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Abstract

This paper introduces a novel method for simulating Electronic Health Records
(EHRs) using Diffusion Probabilistic Models (DPMs). We showcase the ability
of DPMs to generate longitudinal EHRs with mixed-type variables – numeric,
binary, and categorical. Our approach is benchmarked against existing Generative
Adversarial Network (GAN)-based methods in two clinical scenarios: management
of acute hypotension in the intensive care unit and antiretroviral therapy for peo-
ple with human immunodeficiency virus. Our DPM-simulated datasets not only
minimise patient disclosure risk but also outperform GAN-generated datasets in
terms of realism. These datasets also prove effective for training downstream ma-
chine learning algorithms, including reinforcement learning and Cox proportional
hazards models for survival analysis.1

1 Introduction

Machine learning (ML) plays a key role in realising personalised healthcare [1], but ML research and
development are often hindered by privacy regulations limiting access to real-world datasets [2; 3].
Generative Adversarial Networks (GANs) [4] offer a solution by creating synthetic healthcare
datasets [5]. However, GANs suffer from unstable training and mode collapse, which reduce data
quality and diversity [6; 7]. These issues persist despite several mitigation techniques [8; 9; 10; 11]
and can introduce biases to simulated data [12; 13; 14] that pose a potential risk of patient harm in
downstream healthcare ML applications [15].

Recently, Diffusion Probabilistic Models (DPMs) [16; 17] have emerged as a promising alternative
to GANs, offering better data realism in image synthesis [18; 19]. Unlike GANs, DPMs are not
known to experience issues of unstable training and mode collapse. Early applications of DPMs in
healthcare have successfully imputed tabular electronic health records (EHRs) [20].

This study aims to extend the scope of DPM applications to the generation of synthetic longitudinal
EHRs with mixed-type variables. We demonstrate that our DPM-based approach minimises patient
disclosure risks, enhances data realism, and proves effective for training downstream ML algorithms.
Specifically, we show the utility of these synthetic datasets in Reinforcement Learning (RL) [21] to

1Refer to Section 6 for the ethics approval, broader impact, data access, and code repository of this paper.
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inform patient medication management and in Cox Proportional Hazards (CPH) models for survival
analysis [22]. We further demonstrate that our synthetic healthcare datasets realistically represent
important clinical milestones defined by the World Health Organisation (WHO) guidelines [23]. Our
synthetic data thus can contribute to accelerating innovation in healthcare by facilitating development
and benchmarking of ML algorithms, and supporting medical education [24].

Figure 1: Using the DPM framework to generate synthetic sequential data.

2 Background

2.1 Diffusion Probabilistic Models

DPMs approximate real data distributions using diffusion and denoising, as shown in Figure 1. The
forward diffusion process iteratively adds Gaussian noise

q(xt|xt−1) = N (xt;
√

(1− βt)xt−1, βtI) (1)

to a sample across T time-steps, following a pre-defined variance schedule {βt ∈ (0, 1)}Tt=1. The
iterative denoising process learns a model pθ to approximate the conditional probability of the real
data given the noisy input:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) and pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)

Perturbed inputs with the added noise ϵ ∼ N (0, I) are written as

xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ (3)

where αt = 1− βt and ᾱt =
∏t

s=1 αs. Ho et al. [17] showed that the forward process is tractable
when conditioned on x0, and that a DPM could configure µθ(xt, t) to predict the noise in xt with

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱtϵθ(xt, t)

)
. (4)

Furthermore in [17], they demonstrated that optimising the loss

LNoise(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)
∥2
]

(5)

is equivalent to optimising the negative log-likelihood using the variational lower bound.

To generate novel data, we follow Song et al. [25]’s score-based generative method using Langevin
dynamics and sampling z ∼ N (0, I) where

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱtϵθ(xt, t)

)
+ σtz. (6)
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2.2 Ground Truth Datasets

We generated a synthetic dataset for people receiving antiretroviral therapy for human immunodefi-
ciency virus (ART for HIV) using EuResist [26] with published inclusion/exclusion criteria [5; 27].
The original dataset comprises 8,916 individuals, post-2015, on the 50 most common drug combina-
tions. It includes demographics, viral load, CD4 counts, and treatment regimens. Data were rounded
to the nearest 10-month interval, ranging from 10 to 100 months. Data missingness is high in the
real dataset, and hence we included binary variables with suffix (M)s to denote data measurements at
specific time-points. See § A.1 in the Supplementary Materials for more details.

In addition, we present findings on an acute hypotension dataset derived from MIMIC-III [28]. For
details refer to § A.2 in the Supplementary Materials.

3 Methods

3.1 Backbone

Following prior studies [29; 30; 31], we adopt U-Net [32] as the backbone for generating mixed-type
longitudinal time series data. Our U-Net utilises multi-layered 1D convolutional neural networks
and autoencodes clinical time-series data in a bidirectional manner which is inspired by BERT’s role
in natural language processing [33]. More details are in the Supplementary Materials: § B for data
transformation, § C for U-Net module selection, and § D for hyperparameter choices.

3.2 Auxiliary Loss Functions

Simulating medical time-series data offers distinct challenges due to sparsity and negative correla-
tions [34]. To address the slow sampling of DPMs [35], we propose two auxiliary loss functions.

The first, a one-step reconstruction loss LRecon1 , is defined as

LRecon1 = ∥x0 − x̂0(t, ϵθ)∥22, where x̂0(t, ϵθ) =
xt −

√
(1− ᾱt)ϵθ√
ᾱt

. (7)

This leverages predicted noise ϵθ to approximate x0, reducing computational overhead [25; 36].

The second, a latent discriminative projection loss LRecon2 , is

LRecon2 = ∥U(x0)− U(x̂0(t, ϵθ))∥22, where U(v) = max(0, v U1) U2. (8)

Inspired by mini-batch discrimination [11], this minimises x0 and x̂0 discrepancy in a random feature
space using untrained matrices U1 and U2, thereby reducing latent variability.

3.3 Metrics

For variable fidelity, we utilise Kernel Density Estimations (KDEs) [37] for numerical variables and
side-by-side barplots for binary and categorical variables. We confirm realism via the Kolmogorov-
Smirnov (KS) test [38], Student’s t-test [39], F-test [40], and three sigma rule tests [41]. Inter-variable
interactions are inspected using Kendall’s τ correlation [42].

Diversity is checked using log-cluster U [13] and category coverage (CAT) [14]: lower U and higher
CAT are preferable. Notably, vision-specific metrics like Inception Score (IS) [11] and Fréchet
Inception Distance (FID) [43] are not suitable for synthetic EHR evaluation. Data leakage is checked
via minimum Euclidean distance [5]; privacy compliance is confirmed through sample-to-population
attack [44], adhering to European [45] and Canadian [46] standards requiring risk below 9%.

Utility evaluation involves comparing RL agents [47] and CPH models [48] trained on both real and
synthetic datasets. For details in validation and utility setups, see § E in the Supplementary Materials.

4 Results

We compared our approach with the WGAN-GP model [9; 10] implemented in the Health Gym
GAN [5; 49]. For clarity, we define: Dreal for the ground truth dataset, Dnull for the synthetic dataset
generated via WGAN-GP [5], and Dalt for our alternative synthetic dataset simulated using DPM.
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(a) Synthetic dataset Dnull from [5]’s WGAN-GP in pink.

(b) Synthetic dataset Dalt from our DPM in blue.

Figure 2: Comparing the variables in ART for HIV, with those of Dreal in colour grey.
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Figure 3: Comparing the patient demographics in the ART for HIV datasets.

Figure 4: Comparing the correlations in ART for HIV in Dnull (left), Dalt (middle), and Dreal (right).

(a) With GAN-generated Dnull. (b) With our DPM-simulated Dalt. (c) With the real dataset Dreal.

Figure 5: Comparing the policies learned by RL agents using different ART for HIV datasets.

(a) On GAN-generated Dnull. (b) On our DPM-simulated Dalt. (c) On the real dataset Dreal.

Figure 6: Estimation of viral control via CPHs modelled on different ART for HIV datasets.
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(a) In GAN-generated Dnull. (b) In our DPM-simulated Dalt. (c) In the real dataset Dreal.

Figure 7: Statistics for viral suppression and immune recovery on different ART for HIV datasets.

U (↓) CAT (↑)
Dnull [5] -2.130 97.50%
Dalt (ours) -3.057 100.00%

Table 1: Metric comparison.

Dataset Realism
Figure 2 shows KDE plots2

and barplots for ART for HIV. Our DPM-
simulated Dalt better approximates Dreal, no-
tably in imbalanced Base Drug Combo labels.
All variables in Dalt passed the KS test except
VL, which nonetheless passed the three sigma
rule test hence all variables in Dalt achieved a high level of realism and reliability. For all outputs of
the statistical tests, refer to § F.1 in the Supplementary Materials.

The statistics in Table 6 confirm Dalt outperforms Dnull in lower U and higher CAT values, better
capturing Dreal’s latent structure. These metrics are contextualised in Figure 3, showing that Dalt
covers all demographic feature combinations, unlike Dnull, suggesting its superior data heterogeneity.
In addition, Figure 4 shows that both synthetic datasets mirror the correlations in the real dataset.

Private Information Disclosure Risk
Using Euclidean distance tests, we found no data leakage in Dalt, with a minimum distance of 0.09
(>0). Moreover, the sample-to-population attack risk was 0.076%, well below the 9% threshold [45;
46], ensuring safe distribution of our synthetic dataset.

Utility
Figure 5 visualises RL agents’ learned policy for selecting combinations of Comp. NNRTI and Base
Drug Combo for ART. The numbers on the heatmap represent the frequency of taking a specific
action as a proportion of all actions taken. The RL agent trained on Dnull suggested (NVP, DRV +
FTC + TDF) for 48.97% of all actions. This suggests that the GAN model used to generate Dnull
experienced mode collapse, thus creating an excessive number of synthetic records with similar
attributes in Dnull. Conversely, we attribute the higher utility of the DPM-simulated Dalt to the higher
robustness of DPM against mode collapse.

We further focused on the effectiveness of ART combinations in controlling viral load, stratifying by
different ART types (i.e., FTC + TDF vs 3TC + ABC) at initiation and the time needed to achieve a
viral load under 1,000 copies/mL – a significant clinical milestone [23]. Figure 6 reveals CPH models
built using Dalt better emulate those on Dreal for predicting the required time. Models built using
Dnull skewed towards unlikely early VL control.

In addition, we examined patient recovery trajectories over a 60-month span. Patients are categorised
based on whether they initiated treatment with WHO-recommended first-line medications or alterna-
tive options [23]. We then visualised monthly percentages of patients achieving viral suppression (VL
< 200 copies/mL) and immune recovery (CD4 ≥ 500 cells/µL) in each category, providing an initial
baseline for comparison. Figure 7 shows that our DPM-simulated Dalt closely mirrors the real dataset
Dreal, while GAN-generated Dnull exhibits unexplained strong seasonality.

Details for the experimental setups are in § E.4 of the Supplementary Materials. Refer to more results
comparing synthetic datasets for acute hypotension in § F.2 of the Supplementary Materials.

2The kernel density estimation uses Gaussian kernels to estimate the probability density function of a
continuous variable. Thus, the KDE function can potentially produce tails beyond the range of the data.
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5 Discussion

This paper introduced a DPM framework featuring a custom U-Net backbone and two auxiliary loss
functions to generate mixed-type longitudinal clinical datasets. We demonstrated its superior utility
and realism compared to GAN-generated datasets, while minimising patient disclosure risk, thereby
facilitating open access to reliable healthcare data for research and medical education.

Although existing synthetic data studies predominantly focus on image-related tasks, clinical data,
with its unique challenges, remains underexplored. Most of the existing studies either synthesise a
single data type or produce static datasets [12; 50; 51; 52; 53; 54; 55; 56]. While some studies have
produced longitudinal EHRs [57; 5], they neglect in-depth analysis of their datasets’ time-dependent
nature. Our contribution lies in demonstrating that our DPM-simulated clinical datasets not only
uphold realism and minimise private information disclosure risk, but also offer high utility. This is
evidenced by their performance in downstream RL agents (Figure 5) and CPH models (Figure 6), as
well as their underlying characteristics when inspected using WHO guidelines (Figure 7).

6 Ethics Approval, Broader Impact, Data Access, and Code Repository

We applied DPMs to longitudinal data extracted from the MIMIC-III [28] and the EuResist [26]
databases to generate our synthetic datasets. This study was approved by the University of New
South Wales’ human research ethics committee (application HC210661). For patients in MIMIC-III
requirement for individual consent was waived because the project did not impact clinical care and
all protected health information was deidentified [28]. For people in the EuResist integrated database
all data providers obtained informed consent for the execution of retrospective studies and inclusion
in merged cohorts [58].

The broader adoption of synthetic data in medical education and research represents a paradigm
shift that can profoundly transform the landscape of health data science [24]. By offering controlled,
context-specific resources that closely emulate real-world scenarios, synthetic data provides an
invaluable resource for students and researchers, allowing them to gain practical experience without
risking patient confidentiality. Such datasets democratise access to vital information, breaking barriers
imposed by stringent privacy regulations, and equipping future health professionals with the tools
they need to drive innovation in healthcare AI and analytics. However, while these datasets offer
promise, we emphasise that synthetic datasets should not be naïvely used to replace real datasets;
and that critical evaluation in diverse applications will be vital to determine their ultimate efficacy in
clinical research.

Our superior synthetic datasets generated using DPMs that we introduced in this paper are now
available on Health Gym [5], accessible at https://healthgym.ai/, the same platform that
hosted the baseline synthetic datasets generated using GAN-based methods. The project’s open-
source code is also available on GitHub at
https://github.com/Nic5472K/ScientificData2021_HealthGym.
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Synthetic Health-related Longitudinal Data with Mixed-type Variables
Generated using Diffusion Models
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In the main paper, we introduced a novel approach for simulating electronic health records (EHRs)
using diffusion probabilistic models (DPMs) [16; 17], demonstrating their effectiveness in generating
longitudinal EHRs with mixed-type variables including numeric, binary, and categorical variables. We
compared the performance of our DPM-simulated datasets with state-of-the-art generative adversarial
networks (GANs) [4] for two clinical applications: management of patients with acute hypotension
in the intensive care unit (ICU) and antiretroviral therapy (ART) for human immunodeficiency virus
(HIV). Moreover, we trained reinforcement learning (RL) agents [21] and Cox proportional hazard
(CPH) models [22] on the synthetic data to evaluate the utility of our approach for developing
downstream machine learning models.

Due to the constraints on the length of the main manuscript, we have moved the majority of our
implementation details and supplementary findings to this accompanying document.
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A The Ground Truth Datasets

We based our work on the Health Gym project [5], which used GANs to generate synthetic longitu-
dinal data from two health-related databases: MIMIC-III [28] and EuResist [26]. The authors used
these databases to generate synthetic datasets for the management of acute hypotension and ART for
HIV. The patient cohorts were defined using inclusion and exclusion criteria from previous studies:
Gottesman et al. [59] for acute hypotension and Parbhoo et al. [27] for ART for HIV.

For data extraction and the inclusion/exclusion criteria, we mainly followed the Supplementary
Information provided by [5] in https://www.nature.com/articles/s41597-022-01784-7.
Additional guidelines on data formatting can be found in [5]’s repository https://github.com/
Nic5472K/ScientificData2021_HealthGym.

A.1 ART for HIV

The real HIV dataset is based on a cohort of individuals from the EuResist database, as proposed by
Parbhoo et al. [27]. The study employs a mixture-of-experts approach for therapy selection, utilising
kernel-based methods to identify clusters of similar individuals and an RL agent to optimise treatment
strategy. The dataset consists of 8,916 individuals who started therapy after 2015 and were treated
with the 50 most common medication combinations, including 21 different types of medications.
Demographics, viral load (VL), CD4 counts, and regimen information are included in the dataset.
The length of therapy in the dataset varies, thus the records were truncated and modified to the closest
multiples of 10-month periods, resulting in a shortest record length of 10 months and a longest record
length of 100 months, each summarising patient observations over a 1-month time period. The dataset
includes variables with suffix (M) to indicate the measurement at a specific point in time and is
significant due to its informativeness in missing data in clinical time series, which can indicate the
need for laboratory tests. Refer to Table 2 for more details.

Variable Name Data Type Unit Extra Notes
Viral Load (VL) numeric copies/mL
Absolute Count for CD4 (CD4) numeric cells/µL
Relative Count for CD4 (Rel CD4) numeric cells/µL
Gender binary - - Female; Male
Ethnicity categorical - - 4 Classes

Asian; African;
Caucasian; Other

Base Drug Combination categorical - - 6 Classes
(Base Drug Combo) I) FTC + TDF; II) 3TC + ABC;

III) FTC + TAF; IV) DRV + FTC + TDF;
V) FTC + RTVB + TDF; VI) Other

Complementary INI categorical - - 4 Classes
(Comp. INI) DTG; RAL;

EVG; Not Applied
Complementary NNRTI categorical - - 4 Classes
(Comp. NNRTI) NVP; EFV;

RPV; Not Applied
Extra PI categorical - - 6 Classes

DRV; RTVB;
LPV; RTV;
ATV; Not Applied

Extra pk Enhancer (Extra pk-En) binary - - False; True
VL Measured (VL (M)) binary - - False; True
CD4 (M) binary - - False; True
Drug Recorded (Drug (M)) binary - - False; True

Table 2: Variables in the ART for HIV Dataset.
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A.2 Acute Hypotension

This dataset was extracted from MIMIC-III and was originally proposed by Gottesman et al. [59]. It
comprises of 3,910 patients with 48-hour clinical variables, aggregated per hour in the time-series.
The dataset includes variables with suffix (M) to indicate the measurement at a specific point in time
and is significant due to its informativeness in missing data in clinical time series, which can indicate
the need for laboratory tests. In their work, Gottesman et al. utilised this dataset to develop an RL
agent that suggested optimal fluid boluses and vasopressors for acute hypotension management, with
actions being made in a discrete action space by binning the boluses and vasopressors into multiple
categories. Refer to Table 3 for more details.

Variable Name Data Type Unit Extra Notes
Mean Arterial Pressure (MAP) numeric mmHg
Diastolic Blood Pressure (DBP) numeric mmHg
Systolic BP (SBP) numeric mmHg
Urine numeric mL
Alanine Aminotransferase (ALT) numeric IU/L
Aspartate Aminotransferase (AST) numeric IU/L
Partial Pressure of Oxygen (PaO2) numeric mmHg
Lactate numeric mmol/L
Serum Creatinine numeric mg/dL
Fluid Boluses categorical mL 4 Classes

[0, 250); [250, 500);
[500, 1000); ≥ 1000

Vasopressors categorical mcg/kg/min 4 Classes
0; (0, 8.4);
[8.4, 20.28); ≥ 20.28

Fraction of Inspired Oxygen (FiO2) categorical fraction 10 Classes
≤ 0.2; 0.2; 0.3;
0.4; 0.5; 0.6;
0.7; 0.8; 0.9; 1.0

Glasgow Coma Scale Score (GCS) categorical point 13 Classes
3; 4; 5; 6; 7;
8; 9; 10; 11; 12;
13; 14; 15

Urine Data Measured (Urine (M)) binary - - False; True
ALT or AST Data Measured (ALT/AST (M)) binary - - False; True
FiO2 (M) binary - - False; True
GCS (M) binary - - False; True
PaO2 (M) binary - - False; True
Lactic Acid (M) binary - - False; True
Serum Creatinine (M) binary - - False; True

Table 3: Variables in the Acute Hypotension Dataset.

B Data Formulation for Mixed-Type Inputs & Outputs

For each iteration, we draw ground truth data ξ0 from the set of clinical datasets and reformulate
it to x0 (to be addressed below). We also select a noise level t and its corresponding strength of
perturbation βt to introduce corruption to x0 following Equation (1) in the main text to acquire
the noisy inputs xt. To estimate the manually injected noise ϵ of Equation (3) in the main text, we
feed xt into a tailored implementation of U-Net [32], which serves as our backbone network for the
denoising operations. The output of the U-Net network ϵθ is the predicted estimation for ϵ.

Our datasets encompass numeric, binary, and categorical variables. Hence, we elaborate on the data
formulation prior to presenting it to the model. The ground truth data is partitioned as
ξ0 = ξ0,[num] ⊕ ξ0,[alt] , with the numeric subset ξ0,[num] and the non-numeric subset ξ0,[alt] .

We transform each numeric feature in ξ0,[num] to the range ∈ [0, 1] and derive x0,[num] . Each
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non-numeric variable ξ
(i)
0,[alt] is converted into a list of one-hot vectors where the observed class is

assigned a value of 1 and the others a value of 0. Here are some examples:

For the binary variable Gender = Female, we have

Gender =

[
Female
Male

]
=

[
1
0

]
, and

for the categorical variable Ethnicity = African, we have

Ethnicity =

 Asian
African

Caucasian
Other

 =

010
0

.

We denote the aggregate of all one-hot vectors as x0,[alt] =
⋃

i OneHot
(

ξ
(i)
0,[alt]

)
; and that

x0 = x0,[num] ⊕ x0,[alt] . Embeddings [60; 61; 62] are not necessary in our framework. The
forward diffusion process of the DPM (refer to Equation (3) in the main text) directly applies noise to
the one-hot vectors.

At test time, we randomly sample a noisy input xT from a Gaussian distribution. Then, we iteratively
estimate the corruption ϵθ(xt, t) at step t using our U-Net backbone to generate a less noisy xt−1

as per Equation (6) in the main text. Once we reach the allegedly clean and novel data x0 , we
compartmentalise it into x0,[num] and x0,[alt] to reverse the transformation in x0,[num] , resulting

in ξ0,[num] . Next, we employ softmax to recover the non-numeric variables such that ξ0,[alt] =⋃
i Softmax

(
x
(i)
0,[alt]

)
.

The dimensionality of the noisy input is xt ∈ RB×1×L×N, where B corresponds to the batch size, L
denotes the length of the time-series, and that there is 1 feature channel for all the N variables. As
we previously mentioned, all acute hypotension data possess a fixed sequence with a length of 48
units, hence Lhypotension = 48. On the other hand, the HIV data has variable lengths and we utilise
zero-padding to bring all the data to a pre-defined maximal length of LHIV = 100. This setup hence
obviates the need for curriculum learning [63] to enable training.

Moreover, inferring the size N is a straightforward task, as it solely involves concatenating the
numeric and one-hot representations of the binary and categorical variables in xt. To illustrate,
consider the ART for HIV dataset, whose variable specifications are provided in Table 2. By summing
up the corresponding levels of every variable (with 1 for numeric variables), we obtain that

NHIV = sum({1, 1, 1, 2, 4, 6, 4, 4, 6, 2, 2, 2, 2}) = 37.
Likewise, we deduce that Nhypotension = 54 as per its respective specifications in Table 3.

C The U-Net Backbone

U-Net [32] is a convolutional neural network (CNN) architecture originally developed for medical
image segmentation. As shown in Figure 8, the architecture has many details. The down-sampling [64]
compartment extracts high-level features from noisy data, while skip connections [65] maintain
fine-grained details and spatial information. The up-sampling compartment estimates noise for
reconstructing clean data, leveraging localised features via the skip connections. U-Net is especially
useful in denoising spatially correlated noise of varying intensities; and has been employed in various
DPM applications [29; 30; 31]. We depicted the U-Net processing procedure in Figure 8.

C-a): Embedding the noise level
In Equation (4) in the main text, the noise prediction process of DPM is enabled via µθ to create
ϵθ to predict noise ϵ. Notably, µθ is informed by noise level t, which is used to iteratively estimate
noise across various levels. To this end, we adopt the Transformer sinusoidal position embedding
method [66], as applied in Ho et al. [17], to featurise the noise level. These noise level embeddings
are then incorporated into the U-Net architecture, and are fed as input to each intermediate neural
activation stage that arises from the down- and up-sampling operations.
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Figure 8: An overview of the elements of our U-Net.
Our U-Net is depicted in the top left panel, with the down-sampling, bottleneck, and up-sampling
procedures denoted by the colors red, purple, and blue, respectively. Top right: The presence of linear
transformations for pre- and post-processing. Bottom right: The local features in each resolution
level is processed with block processing units and linear transformations.

C-b): Down- and up-sampling
All CNNs employed in our design are one-dimensional (1-D) and do not possess a causal architecture.
Thus when we denoise the noisy acute hypotension datum xt ∈ RB×1×L×N with a fixed length of
L = 48, the U-Net could simultaneously denoise the noisy data at positions 10 and 20. Our U-Net
hence processes data similar to the autoencoding style of BERT [33], as opposed to the autoregressive
style of GPT [67] (i.e., we are not limited to denoising from left-to-right in a single direction). See
more discussion in Section C-d).

C-c): Block feature extractor
After each stage of sampling operation, the noisy data is further processed while maintaining the
same resolution level. Within each level, we utilise three successive feature extraction blocks, each
composed of layer normalisation [68] followed by two 1-D CNNs.

C-d): Distinctive Additions to Our U-Net Architecture
We found that the application of the 1-D CNNs alone is insufficient for denoising. As elaborated
upon in Section C-b), 1-D CNNs have the capability to denoise the noisy data simultaneously at
positions 10 and 20, but for each feature independently. For ART for HIV, denoising VL is hence
done independently of the regimen taken. While 2-D CNNs may seem more viable, an incorrect
kernel size can still cause the erroneously denoising the of {VL, regimen} (in the kernel), while
leaving out the relevant information of {CD4, Ethnicity} (out of the kernel). The need to concurrently
denoise multiple time-series variables introduces a level of complexity that is not encountered in the
DPM’s application in speech [69].

This can be addressed by applying additional linear transformation layers on the N dimension of xt.
As a consequence, the U-Net no longer denoises data at a variable level and instead denoises data on
their latent features. Inspired by Lin et al. [70], we also include linear transformations to each up-
and down-sampling 1-D CNN (see the bottom right panel of Figure 8) to process local patches within
the receptive field.

Additional linear transformations are then employed on the final up-sampling output. This restructures
the predicted noise made on the latent structure back to the N sequences on xt.
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D Hyper-parameters

D.1 Hyper-parameters for the U-Net

Following Section C-d), we choose to linearly project the N variables in the input to a latent space of
dimensionality 256. After this preliminary step, we employ our U-Net for denoising.

As detailed in Section C-b), we adopt 3 distinct resolution levels. More specifically, resolution level 1
maintains the initial length of the noisy sequence for all time-series data, whereas the succeeding
resolution levels condense the sequences while augmenting feature dimensions. In resolution level 2,
all time-series have feature size 10, and in resolution level 3, all time-series possess feature size 20,
regardless of the underlying dataset. However, the alteration in the length of the time-series depended
on the dataset. For acute hypotension, resolution level 1 sequences span 48 time steps, which are
subsequently reduced to 12 and 3 in resolution levels 2 and 3, respectively. Likewise in ART for HIV,
they change from length 100 to 10 and then 3.

Following the previous descriptions, the 1-D CNNs employed in the blocks of Section C-c) possess
feature dimensions of 10 and 20 at resolution levels 1 and 2 respectively. Whereas the features in the
bottleneck of resolution level 3 reduces from 20 to 10, subsequently reverting to 20.

D.2 An Example using Acute Hypotension

The input data xt ∈ RB×1×48×37 comprises a sequence length L of 48 and N variables of 37 (see
Section B). We project and contruct the latent structure of the noisy data in RB×1×48×256. In the
subsequent use of U-Net, the dimensionality transforms to RB×10×12×256 in resolution level 2 and
then RB×20×3×256 in resolution level 3.

D.3 Hyper-parameters for the DPM & Optimisation

We set the maximum perturbation at β0 = 0.01 and the minimum at βT = 1× 10−4 (see Equation
(1) in the main text) across both datasets. However, we use T = 1000 for acute hypotension and
T = 500 for ART for HIV. The intermediate perturbations βt are distributed uniformly across the
T levels. As previously stated in Section C-a), the denoising procedure of our DPM is informed by
the noise level t. This information is conveyed to the U-Net architecture as a Transformer sinusoidal
position embedding, featuring an embedding dimensionality of 100.

Our DPMs are updated using the Adam optimiser [71] with learning rate 1× 10−3. We employ a
batch size of 128 for the acute hypotension and ART for HIV. The DPMs are trained for 5000 epochs
for acute hypotension and 3000 epochs for ART for HIV. In addition, the losses are weighted at a
ratio of 1 : 20 : 10 for Lnoise, LRecon1 , and LRecon2 (see Section 3.2 in the main text), respectively.

E Metrics

We put forth five desiderata:
Section E.1: that all generated variables to exhibit individual realism;
Section E.2: that there exists a sufficiently high level of diversity in variables;
Section E.3: that our synthetic datasets ensure patient privacy; and
Section E.4: that our datasets can function as a substitute for a genuine dataset in

downstream model construction.

E.1 Assessing Individual Realisticness

We leverage two plots to assess the individual realisticness. For numeric variables, we use kernel
density estimations (KDEs) [37] to overlay the synthetic distribution on top its genuine counterpart.
For binary and categorical variables, we use side-by-side barplots to demonstrate the percentage share
of each level.

Following Kuo et al. [5] and Hernadez et al. [72], we perform four statistical tests on the synthetic
datasets shown in Figure 9. We begin with the two-sample Kolmogorov-Smirnov (KS) test [38] to
evaluate whether the synthetic variables effectively capture the distributional characteristics of their
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Figure 9: Statistical tests.
The sequence of the hypothesis tests.

real counterparts. If a synthetic variable passes the KS test,
it is deemed to be realistic and can be considered as having
been drawn from the real datasets. Otherwise, we seek to
identify the underlying reasons for its lack of realism.

The perceived lack of realism could be understood us-
ing the Student’s t-test [39] and the F-test. Snedecor’s
F-test [40] is used for numeric variables; and we use the
analysis of variance F-test for binary and categorical vari-
ables. The t-test verifies the alignment between means,
while the F-test assesses the agreement in variances. How-
ever, in the event that a synthetic variable fails the KS
test, neither the t-test nor the F-test can be used to assess
the reliability of the synthetic variable. Hence, we choose
the three sigma rule test [41] (by default, with 2 standard
deviations) to evaluate whether the synthetic values fall
within a plausible range of real values.

Note, unlike image generation, we cannot employ the inception score (IS) [11] and the Fréchet
inception distance (FID) [43] to evaluate the quality of our generated data. These metrics rely on the
Inception v3 model [73], which is not suitable for analysing our longitudinal EHR data.

E.2 Evaluating Diversity on the Data Structure

To assess the level of diversity present in our synthetic datasets, we employ two metrics: the log-
cluster metric U [13] and category coverage (CAT) proposed in Goncalves et al. [14]. The former,
formulated as

U = log

(
1

Γ

Γ∑
k=1

[
nkreal

nk
− nkreal

nkreal + nksyn

]2)
, (9)

measures the difference in latent structures between the real and synthetic datasets. To compute U ,
we first sample records from both the real and synthetic datasets and then merge the sub-datasets to
perform a cluster analysis via k-means with Γ = 20 clusters. Here, nk represents the total number of
records in cluster k, while nkreal and nksyn denote the number of real and synthetic records in cluster k,
respectively. We repeat this process 20 times for each synthetic dataset, with each repetition involving
a sample of 100,000 real and synthetic records. A lower U score indicates that the synthetic datasets
are more realistic.

The latter metric, CAT, is defined as

CAT =
1

J

J∑
j=1

∥D(j)
syn∥

∥D(j)
real∥

, (10)

where J is the total number of binary and categorical variables, and D
(j)
real and D

(j)
syn represent the real

and synthetic datasets, respectively, for the j-th variable. Specifically, CAT measures the completeness
of the non-numeric classes in the synthetic datasets; it is the higher the better.

E.3 Security Estimation

We conduct two tests. First, we examine the minimum Euclidean distance between synthetic and
actual records and verify that it is greater than zero, thus preventing any real records from being
leaked into the synthetic dataset. Then, we utilise the sample-to-population attack in El Emam et
al. [44] to assess the potential risk of an attacker learning new information by linking an individual in
the synthetic dataset to the actual dataset.

The sample-to-population attack involves quasi-identifiers, which are variables that may reveal an
individual’s identity, such as Gender and Ethnicity for the ART for HIV dataset. Equivalent
classes are then formed by combining these variables, resulting in groups such as Male + Asian
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and Female + African. The risk associated with linking a synthetic patient s is estimated with

1

S

S∑
s=1

(
1

Fs
× Is

)
, (11)

where S represents the total number of records in the synthetic dataset, Is ∈ 0, 1 equals one if
the equivalent class of synthetic s is present in both datasets, and Fs denotes the cardinality of the
equivalent class in the actual dataset.

The European Medicines Agency [45] and Health Canada [46] standards recommend that this risk
should not exceed 9% to balance synthetic data utility and security. By following these measures, we
ensure that our synthetic datasets are secure and suitable for public use.

E.4 Utility Investigation

E.4.1 RL Setup

We employ both the synthetic and real datasets to train RL agents, and we consider a synthetic dataset
to achieve a high level of utility if an RL agent trained on both real and synthetic datasets generates
similar actions when presented with clinical conditions of patients.

We partitioned each dataset into a set of observational variables and a set of action variables. The
observational variables describe the clinical condition of a patient, while the action variables de-
fine the actions an RL agent could take. We adopt the approach in Liu et al. [74] to reduce the
observational dimensionality to five variables using cross decomposition [75]. Next, we applied
K-Means clustering [76] with 100 clusters to define the state space and assigned each data point to
their corresponding cluster label. The action space was defined as the set of unique values of the
action variables.

Subsequently, we employed published reward functions to determine the optimal actions that an
RL agent should take given a patient state3. We select batch-constrained Q-learning [47] for utility
investigation, and we update the policies for 100 iterations with a step size of 0.01.

E.4.2 CPH Setup

Utility studies assessing the effectiveness of synthetic datasets in healthcare settings are not only
crucial but also under-represented in the literature. While these studies are often conducted within the
context of modern machine learning paradigms such as RL, the importance of traditional statistical
models should not be overlooked. In particular, CPH models continue to be pivotal tools in clinical
research.

The HIV dataset captures the impact of various ART combinations on controlling viral load. The
dataset contains key variables including ART types (i.e., FTC + TDF vs 3TC + ABC); and we man-
ually deried the time required to achieve a VL of less than 1,000 copies/mL–a significant clinical
milestone [23], and event status, which is categorised as either achieved or censored. CPH models for
this study are constructed using the survival analysis package in R by Therneau & Grambsch [? ].

To evaluate the utility of the ground truth Dreal against the GAN-generated Dnull, and our DPM-
simulated Dalt, we visualise the survival curves for each ART type. These visualisations facilitate a
comparative assessment of the predictive accuracy across the datasets with regard to the time required
to control viral load.

E.4.3 Setup for Inspecting Viral Suppression and Immune Recovery

In a quest to further evaluate the utility of synthetic datasets for HIV treatment via ART, we focus
on quantifying patient recovery trajectories in both real and synthetic datasets. Adhering to WHO
guidelines [23], we categorise patients into those initiating treatment with either the recommended
first-line medications or alternative medications, as outlined in Table 4.3 on page 154/480.

3Refer to Gottesman et al. [59] and Parbhoo et al. [27] for the reward functions for acute hypotension
and ART for HIV. In addition, see Sections 7.1 in the Appendix of Kuo et al. [5] for additional details on the
implementation for acute hypotension; and likewise Section 4.3.5 in Kuo et al. [34] for ART for HIV.
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In order to facilitate comparison, we examine these two distinct patient groups across a 60-month
timeline, a period chosen for its alignment with the synthetic datasets Dnull and Dalt, which have
fixed 60-month patient records, unlike the variable-length records in the real dataset Dreal.

Monthly, we compute the percentages of patients in each group achieving the key benchmarks of
viral suppression (VL < 200 copies/mL) and immune recovery (CD4 ≥ 500 cells/µL). These metrics
are then visualised to establish an initial comparative baseline.

F More Experimental Results

A series of hierarchical statistical tests was employed as shown in Figure 9 following the work of
Kuo et al. [5]. Our objective was to determine whether the statistics of those data from the synthetic
dataset used to train a neural network would be considered to be highly similar to the real dataset
during iterative batch training. To achieve this, we sampled a batch of synthetic and real data with a
batch size of 32 for a maximum of 100 iterations (hence the denominators in the Table for the tests
are 100). We then performed all statistical tests along the variable dimension.

F.1 On ART for HIV

Variable Name . KS-Test . . t-Test . . F-Test . Three Sigma Rule Test
VL 45/100 94/100 45/100 100/100
CD4 94/100 92/100 77/100 99/100
Rel CD4 94/100 87/100 89/100 100/100

Gender 100/100 - - 100/100 - -
Ethnic 99/100 - - 100/100 - -
Base Drug Combo 97/100 - - 98/100 - -
Comp. INI 96/100 - - 100/100 - -
Comp. NNRTI 79/100 - - 97/100 - -
Extra PI 99/100 - - 100/100 - -
Extra pk-En 99/100 - - 100/100 - -
VL (M) 99/100 - - 100/100 - -
CD4 (M) 100/100 - - 91/100 - -
Drug (M) 99/100 - - 100/100 - -

Table 4: Results on the hierarchical statistical tests for ART for HIV.

F.2 On Acute Hypotension

Dataset Realism
The KDE plots and barplots for the individual variable comparisons are presented in Figure 10. The
grey bars represent the real variables from Dreal, while the respective pink and blue bars in subplots
10(a) and 10(b) depict the synthetic variables in Dnull and Dalt, generated using Kuo et al. [5]’s Health
Gym GAN and our DPM. Overall, the distributions in both subplots are comparable to their real
counterparts in Dreal. We observed that DPM captured the multi-modal nature of clinical variables
better than GAN (e.g., PaO2 and Lactic Acid), but we also found that our DPM generated more
instances of less common classes in FiO2.

The synthetic variables in our DPM-generated hypotension dataset Dalt are representative of their
real counterparts in Dreal. The statistics in Table 5 revealed that all variables passed the three sigma
rule test and are reliable. Most variables passed the KS test and thus captured detailed information in
the real distributions. The minority of variables that failed the KS test still passed the t-test and F-test,
demonstrating that both the mean and the variance are captured and only missing the extreme details
in the cumulative distribution function.

The correlations for acute hypotension are depicted in Figure 11. The panel on the left corresponds
to the synthetic dataset Dnull generated by Kuo et al. [5]’s GAN; the middle panel represents our
DPM-simulated dataset Dalt; and the panel on the right corresponds to the ground truth dataset Dreal.
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(a) Synthetic dataset Dnull from Kuo et al. [5] in pink.

(b) Synthetic dataset Dalt from our DPM in blue.

Figure 10: Comparing the variables in acute hypotension, with those of Dreal in colour grey.
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Variable Name . KS-Test . . t-Test . . F-Test . Three Sigma Rule Test
MAP 93/100 90/100 99/100 100/100
Diastolic BP 90/100 86/100 80/100 100/100
Systolic BP 93/100 95/100 91/100 100/100
Urine 88/100 87/100 98/100 99/100
ALT 54/100 91/100 87/100 97/100
AST 53/100 91/100 92/100 99/100
PaO2 46/100 89/100 76/100 99/100
Lactic Acid 29/100 85/100 97/100 98/100
Serum Creatinine 89/100 83/100 97/100 100/100

Fluid Boluses 100/100 - - 87/100 - -
Vasopressors 95/100 - - 89/100 - -
FiO2 94/100 - - 95/100 - -
GCS 93/100 - - 86/100 - -
Urine (M) 98/100 - - 95/100 - -
ALT/AST (M) 100/100 - - 78/100 - -
FiO2 (M) 94/100 - - 95/100 - -
GCS (M) 100/100 - - 98/100 - -
PaO2 (M) 100/100 - - 94/100 - -
Lactic Acid (M) 100/100 - - 95/100 - -
Serum Creatinine (M) 100/100 - - 96/100 - -

Table 5: Results on the hierarchical statistical tests for acute hypotension.

Figure 11: Comparing the correlations in acute hypotension.
The left panels depicts correlations in Kuo et al. [5]’s Dnull. Whereas the middle and right panels
respectively depict the correlations in our Dalt and those in the ground truth Dreal.

U (↓) CAT (↑)
Dnull [5] -2.1413 98.03%
Dalt (ours) -2.4103 100.00%

Table 6: Metric comparison.

Figure 11 indicates that the correlations in our
DPM-simulated dataset (located in the middle
panels) exhibit a stronger resemblance to their
real counterparts (located in the right panels)
than those generated by GAN (located in the left
panels).

Quantitative assessments on diversity and data
structure are in Table 6. Category coverage (CAT) shows that all combinations of binary and
categorical variables are present in our DPM-simulated dataset Dalt; but such is not the case for
not all combinations in the GAN-generated dataset Dnull produced by Kuo et al. [5]. Moreover, the
log-cluster metric (U ) scores indicate that the latent structure embedded in our Dalt is more realistic
than that in Dnull.

Risk Assessment
The variables in Table 3 are all related to the patient’s bio-physiological states and do not contain any
sensitive information that may reveal individuals’ identities. Consequently, we only tested Euclidean
distances and did not assess the disclosure risk. We found that records in our DPM-simulated
synthetic dataset Dalt matched none of those in the real hypotension dataset Dreal. The minimum
Euclidean distance between any synthetic record and any real record was 2.79 (> 0), indicating that
no data was leaked into the synthetic dataset.
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Utility
After training RL agents to suggest clinical treatments, we used heatmaps to visualise their action
patterns. Each tile on the heatmap represents a unique action and its associated number indicates the
frequency of that action as a proportion of all actions taken.

We depicted the action patterns of the RL agents for acute hypotension in Figure 12. The action space
is spanned by Vasopressor and Fluid Boluses. Subplot (a) exhibits the actions taken by an RL
agent trained on the real dataset Dreal; subplots (b) and (c) respectively display the actions taken
by RL agents trained on Kuo et al. [5]’s synthetic dataset Dnull and our DPM-simulated Dalt. The
heatmap in subplot (c) shows a better alignment with its counterpart in subplot (a), indicating that the
RL agent trained on our Dalt suggested actions that were more similar to those suggested by the RL
agent trained on Dreal.
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(a) RL policy trained on the real dataset Dreal.

(b) RL policy trained on Kuo et al. [5]’s GAN-generated Dnull.

(c) RL policy trained on our DPM-simulated Dalt.

Figure 12: Comparing the policies learned by RL agents on the acute hypotension datasets.
We illustrate the recommended policies of RL agents, trained using various acute hypotension datasets.
The RL action space is spanned by Vasopressors and Fluid Boluses.
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