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ABSTRACT

Alignment of Large Language Models (LLMs) typically relies on Reinforcement
Learning from Human Feedback (RLHF) with gradient-based optimizers such
as Proximal Policy Optimization (PPO) or Group Relative Policy Optimization
(GRPO). While effective, these methods require complex distributed training,
large memory budgets, and careful hyperparameter tuning, all of which become
increasingly difficult at billion-parameter scale. We present ESSA, Evolutionary
Strategies for Scalable Alignment, a gradient-free framework that aligns LLMs
using only forward inference and black-box optimization. ESSA focuses opti-
mization on Low-Rank Adapters (LoRA) and further compresses their parameter
space by optimizing only the singular values from an singular value decomposi-
tion (SVD) of each adapter matrix. This dimensionality reduction makes evolu-
tionary search practical even for very large models and allows efficient operation
in quantized INT4 and INTS inference mode. Across these benchmarks ESSA im-
proves the test accuracy of Qwen2.5-Math-7B by 12.6% on GSMS8K and 14.8%
on PRMB80OK, and raises the accuracy of LLaMA3.1-8B on IFEval by 22.5%,
all compared with GRPO. In large-scale settings ESSA shows stronger scaling
than gradient-based methods: on Qwen2.5-32B for PRMSO0OK it reaches near-
optimal accuracy twice as fast on 16 GPUs and six times as fast on 128 GPUs
compared with GRPO. These results position evolutionary strategies as a com-
pelling, hardware-friendly alternative to gradient-based LLM alignment, combin-
ing competitive quality with substantially reduced wall-clock time and engineer-
ing overhead.

1 INTRODUCTION

Large Language Models (LLMs) have made significant progress thanks to alignment techniques that
guide the model’s behavior toward human preferences. Online methods, predominantly Reinforce-
ment Learning from Human Feedback (RLHF) with Group Relative Policy Optimization (GRPO),
Proximal Policy Optimization (PPO), or REINFORCE Leave-One-Out (RLOO), remain the de facto
standard in practice (Ouyang et al.,2022a;[Schulman et al.,[2017;/Ahmadian et al., 2024;|Shao et al.,
2024). However, these pipelines are complex to implement: they involve actor/critic training, trajec-
tory generation, backpropagation through long sequences, and distributed synchronization. As mod-
els grow larger, practical considerations about how to distribute components across GPUs become
critical, with sensitivity to numerous interacting hyperparameters and communication bottlenecks
(Zheng et al.| [2023; Sheng et al., [2024).

To address these issues, we revisit evolutionary strategies as a scalable, gradient-free alternative.
These methods require only forward passes with perturbed parameters and simple aggregation of
scalar fitness values, enabling near-parallel training, low memory usage, and robustness to sparse
or noisy rewards (Salimans et al.l [2017). The classic concern of poor efficiency in very high-
dimensional spaces can be addressed through aggressive search space reduction.

We introduce ESSA (Evolutionary Strategies for Scalable Alignment), which pairs Evolutionary
Strategies (ES) with parameter-efficient adaptation. We limit optimization to low-rank adapters of
attention matrices (Q/K/V/O) and further compress them via singular value decomposition (SVD)
parameterization of singular values, making black-box search practical and interpretable (Hu et al.
(2021), |Vaswani et al.| (2017)).
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In this work, ESSA is introduced as a gradient-free online alignment procedure applied strictly after
a supervised fine-tuning (SFT) warm-start. The method replaces only the post-SFT stage. ESSA can
operate fully in quantized INT4 or INTS inference mode, enabling efficient adaptation of models up
to approximately 72B parameters on a single high-memory GPU Dettmers et al| (2022). Across
mathematics of varying difficulty, instruction following, and general assistant tasks, ESSA matches
baselines trained by GRPO, while offering stronger system scalability and reduced hyperparameter
fragility (Shao et al.|(2024)).

Taken together, ESSA turns alignment into a simple, highly parallel evaluation loop with minimal
synchronization — an attractive fit for modern clusters and continual training settings — while retain-
ing the quality expected from state-of-the-art online methods.

2 RELATED WORKS

Alignment. Alignment of large language models is commonly based on RLHF (Ouyang et al.,
2022al), typically optimized with PPO (Schulman et al., 2017)) or REINFORCE (Sutton et al.,{1999).
Variants such as RLOO (Ahmadian et al., |[2024), GRPO (Shao et al., 2024), REINFORCE++ (Hu,
2025)) and DAPO (Yu et al., |2025)) stabilize training by using relative advantages within groups, yet
still inherit gradient estimation variance and substantial memory cost. Offline preference learning
(Rafailov et al.| [2024; Hong et al.| 2024} Meng et al., [ 2024)) removes online rollouts but is bounded
by dataset coverage and preference noise, limiting generalization (Tang et al.,[2024;|Xu et al.|[2024)).

Parameter-efficient training of LLMs. Parameter-efficient fine-tuning (PEFT) techniques reduce
the cost of adapting large language models by updating only a small subset of parameters. Beyond
classic approaches such as adapters (Houlsby et al., 2019), prefix-tuning (L1 & Liang} 2021, and
LoRA (Hu et al.} 2021), more recent methods include DoRA (Liu et al., 2024), VeRA (Kopiczko
et al.l 2024), and tensor-based approaches like LoTR (Bershatsky et all 2024). Another way to
reduce the number of trainable parameters is to optimize only the eigenvalues in the SVD decompo-
sition of transformer matrices, as done in Transformer? (Sun et al., [2025)), which also inspired our
method.

Evolution strategies. ES, including Covariance Matrix Adaptation (CMA-ES) (Hansen & Os-
termeier, 2001), Natural Evolution Strategies (NES) (Wierstra et al.| 2011), Augmented Random
Search (ARS) (Mania et al.l [2018), and Guided Evolutionary Strategies (GES) (Maheswaranathan
et al., 2018)), provide powerful gradient-free optimization that is highly parallel and robust to sparse
rewards (Salimans et al [2017). Zero-order optimizers (Zhang et al.l [2024) approximate gradi-
ents of loss differences but tend to lag in complex reasoning tasks. Applications of ES to large
language model alignment remain rare due to high-dimensionality challenges: existing works like
GENOME/GENOME+ (Zhang et al., [2025), LoRAHub (Huang et al., [2024)), and DFO (Jin et al.,
2024) reduce parameter space but are still limited to a variety of experiments.

3 EVOLUTIONARY STRATEGIES FOR SCALABLE ALIGNMENT

3.1 MOTIVATION

Modern online alignment of LLMs is dominated by gradient-based RLHF variants. In practice, these
pipelines are costly: they require long rollouts, backpropagation through large contexts, optimizer-
state synchronization across devices, and careful hyperparameter tuning. As model size grows,
memory pressure and training fragility increase, and sparse or noisy rewards further destabilize
learning.

ESSA offer the opposite trade-off. ESSA restricts learning to low-rank LoRA adapters represented
in a compact SVD parameterization, where a few singular values is optimized. In this setting, evolu-
tionary updates require nothing beyond forward evaluations under parameter perturbations together
with aggregated scalar rewards, which yields a naturally parallelizable, memory-efficient training
loop. The standard drawback of evolutionary methods, namely poor efficiency in extremely high-
dimensional search spaces, is addressed here by forcing the search to remain within a compact and
task-aligned low-rank subspace.
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Figure 1: Illustration of the ESSA framework. LoRA adapters are first initialized via SFT and
decomposed into fixed SVD bases with trainable singular values. The term device N denotes the
GPU worker in distributed evaluation. CMA-ES receives a seed at each device, generates a pop-
ulation of size N+1 locally, evaluates a different candidate, and returns a reward. Each candidate
is a vector ¢g; € IRsolutionldength ;1 N and is added to SVD vectors of the training matri-
ces. It is partitioned into contiguous slices, each of which corresponds to one LoRA matrix (e.g.
Wa, Wik, Wy, Wo for each transformer layer) and contains 2 - LoRA_rank singular values (for
factors A and B). The solution length is the dimensionality of the candidate vector, i.e., the concate-
nation of all perturbation of the trainable LoRA singular values across all matrices and layers.

With the number of layers (num_layers), number of matrices per layer (num_matrices_per_layer),
LoRA rank: num_matrices = num_layers - num_matrices_per_layer and solution_length =
num_matrices - LORA _rank - 2.

Since the loop is inference-only, ESSA runs efficiently under low-precision (INT4/INTS) inference.
It also scales linearly with available hardware by evaluating candidates in parallel with minimal
communication (seed + reward) (Salimans et al., 2017). This design not only yields a compact
gradient-free search space but also addresses the practical problem of optimizing the alignment stage
in large-scale, multi-GPU training pipelines. ESSA integrates established components (LoRA, SVD
compression, evolutionary search) into a unified framework that enables inference-only, quantized,
distributed alignment with minimal engineering and synchronization overhead.

Crucially, ESSA is not a full training pipeline: it is a gradient-free alignment stage applied on
top of a SFT initialization. The SFT warm-start preserves model expressivity and places ES in a
task-aware region of parameter space. Without SFT, the LoORA matrices begin as an unstructured
Gaussian matrix paired with a zero matrix, whose singular vectors are effectively identity-based and
uninformed. We demonstrate the importance of SFT stage using a toy example on MNIST (LeCun &
Cortes, 2005) in Appendix[E] SFT is also inexpensive compared to online RL alignment. Prior work
reports that SFT requires only a small fraction of the compute used for RL-based alignment (Ouyang
et al., 2022b)). The expensive component of alignment is the online RL loop, and ESSA eliminates
this phase while preserving the lightweight warm-start. Experiments without SFT are provided in
Appendix [F.1|and demonstrate that ESSA can operate without SFT, while being primarily intended
as a gradient-free replacement for the online alignment phase.

3.2 METHOD

Initialization. First, we reduce optimization problem to low-rank updates of each attention pro-
jection matrix Wy € R™*":

AW = BA, BeR™" AeR™™ r < min(m,n).

Then, we run a short SFT stage to initialize the LoRA adapters with task-aware parameters. For
every backbone-task pair in the paper, we train exactly one SFT LoRA adapter.
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SVD. To shrink the trainable space even further, we decompose each SFT-LoRA factor separately:
A=UsX4V), B=UpXpVy.

The orthogonal matrices U4, Va,Up, Vp are kept fixed after the initial SFT step, while only the
top singular values in ¥ 4 and X5 remain trainable. This SVD-LoRA representation preserves the
expressive power of LoORA while reducing the number of variables that ES must explore.

Evolutionary Optimization. We use CMA-ES (Hansen & Ostermeier, 2001) as the optimizer,
maintaining and updating a multivariate normal search distribution over the selected singular values.
Each ESSA iteration proceeds as follows (more detailed algorithm is provided in Figure [I| and in

Appendix [A):

1. CMA-ES samples A > 2 (population size) candidate singular-value vectors.

;vgi)l ~m; +o;N(0,C;) for k=1,..,\, sothat x§i)1 ~ N (mi,c2C;),

where m; € R™ is a current mean of the search distribution; o; € R > 0 is an “overall”
standard deviation; C; € R™*™ is a covariance matrix encoding anisotropic search direc-
tions; n = solution_length. Up to the scalar factor o2, C; is the covariance matrix of the
search distribution

2. For each candidate, we reconstruct A and B by adding the candidate’s singular-value offsets
to the fixed SVD decomposition, forming updated low-rank factors and computing AW =
BA, and evaluate the model on the alignment objective to obtain a scalar reward.

3. After all candidates are evaluated in parallel, CMA-ES updates m;, o;, and C;. This allows
the search distribution to gradually align itself with beneficial directions in the objective
landscape. Communication between workers is limited to random seeds and scalar rewards,
allowing near-linear scaling across many GPUs.

3.3 THEORETICAL ANALYSIS

We compare the per-iteration latency of gradient-based online alignment (e.g.,
RLHF/GRPO/PPO/RLOO) with a single ESSA update, taking into account both computa-
tion and inter-GPU communication. The key observation is that gradient methods require expensive
all-reduce of model-size gradients, whereas ESSA communicates only a random seed and scalar
rewards. Consequently, the communication cost of ESS A scales essentially independently of model
size.

A simple latency model shows that for any realistic cluster bandwidth, there exists a conservative
population size threshold such that when the ESSA population size multiplied by the batch size
processed by the single population instance Ny, B°*** is below this bound, ESS A achieves a strictly
lower per-iteration time than the idealized gradient pipeline. Moreover, because real clusters seldom
achieve perfect device splitting or peak network bandwidth, the practical speed advantage of ESSA
is typically even larger.

Full mathematical notation, the precise expressions for computation and communication time, and
the formal proof of the population size bound are provided in Appendix

4 EXPERIMENTS

Tasks and Models. We evaluate ESSA on three categories of alignment workloads: (i) School-
level math reasoning. We train and evaluate on GSMS8K with accuracy as the primary metric. Back-
bones: Qwen2.5-7B, Qwen2.5-Math-7B. (ii) Advanced math reasoning. We train on PRM80OK and
evaluate on MATHS00, AIME’24/°25, MinervaMath, and OlympiadBench using pass@k / avg@16.
Backbones: Qwen2.5-Math-7B, Qwen2.5-32B, Qwen2.5-72B. (iii) Instruction following. We train
on an if-eval-like dataset and evaluate on IFEval. Backbones: Llama-3.1-8B. (iiii) General-Purpose
Assistant. We train and evaluate on HelpSteer2. Backbones: Llama-3.1-8B.

Baseline. We use GRPO as a baseline. GRPO is the standard and most robust online RLHF method
widely used in both industry and open-source practice (Xi et al., [2025; [DeepSeek-Al et al., 2025;
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Yang et al.| [2025), making it the natural baseline for comparison. Our goal with ESSA is not to
outperform specialized gradient optimizers, but to evaluate whether a gradient-free approach can
match the quality of GRPO-based RLHF while operating purely in inference mode.

SFT. We start from SFT checkpoints appropriate for each dataset. Experiments without SFT are
provided in Appendix [F.I] We do not include the time spent on the SFT in all the presented results.
It is presented separately in Appendix [H:2] Since ESSA and GRPO use the same SFT checkpoint
within each backbone-task pair, the SFT cost contributes an identical constant to both methods and
does not affect their relative performance.

Other Details. We use standard BFLOAT16 precision unless otherwise specified. Qwen2.5-72B
is also trained under INT4 for per-device evaluation in ESSA. For training the models with the
GRPO algorithm, we use the verl library (Sheng et al., [2024)), which the authors describe as the
most efficient in terms of model allocation and interaction speed. All experiments, unless otherwise
noted, are conducted on 8 GPUs. For larger models Qwen2.5-32B and Qwen2.5-72B we use 16
and 32 GPUs, respectively. The sizes of the training and validation datasets, as well as some other
details of the experiments, are given in Appendix [H]

4.1 SENSITIVITY TO HYPERPARAMETERS

ESSA hyperparameter sensitivity. We investigate how ESSA accuracy depends on its key hy-
perparameters — LORA rank, population size, and the fraction « of singular values optimized in each
SVD factor. A full grid search is performed on five settings Qwen2.5-7B and Qwen2.5-Math-7B on
GSMS8K and PRM80OK, and LLaMA-3.1-8B on IFEval. Figure 2] shows the results for Qwen2.5-
Math-7B on GSMSK as a representative example.
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Figure 2: Hyperparameter sensitivity of ESSA on Qwen2.5-Math-7B for GSM8K. Batch size 100.
(a) Accuracy when varying LoRA rank and population size. (b) For each LoRA rank, the population
size is fixed to the best value found in (a), while the percentage « of trainable singular values is
varied. This illustrates how ESSA performance depends jointly on adapter rank and the fraction
of singular values optimized. The single white cell occurs because for LoRA rank 8 and o = 0.1,
rounding down yields zero trainable singular values, so no valid accuracy is reported.

This example highlights three consistent trends observed across all tasks: (i) increasing LoRA rank
beyond moderate values does not necessarily improve accuracy, and in some PRM80OK setups the
best results occur with rank as low as 2; (ii) very small populations (= 8) underperform, while the
benefit of larger populations levels off between about 24 and 96; (iii) for the fraction « of trainable
singular values, accuracy remains stable once « reaches moderate levels (> 0.4), showing that ESSA
can achieve its best quality without updating all singular values. The complete set of sensitivity plots
for the remaining four tasks, which confirm these conclusions and show the cases where rank 2 is
optimal, are provided in Appendix [C|

Effect of SFT initialization. We also examine how the maximum ESSA accuracy depends on the
quality of the initial LoRA matrices A and B, which are obtained from the SFT stage.
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To vary the initialization quality, we traine
the SFT model on different fractions of the
GSMSK dataset and then run ESSA with iden-
tical hyperparameters. The setup is as follows:
Qwen2.5-Math-7B, LoRA rank 16, population
size 192, and oo =1.0. Table E] reports the final
ESSA accuracy as a function of the percentage

SFT dataset fraction 5% 25% 50% 75% 100%
Max ESSA accuracy ~ 0.713 0731 0.807 0.863 0.872
Table 1: ESSA validation maximum accuracy

as a function of GSMS8k dataset fraction used
to initialize Qwen2.5-Math-7B LoRA. Settings:
LoRA rank 16, pop. 192, batch size 100, a=1.0).

of SFT data used.

The results show that reducing the SFT dataset from 100% to only 5% lowers the final ESSA ac-
curacy by more than 15 percentage points. Thus, the quality of the initial supervised fine-tuning
plays a key role in the ultimate performance of the aligned model. We also conduct an experiment,
running the SFT on one domain and training ESSA on another. The results demonstrate ESSA’s
robustness to the OOD shift in Appendix [G|

4.2 PARALLELIZATION

Figure [3| compares the wall-clock time required by GRPO and ESSA to reach a fixed test accuracy
of 0.835 on Qwen2.5-32B for the PRM80OK benchmark, when training is distributed across an
increasing number of GPUs. For ESSA we use a LoRA rank 16 and an population size 128. For
GRPO we match the LoRA rank (16) and use a learning rate 1 x 10~?, global batch size 512, and
mini batch size 64.

As the number of GPUs grows from 16 to 128, 4001 -, —— GRPO

both methods benefit from additional paral- —s— ESSA

lelism, but the gains differ substantially: GRPO £ 300

decreases from nearly 400 minutes at 16 GPUs S 50014 .

to roughly 150 minutes at 128 GPUs (= 2.6x = \ E— |
speed-up); ESSA drops from about 200 min- & 100 .

utes to under 20 minutes over the same range \

(=~ 10x speed-up). On the smallest cluster (16

GPUs) ESSA is already about twice as fast as 16 32 64 128

GRPO. This gap grows with increasing paral- Number of GPUs

lelism and reaches a factor of roughly six on Figure 3: GRPO and ESSA scaling on PRMS00K

128 GPUs.

ESSA’s scaling advantage follows directly from
its inference-only optimization loop: evaluation
of population members is embarrassingly paral-

with Qwen2.5-32B: time to reach 0.835 accuracy
vs. GPU count. ESSA: LoRA rank 16, pop. 128,
batch size 256, « =1.0. GRPO: LoRA rank 16, Ir
1x107®, global batch 512, mini batch 64.

lel and requires communication of only random
seeds and scalar rewards. In contrast, GRPO must synchronize large gradient tensors each step,
leading to communication bottlenecks that limit scaling efficiency.

We also conduct an experiment on a single GPU using the smaller Qwen2.5-3B model, where no
parallelism is available. The result is presented in Appendix [F.I] This experiment demonstrate that
despite the limited hardware ESSA converges faster than GRPO in this setting as well, while the
primary goal of this work is to introduce a method that utilizes multi-GPU resources more efficiently

than gradient-based training.

4.3 PRECISION ANALYSIS

Because ESSA uses the model purely in infer-
ence mode, it can be trained even when the un-
derlying model weights are quantized. We eval-
uate this capability on Qwen2.5-32B trained on
PRMB800OK with LoRA rank 8, population size
64 and av=1.0. Table[2]reports the best valida-
tion accuracy achieved during training for three
numerical precisions. Full training curves are
provided in Appendix

Precision BFLOAT16 INT8 INT4

Max ESSA accuracy 0.847 0.844 0.838

Table 2: ESSA validation maximum accuracy as
a function of Qwen2.5-32B weight precision on
PRMS8O0O0K. Settings: LoRA rank 8, pop. 64, a =
1.0, batch size 256.
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Figure 4: Validation accuracy over time on GSM8K with Qwen2.5-Math-7B. Panels (a)-(e) corre-
spond to LoRA ranks 32, 16, 8, 4, and 2, respectively. ESSA (blue): batch size 100. GRPO (red):
Ir 1x 1072, global batch 512, mini batch 64. ESSA rises rapidly and plateaus early across all ranks,
while GRPO improves more gradually.

Although the maximum accuracy decreases

slightly as precision is reduced, the drop is minor (less than one percentage point from BFLOAT16
to INT4). This enables substantial savings in compute and memory: with INT4 quantization, a
model as large as 72B parameters can fit on a single GPU for processing each population member,
as demonstrated in our large-scale experiments later in the paper.

4.4 COMPARISON TO BASELINE (GRPO)
4.4.1 SCHOOL MATH

Figuref]shows the validation accuracy versus wall-clock time for Qwen2.5-Math-7B on the GSM8K
benchmark, comparing ESSA with GRPO across different LoRA ranks. Across all ranks, ESSA
rises sharply during the first 10-20 minutes and reaches accuracies near 0.85-0.90 significantly ear-
lier than GRPO, which typically requires 60-100 minutes to approach the same level.

For moderate and large ranks (32, 16) both methods eventually converge to a similar final accuracy
(= 0.88-0.90), but ESSA attains this plateau far sooner and with less fluctuation. At smaller ranks
ESSA maintains accuracy close to its high-rank plateau, while GRPO lags behind for most of train-
ing. The trajectories demonstrate that ESSA is considerably less sensitive to LoORA rank: lowering
the rank from 32 to 2 has only a mild effect on both early-time growth and final accuracy, whereas
GRPO’s convergence speed degrades markedly as rank decreases.

On school-level math reasoning tasks, ESSA consistently delivers a faster time-to-quality than
GRPO across all LoRA ranks, making it well suited for rapid iteration or training under tight
time budgets. For completeness, the same comparison performed with the Qwen2.5-7B model on
GSMSK is reported in Appendix Those curves confirm the same pattern: ESSA consistently
converges faster than GRPO while matching final accuracy.

4.4.2 BEYOND SCHOOL MATH

Advanced-math benchmarks require multi-step symbolic reasoning, long derivations, and careful
numeric manipulation. To faithfully measure the benefit of alignment strategies we therefore employ
large backbones, Qwen2.5-32B and Qwen2.5-72B, which (i) possess enough raw capacity to tackle
these high-difficulty problems and (ii) let us observe how training methods scale with model size.

Figure [3] illustrate the validation accuracy over time for Qwen2.5-32B and Qwen2.5-72B, respec-
tively. Across both models the curves show the same pattern as on school-math: ESSA rises sharply
early, reaches its plateau considerably sooner than GRPO, and maintains that level with low vari-
ance.
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Figure 5: Validation accuracy over time on PRM800K. Qwen2.5-32B with LoRA rank 8 for both
methods (a) and Qwen2.5-72B with LoRA rank 4 for both methods (b). For Qwen2.5-72B we run
ESSA under BFLOAT16 with tensor parallelism (T'P): TP = 2 and TP = 4, and under INT4
with T'P = 1, keeping the total GPU budget at 32 for both methods. ESSA (blue): batch size 256.
GRPO (red): Ir 11072, global batch 512, mini batch 64. Across both scales, ESSA reaches strong
validation accuracy earlier and matches or exceeds GRPO throughout.

Method ‘ MATHS500 MinervaMath OlympiadBench AIME’24 AIME’25 AMC’23 ‘ Avg

avg@k
GRPO 81.8 41.2 45.7 14.6 10.0 61.7 42.5
ESSA 82.1 41.8 47.6 17.3 12.1 63.3 44.0
pass@8
GRPO 93.6 53.3 65.3 329 29.2 87.3 60.2
ESSA 92.6 522 66.4 35.3 28.0 86.9 60.2

Table 3: Results on advanced-math benchmarks with Qwen2.5-32B. Rows are grouped by metric:
avg@k and pass@8. For AIME’24, AIME’25, and AMC’23, avg @k is reported at £k = 16; for
other benchmarks, £ = 8. The final Avg averages across available entries.

Method | MATH500 MinervaMath OlympiadBench AIME’24 AIME’25 AMC’23 | Avg

avg@k
GRPO 83.0 43.0 49.1 18.8 11.0 62.2 445
ESSA 82.8 43.5 48.4 17.9 13.3 62.5 44.7
pass@8
GRPO 94.2 51.8 66.7 37.5 23.5 85.6 59.9
ESSA 93.0 52.9 66.8 374 26.8 85.8 60.5

Table 4: Results on advanced-math benchmarks with Qwen2.5-72B. Rows are grouped by metric:
avg@k and pass@8. For AIME’24, AIME’25, and AMC’23, avg@k is reported at £ = 16; for
other benchmarks, k£ = 8. The final Avg averages across available entries.

In total, we allocate 16 and 32 GPUs to the 32B and 72B models, respectively, across all configu-
rations. In the BFLOAT16 precision regime the 72B model no longer fits on a single GPU, so we
use tensor parallelism (7'P) with size of 2 and 4. GRPO requires at least 4 GPUs for this configura-
tion because both forward and backward passes must be distributed. In contrast, ESSA can operate
with INT4 weights, allowing a full 72B model instance to reside on a single GPU and enabling
one-candidate-per-GPU evaluation.

We observe that the BFLOAT 16 model converges faster than the INT4 version. This happens be-
cause placing a 72B model in an INT4 representation leaves less space for KV-cache and INT4
matrix multiplications are slower on standard accelerators. Crucially, increasing tensor parallelism
shows minimal impact on the accuracy growth trajectory in this experiment. This indicates that, even
when the inference worker does not fit on a single device, that is, when the per-device evaluation
rule is broken, ESSA remains efficient.
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We also evaluate the trained models on the advanced-math benchmarks using both ESSA and GRPO.
The detailed scores are reported in Table [3| for Qwen2.5-32B and in Table |4 for Qwen2.5-72B.
For Qwen2.5-32B, ESSA improves or matches GRPO on avg @k across all benchmarks and shows
comparable pass@8 and avg@k performance. For Qwen2.5-72B, where the tasks are especially
challenging, ESSA again achieves competitive or better results: it delivers slightly higher pass@8
and avg@k.

4.4.3 INSTRUCTION FOLLOWING

We next evaluate ESSA in a domain that is qualitatively | chro tobarandes
different from mathematics: instruction following. >0‘7 —— ESSA, LORA rank = 8

® St mm u I
Here the goal is to align the model to follow natural lan- £0-6| ]" o gt A S
guage instructions rather than to perform structured rea- 2 05 7 - -
soning. We use the IFEval benchmark with LLaMA3.1- ' J-"
8B and fix the LoRA rank to 8, comparing ESSA and g ,[

50 100 150 200 250

GRPO under identical data and initialization. Time (minutes)

Figure [6] shows that ESSA reaches roughly 0.6 accuracy
within the first 60 minutes and maintains that level for
the remainder of training. GRPO, in contrast, exhibits a
much slower and steadier increase, saturating around 0.45
even after more than four hours. Although the ESSA tra-
jectory displays higher short-term variance, its early and
sustained advantage demonstrates that gradient-free evo-
lutionary optimization is effective even in open-ended,
non-mathematical instruction-following tasks.

Figure 6: Validation accuracy over time
on IFEval with LLaMA-3.1-8B. ESSA
(blue): LoRA rank 8, pop. 24, batch
size 500, a = 1.0. GRPO (red): LoRA
rank 8, Ir 1 x 1075, global batch 512,
mini batch 64. ESSA improves around
0.6-0.65, while GRPO remains nearly
flat near 0.45 throughout training.

4.4.4 GENERAL-PURPOSE ASSISTANT SETUP

To evaluate alignment in a general-purpose assistant scenario, we employ a more sophisticated re-
ward model rather than simple verifiable rewards. Specifically, we use the RLHFlow/ArmoRM-
Llama3-8B-v0.1(Wang et al., 2024a reward model to provide nuanced, preference-based feedback
signals.

The instruction prompts for this setting were drawn from the HelpSteer2 (Wang et al., 2024b)
dataset, which contains diverse user instructions and serves as a strong benchmark for open-domain
assistant alignment. ESSA and GRPO are both trained with this preference-based reward signal and
evaluated under the same protocol to assess their ability to align large language models to general-
purpose assistant behavior.

Figure [/| reports the validation reward as a function of wall-clock time for LoRA ranks 8, 16, and
32. Across all ranks, ESSA and GRPO achieve similar final reward levels, with their learning curves
showing comparable overall trends.
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Figure 7: Validation reward over time on HelpSteer2 with LLaMA-3.1-8B. Panels (a)-(c) corre-
spond to LoRA ranks 8, 16, 32 respectively. ESSA (blue): batch size 100. GRPO (red): Ir 1 x 107,
global batch 512, mini batch 64. Both methods improve steadily, with ESSA showing faster early
gains and GRPO slightly higher final reward. Overall, the plots indicate that ESSA achieves compa-
rable alignment quality to GRPO with lower training complexity and similar convergence behavior.

'https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
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4.4.5 SVD-LoRA IN GRPO

In all previous experiments the LoRA factors A and B were fully trainable in GRPO, whereas ESSA
optimized only the singular values after an SVD decomposition. To make the comparison strictly
fair we repeat the GRPO baseline with the same restriction: only the singular values of the SVD of
A and B are updated while their singular vectors were kept fixed, so that both methods have exactly
the same number of trainable parameters. This SVD-GRPO variant is evaluated on Qwen2.5-7B
with PRM8O00K, sweeping LoRA ranks 16,8,4,2 and keeping all other GRPO hyperparameters and
the SFT initialization identical to the main baseline.

Figure [8| shows that SVD-GRPO struggles to learn effectively: even at rank 16 it plateaus around
0.5 accuracy and degrades further as the rank decreases. By contrast, ESSA with only rank 2 rapidly
reaches about 0.72 accuracy and remains stable, outperforming SVD-GRPO by more than twenty

percentage points despite operating in an equally low-dimensional parameter space.

This phenomenon can be explained. Deep networks
typically exhibit dense, rotated curvature of the ob-
jective function, but in high-dimensional parameter-
izations such as full LoRA, these interactions are
spread across many weakly correlated coordinates.
Each parameter sees only a small fraction of the cur-
vature. After SVD compression, the same curvature
is concentrated into a very small subspace, and di-
agonal first-order optimizers like Adam fail to make
progress. ES, by contrast, never computes gradients,
its updates depend only on scalar rewards. Moreover
CMA-ES adapts its covariance matrix in a way that
aligns, in expectation, with the inverse Hessian of
objective function.

Thus, for ESSA, moving from direct LoRA pa-
rameters to SVD-LoRA simply reduces dimension-
ality without making the search problem harder.
For GRPO, however, the same reparameterization
changes both the curvature and the gradient statis-
tics in a way that standard first-order updates are not

wmmm ESSA, LORA rank = 2 SVD GRPO, LoRA rank = 16
SVD GRPO, LoRA rank = 8
SVD GRPO, LoRA rank = 4

—+=SVD GRPO, LoRA rank = 2

o
©

L N i LT T
gy g’

/
1+ e W ‘/

Accuracy
o
[e)}

°
IS

0.2

0 2 4 6 8
Time (hours)

Figure 8: Validation accuracy over time on
PRMBS800K with Qwen2.5-7B. ESSA (blue):
LoRA rank 2, pop. 24, batch size 300, o =
1.0. SVD-GRPO (only singular values are
updated): LoRA ranks 16/8/4/2, Ir 1 x 1072,
global batch 512, mini batch 64. ESSA
achieves = 0.72 accuracy while SVD-GRPO
saturates at or below 0.5 even at LoRA rank
16.

well adapted to.

5 DISCUSSION

ESSA shows that scalable and efficient LLM alignment is possible without gradients or backward
passes, relying instead on inference-only evolutionary search in a compact, hardware-friendly pa-
rameter space. Across advanced math and instruction-following benchmarks, ESSA consistently
matches or outperforms state-of-the-art gradient-based approaches such as GRPO, while delivering
faster time-to-quality, greater robustness to hyperparameters, and dramatically reduced engineering
complexity.

Our theoretical analysis further supports these empirical findings, demonstrating that ESSA’s itera-
tion time and parallel efficiency scale substantially better with model and cluster size, thanks to min-
imal synchronization and communication overhead. The ability to operate natively in low-precision
(INT8/INT4) mode enables alignment of very large models — up to 72B parameters — using only a
single GPU per candidate, with negligible accuracy loss. These results position evolutionary strate-
gies, when paired with parameter-efficient adaptation, as a compelling alternative to classic RLHF
pipelines — offering a simple, scalable, and broadly applicable framework for LLM alignment.

Limitations & Future Work. ESSA still depends on a decent SFT warm-start and is ultimately
bounded by the expressivity of fixed-rank LoRA; with weak seeds or tiny ranks accuracy can plateau
early. Very large populations also raise total FLOPs even though communication stays cheap. Future
work will explore hybrid ES-gradient phases, adaptive rank expansion, and fully on-device / feder-
ated evolution in which edge GPUs or phones evaluate candidates and return only scalar rewards.
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Algorithm 1 ESSA: Distributed Evolutionary Search over LoRA Singular Values

Require: Training set D, LoRA factors A; € R"*™, B; € R™*" for all attention matrices, fraction
« of top singular values to optimize, population size P, number of GPUs NV, number of ES
generations F.

1: SVD initialization:
2: for each LoRA factor A;, B; do
3: Ai:UAiEAiVL»Bi:UleBiV];
4:  KeepUa,,Va,,Up,, Vs, fixed; collect singular values o4, = diag(X4,), op, = diag(Ep,)
5: end for
6: Concatenate the top @ x 100% singular values of each g 4,, 0, into a single parameter vector
.
7: Initialize N workers with identical random seeds and a common CMA-ES state.
8: fort=0,1,...,F —1do
9:  for each worker £k = 1,..., N in parallel do
10: Sample candidate perturbations of o using the shared random seeds.
11: For each candidate:
1. Reconstruct A}, B} by adding perturbation vector to o and computing
Al = Uy, diag(G4,) V., Bl = Ug, diag(cs,) Vg, .
2. Update the model weights W/ = W, + B A’.
3. Draw a random mini-batch Dy, C D of fixed size and compute the reward
F= F(Wl§Dmini)'
12: end for

13:  All workers exchange seeds and the corresponding rewards so that each worker knows the
full set of evaluations.
14:  Each worker reconstructs the same perturbations from the shared seeds and performs one
CMA-ES update of the search distribution.
15: end for
16: Reconstruct the final LoRA factors from the evolved singular values and return the aligned
model.

A ESSA ALGORITHM

The overall procedure of ESSA is summarized in Algorithm[I] which outlines the main steps of the
distributed evolutionary search over LoRA singular values.

B DETAILED THEORETICAL ANALYSIS

This appendix provides the complete derivation of the latency model summarized in Section [3.3]
We first introduce the notation and expressions for per-iteration computation and communication
time for both gradient-based methods and ESSA, then establish the optimal split of devices between
training and generation, and finally prove a conservative bound on the ESSA population size under
which ESSA is guaranteed to be faster.

Notation. Let B2 be the global batch size used in gradient methods, B°%* the batch size pro-
cessed by a single population instance, bg,, bgen the microbatch sizes, my,, Mmgen GPUs per model in-
stance for training and generation, G total GPUs with G, G gen allocated to each, 741, (b), Tgen () the
forward-backward and generation microbatch times, 7¢, = T#1, (bs, ) /bsn and 7gen = Tgen (bgen)/bgen

the per-sample times, and kﬁfmuel =G, /map, kB3N = Gy /Mgen the numbers of microbatches

rocessed in parallel. 78rad — T82d | pgrad pessa _ qessay essa  with agynchronous trainin
fb-gen comm? gen comm’
. grad __ grad grad
and generation so that Ti" | = max (T, TE4).
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Computation. Processing B854 samples by gradient training requires B&*4 /by, microbatches;

parallel . .
kg run in parallel:
rad rad rad
grad _ BT Ten (bp) = BE ey Nb Terad — B mgen n
b = - . en gen-
bfb kfpi)arallel Gfb g chn

For ESSA, a population of N, candidates is evaluated purely by generation:

essa
Npop B*5 mgen

essa __ pop
Tgen - G 77gen-

Communication. Let Mparams be the model-parameter size (bytes). Gradient methods commu-
nicate gradients using all-reduce which consists of two collective operations: reduce-scatter and
all-gather. Each moves a block of size Mparams /G across the G — 1 other devices. With effec-
tive interconnect peak bandwidth peak_bw (bytes/s) — the sustained per-GPU bandwidth for large
collective messages:
Tgrad —-9. Mparams(G — ]')
comm G peak_bw

ESSA communicates only a random seed and the resulting reward, requiring a single all-gather of
8ize Messa = 2 X 4 bytes:

essa  __ Messa(G B 1)

comm - peak_bw

Optimal device split. Let § € (0,1) be the fraction of devices used for training (Gg, = 0G,
Ggen = (1 = 0)G). Then

Berad m m
grad o fb7)fb gen’]gen
fb_gen(ﬁ) = max( T 1-0 > .

Lemma B.1 (Optimal split). The minimum of TS _(0) over 6 € (0,1) is attained at

fb-gen
mebTb rad Bgrad
0* = , Tg A 0*) = m +m '
MebNeb + MgenTgen fb gen( ) G ( b7t genngen)

Proof. max(a/0,b/(1 — 0)) is minimized when the two arguments are equal: a/6 = b/(1 — 0),
with @ = MmN, b = MgenTgen- =
Define the ideal gradient iteration time (perfect scheduling):

perad M, (G — 1)
N o ) i arams
T d _ e (0%) + Tfonﬂn = (mfbﬁfb + mgenﬁgen) +2: m

fb-gen

Clearly T&7ad > T84,
Theorem B.2 (ESSA iteration is faster under a conservative bound). Suppose we only assume
mep Z 17 Mgen S G: and 2Mparams - Mcssa > Mparams~ Ifthe POpula[ion size satisﬁes

T)fb (G - l)Mparams
N. Bessa Bgrad 1 , 1
pop < Teen ) peak bw Gilgen o
then T5% < T*grad < Terad,
Proof. Starting from 7 < T and applying the bounds mg, > 1, Mgen < G,
2Mparams — Messa > Mparams to the exact inequality yields equation [T} O

Discussion. Theorem provides a conservative population-size threshold below which ESSA
is guaranteed to be faster than the idealized gradient pipeline. Because real clusters rarely achieve
the perfect split 8* and typically operate below the nominal peak_bw, the practical advantage of
ESSA is often even larger than predicted by equation

16
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C SENSITIVITY TO HYPERPARAMETERS

C.1 HEATMAPS

For completeness, Figures Q{12 present the full hyperparameter sensitivity for Section .1} These
include Qwen2.5-7B on both GSM8K and PRM800K, Qwen2.5-Math-7B on PRM800K, as well as
LLaMA-3.1-8B on IFEval.
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Figure 9: Hyperparameter sensitivity of ESSA on Qwen2.5-7B for GSMS8K. Batch size 100. (a)
Accuracy when varying LoRA rank and population size. (b) For each LoRA rank, the population
size is fixed to the best value found in (a), while the percentage « of trainable singular values is
varied. This illustrates how ESSA performance depends jointly on adapter rank and the fraction
of singular values optimized. The single white cell occurs because for LoRA rank 8 and a = 0.1,
rounding down yields zero trainable singular values, so no valid accuracy is reported.

Figure[Q)examines the hyperparameter sensitivity of ESSA on Qwen2.5-7B for GSM8K. Varying the
LoRA rank and population size shows that performance remains stable across a broad range, with
accuracy peaking at 0.893 for LoRA rank 2 and population size 96. Notably, even very low-ranks (2-
4) achieve top performance, while larger ranks yield diminishing or slightly degraded results. When
fixing the population size and varying the fraction « of trainable singular values, ESSA maintains
consistently high accuracy (= 0.87-0.89) across all a values. This indicates strong robustness to the
degree of SVD sparsification.
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Figure 10: Hyperparameter sensitivity of ESSA on Qwen2.5-7B for PRM800K. Batch size 300. (a)
Accuracy when varying LoRA rank and population size. (b) For each LoRA rank, the population
size is fixed to the best value found in (a), while the percentage « of trainable singular values is
varied. This illustrates how ESSA performance depends jointly on adapter rank and the fraction
of singular values optimized. The single white cell occurs because for LoRA rank 8 and oo = 0.1,
rounding down yields zero trainable singular values, so no valid accuracy is reported.

Figure [T0] analyzes the hyperparameter sensitivity of ESSA on Qwen2.5-7B for PRM800OK. When
varying LoRA rank and population size, accuracy peaks at 0.748 for LoRA rank 2 and population
size 48, showing that small adapter ranks with moderate population sizes are most effective. Per-
formance drops notably for larger ranks (16) or oversized populations (96), indicating diminishing
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returns beyond a compact search space. With population size fixed, varying the fraction « of train-
able singular values shows that moderate values (o =~ 0.4-0.8) yield the best results — up to 0.696
accuracy for LoRA rank 8 — while very low or full updates slightly reduce performance. These
results confirm that ESSA performs best with low-rank adapters, moderate population sizes, and
partial singular value optimization.
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Figure 11: Hyperparameter sensitivity of ESSA on Qwen2.5-Math-7B for PRM800K. Batch size
300. (a) Accuracy when varying LoRA rank and population size. (b) For each LoRA rank, the
population size is fixed to the best value found in (a), while the percentage « of trainable singular
values is varied. This illustrates how ESSA performance depends jointly on adapter rank and the
fraction of singular values optimized. The single white cell occurs because for LoRA rank 8 and
a=0.1, rounding down yields zero trainable singular values, so no valid accuracy is reported.

Figure [TT] presents the hyperparameter sensitivity of ESSA on Qwen2.5-Math-7B for PRM800K.
When varying LoRA rank and population size, accuracy peaks at 0.784 for LoRA rank 2 and popu-
lation size 24, showing that compact low-rank adapters with small populations perform best. Higher
ranks or very large populations lead to gradual accuracy degradation, indicating that excessive search
dimensionality does not improve performance. Fixing population size and varying the fraction a of
trainable singular values, ESSA achieves its highest score (0.616) at LoRA rank 8 and full update
(aw=1.0), while intermediate a values yield competitive but slightly lower results. The results high-
light that ESSA performs optimally with lightweight low-rank configurations and remains robust to
SVD sparsification, even on complex reasoning tasks.
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0.60
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32
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Figure 12: Hyperparameter sensitivity of ESSA on LLaMA-3.1-8B for IFeval. Accuracy when
varying LoRA rank and population size.

Figure [12] shows the hyperparameter sensitivity of ESSA on LLaMA-3.1-8B for IFeval. Varying
LoRA rank and population size reveals stable performance across configurations, with the highest
accuracy (0.614) achieved at LoRA rank 8 and population size 24. Low ranks (4-16) yield com-
parable results, while very high-rank (32) adapters slightly underperform, suggesting a sweet spot
around low-range ranks and moderate population sizes.
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C.2 TRAINING DYNAMICS
C.2.1 QWEN2.5-7B oN GSM8K

Appendix Figures[T3] [[4]and[T3]provide the complete training-dynamic study of ESSA on Qwen2.5-
7B for GSM8K. This analysis shows how validation accuracy evolves over time as we vary the three
key ESSA hyperparameters (Figure 9).
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Figure 13: Validation accuracy over time on GSM8K with Qwen2.5-7B when varying the ESSA
population size (8, 24, 48, 96, 192, 400) at fixed LoRA ranks (2, 4, 8, 16, 32). Batch size 100.

Figure [13] shows the full training dynamics of ESSA on GSM8K with Qwen2.5-7B when varying
the ESSA population size.
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Figure 14: Validation accuracy over time on GSM8K with Qwen2.5-7B when varying the LoRA
rank (2, 4, 8, 16, 32) at fixed population sizes (8, 24, 48, 96, 192, 400). Batch size 100.

Figure [T4] shows the full training dynamics of ESSA on GSM8K with Qwen2.5-7B when varying

the LoRA rank.
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Figure 15: Validation accuracy on GSM8K with Qwen2.5-7B while varying a. LoRA rank and
population size are fixed to the optimal choices from Figureﬁ Batch size 100.
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Figure [T3] shows the full training dynamics of ESSA on GSM8K with Qwen2.5-7B when varying
the fraction « of trainable singular values.

C.2.2 QWEN2.5-MATH-7B oN GSMS8K

Appendix Figures[T6 [I7]and[I8]provide the complete training-dynamic study of ESSA on Qwen2.5-
Math-7B for GSM8K. These graphs complement the main text sensitivity analysis by showing how
validation accuracy evolves over time as we vary the three key ESSA hyperparameters (Figure [2)).
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Figure 16: Validation accuracy over time on GSM8K with Qwen2.5-Math-7B when varying the
ESSA population size (8, 24, 48, 96, 192, 400) at fixed LoRA ranks (2, 4, 8, 16, 32). Batch size
100.

Figure [I6] shows the full training dynamics of ESSA on GSM8K with Qwen2.5-Math-7B when
varying the ESS A population size.
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Figure 17: Validation accuracy over time on GSM8K with Qwen2.5-Math-7B when varying the
LoRA rank (2, 4, 8, 16, 32) at fixed population sizes (8, 24, 48, 96, 192, 400). Batch size 100.

Figure |17] shows the full training dynamics of ESSA on GSM8K with Qwen2.5-Math-7B when

varying the the LoRA rank.
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Figure 18: Validation accuracy on GSM8K with Qwen2.5-Math-7B while varying . LoRA rank
and population size are fixed to the optimal choices from FigureEl Batch size 100.
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Figure [I§] shows the full training dynamics of ESSA on GSM8K with Qwen2.5-Math-7B when
varying the fraction « of trainable singular values.

C.2.3 QWEN2.5-7B oN PRM800OK

Appendix Figures[T9] [20]and 21]provide the complete training-dynamic study of ESSA on Qwen2.5-
7B for PRMS80OK. This analysis shows how validation accuracy evolves over time as we vary the
three key ESSA hyperparameters (Figure [T0)
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Figure 19: Validation accuracy over time on PRM800K with Qwen2.5-7B when varying the ESSA
population size (8, 24, 48, 96, 192) at fixed LoRA ranks (2, 4, 8, 16, 32). Batch size 300.

Figure[T9|shows the full training dynamics of ESSA on PRM800K with Qwen2.5-7B when varying
the ESSA population size.

23



Under review as a conference paper at ICLR 2026

Pop Size = 8 —— Pop Size =48  —+— Pop Size = 192 Pop Size = 8 —— Pop Size =48  —+— Pop Size = 192
Pop Size =24  —e— Pop Size = 96 Pop Size =24  —e— Pop Size = 96

R R

206 /

9 N 1
£ 0.5 g 0.5 —A/ +
§ L — 3 >— ¢ § ) [ — = =
<0475 =‘§$>7‘7 F 0.4 FETRR G WieTEeS S Yrseasee e e
0.34 \ l

P S 0.3
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (hours) Time (hours)
(a) LoRA rank 2 (b) LoRA rank 4
Pop Size = 8 —i— Pop Size = 48  —+— Pop Size = 192 Pop Size = 8 —— Pop Size =48  —+— Pop Size = 192
Pop Size =24  —e— Pop Size = 96 Pop Size =24  —e— Pop Size = 96
0.6
0.6
§ 0.5 //_/ g 0.5
B v £ A B 5 et i, DRET TR
Soafm e 2% oo S04 (_ P =
< \‘/
0.3
0.3
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (hours) Time (hours)
(c) LoRA rank 8 (d) LoRA rank 16
Pop Size = 8 —— Pop Size = 48 —+=— Pop Size = 192
Pop Size = 24 —e— Pop Size = 96
0.454
—
b
2 0.40] D¥entes™
g DA<t SN2
e % e R
go3s e —
4
030 ‘\.\’/0/
0 2 4 6 8 10 12
Time (hours)
(e) LoRA rank 32

Figure 20: Validation accuracy over time on PRM800K with Qwen2.5-7B when varying the LoRA
rank (2, 4, 8, 16, 32) at fixed population sizes (8, 24, 48, 96, 192). Batch size 300.

Figure 20 shows the full training dynamics of ESSA on PRM80OK with Qwen2.5-7B when varying
the LoRA rank.
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rank and population size are fixed to the optimal choices from Fi gure Batch size 300.
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Figure 21| shows the full training dynamics of ESSA on PRM800K with Qwen2.5-7B when varying
the fraction « of trainable singular values.

C.2.4 QWEN2.5-MATH-7B oN PRMS800K

Appendix Figures22] [23]and 24]provide the complete training-dynamic study of ESSA on Qwen2.5-
Math-7B for PRM8O0OK. These graphs complement the main text sensitivity analysis by showing
how validation accuracy evolves over time as we vary the three key ESSA hyperparameters

(Figure TT).
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Figure 22: Validation accuracy over time on PRM800K with Qwen2.5-Math-7B when varying the
ESSA population size (8, 24, 48, 96, 192) at fixed LoRA ranks (2, 4, 8, 16, 32). Batch size 300.

Figure 22] shows the full training dynamics of ESSA on PRM800K with Qwen2.5-Math-7B when
varying the ESSA population size.
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Figure 23: Validation accuracy over time on PRM800K with Qwen2.5-Math-7B when varying the
LoRA rank (2, 4, 8, 16, 32) at fixed population sizes (8, 24, 48, 96, 192). Batch size 300.

Figure 23] shows the full training dynamics of ESSA on PRM800K with Qwen2.5-Math-7B when
varying the LoRA rank.
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Figure [24] shows the full training dynamics of ESSA on PRM800K with Qwen2.5-Math-7B when
varying the fraction « of trainable singular values.

C.2.5 LLAMA3.1-8B oN IFEVAL

Appendix Figures 23] and 26 provide the complete training-dynamic study of ESSA on LLaMA3.1-
8B for IFEval. Two graphs complement the main text sensitivity analysis by showing how validation
accuracy evolves over time as we vary the two key ESSA hyperparameters (Figure [12)
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Figure 25: Validation accuracy over time on IFEval with LLaMA3.1-8B when varying the ESSA
population size (8, 24, 48, 96, 192) at fixed LoRA ranks (2, 4, 8, 16, 32). Batch size 500, a=1.0.

Figure [25] shows the full training dynamics of ESSA on IFEval with LLaMA3.1-8B when varying
the ESSA population size.
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Figure 26: Validation accuracy over time on IFEval with LLaMA3.1-8B when varying the LoRA
rank (2, 4, 8, 16, 32) at fixed population sizes (8, 24, 48, 96, 192). Batch size 500, a=1.0.

Figure [26] shows the full training dynamics of ESSA on IFEval with LLaMA3.1-8B when varying
the LoRA rank.

D PRECISION ANALYSIS

Figure [27| shows the full training curves of ESSA when running Qwen2.5-32B on PRM800K with
LoRA rank 8, population size 64, o = 1.0, and per-candidate batch size 256, for three different
numerical precisions: BFLOAT16, INTS, and INT4. Shaded areas indicate one standard deviation
across runs.
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Figure 27: Validation accuracy over training time for Qwen2.5-32B on PRM80O0K under different
weight precisions (BFLOAT16, INTS8, INT4). Settings: LoRA rank 8, pop. 64, batch size 256,
a=1.0.

Across all precisions, accuracy rises quickly within the first hour and then remains stable. Reducing
precision from BFLOAT16 to INT8 and even to INT4 produces only a slight reduction in final accu-
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racy, consistent with the summary in Table 2] of the main text. These results confirm that ESSA can
safely exploit aggressive quantization to cut memory usage and computation cost while maintaining
near-identical performance.

E Toy EXAMPLE ON MNIST

A natural concern arises when considering a singular-value-only parameterization. If we restrict the
problem to simple linear or logistic regression, scaling the rows of a fixed low-rank update may seem
too limited to support meaningful adaptation. In this setting only the singular magnitudes change
while all directions remain fixed, which can give the impression of insufficient flexibility.

Motivated by this concern, we emphasize that ESSA’s effectiveness in LLMs relies on the structured
representations already present in the pretrained backbone and inherited through the downstream
SFT initialization. To make this distinction concrete, we designed an MNIST experiment that repli-
cates the LLM training pipeline as closely as possible within a minimal linear model.
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Figure 28: Validation accuracy over time on MNIST (on the test set of digits 6-9) with a single
matrix W € R" ™ n = 784, m = 10. Panels (a)-(c) correspond to W = W' + AW, W = W'
and W ~ N(0, %) setups respectively, where W' is pretrained base weights. Train size 400. ESSA

(blue): solution length 10, population size 24, batch size 64. SGD (red): Ir 0.1, batch size 64.

Toy example on MNIST proceeds as follows:

1. At the pretrain stage (analog of LLM pretraining) we train a logistic regression model
on MNIST digits 0-5 (train size 5000) using SGD optimizer. We obtain a “base model”
W = W', where W' is the single matrix of size 784 by 10, that knows something about
the data distribution, similar to LLM pretraining.

2. At the ”SFT” stage (analogue of LoRA SFT) we take 400 samples of digits 6-9, initialize
a matrix update AW with Kaiming init, and train only AW using SGD: W = W' + AW,
where AW is the single matrix of size 784 by 10.

3. At the last stage we decomposed AW = BSA and train only the singular values S using
ES or SGD optimizer. ESSA optimize singular values directly using train accuracy, while
the SGD baseline optimized them through the standard cross-entropy loss.

In Figure ESSA follows the behavior of SGD on the MNIST task with high fidelity. This
demonstrates that once the singular vectors encodes useful directions, modulating only the asso-
ciated singular amplitudes is already sufficient to achieve effective adaptation. In Figure we
remove the additive update entirely. We decompose the pretrained weights W = W' = B’S’A’,
and train only the singular values S’ using ESSA and SGD. Even in this more constrained setup,
ESSA achieved performance comparable to SGD. The pretrained matrix contained enough structure
that rebalancing its singular directions remained a viable strategy for improving accuracy. Finally, in
Figure[28c| we examine the case without pretraining or SFT, where the model is initialized with and
the singular vectors carry no semantic information. In this setup ESSA improves only slowly, while
SGD makes substantially faster progress. Without a structured subspace, changing only singular
values is insufficient to emulate full learning dynamics.

These experiments demonstrate that the singular-value parameterization is effective precisely in the
settings where LLMs operate: pretrained models with downstream SFT produce meaningful low-
rank directions, and ESSA leverages this structure by adjusting their relative scaling. This behavior
is consistent with the results observed in our large-scale LLM experiments.
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F COMPARISON TO GRPO

F.1 ScHOOL MATH

Appendix Figure 29 presents the results of Qwen2.5-7B on GSM8K in addition to Qwen2.5-Math-
7B (Figure[d).
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Figure 29: Validation accuracy over time on GSM8K with Qwen2.5-7B. Panels (a)-(e) correspond
to LoRA ranks 32, 16, 8, 4, and 2, respectively. ESSA (blue): batch size 100. GRPO (red): Ir
1x107°, global batch 512, mini batch 64.

Appendix Figure [34] presents the results of Qwen2.5-7B and Qwen2.5-Math-7B on GSM8K with-
out SFT warm-start in addition to School Math experiments (Section f.4.1). LoRA matrix A is
initialized using Kaiming initialization, matrix B is zero.
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Figure 30: Validation accuracy over time on GSM8K with Qwen2.5-7B (a) and Qwen2.5-Math-7B
(b) without SFT warm-start. ESSA (blue): train size 100. GRPO (red): Ir 1 x 1075, global batch
512, mini batch 64.

Appendix Figure [31] presents the results of Qwen2.5-3B on one GPU in addition to School Math
experiments (Section [4.2)).
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Figure 31: Validation accuracy over time on GSM8K with Qwen2.5-3B on one GPU. ESSA (blue):
population size 48, o = 1.0, batch size 100. GRPO (red): Ir 1 x 1075, global batch 512, mini batch
64.
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F.2 BEYOND SCHOOL MATH

Appendix Figures [32] and B3] present the full results of our beyond school math experiments on
PRMS800K.
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Figure 33: Validation accuracy over time on PRM800K with Qwen2.5-7B. Panels (a)-(e) corre-
spond to LoRA ranks 32, 16, 8, 4, and 2, respectively. ESSA (blue): batch size 300. GRPO (red): Ir
1x1075, global batch 512, mini batch 64.

We evaluate both Qwen2.5-Math-7B and Qwen2.5-7B, sweeping LoRA ranks and comparing ESSA
with GRPO. Across both model variants on GSM8K (Section [#.4.1] Figure 29) and PRM800K
(Section[d.4.2] Section[F2) ESSA climbs to high accuracy much more rapidly than GRPO and often
reaches a higher plateau, particularly when the LoRA rank is small or moderate. In experiments
without SFT (Figure [34) runs starting from a random LoRA achieve lower absolute accuracy. The
relative performance between ESSA and GRPO remains consistent. Experiment with Qwen2.5-3B
(Figure [3T) on one GPU confirms that ESSA’s benefits are not restricted to multi-GPU setups, but
persist even when only one device is available.
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G OOD DrIFT

To assess the robustness of ESSA under distribution shift, we conduct an additional set of experi-
ments that instantiate exactly the cross-domain setting proposed in the review. We select two datasets
with markedly different reward structures: HelpSteer2 and IFEval. HelpSteer2 encourages general-
purpose response quality, while IFEval enforces rigid constraint satisfaction. Moving between them
therefore offers a direct test of how well ESSA adapts when the SFT warm-start and the target align-
ment domain differ. All HelpSteer2 experiments use the same reward model as in the main paper
(RLHFlow/ArmoRM-Llama3-8B-v0.1). All IFEval experiments use if-eval-like dataset as a train
dataset.
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Figure 34: Validation metrics over time on IFEval (a) and HelpSteer2 (b) with Llama3.1-8B. (a)
IFEval — IFEval (pink), HelpSteer2 — IFEval (green), base model — IFEval (brown) experiments,
batch size 500. (b): HelpSteer2 — HelpSteer2 (pink), [FEval — HelpSteer2 (green), base model —
HelpSteer2 (brown) experiments, batch size 100.

For each target dataset B we evaluate three configurations. The first performs SFT on dataset A and
ESSA on B (A — B). The second performs both SFT and ESSA on B (B — B). The third applies
ESSA directly to B without any SFT warm-start (Base model — B), initialized with default LoRA
parameters (Kaiming-uniform for weight A and zeros for weight B).

Across both directions, ESSA reliably improves performance on the target dataset, even when the
SFT checkpoint originates from a mismatched domain. In the IFEval to HelpSteer2 condition the
gap between cross-domain and in-domain SFT is modest, indicating that the structured initialization
learned from if-eval-like dataset already provides useful axes for ESSA to exploit when optimizing
for HelpSteer2. In the opposite direction the gap is larger, which is expected given that HelpSteer2
does not teach the model the strict formatting and constraint-following behavior required by IFEval.
Nevertheless ESSA exhibits stable monotonic improvement and substantially surpasses the Base —
IFEval configuration that starts from random LoRA parameters. In both directions, SFT warm-starts
clearly outperform training from scratch, confirming that even an out-of-distribution SFT checkpoint
supplies meaningful structure for ESSA’s evolutionary search.

These results demonstrate that ESSA maintains its effectiveness under distribution shift and that the
method can leverage any reasonable SFT initialization, even when it originates from a domain with
incompatible reward structure.

H IMPLEMENTATION DETAILS

H.1 DATASETS

Dataset SFT Train Size ESSA/GRPO Train Size Validation

GSMBK 1495 5978 1319
PRMS0OOK 3600 7900 500
IFEval 1700 3414 541
HelpSteer 19000 1324 1024

Table 5: Dataset sizes across all experiments.
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H.2 SFT HYPERPARAMETERS

Model and Dataset SFT Batch Size Learning Rate Epochs SFT GPU Hours
Qwen2.5-7B (GSM8K) 16 1x107* 1 0.18
Qwen2.5-Math-7B (GSM8K) 16 1x107* 1 0.16
Qwen2.5-7B (PRM800K) 16 5x107* 1 0.43
Qwen2.5-Math-7B (PRMS800K) 16 5x107% 1 0.40
Qwen2.5-32B (PRM800K) 128 1x107° 3 9.80
Qwen2.5-72B (PRM800K) 128 1x107° 3 51.97
Llama3.1-8B (IF-Eval-like) 16 5x 107" 1 0.50
Llama3.1-8B (HelpSteer2) 128 1x107° 3 3.74

Table 6: Summary of hyperparameters used for SFT across all experiments.

H.3 ESSA HYPERPARAMETERS

For ESSA, we performed a hyperparameter grid search covering various values of LoRA rank, pop-
ulation size, fraction of singular values «, batch size, and precision (Table . For each experiment,
the best ESSA hyperparameters were selected based on validation performance (Table [8). We use

up to 128 NVIDIA H100 80GB GPUs per experiment.

Parameter Values Tested Default
LoRA Rank 2,4,8, 16,32 8
Population Size 8, 24, 36, 48, 64, 96, 192, 400 96
Fraction of Singular Values («) 0.1,0.2,0.4,0.6,0.8, 1.0 1.0
Batch Size 100, 256, 300, 500 100
Precision INT4, INTS8, BFLOAT16 BFLOAT16

Table 7: ESSA hyperparameter grid and default values for ablation studies.

Experiment LoRA Rank Population Size Batch Size Fraction o
GSMSK (Qwen2.5-Math-7B) 32 96 100 0.1
GSMB8K (Qwen2.5-7B) 2 96 100 1.0
PRMB800K (Qwen2.5-Math-7B) 2 24 300 1.0
PRMS800K (Qwen2.5-7B) 2 48 300 1.0
PRMB800K (Qwen2.5-32B) 8 48 256 1.0
PRMS800K (Qwen2.5-72B, INT4) 4 64 256 1.0
IFEval (LLaMA3.1-8B) 8 24 500 1.0
HelpSteer (LLaMA3.1-8B) 8 36 100 1.0

Table 8: Best ESSA hyperparameters for each experiment.
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