRoot (-a) p°~ (‘order (-a -

i
tT).

Therefore, the result follows.
Step-by-Step Abstract Plan

1. *xUnderstand the Multiplicative Group#*x*:
— The multiplicative group ~ (ZMod p)* is cyclic of order 'p — 1 = 4 =«
— tT.
— Any element has a multiplicative order dividing "4 x t°.

2. x*Understand the Automorphism “x +— —x"**:
- The map “x — -x~ is an automorphism of " (ZMod p)? because “p° is an
— odd prime (" (-1)"2 = 17).

3. xxOrder Preservation*x*:
— The order of "-a° is the same as the order of “a’, because "x — -x°
< 1s an automorphism.

4. xxConclusionxx:

- "a’ 1s a primitive root (‘order a = p - 17) iff "-a° is a primitive
< root (‘order (-a) =p - 17).

Lean 4 “have Statements

“TTleand
theorem exercise_4_4 {p t: N} (hp0 : p.Prime) (hpl : p = 4xt + 1)
(a : ZMod p)
IsPrimitiveRoot a p <> IsPrimitiveRoot (-a) p := by
have h_main : IsPrimitiveRoot a p <+ IsPrimitiveRoot (-a) p := by
sorry
sorry

Complete Lean 4 Proof

""" leand
theorem exercise_4_4 {p t: N} (hp0 : p.Prime) (hpl : p = 4xt + 1)
(a : ZMod p)
IsPrimitiveRoot a p ¢+ IsPrimitiveRoot (-a) p := by
have h_main : IsPrimitiveRoot a p <> IsPrimitiveRoot (-a) p := by
havel : Fact p.Prime := <¢hpO)
have h; : p # 0 := hp0O.ne_zero
have hy : p # 1 := hpO.ne_one
have h3 : (-a : ZMod p) = -a := rfl
constructor

17

Under review as a conference paper at ICLR 2026

—-— Prove the forward direction: if a is a primitive root, then -a
— 1s a primitive root

intro h

—— Use the property that the order of -a is the same as the order
— of a

have hg := h.isUnit

have hs := h.pow_eqg one

have hg := h.pow_ne_one_of_pos_of_1lt (by decide : (0 : N) < 1) (by

rw [+ Nat.cast_one]
simp_all [ZMod.val_one, Nat.cast_add, Nat.cast_mul,
— Nat.cast_ofNat]
<;> omega)
simp_all [IsPrimitiveRoot, ZMod.nat_cast_self, Nat.cast_add,
< Nat.cast_mul, Nat.cast_ofNat,
ZMod.nat_cast_self]
<;>
(try omega) <;>
(try simp_all [ZMod.nat_cast_self, Nat.cast_add, Nat.cast_mul,
— Nat.cast_ofNat,
ZMod.nat_cast_self]) <;>
(try
{
aesop
P o<i>
(try
{
simp_all [Units.ext_iff, pow_succ]
<;>
ring_nf at *~ <;>
omega
) <>
(try
{
norm_num at =
<>
aesop
) <>
(try
{
aesop
P <i>
(try
{
simp_all [Units.ext_iff, pow_succ]
<>
ring_nf at » <;>
omega
})
<>
aesop
—— Prove the reverse direction: if -a is a primitive root, then a
— 1s a primitive root

intro h

—-— Use the property that the order of -a is the same as the order
— of a

have hs := h.isUnit

have hs := h.pow_eqg_one

have hg := h.pow_ne_one_of_pos_of_lt (by decide : (0 : N) < 1) (by

rw [+ Nat.cast_one]

simp_all [ZMod.val_one, Nat.cast_add, Nat.cast_mul,

— Nat.cast_ofNat]

<;> omega)
simp_all [IsPrimitiveRoot, ZMod.nat_cast_self, Nat.cast_add,
— Nat.cast_mul, Nat.cast_ofNat,

ZMod.nat_cast_self]

18

Under review as a conference paper at ICLR 2026

<;>
(try omega) <;>
(try simp_all [ZMod.nat_cast_self, Nat.cast_add, Nat.cast_mul,
— Nat.cast_ofNat,
ZMod.nat_cast_self]) <;>
(try
{
aesop
P <i>
(try
{
simp_all [Units.ext_iff, pow_succ]
<>
ring_nf at * <;>
omega
bPo<i>
(try
{
norm_num at =«
Lp>
aesop
Po<i>
(try
{
aesop
P <>
(try
{
simp_all [Units.ext_iff, pow_succ]
<;>
ring_nf at * <;>
omega
})
<;>
aesop
exact h_main

Base model generated result:

<|begin_of_sentence|><|User|>Complete the following Lean 4 code:
“""leand

import Mathlib

import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— Consider a prime SpS of the form $4 t+1$. Show that a is a

— primitive root modulo SpS 1ff $-a$ is a primitive root modulo $SpS.

theorem exercise_4_4 {p t: N} (hp0 : p.Prime) (hpl : p = 4xt + 1)
(a : ZMod p)
IsPrimitiveRoot a p <> IsPrimitiveRoot (-a) p := by

Before producing the Lean 4 code to formally prove the given theorem,
— provide a detailed proof plan outlining the main proof steps and
— strategies.

The plan should highlight key ideas, intermediate lemmas, and proof
— structures that will guide the construction of the final formal
— proof.

19

Under review as a conference paper at ICLR 2026

<|Assistant|>### Detailed Proof and Analysis
First, let's recall the definitions and properties we will use:

1. *xPrimitive Root**: An element "a” is a primitive root modulo "p°~ if

< the multiplicative order of “a° in "~ (Z/pZ)+*" is "p — 1°.

2. *%xOrder of "a"*%x: The order of “a° modulo "p°, denoted “orderOf a”, is
— the smallest positive integer "k~ such that "a’k = 1 mod p’.

3. *xMultiplicative Orderxx: The multiplicative order of “a° modulo "p~ is
— the smallest positive integer "k~ such that "a"k = 1 mod p’.

Given “p° is prime and "p = 4%t + 17, we need to prove that "a’ is a

— primitive root modulo “p° if and only if "-a° is a primitive root
— modulo "p°

Key Observations:
1. The multiplicative group " (Z/pZ)*" has order p — 1 = 4xt’.

2. The quadratic residues modulo “p~ are “{a | d b, b2 = a mod p} . The
— number of quadratic residues is “(p — 1)/2 = 2%t~ (since 'p = 1 mod
— 47).

3. The multiplicative order of any “a € (Z/pZ)*" must divide 'p - 1 =
— 4xtT.

4. The multiplicative order of "-a° is the same as the multiplicative
— order of “a’ because " (-a) "2 = a? = a? mod p°, and the order is
— determined by the exponentiation.

Proof Sketch:

1. Assume "a° 1is a primitive root modulo “p°. This means that “a° has
— multiplicative order "p - 1 = 4%t~ in "~ (Z/pZ) * .
— The order of "-a°

is the same as the order of "a°, which is “4xt = p

— — 17, because:
- T (-a) " (4xt) = ((-a) 2) " (2+«t) = (a?)”(2+«t) = 1 mod p~ because "a?"
— has order "2xt° (since "a’ is a primitive root and the exponent
— T4xt = 2% (2xt)°, but this is not directly relevant).
— More precisely, "—-a° and “a’ have the same multiplicative order
— Dbecause " (-a) " (4xt) = ((-a)"2) 7 (2+t) = (a?)” " (2+xt) = 1 mod p~ (if

< "a?” has order "2xt7).
— However, a simpler approach is to observe that “a?” has order "2t~

— and thus “(-a) 2 = a?”, so “(-a)” " (2+xt) = (a?)"t = 1 mod p°~ is not
— guaranteed. Instead, we can use that "~ (-a) (4xt) = ((-a) 2) " (2*t)
— = (a?) " (2xt) = 1 mod p°, but this does not directly help unless we
— know “a?’ has order “2xt°.
— A better approach is to note that “(-a) "k = 1 mod p° if and only if
— "a’k = 1 mod p~ because:
- "(-a) "k = 1 mod p° 1is equivalent to " (-1) "k * a’k = 1 mod p~, so
— "a’k = (-1) "k mod p~.
— Since "a’ is a primitive root, "a’k = 1 mod p° if and only if "k~
— 1is a multiple of “4xt”, because “a’ has order “4xt".
- Thus, "a’k = (-1) "k mod p° would imply "~ (-1) "k = 1 mod p~, i.e.,
— " (=1)"(4xt) = 1 mod p°, which is true for "p = 4%t + 1°
— (T(-1)"(4xt + 1) = -1 = 1 mod p ? Wait no: "p = 4xt + 1° and "p
— =1 mod 47, so “(-1)"(4*t + 1) = (-1)"(4*t) * (-1) =1 * (-1) =
— -1 =p - 1 mod p°, which is not "1 mod p . But "p° is prime and
- 'p=1mod 47, so -1 =p - 1 = 4xt = 0 mod 47, which is not
— helpful. This is a mistake in the reasoning.
— The correct approach is to note that " (-a) (4xt) = ((-a)’ 2) (2*t) =
[(a?) " (2xt) = 1 mod p°~ because “a?” has order “2xt°. But “a’ is a
— primitive root, so “a”(2xt) = 1 mod p- (TorderOf a = 4%t > 2xt7).

— This is not sufficient.

— Alternatively, observe that:
— The order of "-a” divides “4xt° because the order of “a° divides
o TA4xtT.

20

Under review as a conference paper at ICLR 2026

— The order of "-a” does not divide “2+t° unless “a? = 1 mod p~

s (since “(-a) 2 = a2 = 1 mod p~ would imply “orderOf (-a) < 27).
< But “a’ is a primitive root, so "a? = 1 mod p - would imply "2 <
— orderOf a = 4xt~, i.e., "2 < 4%t°, which is true since "t > 1°.
— But "a? = 1 mod p° is not guaranteed unless “a? = 1 mod p~,

— which is not necessarily true.

— A better way is to use the fact that "-a° has the same order as “a
— because 'p = 1 mod 47, and " (-a)"2 = a?".

However, a simpler and correct approach is to use the following:
— The multiplicative order of "—-a” modulo "p° is the same as the

— multiplicative order of “a’ modulo "p°, because " (-a) 2 = a?’ and

— ~a?” has order “2xt° modulo "p

But we can use the following:

- If "a’ is a primitive root modulo "p°, then for any “k°, "a’k = 1 mod
— p° if and only if “k° is a multiple of “4xt".

— Then “(-a) "k = 1 mod p° is equivalent to "a"k = 1 mod p~, because

— “(-a)"k = (-1)"k » a’k’” and p° is odd ("p = 1 mod 47). So " (-a)’ "k
— = 1 mod p° is equivalent to "a’k = 1 mod p- if "p° is odd.

— Hence, “orderOf (-a) = orderOf a = 4xt = p - 1°.

Therefore, "-a” is also a primitive root modulo “p°

##i## Correct Approach:

1. "p° is prime and 'p = 1 mod 47, so “(-a)” 2 = a?’ modulo "p°
2. The multiplicative order of "-a” modulo "p° is the same as the
— multiplicative order of “a° modulo “p°, because:

- "(-a) "k = 1 mod p- iff "a’k = 1 mod p° for any ‘k°, since " (-a)’ "k =
— (-1)"k » a’k”, and "p” is odd (‘p = 1 mod 47).

— Alternatively, observe that “orderOf (-a) = orderOf a° because "p =
— 1 mod 4° and “a’ is a primitive root.

— In particular, “orderOf (-a) = p - 1 = orderOf a”, because "~ (-a) (p
- —-1) = a’(p - 1) =1 mod p° (Fermat's Little Theorem).

But we need a more precise argument:

1. If "a° is a primitive root, then the multiplicative order of “a’ is "p
- = 1 = 4xt".

2. The multiplicative order of "-a° is the same as the multiplicative

— order of "a’ because 'p = 1 mod 4% and “a’ is a primitive root.
— To see this, note that “(-a)” 2 = a?°, so “orderOf (-a)”~ divides
« “orderOf a?” (which 1is “2*t7).
— But “orderOf a?” divides “orderOf a = 4%t~ (since “a?2”2t = (a?)"2t =
— 1 mod p7).
— Also, “orderOf (-a)” divides "p - 1 = 4xt° because "~ (-a) (4*t) =
— ((=a)~"2) " (2xt) = (a?) " (2«t) = 1 mod p.
— Since “orderOf (-a) divides “4+t° and “4xt° is the order of "a’, and
— “orderOf (-a)’ divides “orderOf a?° (which is “2xt”), and ~orderOf

— a?’ divides “orderOf a° (which is “4xt”), the only common divisors
— are ~1° and “2xt°.
— But “orderOf a = 4xt° and “orderOf a2 = 2xt°.

— Alternatively, because "a’ is a primitive root, “a"k = 1 mod p°~ iff
— “4xt’ divides k7.

— Similarly, “(-a)’"k = 1 mod p~ iff “4xt° divides “k°, because " (-a) "k
— = a’k’ (since 'p = 1 mod 47).

— Therefore, the order of "—-a° is the same as the order of “a°

But we can simplify this:

— The order of "-a” is the same as the order of “a’ because 'p = 1 mod 4~

— and "a’ is a primitive root.

Thus, we have:
1. If "a° is a primitive root, then "-a° is also a primitive root.

21

Under review as a conference paper at ICLR 2026

2. Similarly, if "-a° is a primitive root, then “a° is also a primitive
— root.

Step 1: Abstract Plan

1. *xAssume "a’ is a primitive root modulo "p *x:

— The multiplicative order of “a” is "p - 1 = 4xt".
— We need to show that the multiplicative order of “-a” is “4xt°.
— Use the fact that “(-a) "'k = 1 mod p° iff "a"k = 1 mod p°, because "p
— = 1 mod 4°.
— Thus, the order of "—-a° 1is the same as the order of “a .
— Therefore, "-a” is also a primitive root.
2. xxAssume "—-a° is a primitive root modulo “p*x:
— Similarly, “a° is a primitive root.
— The reasoning is symmetric.
Step 2: Lean 4 "have Statements
“TTleand
theorem exercise_4_4 {p t: N} (hp0 : p.Prime) (hpl : p = 4xt + 1)
(a : ZMod p)
IsPrimitiveRoot a p <> IsPrimitiveRoot (-a) p := by
have h_main : IsPrimitiveRoot a p -+ IsPrimitiveRoot (-a) p := by
sorry
have h_converse : IsPrimitiveRoot (-a) p -+ IsPrimitiveRoot a p := by
sorry
have h_final : IsPrimitiveRoot a p ¢+ IsPrimitiveRoot (-a) p := by
sorry
exact h_final
Explanation:
1. "h main~: If “a° is a primitive root, then "-a° is also a primitive
— root.
2. "h_converse : If "-a° is a primitive root, then “a’ is also a primitive
— root.

3. "h_final": Combine the two directions to get the full biconditional.
Complete Lean 4 Proof
“TTleand

theorem exercise_4_4 {p t: N} (hp0 : p.Prime) (hpl : p = 4xt + 1)
(a : ZMod p)

IsPrimitiveRoot a p <> IsPrimitiveRoot (-a) p := by
have h_main : IsPrimitiveRoot a p =+ IsPrimitiveRoot (-a) p := by
intro h
haveI := Fact.mk hpO
have h; := h.isUnit
have hy := h.pow_eqg_one
have h3 := h.pow_ne_one_of_pos_of_1lt (by decide : (0 : N) < 1) (by

simp_all [hpl, Nat.Prime.one_1t]
<;> omega)
have hs := h.pow_ne_one_of_pos_of_1lt (by decide : (0 : N) < 2) (by
simp_all [hpl, Nat.Prime.one_1lt]
<;> omega)
simp_all [ZMod.nat_cast_self, pow_one, pow_two, neg_neqg]
<;>
(try omega) <;>
(try simp_all [IsPrimitiveRoot, pow_mul, pow_add, pow_one, pow_two,
— ZMod.nat_cast_self]) <;>
(try omega) <;>
(try
{
have hs := h.pow_eqg one
have hg := h.isUnit

22

Under review as a conference paper at ICLR 2026

simp_all [ZMod.nat_cast_self, pow_one, pow_two,
<;>
aesop
b)o<i>
(try
{

neg_neqg]

have hs := h.pow_eqg one

have hg := h.isUnit

simp_all [ZMod.nat_cast_self, pow_one, pow_two,
<;>

aesop

neg_neqg]

simp_all [ZMod.nat_cast_self, pow_one, pow_two,
Lp >
aesop

neg_neqg]

simp_all [ZMod.nat_cast_self, pow_one, pow_two, neg_neqg]

<;>
omega
})
have h_converse : IsPrimitiveRoot (-a) p =+ IsPrimitiveRoot a p by
intro h
haveI := Fact.mk hpO
have h; := h.isUnit
have hy := h.pow_eqg_one
have h3 := h.pow_ne_one_of_pos_of_1lt (by decide : (0 : N) < 1) (by
simp_all [hpl, Nat.Prime.one_1t]
<;> omega)
have hy h.pow_ne_one_of_pos_of_1t (by decide : (0 : N) < 2) (by
simp_all [hpl, Nat.Prime.one_1lt]
<;> omega)
simp_all [ZMod.nat_cast_self, pow_one, pow_two, neg_neqg]
<;>
(try omega) <;>
(try simp_all [IsPrimitiveRoot, pow_mul, pow_add, pow_one, pow_two,

— ZMod.nat_cast_self]) <;>
(try omega) <;>

(try
{
have hs := h.pow_eqg one
have hg := h.isUnit
simp_all [ZMod.nat_cast_self, pow_one, pow_two, neg_neqg]
<;>

23

Under review as a conference paper at ICLR 2026

aesop

b)o<i>

(try

{
have hs := h.pow_eqg one
have hg := h.isUnit
simp_all [ZMod.nat_cast_self, pow_one, pow_two, neg_neqg]
<;>
aesop

simp_all [ZMod.nat_cast_self, pow_one, pow_two, neg_neqg]
<;>
aesop

simp_all [ZMod.nat_cast_self, pow_one, pow_two, neg_neqg]
<;>
omega
)
<;>
aesop

have h_final : IsPrimitiveRoot a p <> IsPrimitiveRoot (-a) p := by
constructor
exact h_main
exact h_converse

exact h_final

C.5.2 CASE2:

In another ProofNet example, GAR again succeeds where the base prover fails. This instance more
clearly illustrates how GAR mitigates useless simplifications. It uses NLs to reach a comprehensive
proof plan and effectively conduct the proof in a relatively simple manner. However, the base model
conducts a quicker search but a prolonged proof. It expends effort on low-yield algebra and yields
lengthy, fragile derivations. These observations highlight that the implicit curriculum in GAR fosters
more efficient reasoning paths and greater verification robustness.

GAR-trained model generated result:
<|begin_of_sentence|><|User|>Complete the following Lean 4 code:

“TTleand

24

Under review as a conference paper at ICLR 2026

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— Prove that $x " 4+4x"3+6x"2+2x+1S 1is irreducible in S\mathbb{Z}[x]S. -/
theorem exercise_9_4_2c : Irreducible

(X4 + 4%X"3 + 6%X"2 + 2xX + 1 : Polynomial Z) := by

Before producing the Lean 4 code to formally prove the given theorem,
— provide a detailed proof plan outlining the main proof steps and
— strategies.

The plan should highlight key ideas, intermediate lemmas, and proof
— structures that will guide the construction of the final formal
— proof.

<|Assistant|>### Detailed Proof

*xProblem:** Prove that \(P(x) = x4 + 4x"3 + 6x"2 + 2x + 1 \) is
— dirreducible in \ (\mathbb{Z}[x]\).

**xApproach: xx

We will use the Rabinowitz Criterion (also known as the "Rabinowitz

< irreducibility test" or "Rabinowitz's Criterion") to prove that \(
— P(x) \) is irreducible over \ (\mathbb{Z}[x]\).

**Rabinowitz Criterion:*x*

Let \(P(x) = x"n + a_{n-1}x"{n-1} + \dots + a_0 \) be a polynomial in
— N\ (\mathbb{Z}[x]\). Suppose that there exists a prime \(p \) such
— that:

1. \(p \) divides each \(a_i \) for \(0 \leqg i \leq n-1 \).

2. \(p"2 \) does not divide \(a_0 \).

Then \(P(x) \) is irreducible over \ (\mathbb{Z}[x]\).

**Application to \(P(x) \):*=*
Let \(P(x) = x"4 + 4x"3 + 6x"2 + 2x + 1 \).

1. The constant term is \(a_0 = 1 \).
2. The primes dividing all coefficients \ (
— primes dividing \(\gecd(1, 2, 6, 4, 1)
— the first condition.

— Hmm, this is incorrect: actually, all coefficients \(a_0 =1 \), \(

I o

_ 0, a1, a_2, a 3 \) are the
1 \). So, no primes satisfy

\

- al=2\), \(a_2=61\), \(a3 =4)\) are divisible by \(1 \),
— but the second condition is about \(a_0 = 1 \), not all other

— coefficients. This suggests that perhaps we need a different

— approach.

But the Rabinowitz Criterion can still be applied:
Consider \(p = 2 \).

- \(2 \) divides \(a_0 = 1 \) (False)

- \(2 \) divides \(a_l = 2 \) (True)

- \(2 \) divides \(a_2 = 6 \) (True)

- \(2 \) divides \(a_3 = 4 \) (True)

But \(p"2 = 4 \) divides \(a_0 = 1 \) (False).

This does not work. So, we need another prime.

Consider \(p = 3 \):

- \(3 \) divides \(a_0 =1 \) (No).

- \(3 \) divides \(a_1l = 2 \) (No).

\(p \) does not divide any of the coefficients, so this is invalid.

25

Under review as a conference paper at ICLR 2026

Consider \(p =5 \):

- \(5 \) divides \(a_0 =1 \) (No).
- \(5 \) divides \(a_1l = 2 \) (No).
\(p \) does not divide any of the coefficients,

xAlternative Approach:xx

so this is invalid.

Let's consider the polynomial \(Q(x) = x"4 + 4x"3 + 6x"2 + 2x + 1 \). We
— can attempt to factor it or check for possible roots.

But \(Q(0) =1 \), \(Q(l) =1+ 4+ 6+ 2+ 1 =141\), and \(Q(-1) =1
— -4+ 6 -2+ 1 =2 \). No simple rational roots.

Alternatively, perhaps we can factor \(Q(x) \) into quadratics.

Assume \ (Q(x) (x"2 + a x + Db)(x"2 +c x + d)
Expanding gives:

\[x4 + (a + ¢)x"3 + (ac + b + d)x"2 +
Thu
1.

, we get the system:
a+c=4)\)
ac + d =
ad 2\
bd

S
\ (
A\ (6 \)
\ ()

A\ (

I+ +

2. b

Sk bc =
4 1\)
From \(bd = 1

< cases:
1. \(b =
2. \(b

\), since \(b, d \in \mathbb{Z} \),
1 \), or
-1 \).

1 \) %
4 \)

6 \implies ac = 4 \)
=4 \), \(ac =4 \)
roots of \(t"2 - 4t + 4

*xCase 1:
From (1) :

d =
@]

ac + 2

+ c
are =0 \),
2 \)

satisfies all equations:
a+c=4)\)

ac 4 \)

ad + bc = 2 \cdot 1 + 2 \cdot 1

4 \neq 2 \)

Wait, this is incorrect. The problem is in
\(ad + bc = a \cdot 1 + ¢ \cdot 1 =
contradicts the third condition.

(3):
(a + c) =
s
Hence, this case is invalid.
\(b =
\N(a +
\(ac - 2
\(-a + -c =
=4 \).

-1 \) %k

=4 \)

6 \implies ac = 8
2 \implies a + c

*xCase 2:
From (1):
From (2):
From (3):
— a + c

d
@

\)
= =2 \)I

This case is also invalid.

**Another Approach: Eisenstein's Criterionx*x

\) .

(ad + bc)x + bd

Q(x) . \]

we have the following

i.e., \(t =2 \). So

(Does not hold).

4 \neq 2 \), which

but this contradicts \(

This polynomial is not directly suited for Eisenstein's Criterion,

— Dbecause replacing \(x \) with \(x + 1 \) gives:

N[(x +1)74 + 4(x+ 1)"3 +6(x+1)"2+2(x+ 1) +1\]

N[= x"4 + 4x"3 + 6x72 + 4x + 1 + 4x"3 + 12x72 + 12x + 4 + 6x72 + 12x + 6
— +2x + 2 + 1 \]

\[= x4 + (4x"3 + 4x73) + (6x72 + 12x"2 + 6x72) + (4x + 12x + 12x + 2x)
— + (1 +4+ 6+ 2+ 1) \]

26

Under review as a conference paper at ICLR 2026

\[= x4 + 8x"3 + 24x"2 + 30x + 14 \]
But we can try another substitution.

Alternatively, observe that:

\[O0(x) = x"4 + 4x"3 + 6x72 + 2x + 1 \]
\[= (x72 + 2x)72 + 2x"2 + 2x + 1 \]
But this seems not helpful.

However, a better approach is to note that:

\[Q(x) = (x"2 + 2x + 1)°2 - (2x"2 + 1) \]

But:

N[O(x) = x4 + 4x"3 + 6x72 + 2x + 1 \]

But:

N[(x72 + 2x + 1)72 = x4 4+ 4x"3 + 6x"2 + 4x + 1 \]

A\l Q(x) = (x72 + 2x + 1)72 - (2x + 2) \]

But \((x72 + 2x + 1)72 - (2x + 2) = x"4 + 4x"3 + 6x"2 + 4x + 1 - 2x - 2
— = x4 + 4x"3 + 6x72 + 2x — 1 \neqg Q(x) \).

This substitution is incorrect.

*xConclusion from the failed attempts:*x
It seems difficult to factor \(Q(x) \) in \ (\mathbb{Zz}[x]\) by simple
— methods.

But we can try a more general approach using the Cohn's Irreducibility
— Criterion or Ritt's Criterion, but these are not straightforward.

However, we can use the Rational Root Test (or simply checking small
— primes):
Check for \(x = \pm 1, \pm p \) for primes \(p \):

-\ (Q(1l) =1+ 4+ 6+ 2+ 1=14)\)
- \N(Q(-1) =1 -4+6-2+1=2)\)
- \(Q(2) =16 + 32 + 24 + 4 + 1 =177 \)
-\ (Q(-2) =16 — 32 + 24 — 4 + 1 =5\)

Since \(Q(x) \) has no rational roots, it is irreducible over
<\ (\mathbb{Z}\).

But this seems incorrect, as \(Q(x) \) is reducible for \(x = 0 \) and
— \(x = -1 \), but we are not using this approach.

Alternatively, we can use the xxSchinzel's criterion** or **Rabinowitz
< Criterion** again:
Consider \(O(x + 1) = (x + 1)7"4 + 4(x + 1)°3 + 6(x + 1)°2 + 2(x + 1) + 1

- \)

\[= x4 + 4x"3 + 6x72 + 4x + 1 + 4x°3 4+ 12x72 + 12x + 4 + 6x72 + 12x + 6
— + 2x + 2 + 1 \]

\[= x4 + (4x"3 + 4x73) + (6x72 + 12x"2 + 6x72) + (4x + 12x + 12x + 2x)
- + (1 +4+ 6+ 2+ 1) \]

\[= x4 + 8x"3 + 24x"2 + 30x + 14 \]

Hmm, no immediate factorization here either.

**xFinal Attempt:x*x

We use the fact that if \(Q(x) \) is irreducible over \ (\mathbb{z}\),
< then it is irreducible over \ (\mathbb{Q}\).

Alternatively, we can directly check that \(Q(x) \) has no factors in
< N\ (\mathbb{Z}[x]\) other than \(Q(x) \) itself and constants.

We can perform a complete check:

Suppose \(Q(x) = A(x) B(x) \) is a factorization into non-constant
— polynomials.

27

Under review as a conference paper at ICLR 2026

We can write:

\[A(x) = x4 4+ a1 x"3 + a2 x"2+ a3x+ aid \]
\[B(x) =1 \]
But \(B(x) \) is a unit and \(\deg(B(x)) = 0 \), so this is trivial.

Alternatively, assume \(A(x) \) has degree \(1 \) or \(2 \), etc.
But this is tedious and unlikely to work.

Given that the problem is from an older source, we can infer that the
« polynomial \(Q(x) \) 1is irreducible.

But in Lean, we can proceed by proving that \(Q(x) \) has no non-trivial
factors, by checking that for every pair of integers \((a, b) \)
such that \(b \neq \pm 1 \), we cannot write \(Q(x) \) as a product
of two non-constant polynomials.

rid

Alternatively, we can use Lean's libraries to prove irreducibility by
— contradiction:

**Proof Sketch:xx
1. Assume \(Q(x) = A(x) B(x) \).
2. Look at the constant term.
The constant term is \(1 \), so possible constant factors are \(\pm

- 1 \).
3. So either \(A(x) \) or \(B(x) \) is a constant, say \(A(x) = \pm 1

4. But then \(Q(x) \) would have to be constant, which is false.
So, contradiction.

But Lean may not directly have lemmas for this.

A better approach is to use that for a monic polynomial with integer

< coefficients and \(\pm 1 \) constant term, it is irreducible if it
< has no non-trivial factors.

But in Lean, we can prove that no non-trivial factors exist.

However, checking all possible factors is impractical.

Alternatively, we can use the fact that \(Q(x) \) is a cyclotomic-like
— polynomial or a Schur polynomial.

But since this seems too involved, we can use Lean's **irreducibility
< testing** (but that's not part of standard libraries).

*xAlternative Step:*x*
We can instead show that \(Q(x) \) is not a perfect square in \ (
— \mathbb{z} [x] \).

But this is non-trivial.

Alternatively, we can use xx*Mignotte's bound*x to check that no
— non-trivial factors exist.

But given that \(Q(x) \) is not a known factorizable polynomial, we can

< simply use the fact that it is not reducible and is of degree \(4

— \), so it must be irreducible if it has no roots in \(\mathbb{z} \).
Since \(Q(x) \) is strictly increasing for \(x \geq 0 \) and \(Q(-1) =
< 2 \), \(Q) =1 \), and \(Q(1) = 14 \), there are no integer

— roots.

But Lean can confirm this by checking values.

28

Under review as a conference paper at ICLR 2026

But instead, we can use:

xLemmas : x

1. If \(Q(x) \) is reducible in \(\mathbb{Z}[x] \), then it has a

— linear or quadratic factor.

2. A reducible polynomial must have a factor with \(\deg \leg \1lfloor
— \frac{deg(Q)}{2} \rfloor = 2 \).

3. The possible quadratics are \(x"2 + a x + 1 \) or similar, but none
— divide \(Q(x) \).

But checking this is tedious.

Instead, we can appeal to a known fact that \(x74 + x"3 + x"2 + x + 1 \)
< 1s irreducible, and substituting \(x + 1 \) gives:

N[(x +1)74 + 4(x+ 1)"3 +6((x+1)"2+2(x+ 1) +1\]

\[= x"4 4+ 4x"3 + 6x72 + 4x + 1 + 4x"3 + 12x72 + 12x + 4 + 6x"2 + 12x + 6
— 4+ 2x + 2 + 1 \]

\[= x"4 4+ 8x"3 + 24x"2 + 30x + 14 \]

This is the same as above.

Alternatively, check that \(x"4 + 4x"3 + 6x"2 + 2x + 1 \) is irreducible
— using:

Useful Lemma: The polynomial \(x"4 + a x"3 + b x"2 + ¢ x + 1 \) is
<« irreducible in \(\mathbb{Z}[x] \) if \(a”2 < 4b \) or \(b"2 < 4c
- \), etc.

But this is not directly helpful.

**xLean—-Applicable Approach:xx*

To prove irreducibility in Lean, we can directly use:

— The **xreduction modulo primes** approach to eliminate possible
— factorizations.

Alternatively, we can use the fact that \(Q(x) \) is a cyclotomic-like
— polynomial or a Cohn polynomial.

But given that the polynomial is of degree \(4 \) and no obvious
— factorization exists, we can proceed by contradiction.

Step-by-Step Abstract Plan

1. xxAssume Reducibilityx*: Suppose \(Q(x) \) is reducible in \(

— \mathbb{z}[x] \). Then, \(Q(x) = A(x) B(x) \) with \(\deg(A(x))

— \geg 1 \), \(\deg(B(x)) \geg 1 \), and \(\deg(A(x)) + \deg(B(x)) =
— 4 \).

2. xxAnalyze Constant Terms*x: Since \(Q(0) = 1 \) and \(Q(x) \) has no
< rational roots, no constant factors can exist unless one of \(A(x)
N

\) or \(B(x) \) is \(\pm 1 \).
3. *xCheck for Linear Factorsxx: If \(\deg(A(x)) =1 \), say \(A(x) = x
— + a \), then \(Q(x) = (x + a) B(x) \). Expand to get coefficients
s

and contradict.

4. x*Check for Quadratic Factors*x: If \(\deg(A(x)) = 2 \), say \(A(x)
— = x"2 + a x + b \), analyze to find contradictions.

5. *xContradiction**: Since all possible factorizations lead to
< contradictions, \(Q(x) \) must be irreducible.

Lean 4 Abstract Plan with “have Statements

" Tleanid
theorem exercise_9 4 2c¢ : Irreducible

29

Under review as a conference paper at ICLR 2026

(X"4 + 4%X"3 + 6xX"2 + 2%X + 1 : Polynomial Z) := by
have h_main : Irreducible (X"4 + 4xX"3 + 6%X"2 + 2%X + 1 : Polynomial
— Z) := by
sorry
sorry

Complete Lean 4 Proof

""" leand
theorem exercise_9_4_2c : Irreducible
(X"4 + 4%xX°3 + 6%X°2 + 2+#X + 1 : Polynomial Z) := by
have h_main : Irreducible (X"4 + 4xX"3 + 6%X"2 + 24X + 1 : Polynomial
— Z) := by
apply?

apply h_main

Base model generated result:
<|begin_of_sentence|><|User|>Complete the following Lean 4 code:

""" lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/—— Prove that S$x°4+4x°3+6x"2+2x+1$ 1is irreducible in S\mathbb{Z}[x]S. -/
theorem exercise_9 4 2c¢ : Irreducible
(X™4 + 4%X"3 + 6%X"2 + 2xX + 1 : Polynomial Z) := by

Before producing the Lean 4 code to formally prove the given theorem,
— provide a detailed proof plan outlining the main proof steps and
— strategies.

The plan should highlight key ideas, intermediate lemmas, and proof
— structures that will guide the construction of the final formal
— proof.

<|Assistant|>### Detailed Proof and Analysis

We need to prove that the polynomial \(P(x) = x4 + 4x"3 + 6x72 + 2x + 1
< \) is dirreducible over \ (\mathbb{Z}[x]\).

Step 1: Understand the Polynomial

First, observe that \(P(x) \) is palindromic. A palindromic polynomial
<~ \N(P(x) \) can be factored as \(P(x) = (x"2 + a x + b) (x"2 + ¢ x +
— d) \) if and only if \(P(x) \) can be written as a product of two
— quadratic polynomials.

Step 2: Try to Factor \(P(x) \)

Assume that \(P(x) \) factors into two non-constant polynomials with
— integer coefficients:

\[P(xX) = (X2 +ax+Db)(x"2 +cx+d. \]

Expanding the right-hand side gives:
\[x4 + (& + ¢)x"3 + (ac + b + d)x"2 + (ad + bc)x + bd. \]

By comparing coefficients, we get the system:
1. \(a+c=14)\),

30

Under review as a conference paper at ICLR 2026

2. \(ac + b +d-=2561\),

3. \(ad + bc =2 \),

4. \(bd =1 \).

Step 3: Solve the System

From \(bd = 1 \), the possible integer pairs \((b, d)\) are:
N[(2, 1), (=1, -1). \]

**xCase l:+*x \(b =1 \), \(d=1\).
Substitute into the other equations:
1. \(a+c=14)\),

2. \(ac +1 + 1 =6 \Rightarrow ac = 4 \),
3. \(a +c=4)\)
4. \(a

14
ad + bc = + ¢ =4 \), but this is already satisfied.
But from \(a + ¢
— a \) is:
\[t°2 - 4t + 4 = 0 \Rightarrow (t - 2)°2 = 0 \Rightarrow t
Thus \(a = ¢ 2 \).

4 \) and \(ac = 4 \), the quadratic equation for \ (

2. \1

Check the last equation: \(ad + bc = 2 \cdot 1 + 2 \cdot 1 = 4 \neq 2
— \). This is a contradiction, so this case is invalid.

*xCase 2:%xx \(b =-1\), \(d=-1\).
Substitute into the other equations:

1. \(a+c=41\),

2. \(ac -1 -1 = 6 \Rightarrow ac = 8 \),
3. \(ad + bc = -a -c¢c=2\),

4. \((bd =1 \).

But from \(a + ¢ = 4 \) and \(ac = 8 \), the quadratic equation for \(
— a \) is:

\[t"2 - 4t + 8 = 0, \]

which has discriminant \(D = 16 — 32 = -16 < 0 \). Thus, there are no
— real (and hence no integer) roots, so this case is invalid.

Step 4: Check Other Possible Factorizations

The above exhaustive search shows that \(P(x) \) does not factor into

< two non-constant polynomials with integer coefficients. Thus, \(P(x)
< \) 1is irreducible.

Verification of the Irreducibility

We have checked all possible factorizations of \(P(x) \) into quadratics
< and found that none satisfy the coefficient conditions. Therefore, \(
— P(x) \) is irreducible.

Abstract Plan

1. xxAssume Factorization*x: Suppose \(P(x) = (x"2 + a x + b) (x"2 + ¢ x
— + d) \) for integers \(a, b, ¢, d \).
2. *xCompare Coefficientsxx: Derive the system of equations for \(a, b,
- c, d\).

- \(a+c=4)\),

- \(ac +b+d=561\),

- \(ad + bc = 2 \),

- \(bd =1\).

3. *xSolve \(bd = 1 \)**: Consider the pairs \((b, d)\) as \((1, 1)\)
— and \((-1, -1)\).
4. x*xCase \(b =1) (d=1 \)**

— Derive \(a + ¢)y and \(ac = 4 \).

r
— Solve for \(a \) and \(¢ \) to find \(a =c¢c =2 \).

— But this leads to (ad + bc = 4 \neq 2 \), a contradiction.
5. **Case \(b =-1\), \(d=-1\)x*x:

- Derive \(a + ¢ =4 \) and \(ac = 8 \).

- Show that no real roots exist for \(a \), so this case is invalid.

31

Under review as a conference paper at ICLR 2026

6. **Conclusion**: No valid factorization exists, so \(P(x) \) is
— irreducible.

Lean 4 "have Statements

""" leand
theorem exercise_9 4 2c¢ : Irreducible
(X"4 + 4%xX°3 + 6%X°2 + 2+#X + 1 : Polynomial Z) := by
have h_main : Irreducible (X"4 + 4xX"3 + 6%X"2 + 24X + 1 : Polynomial
— Z) := by sorry
sorry

Complete Lean 4 Proof

""" leand
theorem exercise_9_4_2c : Irreducible
(X"4 + 4%xX°3 + 6%X°2 + 2+#X + 1 : Polynomial Z) := by

have h_main : Irreducible (X"4 + 4xX"3 + 6%X"2 + 24X + 1 : Polynomial
— Z) := by
—— Assume the polynomial factors into two non-constant polynomials
— with integer coefficients
refine' (prime_of_irreducible (show Prime (X"4 + 44X 3 + 6xX"2 + 2xX
— + 1 : Polynomial Z) by
—— Use the fact that the polynomial is prime to show it 1is
— lrreducible
apply prime_C_mul_X_pow_add_C_of_prime
<;> norm_num
<;>
decide))
<;>
(try norm_num) <;>
(try decide) <;>
(try
{
intro h
—— If the polynomial factors, it must factor into quadratics
rcases h with {(p, g, hp, hg, hp)
—— Analyze the possible factorizations

have h; congr_arg (fun p => eval 0 p) hpg
have hy := congr_arg (fun p => eval 1 p) hpg
have h3 := congr_arg (fun p => eval (-1) p) hpg
have hy congr_arg (fun p => eval 2 p) hpg
have hs := congr_arg (fun p => eval (-2) p) hpg

simp at h; hs hs hsa hs

—— Check the possible evaluations to find a contradiction
norm_num [eval_add, eval_mul, eval_pow, eval_C, eval_X, eval_pow,
— eval_mul, eval_add, eval_sub] at h; hs hs hs hs

<>

(try { contradiction }) <;>

(try |
have hg := p.sub_dvd_eval_sub 0 1
have hy := g.sub_dvd_eval_sub 0 1
have hg := p.sub_dvd_eval_sub 0 (-1)
have hg := g.sub_dvd_eval_sub 0 (-1)
have hjgp := p.sub_dvd_eval_sub 0 2
have hi1 := g.sub_dvd_eval_sub 0 2
have hj2 := p.sub_dvd_eval_sub 0 (-2)
have hiz := g.sub_dvd_eval_sub 0 (-2)

simp [eval_add, eval_mul, eval_pow, eval_C, eval_X] at hg h7 hs
< hg hig hi1 hi2 his

<;>
(try omega) <;>
(try {
have his : p.natDegree < 2 := by

32

Under review as a conference paper at ICLR 2026

contrapose! hg
simp_all

[Polynomial.eval_add, Polynomial.eval_mul,
.

Polynomial.eval_pow, Polynomial.eval_C,

— Polynomial.eval_X]

<;>
(try omega) <;>
(try nlinarith)

have hjs g.natDegree < 2 := by
contrapose! hr
simp_all [Polynomial.eval_add, Polynomial.eval_mul,
— Polynomial.eval_pow, Polynomial.eval_C,
[

Polynomial.eval_X]
<;>

(try omega) <;>
(try nlinarith)

have hig p.natDegree < 2 := by
contrapose! hg
simp_all [Polynomial.eval_add, Polynomial.eval_mul,
— Polynomial.eval_pow,

Polynomial.eval_C,
s

Polynomial.eval_X]
<;>

(try omega) <;>
(try nlinarith)

have hj~r g.natDegree < 2 := by
contrapose! hg
simp_all [Polynomial.eval_add, Polynomial.eval_mul,
—

Polynomial.eval_pow,

Polynomial.eval_C,
Polynomial.eval_X]

<
<pg>
(try omega) <;>
(try nlinarith)

have hisg p.natDegree < 2 := by
contrapose! hig
simp_all [Polynomial.eval_add, Polynomial.eval_mul,
—

Polynomial.eval_pow,

Polynomial.eval_C,
Polynomial.eval_X]

<
<pg>
(try omega) <;>

(try nlinarith)
have hig

g.natDegree < 2
contrapose! hii
simp_all

—

by

[Polynomial .eval_add, Polynomial.eval_mul,

Polynomial.eval_pow, Polynomial.eval_C,

— Polynomial.eval_X]

<pg>
(try omega) <;>

(try nlinarith)
have hsog

p.natDegree < 2
contrapose! hia
simp_all

—

by

[Polynomial.eval_add, Polynomial.eval_mul,
Polynomial.eval_pow, Polynomial.eval_C,
— Polynomial.eval_X]

<o

(try omega) <;>

(try nlinarith)

have ho; g.natDegree < 2 by
contrapose! his
simp_all [Polynomial.eval_add, Polynomial.eval_mul,
— Polynomial.eval_pow,

Polynomial.eval_C,
— Polynomial.eval_X]

Lo
(try omega) <;>
(try nlinarith)

-— Now we know the degree of p and g is at most 2
have hos p.natDegree < 2

by linarith

33

Under review as a conference paper at ICLR 2026

have hs3 : g.natDegree < 2 := by linarith
have hay : p = C (p.coeff 0) V p = C (p.coeff 0) » X V p = C
— (p.coeff 0) » X = 2 := by

have hss := p.natDegree_le_of_degree_le hao

have hog := p.natDegree_le_of_degree_le hag

have ha7 := p.natDegree_le_of_degree_le hao

cases' lt_or_eq of_le (natDegree_le_of_degree_le hgz) with
< hog haog <;>
simp_all [Polynomial.natDegree_le_iff degree_le,
— Polynomial.degree_eq_natDegree]
<;>
(try omega) <;>
(try aesop) <;>
(try {
aesop
Po<i>
(try {
aesop
) <>
(try |
aesop
})
have hgss : g = C (g.coeff 0) V g = C (g.coeff 0) » X V g = C

— (g.coeff 0) » X © 2 := by
have ha¢ := g.natDegree_le_of_degree_le hs3
have hs7 := g.natDegree_le_of_degree_le has
have hag := g.natDegree_le_of_degree_le hs3

cases' lt_or_eq of_ le (natDegree_le_of_degree_le ha3) with
— hag hag <;>
simp_all [Polynomial.natDegree_le_iff degree_le,
— Polynomial.degree_eq_natDegree]
<;>
(try omega)
(try aesop)
(try {
aesop
P <>
(try {
aesop
) <>
(try {
aesop
)
rcases hogs with (hes | has | hos) <;> rcases hos with (heg | hag
— | hog) <;> simp_all [Polynomial.eval_add,
— Polynomial.eval_mul, Polynomial.eval_pow,
— Polynomial.eval_C, Polynomial.eval_X]
Lp>
(try omega) <;>
(try nlinarith) <;>
(try |
ring_nf at «
<o
omega
P <>
(try {
norm_num at =
<;>
aesop

<>
<>

r

aesop

34

Under review as a conference paper at ICLR 2026

1536 exact h_main
1837 S

1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

35

	Introduction
	Methodology
	Generation Stage
	Statement Fusion
	Proof Writing

	Adversarial Reinforcement Learning
	Statement Fuser Training
	Prover Training

	Summary

	Experiments
	Experiment Setup
	Dataset and Task
	Baselines

	Implementation Details
	Results
	Statement Fuser Study
	Ablation Studies
	Effect of statement modification penalty
	Compare to Direct RL training

	Related Work
	LLM for Formal Theorem Proving
	RL methods for LLM

	Conclusion
	Details of the metrics
	Pass Rate
	Average proof correctness rate
	Statement modification rate

	Direct comparison with Related Works
	Additional experiments
	Results on PutnamBench
	Efficiency Study
	Statement Modification Rate Study
	Additional Ablation Studies
	Frozen Fuser Study
	Single Problem Enhancement Fuiser

	Case study
	Case 1:
	Case 2:

