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Abstract

Tracking multiple objects individually differs from track-
ing groups of related objects. When an object is a part of the
group, its trajectory is conditioned on the trajectories of the
other group members. Most of the current state-of-the-art
trackers follow the approach of tracking each object inde-
pendently, with the mechanism to handle the overlapping
trajectories where necessary. Such an approach does not
take inter-object relations into account, which may cause
unreliable tracking for the members of the groups, espe-
cially in crowded scenarios, where individual cues become
unreliable. To overcome these limitations, we propose a
plug-in Relation Encoding Module (REM). REM encodes
relations between tracked objects by running a message
passing over a spatio-temporal graph of tracked instances,
computing the relation embeddings. The relation embed-
dings then serve as a prior for predicting future positions of
the objects. Our experiments on MOT17 and MOT20 bench-
marks demonstrate that extending a tracker with relational
prior improves tracking quality.

1. Introduction
For online multi-object tracking, when objects are part

of a group, the frequent mutual occlusions make individ-
ual tracking harder. Rather than rejecting that informa-
tion, identifying group membership is interesting by itself,
where in principle the group is easier to identify having
more uniquely identifying characteristics than an individ-
ual object would. In this paper we set out to exploit group
relations for multi-object tracking.

When tracking pedestrians online in a crowd, following
one specifically is generally harder than following all mem-
bers of a family of three, just because their combination of-
fers good distinction: one tall with one small person, each
with a trolley. Occlusion may hamper complete view of one
of the targets but then the characteristics of related members
may be borrowed to render approximate tracking for the oc-
cluded one like parents with a child in shopping malls and
other forms of crowd control.

Figure 1. Top: tracking with Tracktor [1], where independent tra-
jectories are assumed. Dense bodily interaction causes tracking
failure. Bottom: extending the tracker with relational prior makes
it more robust.

Multi-object online tracking has recently made great
progress with tracking-by-regression [1, 23, 22, 10, 20, 21,
19]. These methods track each object independently until,
at a crossroad of tracks, a mechanism is called upon to de-
termine which object continues on what track. The current
methods demonstrate good speed and good accuracy. They
do not, however, consider inter-object relations, which may
cause tracking to become unreliable especially when the in-
teraction between bodies becomes dense where occlusion
becomes a major obstacle, as in (Figure 1).

We draw inspiration from multi-object processing,
where the whole video is available for the analysis. In
[15, 16, 8, 7, 17], the trajectories are derived by running
a graph optimization on the object detections. While the
structure of the graph encodes the inter-object relations in
these offline trackers, their capability of finding relations
relies heavily on having all detections in the video at once,
combining information before and after dense interactions.
This offline information blocks the methods unsuited for
online multi-object tracking as the detections of the future
are not yet available.

In this work, we extend current tracking-by-regression
methods with online group relations. Inspired by offline
graph-based video analysis, we learn to encode inter-object
relations from limited data a priori. In our relation encoding

1
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module, a message passing algorithm is running over a dy-
namic object-graph to produce relation embeddings, which
encode the group structure for each object. The resulting
relation embeddings serve as a prior for predicting posi-
tions of the objects. The relation encoding module is im-
plemented as a plug-in extension for tracking-by-regression
methods.

To sum up, we (i) develop a method to encode inter-
object relations online in dense scenes by running spatial-
temporal message passing, (ii) we demonstrate the virtue of
relational prior to improve the tracking of objects by adding
relations on top of current tracking-by-regression methods.

2. Related work

Multi-object tracking by graph association Many the
multi-object trackers first apply an object detector on the
whole sequence, then link the detections across frames
on the basis of a best match criterion [15, 16, 8, 7, 17].
They follow the tracking by a graph association paradigm.
The matching is usually posed as an offline graph associa-
tion problem connecting the detections into trajectories. In
[15, 16], the authors solve association as a multicut prob-
lem, where trajectories are derived from a dense graph of
detections by extracting weighted subgraphs. Along the
same lines, in [8], Keuper et al. propose a multicut formu-
lation to decompose a dense detection graph into a set of
trajectories. To better handle occlusions, Tang et al. [17]
further extend multicuts with lifted edges.

Graph associations are powerful as they reason about
groups of detections, while taking inter-object relations into
account. However, their offline nature limits the real-life ap-
plication of such methods. Also, due to their combinatorial
non-differentiable formulation, it is not trivial to combine
these graph association algorithms with modern end-to-end
trackers. In this work, we take inspiration from these offline
graph association works and develop a new method for re-
lation encoding, which learns to encode the dynamics of
multiple objects for online tracking. Our relation encoding
module is fully end-to-end compatible with modern track-
ers.

Multi-object tracking by regression association Re-
cently, a family of methods called tracking-by-regression
has become the state-of-the-art approach in multi-object
tracking. The key idea is to assess the association of detec-
tions to previously detected objects by utilizing the regres-
sion head of the object detector. In the pioneering work of
Bergmann et al. [1], tracking is based on the second stage of
the Faster R-CNN [13] object detector with the previous po-
sitions of detected objects as proposals. Later, more sophis-
ticated object detectors were used [23, 10, 22, 20]. In [23]
Zhou et al. modify CenterNet [24] for multi-object tracking.
In [10], authors modify the lightweight RetinaNet [5] for

faster inference. In [22, 20], the authors extend the detec-
tor with ReID embeddings, which allows for better identity
preservation in case of occlusion.

In all these works, objects are tracked independently of
one another. When scenes become crowded or filled with
similar targets, independent tracking becomes hard or im-
possible. Whereas the above methods function well gener-
ally, they tend to break when individual cues are no longer
available (Figure 1). To function in these hard but fre-
quent circumstances, a tracking method has to employ prior
knowledge about the dynamics of the objects. In this pa-
per, we propose to extend the regression-based multi-object
trackers with relations encoding, so they can jointly reason
about the groups of the objects.

3. Encoding relations
To encode inter-object relations, the relation encoding

module takes a set of tracked instances as input and pro-
duces relation embeddings by running a message passing
algorithm over the spatial-temporal graph. Figure 2 renders
the architecture of the module.

3.1. Building relational graph

We define GT = {(Vt, Et)
T
t=1; (Zt)

T−1
t=1 } as a spatial-

temporal graph, where Vt, Et represent the vertices and
edges of the graph at the time step t, respectively. Zt is
a set of temporal edges from t to t+ 1. Vertices correspond
to the objects as tracked, while the temporal edges encode
their trajectories. Only the nodes, which correspond to the
same instance, are linked in time. To decide on the spatial
edges at time step t, we first compute the distance matrix
Dt with entries:

Dt
ij =

√
(xti − xtj)2

w̄t
ij

−
(yti − ytj)2

h̄tij
(1)

where (xti, y
t
i , w

t
i .h

t
i) corresponds to the center coor-

dinates, width and height of the i-th object and w̄t
ij =

min(wt
i , w

t
j) respectively. We use the scaled Euclidean dis-

tance to prevent linking remote instances, which may be
close if evaluated only by the center coordinates, but far
away in depth. To obtain an adjacency matrix A we simply
threshold the distances, i.e. At

ij = 1[Dt
ij ≤ dth], where dth

is a hyper-parameter.

3.2. Graph-attention message passing

Inter-object relations are modulated by running message
passing over the relational graph. The procedure consists of
4 steps: compute input node features, compute messages
between spatial nodes, aggregate messages and compute
spatial-temporal updates of node representations. This pro-
cedure is recurrently performed for each time step until the
end of the graph is reached.

2
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Figure 2. Computing relation embeddings {rti}Ni=1 for N object from time step t − 1 to t. Input coordinates are passed through an input
GRU-cell to produce node features. Message passing is performed on top of the relational graph to update internal node representations.
Finally, node representations are passed through another GRU-cell, which emulates message passing along temporal edges.

Node features To construct the input feature we use
bounding box coordinates of the detection and the posi-
tional offset with respect to the previous time step. Let
pti ∈ R4 be the bounding box of the i-th object at time t,
the input feature vti ∈ RF for the node is then computed as:

p̃ti = σ(Win[pti‖pti − pt−1i ] + bin) (2)

vti = GRUin(p̃ti, v
t−1
i ) (3)

where Win,bin are learnable parameters, σ is a non-linearity
and ‖ denotes concatenation operator. The initial hidden
states of the GRUin cell are set to zeros.

Message sending A message between two nodes of the
graph is designed to encode their pairwise interaction. We
define the message as a function of both the sending and the
receiving nodes i and j, respectively. To make the message
aware of the geometry of the graph, we also include the
distance Dt

ij between the objects as an additional input for
the message function. The messagemt

ij : RF ×RF ×R→
R

F is calculated as:

mt
ij = σ

(
Wm2

(σ(Wm1
[vti‖vtj‖Dt

ij ] + bm1
)) + bm2

)
(4)

Aggregating messages When the messages have been
computed, they are gathered in an aggregated message.
An aggregation function should be permutation equivariant
with respect to the neighbors’ features. In this work, we
follow the graph attention approach [18], which computes
attention between features to weigh them according to their
importance. The attention mechanism αt

ij : RF × RF →
R+ computes the attention coefficients as:

αt
ij =

exp(LeakyReLU
(
[Wa1

vti ]
T [Wa2

vtj ]
)
)∑

j∈Ni
exp(LeakyReLU

(
[Wa1

vti ]
T [Wa2

vtj ]
)
)

(5)

where Ni denotes the set of the nodes spatially adjacent
to i-th node in the graph. Temporal edges are not consid-
ered at this stage. The attention coefficients are then used to

compute a linear combination of the corresponding neigh-
bors’ representation into an aggregated feature.

Spatial-Temporal update In the final step, we update
node representations spatially and temporally. For the spa-
tial update, we concatenate the self-feature of the node
with the aggregated message from its neighbors and pass it
through the perceptron. The temporal update is performed
by passing the features through the GRU-cell. Formally:

(spatial) ṽti = σ(Wu[vti‖
∑
j∈Ni

αt
ijv

t
j ] + bu) (6)

(temporal) rti = GRUrel(ṽ
t
i , r

t−1
i ) (7)

We call the resulting feature rti ∈ RF relation embed-
ding of the i-th node at time t. Relation embeddings at t = 0
are all set to zero vectors.

As can be seen in Equations 6, 7, in our implementa-
tion the temporal updates follow the spatial update. Early
experiments demonstrated that such an approach is slightly
superior to when the temporal update is performed first.

3.3. Tracking with relational prior

Next, we extend tracking-by-regression models to rea-
son about the object’s position based both on appearance
and relation cues. To do so, we condition the predicted
positions of the objects on their relation priors. To that
end, we concatenate the appearance features extracted from
proposal regions with the relation embeddings of the corre-
sponding objects. The positional offset is then predicted by
passing the combined feature via the regression head of the
object detector. The model can be seen as the REM with the
tracker attached to graph nodes. Such a framework applies
to a wide range of trackers [1, 23, 22, 10, 20]. It does not
require modification of the tracker other than adjusting the
regression head.

4. Experiments
We evaluate relation-aware tracker on the MOTChal-

lenge benchmarks MOT17 [12] and MOT20 [4].

3
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Figure 3. Association Accuracy (AssA) of the relation-aware and
the baseline tracker over different localization thresholds.

4.1. Implementation details

We use Tracktor1 as our baseline model as it pro-
vides good speed-accuracy balance. We extend Tracktor to
relation-aware RelTracktor by plugging in the REM. To do
so, we modify the regression head of the tracker to take the
concatenated relation-appearance feature instead of just the
appearance feature as the input. The rest of the tracker re-
mains unchanged.

We use Xavier initialization [6] for the relation encod-
ing module. We also initialize the modified regression
head from the backbone tracker. We then jointly train the
modified regression head and the relational module. To
do so, we randomly sample T = 10 consecutive frames
from MOT17/MOT20 datasets, compute relation embed-
dings and feed them into the regression head together with
appearance features to refine bounding boxes at time step
T + 1. We train for 50 epochs using the Adam optimizer
[9] with a learning rate of 0.0001 while setting dth = 15
to build relational graphs. We choose F = 128 for a di-
mension of the relation embedding vectors. Generalized in-
tersection over union [14] is used as a loss function. We
highlight that only the relational module and the regression
head are trained, while the rest of the model is kept as is.

4.2. Datasets and evaluation metrics

The MOT17 benchmark consists of 7 train and 7 test
sequences, which contain pedestrians with annotated full-
body bounding boxes. The MOT20 benchmark contains 4
train and 4 test sequences of moving pedestrians in uncon-
strained environments with bounding boxes, covering the
visible part of the objects.

Following [1], we evaluate the multi-object tracking
quality in a public detection setting. We employ standard
the MOT-metrics [2] and the HOTA metric [11] as an indi-
cator of the overall performance.

1https://github.com/phil-bergmann/tracking_wo_
bnw

Method HOTA ↑ IDF1 ↑ MOTA ↑ MOTP ↑ MT ↑ ML ↓

M
O

T
17 RelTracktor (Ours) 45.8 56.5 57.2 79.0 21.9 34.3

Tracktor [1] 44.8 55.1 56.3 78.8 21.1 35.3
deepMOT [21] 42.4 53.8 53.7 77.2 19.4 36.6

M
O

T
20 RelTracktor (Ours) 43.4 53.0 54.1 79.2 36.7 22.6

Tracktor [1] 42.1 52.7 52.6 79.9 29.4 26.7
SORT20 [3] 36.1 45.1 42.7 78.5 16.7 26.2

Table 1. Performance comparison on MOT17 and MOT20. The
relation-aware RelTracktor model outperforms the baseline model
with no relations on both benchmarks.

4.3. Relation-aware tracking-by-regression

We compare the relation-aware RelTracktor versus the
baseline method from [1]. We run the tracker on the test
subset of MOT benchmarks and submit results to the evalu-
ation server. Results are presented in Table 1.

On the MOT17-benchmark, the relation-aware tracker
shows an improvement in all metrics compared to the
Tracktor baseline. In particular, a higher IDF1 score indi-
cates that our model robustly preserves the identities of the
objects throughout the sequence, while also providing more
accurate localization as indicated by the MOTP score. On
the MOT20-benchmark, the relation-aware tracker demon-
strates 1.3% increase in the overall HOTA score. Although
the baseline tracker provides slightly higher localization
precision as indicated by MOTP score, its relation-aware
extension is more robust and is able to track targets longer
as indicated by the higher percentage of mostly tracked ob-
jects (MT).

To investigate the ability of the relation-aware model to
provide robust tracking in the dense scenes, we analyze the
Association Accuracy (AssA) of the tracker over various lo-
calization thresholds (Figure 3). Low localization thresh-
olds permit the association of loose bounding boxes. It can
deteriorate the association quality when predicted bounding
boxes are densely overlapped, which is a common case in
crowded scenarios. Thus, the higher association accuracy
of relation-aware tracker (Figure 3) under low localization
thresholds indicates the better ability to preserve identities
of densely interacting objects.

5. Discussion
In this work, we demonstrate that utilizing inter-object

relations is important for robust multi-object tracking. We
develop a plug-in relation encoding module, which encodes
relational prior by running a message passing over a spatial-
temporal graph of tracked instances. We experimentally
demonstrate that extending a backbone multi-object tracker
with relational cues improves tracking accuracy and robust-
ness. We suppose that our approach would be the most use-
ful in problems, where video analysis of crowded scenes is
required.
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