
Deep Reinforcement Learning Based Genetic
Framework for Flexible Job-Shop Scheduling

under Practical Constraints

Kjell van Straaten, Robbert Reijnen, Zaharah Bukhsh, Yaoxin Wu, and
Yingqian Zhang

Department of Industrial Engineering & Innovation Sciences, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

kjell.van.straaten@wefabricate.com
{r.v.j.reijnen, z.bukhsh, y.wu2, yqzhang}@tue.nl

Abstract. In this paper, we propose a DRL-based genetic framework
(DRL-GF) for solving flexible job shop scheduling problems (FJSPs)
under various practical constraints in real-world applications. First, we
model the genetic algorithm (GA) process as a Markov decision pro-
cess (MDP). Then, we use a double-layer encoding scheme to represent
the population of schedules for an FJSP instance, where we develop
a set of problem-agnostic features to describe the state of the GA so-
lution process. We train a multilayer perceptron (MLP) using a prox-
imal policy optimization (PPO) algorithm to determine the mutation
probability, crossover probability, and mutation rate simultaneously. We
evaluate the proposed DRL-GF on the standard FJSP instances and
the FJSP with sequence-dependent setup time (SDST). Moreover, we
test our method on real-world FJSP instances with additional practical
constraints. Extensive results demonstrate that DRL-GF outperforms
conventional heuristics and end-to-end DRL methods in each scenario,
requiring minimal problem-specific customization. In addition, we show
that even if we train DRL-GF using the classical FJSP instances, the
learned policy can be used directly to solve the heavily constrained FJSP-
SRMN , greatly outperforming the benchmarked methods.

Keywords: Deep reinforcement learning · Flexible job-shop scheduling
problem · Genetic algorithm

1 Introduction

Flexible job-shop scheduling problems (FJSPs) focus on the efficient allocation
of sequences of operations across multiple machines. This problem is inherently
more complex than job-shop scheduling problems, which are already NP-hard.
This complexity arises from the eligibility of multiple machines for each oper-
ation, leading to a combinatorially increasing number of potential allocations.
These allocations are often optimized based on specific criteria such as the total
completion time (i.e., the makespan) and the total lateness. FJSPs have broad

2 Kjell van Straaten et al.

applications in industrial manufacturing, maintenance planning, and cloud com-
puting (Gao et al., 2019).

Conventional approaches to FJSPs include mathematical programming, ap-
proximation algorithms, and heuristics. Although the former two are charac-
terized by (near)optimal guarantee, they often suffer from high computational
costs or are limited to only a few approximable cases (Fleischer et al., 2006). In
contrast, heuristics are widely used to solve FJSPs for efficient solutions (Liang
et al., 2021). However, tuning heuristics to solve a specific problem is far from
automatic and requires laborious manual work to attain favorable performance.

Deep reinforcement learning (DRL) has recently been extensively explored
to solve JSP and its variants (Zhang et al., 2020; Yang and Xu, 2021; Park
et al., 2021; Liu et al., 2020). Most DRL methods attempt to learn priority
dispatching rules (PDRs), a type of constructive heuristic, to prioritize certain
operations or jobs over others for scheduling. The learned PDRs are shown to be
more advantageous than conventional ones, e.g., First-Come-First-Served rule
and Shortest Processing Time rule (Sels et al., 2012). As a natural extension,
DRL has been applied to learn PDRs for JSPs (Song et al., 2022; Lei et al.,
2022; Zhang et al., 2023b; Luo et al., 2021).

However, existing DRL methods for FJSPs are still inferior in terms of the
following aspects: 1) They only learn simple constructive heuristics (i.e., PDRs),
which cannot handle complex constraints; 2) They suffer the inferior flexibility
to be deployed with different scenarios; 3) They suffer from poor generalization
and cannot perform persistently good when the test instances are different from
the trained ones. In fact, FJSPs are hard to solve in real life with complex yet
practical constraints, such as Sequence-Dependent Setup Times (SDST).

To address these limitations, there has been a growing interest in the integra-
tion of machine learning (ML) methods with evolutionary algorithms (EAs)(Zhang
et al., 2023a; Reijnen et al., 2024; Song et al., 2024; Zhou et al., 2024; Sharma
et al., 2019; Reijnen et al., 2023b). These learning-assisted evolutionary algo-
rithms aim to exploit knowledge from search dynamics to overcome common EA
challenges such as slow convergence and poor generalization(Song et al., 2024).
More recently, reinforcement learning (RL), and especially DRL, has shown
promise in this context due to its ability to learn from sequential interactions.
Within this framework, parameter configurations are treated as actions, and the
EA’s performance guides the learning process via reward signals. Several studies
have demonstrated the effectiveness of DRL in this role.

Motivated by these insights, this paper proposes a DRL-based Genetic Frame-
work (DRL-GF) for solving FJSPs under practical constraints. DRL-GF lever-
ages DRL to assist Genetic Algorithms (GAs) in automatically determining pa-
rameters (e.g., crossover and mutation rates) in iterations of the search process.
Compared to the existing (few) approaches that tune the parameters of GAs
with DRL for FJSP, as shown in (Chen et al., 2020), we model the algorithmic
procedure of GAs as a Markov decision process (MDP) in a generic manner,
allowing its application to a wide range of FJSP variants (including practical
constraints). A double-layer encoding scheme is designed to represent the pop-

DRL-GF for FJSP under Practical Constraints 3

ulation of schedules (or solutions) for an FJSP instance, with a corresponding
parallel decoding and evaluating scheme. In addition to the parallel process of the
population, we propose a set of problem-agnostic features to reflect the solving
state of GAs. Then, we train a multilayer perceptron (MLP) by proximal policy
optimization (PPO) algorithm to jointly determine the mutation probability, the
crossover probability, and the mutation rate. The proposed hybrid use of DRL
and GA complement each other to be more effective in constraint handling, flex-
ibility, and robustness. Compared to simple constructive heuristic PDRs, the
GAs, a type of mature metaheuristics, are more effective in gaining high-quality
solutions, relying on the iterative search with advanced schemes to escape local
minima. In addition, DRL-GF further enhances GAs by learning more intelli-
gent policies to adaptively determine the key parameters in the search process,
which are less myopic and consider the algorithmic long-term performance in
the policy optimization by DRL. We evaluate the proposed DRL-GF on the
basic FJSP, the complex FJSP with SDST constraint, and a real-world FJSP
with more practical constraints, including release dates, maintenance jobs and
night times. The results show that DRL-GF generally outperforms conventional
heuristics and end-to-end DRL methods.

2 FJSP with Practical Constraints

The Flexible Job Shop Scheduling Problem (FJSP) builds upon the traditional
Job Shop Scheduling Problem (JSP) by introducing greater flexibility in machine
assignments. It consists of n independent jobs, represented as J = {J1, J2, . . . , Jn},
and m independent machines, denoted by M = {M1,M2, . . . ,Mm}, often re-
ferred to as an n × m FJSP problem. Each job Ji has a number of operations
Oi,j , where Oi,j is the j-th operation of the i-th job, and where operation Oi,j+1

may only be started after Oi,j is completed. The processing time of Oi,j on ma-
chine Mk is denoted as ti,j,k, and a machine m can process one operation at a
time. Ci,j is the completion time of Oi,j , and Ok the set of operations scheduled
to be processed on machine Mk. The objective in FJSP is often to minimize the
makespan, denoted as Cmax that represents the total time required to complete
all jobs, i.e., Cmax = max{Ci,j : i, j = 1, . . . , n}.

Real-world FJSPs are characterized by more practical and complex con-
straints built on top of the standard FJSP. In this paper, we focus on two variants
of FJSP with practical constraints:

FJSP-SDST: FJSP with sequence-dependent setup time (SDST) describes the
practical FJSP, where the setup time for a machine to process a job is influenced
by the previously processed job on this machine. After completing any operation
from job Ji and before beginning any operation from job Jj , a setup time lij is
required if both operations are on the same machine. Formally, if an operation
from job Ji ends at time T on machine Mk, then an operation from job Jj can
start at time T + lij on the same machine Mk. The setup time lij is known in
advance for every pair of jobs Ji and Jj .

4 Kjell van Straaten et al.

Fig. 1. An Overview of Deep Reinforcement Learning based Genetic Framework

FJSP-SRMN: FJSP with Sequence-dependent setup time, Release dates, Main-
tenance jobs and Night times (SRMN) can describe more complex industrial
manufacturing procedures in real-world scenarios, e.g., the milling process in a
production company with real data used in our experiments (see Section 4.3).
Release dates specify when a job becomes available for processing: each job Ji
has an associated release date ri, representing the earliest time the job can start.
The first operation Oi,1 of job Ji cannot begin before time ri. Maintenance jobs
refer to time periods when machines are unavailable due to planned maintenance.
Let PMk be the maintenance duration for machine Mk; if it starts at time T ,
then Mk is not available during the interval [T, T + PMk]. Finally, night times
represent periods during which no operations can be performed, typically due to
work-time restrictions. Let NT be the duration of such a period; no operation
can start during NT , and if an operation is running when NT begins, it may
either be paused and resumed afterward or allowed to continue, depending on
specific problem requirements.

3 DRL-based Genetic Framework

The proposed DRL-based genetic framework DRL-GF is structured into three
primary modules as shown in Figure 1: 1) the solution decoder, which is respon-
sible for interpreting the encoded solutions into schedules and its evaluation; 2)
the GA, tasked with the evolution of the solution population (i.e., schedules); and
3) the DRL module, which dynamically adjusts the key parameters of the GA
to enhance overall performance. The DRL-GF process begins with initializing
solutions (encoded as chromosome representations). These solutions are then de-
coded and evaluated, with the resulting population analyzed by the DRL agent,
which accordingly adjusts the GA parameters in response to the ongoing state of
the search process. After the parameters are set, one iteration of the GA search
(e.g., crossover, mutation, etc.) is exerted on the encoded solutions, and the new
offspring population is sent back to the decoder for decoding and evaluation in
the next step. This iterative process continues until the termination criterion is
met. The final population and the best-found solutions are returned.

DRL-GF for FJSP under Practical Constraints 5

Fig. 2. Chromosome Representation for FJSP variants

3.1 Schedule Encoding and Decoding

Encoding. We encode a schedule in a chromosome representation to utilize the
evolutionary search component of DRL-GF. We use the double-layer encoding
scheme adapted from (Liang et al., 2021). This encoding scheme comprises a ma-
chine selection component and an operation sequence component. The machine
selection component stores information about the assignment of operations to
machines. It is encoded in an array of integers, where every operation has an
assigned fixed position. The value of the array at a position corresponds to the
index of the machines selected for the execution of the operation. The operation
sequence component represents the sequence of scheduling the operations on al-
located machines. Each index i of job Ji appears Oi,j times in the operation
sequence component. The length of each component is thus equal, and the total
chromosome length is twice the number of operations to be scheduled.

Figure 2 provides an example of the encoded chromosome representation,
where the FJSP instance consists of two input jobs J1 and J2. J1 has two oper-
ations O1,1 and O1,2, whereas J2 has three operations O2,1, O2,2 and O2,3. The
value of 4 in the first position of the machine selection component means that
operation O1,1 should be scheduled on its fourth machine alternative. The oper-
ation sequence component shows that this operation will be scheduled second,
following the scheduling of operation O2,1.
Decoding. We design the decoder to interpret schedules from the encoded repre-
sentations, allowing us to evaluate the quality of initialized or evolved solutions.
This process involves allocating specific start and end times to each operation,
determined by the allocated machine and prior scheduled operations. The de-
coding scheme is initialized with the operation sequence and machine allocation
from the encoded solutions, together with the job instance information (I), con-
sisting of all required information for scheduling the operations, such as required
resources, sequence-dependent setup times, and release dates. To ensure validity
for the specific problem constraints, the decoder consists of three subroutines:
CheckBackFill, CalcSDST and NightPush. The CheckBackFill subroutine ex-
amines each pair of subsequent operations, A and B, which have already been
scheduled, and assesses whether it is feasible to schedule the current operation
C at the end of operation A, or before the start of operation B, altering the
required setups before and after the operation in question, and maintaining the
satisfaction of precedence constraints. CalcSDST subroutine evaluates the cur-
rent status of the machine and the operation in question. It uses this information
to determine the necessary setup procedures the machine must undergo to start

6 Kjell van Straaten et al.

the operation. The NightPush subroutine is designed to set the starting time of
a schedule to the beginning of the next day. When a solution (i.e., schedule) is
decoded, and timestamps are allocated to all individual operations, the sched-
ule can be replayed to determine the makespan and cost of operations, which is
conducted through simulation as the environment in our DRL-GF.

3.2 GA for FJSP and its Variants

Within DRL-GF, the GA is used to evolve the population to find high-quality
solutions. The process begins by initializing a population of a specified size. Con-
sequently, the population of individuals is recombined by a crossover function
and modified by a mutation function. This population is evaluated by the de-
coder, where the objective of each schedule is calculated and used as the fitness
indicator for each individual. Through a selection function, the most promising
individuals are chosen over a predetermined number of generations.

Initialization. The initialization of the population is performed according to
(Zhang et al., 2011), combining global, local and random selection, according to
a 60%, 30%, and 10% ratio. Global selection aims to balance the load across
all machines. More specifically, an array of size |M | is initialized. Random jobs
(J) are then selected, and their operations (Oij) are scheduled on the machine
currently having the lowest total load. After scheduling an operation, the du-
ration is added to the total load of the selected machine. Local load balancing
is similar but optimizes load on a per-job basis rather than optimizing machine
load across all jobs. Finally, in random selection, both the machine allocation
string and operation sequence are randomly initialized.

Crossover. The crossover process is different for the machine allocation and
operation sequence string. Specifically, the operation sequence string is crossed
over using precedence preserving order-based crossover (POX) (Lee et al., 1998).
According to POX, two sub-job sets Js1 and Js2 are randomly generated from
all jobs, and two-parent individuals p1 and p2 are randomly chosen. Genes in
p1 (p2) that belong to Js1 (Js2) are copied into the child individual c1 (c2) and
remain in their original positions (as in the parent individuals). Any genes al-
ready in sub-job Js1 (Js2) are removed from p2 (p1). Then, the vacant positions
in c1 or c2 are filled with the genes of p2 (p1) according to their original sequence
(as in the parent individuals). This process ensures the preservation of the rela-
tive scheduling sequence position of operations from a randomly selected set of
jobs while rescheduling operations from other jobs based on the sequence of the
alternate crossovered individual solution.

Mutation. For the machine allocation string, we select the machine for which
the operation-machine pair has the lowest operating time in case of mutation.
In the case of sequence-dependent setup times, the required setup between the
current operation of the machine and eligible operations is added to the operat-
ing time before the operation-machine pair is picked. For the operation sequence
string, we generate a new index 0 ≤ i ≤ |OS| and swap the gene under consid-
eration with the gene in the generated index.

DRL-GF for FJSP under Practical Constraints 7

Algorithm 1: DRL-based Genetic Framework
Input: Instance information (I); DRL policy (π); Population size (n_pop);
Number of generations (n_gen)

Initialize: pop← []; hof ← []
// Generate initial population
for x ∈ range(n_pop) do

rnd← random(0, 1) ▷ Random value between 0 and 1
if rnd < 0.6 then

Indv ← GlobalSelection() ▷ Select using global strategy
else if rnd < 0.9 then

Indv ← LocalSelection() ▷ Select using local strategy
else

Indv ← RandomSelection() ▷ Select randomly
pop[x]← Indv

// Evolve population through generations
for gen ∈ range(n_gen) do

pop← evaluate(pop) ▷ Evaluate fitness of population
S ← getState(pop) ▷ Configure state representation
A← π(S) ▷ Configure parameters using DRL policy
ofsp← selection(pop) ▷ Select individuals for reproduction
ofsp← crossover(ofsp,A) ▷ Apply crossover
new_pop← mutation(ofsp,A) ▷ Apply mutation
R← reward(new_pop, pop) ▷ Compute reward (training phase only)
pop← new_pop ▷ Replace old population

Selection. We use a tournament selection method with a tournament size set
to 3, based on the makepan of solutions, following Zhang et al. (2011). After
selection, a subset of solutions obtained is used for the iterative crossover and
mutation process, as explained above.

3.3 DRL for Parameter Control

A DRL component is used within DRL-GF for adaptive parameter control. To
do so, we define a Markov decision process (MDP) for the GA.
State space (St): The state is featured by the normalized mean fitness of the
current population, the normalized best fitness of the current population, nor-
malized standard deviation of fitness of the current population, normalized re-
maining budget, and normalized stagnation count. The fitness (f) values are
normalized by scaling the fitness values on the range of worst (fmax) and best-
seen fitness (fmin) values so far, i.e., f̂ = (f − fmin)/(fmax − fmin). Following
this formula, a value of 0 would indicate optimal fitness and 1 would indicate
worst fitness. Moreover, we normalize the budget (b), i.e., the number of gener-
ations left, and stagnation count (sc) by dividing them by the total number of
generations (n_gen) as b̂ = b/n_gen and ŝc = sc/n_gen, respectively. The nor-
malized standard deviation, and all other features in the state space are clipped
to 1 to reduce the impact of extreme observations.

8 Kjell van Straaten et al.

Action space (At): The action determines 1) the mutation probability (i.e.,
the probability of each individual mutating); 2) the crossover probability, and
3) the mutation rate (i.e., the probability each gene mutating). The range of
the probabilities and the rate are all between 0 and 1, which allows for radical
changes from one generation to the other. Based on the selected probabilities,
the GA executes the set of genetic operations in the current iteration.
Reward (Rt): The reward is defined as Rt = Tct−1

−Tct . This reward is sent to
the agent as feedback, together with the next state space (St+1) based on the
freshly created population (Pt).
Transition (P): The next state St+1 is derived from St by the GA operations
(i.e., crossover, mutation, selection), which are configured with the parameters
determined by the action At.

We provide the pseudocode of the DRL-GF procedure in Algorithm 1.

3.4 Policy Optimization

We use the proximal policy optimization (PPO) algorithm (Schulman et al.,
2017) to train the proposed DRL model. PPO utilizes a probability ratio between
two policies to maximize the improvement of the current policy without the risk
of performance collapse. The objective function of PPO is defined as LCLIP (θ) =

min
(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)
, where rt(θ) is the probability ratio of

taking actions under the new policy to take the same actions under the old policy
and Ât is the estimated advantage of taking action at at time step t, representing
the expected reward difference between the current policy and the target. The
term clip(rt(θ), 1 − ϵ, 1 + ϵ) represents the clipped surrogate objective which
clips the probability ratio between 1− ϵ and 1 + ϵ. The policy is updated in an
actor-critic setting, with N actor networks and a critic network all sharing the
same network architecture. The actors run the old policy πθold in an environment
for T timesteps. Within the DRL-GF, multiple genetic algorithms are executed
before the policy θ is updated. After the T timesteps, LCLIP

θk
(θ) is optimized for

K epochs given a mini-batch size M ≤ N × T , resulting in a new policy.
Both policy and value networks consist of two linear layers. The first layer

has 5 input features (i.e., the defined state space) and 64 output features. Using
a Tanh activation function, the second layer has 64 input and output dimensions.
Before the output layer, the 64 hidden features represent the embedding of the
current state of the optimization algorithm. To estimate the value and action
under a state, we employ an additional output layer with 64-dimensional input
and 1-dimensional output to build a value network and the output layer with
3-dimensional output to build the actor network. The value network outputs the
expected value of a state, which is used for PPO training. The actor network
outputs the crossover rate, mutation rate, and mutation probability in the GA.

DRL-GF for FJSP under Practical Constraints 9

4 Experiments

We compare the performance of DRL-GF with various baselines. We first include
the commonly used dispatching rules, i.e., shortest processing time (SPT), most
work remaining (MWKR), most operations remaining (MOR), first-in-first-out
(FIFO). Furthermore, we include random scheduling (RANDOM) and greedy
scheduling (GREEDY), in which the operation-machine pair increasing the total
makespan the least is selected. In addition, we include the advanced learning-
based methods, including the SLGA of Chen et al. (2020) and the end-to-end
DRL (E2E-DRL) approach of Song et al. (2022). We use the trained E2E-DRL
model in two different ways during testing, i.e., obtaining actions by sampling
(DRL-S) or in a greedy manner (DRL-G). The genetic algorithm (EGA) of Zhang
et al. (2011) that serves as the base of the DRL-GF is also compared.
Performance indicator. The performance indicators include the optimality
gap, ranking score, win count, and computation time. In specific, the optimality
gap is calculated as Gopt =

Ĉmax

LB−1 ∗ 100%, where Ĉmax and LB are the average
makespan and the average lower bound for an instance set. Lower bounds are ob-
tained as follows: For FJSP, we use values reported in the original benchmarking
papers (Brandimarte, 1993; Hurink et al., 1994); For FJSP-SDST, we use best
solutions found by the CP-SAT solver (i.e., the optimal solutions for instance
1-19, and the best-found solution for instance 20 in 72h); For Wfdata, it is the
best makespan found across all algorithms for each instance.

We also introduce the ranking score and win account in the experiments on
FJSP-SDST and FJSP-SRMN. An algorithm wins an instance if it has (or ties
with) the best makespan for that instance. Multiple algorithms might “win" an
instance. The win count is used to identify which algorithm performs best on
all test instances, as the average optimality gap is influenced significantly by
performance outliers in test instances. The ranking score of a method is defined
as the average value of its rankings on all tested instances.
Training setup. All models are trained on an AIME A4000 - Multi GPU HPC
rack server with 96GB of GPU memory, 132GB of RAM, and 48 cores. Training
the DRL-GF until convergence took between 1.5 (10x05) and 5.5 hours (20x10),
depending on the instance sizes. For the experiment on FJSP, we trained the
models on the instances of Song et al. (2022) (sodata). For FJSP-SDST, we
train the models using the same sodata instances but have added the sequence-
dependent setup times, which are uniformly generated between 1 and 15. For
FJSP-SRMN, we train our models on custom-generated data (wfdata).
Benchmark Datasets. The classical FJSP datasets used for testing are the
Brandimarte dataset in (Brandimarte, 1993) (denoted by mkdata) and the Hurink
datasets in (Hurink et al., 1994) that are composed of edata, rdata and vdata
dataset. To investigate FJSP-SDST, we use an extension on the Fattahi dataset
(Saidi-Mehrabad and Fattahi 2007) provided by LocalSolver 1, which is denoted
by ftdata. To benchmark FJSP-SRMN, we generate a set of custom instances
(denoted by wfdata). These custom instances are generated using a fixed set of

1 https://www.localsolver.com/docs/last/exampletour/flexiblejobshop.html#data

10 Kjell van Straaten et al.

Method Training Size mkdata edata rdata vdata

Ĉmax Gopt Ĉmax Gopt Ĉmax Gopt Ĉmax Gopt

OPT 163.3 - 1005 - 923 - 807.9 -
SPT 283.2 73.48% 1305.35 29.89% 1184.80 28.36% - -
MOR 202.3 23.89% 1211.2 20.52% 1064.0 15.28% - -
MWKR 200.17 22.58% 1179.9 17.40% 1046.2 13.35% - -
FIFO 206.1 26.20% 1255.46 24.92% 1082.1 17.24% - -
RANDOM 637.5 290.39% 1235.1 21.98% 1212.9 31.41% 1041.7 28.94%
GREEDY 484.9 196.94% 1290.5 28.41% 1150.4 24.64% 894.5 10.72%
EGA 192.2 17.09% 1144.6 13.89% 1105.3 19.75% 953.4 18.01%
SLGA 181.3 11.02% - - - - - -

DRL-G
10x05 200.1 22.54% 1193.1 18.72% 1049.7 13.73% 856.1 5.97%
15x10 200.3 22.66% 1197.5 19.15% 1054.3 14.23% 858.0 6.20%
20x05 220.1 34.78% 1269.5 26.32% 1125.1 21.90% 897.4 11.08%
20x10 199.3 22.05% 1192.5 18.66% 1046.2 13.35% 841.3 4.13%
Mixed 198.0 21.25% 1218.0 21.19% 1056.3 14.44% 845.0 4.59%

DRL-S
10x05 194.6 19.16% 1139.5 13.38% 1009.0 9.32% 827.6 2.44%
15x10 193.1 18.25% 1144.9 13.92% 1008.2 9.23% 828.8 2.59%
20x05 208.1 27.37% 1176.0 17.01% 1049.1 13.66% 857.8 6.18%
20x10 195.2 19.53% 1152.85 14.71% 1015.5 10.02% 830.9 2.85%
Mixed 196.8 20.51% 1107.5 10.20% 990.0 7.26% 831.1 2.87%

DRL-GF
10x05 180.7 10.66% 1103.5 9.80% 1047.8 13.52% 894.5 10.72%
15x10 184.5 12.98% 1110.3 10.48% 1061.0 14.95% 914.7 13.22%
20x05 180.1 10.29% 1097.7 9.22% 1040.3 12.71% 895.4 10.83%
20x10 180.5 10.53% 1099.5 9.40% 1034.9 12.12% 888.13 9.93%
Mixed 178.6 9.37% 1111.8 10.63% 1069.3 15.85% 955.8 18.31%

Table 1. Results on FJSP test dataset. - marks that objective values and gaps are
not reported in original papers or the benchmark. The training size is not applicable
to the non-learning based methods.

potential jobs. This set of potential jobs consists of 75 jobs, each consisting of
1-5 operations. The jobs can have a quantity between one and five. The process-
ing time is given per operation per product, whereas the total processing time
for an operation is then calculated by multiplying the processing time by the
quantity. The duration of operations ranges anywhere from 0 to 5000. Because
quantities are between 1 and 5, there exist 375 different jobs which can exist
within an instance. The number of machines and jobs is set before instances
are generated. The instance is considered as completely flexible, meaning that
all operations can be scheduled on all machines. Furthermore, the operations
have equal processing times on each machine. Sequence-dependent setup times
are based on either 0 or 10000 time units. The instances can be found in the
machine scheduling benchmark in (Reijnen et al., 2023a).

4.1 Experiment on Classical FJSP

In the first experiment, we benchmark the DRL-GF on classical FJSP instances.
We proceed with the following experiments. Each method is tested on different
datasets. The first is the Brandimarte dataset from (Brandimarte, 1993), i.e.,
mkdata, and the other three datasets are edata, rdata and vdata derived from
the Hurink dataset (Hurink et al., 1994). In the Hurink dataset, we only use
the la instances, 1-40 for edata and rdata, and 1-30 for vdata. These datasets
are used to benchmark our method against existing learning-based methods,
heuristic methods, and dispatching rules. The results are gathered in Table 1.

DRL-GF for FJSP under Practical Constraints 11

Method Training Size Ĉmax Gopt Win Count Average Rank
OPT 468.8 - - -
MWKR 787.4 67.96% 0 8.85
RANDOM 638.6 36.22% 10 3.75
GREEDY 667.5 42.38% 0 7.30
EGA 607.6 29.54% 4 5.10

DRL-G
10x05 643.2 37.20%

3 5.2515x10 634.9 35.43%
20x05 681.3 45.33%
20x10 648.4 38.31%

DRL-S
10x05 577.0 18.81%

7 2.7015x10 572.8 22.18%
20x05 594.6 26.83%
20x10 576.3 22.93%

DRL-S∗
10x05 580.0 23.72%

7 3.1015x10 580.3 23.78%
20x05 589.9 25.83%
20x10 583.3 24.42%

DRL-GF
10x05 543.3 15.89%

15 1.2515x10 568.4 21.25%
20x05 556.4 18.69%
20x10 549.4 17.19%

DRL-GF∗
10x05 547.7 16.83%

16 1.2015x10 547.1 16.70%
20x05 552.2 17.79%
20x10 545.5 16.36%

Table 2. Results on FJSP-SDST test dataset (i.e., ftdata). OPT (optimal solution) is
found using Gurobi. ∗models are trained on classical FJSP instances as described in
the training setup.

For the mkdata, the E2E-DRL performance is inferior to DRL-GF and EGA.
The DRL-S model (which consistently outperforms DRL-G) only reaches an op-
timality gap of 18.25% at best. Our DRL-GF models trained on different-sized
instances generally reach an optimality gap of around 10%. Especially, the DRL-
GF model trained on mixed sizes obtains the smallest optimality gap among all
methods. For the edata, we observe almost the same effect as shown in mkdata,
where the DRL-GF models generally perform better than other methods, and
the DRL-GF model trained on 20× 05 obtains the best performance. However,
the DRL-S approach performs better for the rdata and vdata. The reasons be-
hind the difference in performance advantages across the datasets need to be
further investigated in the future. Meanwhile, it is worth noting that the DRL-
GF generally outperforms traditional heuristics.

In summary, the E2E-DRL outperforms DRL-GF on rdata and vdata FJSP
instances, while DRL-GF outperforms E2E-DRL on the mkdata and edata. In
the following experiments, we will demonstrate that DRL-GF significantly sur-
passes E2E-DRL for complex FJSP variants with more practical constraints.
Such extended experiments will indicate that DRL-GF is more advantageous
than E2E-DRL over a broad spectrum of FJSP variants.

4.2 Experiment on FJSP-SDST

In our second experiment, we benchmark trained models against traditional
heuristics on FJSP-SDST instances, i.e., ftdata. The sizes of these instances

12 Kjell van Straaten et al.

range from 2×2 to 12×8. Furthermore, we compare our models trained on FJSP-
SDST instances against our models trained on classical FJSP instances without
SDSTs, in order to identify whether retraining is necessary. As observed from Ta-
ble 2, DRL-GF outperforms E2E-DRL significantly. DRL-GF manages to reach
an optimality gap of 1.29%, whereas DRL-S only reaches 6.80% at best. The
computation of E2E-DRL is faster than DRL-GF. The runtime difference is
larger than in the experiment on classical FJSP, since the ftdata dataset has
smaller instances (12×8 at most) than the mkdata (20×15 at most). The win
count and average rank also manifest that DRL-GF outperforms E2E-DRL for
FJSP-SDST. The win count of DRL-GF is 15 and 16 for the models trained on
FJSP and FJSP-SDST, respectively, while DRL-S only reaches a win count of
7. The average rank of DRL-GF equals 1.20 and 1.25, which is the best across
all methods. While DRL-S is inferior to our DRL-GF, we note that DRL-S still
outperforms traditional heuristics. It is indicated by the optimality gap, where
DRL-S reaches a value of 18.81%. The vanilla genetic algorithm follows with an
optimality gap of 29.54%. Random scheduling does have a win count of 10, which
is higher than the win count of DRL-S (7). However, the average rank (3.75) of
random scheduling is worse than the rank of DRL-S (2.70). This is due to the
fact that random scheduling is able to brute-force the first 10 instances which
are relatively small (4 jobs, 5 machines at most). For larger instances, DRL-S
achieves much better makespans and thus has a better average rank.

When comparing the newly trained algorithms versus the ones from the pre-
vious experiment on classical FJSP, we observe that retraining enables a better
makespan to be reached. DRL-GF improves from an optimality gap of 16.36%
(20x10) to 15.89% (10x05). The average rank, however, decreased from 1.20 to
1.25. Since this improvement is considered insignificant, we conclude that retrain-
ing doesn’t add any extra benefits for DRL-GF. Instead, retraining does help
improve DRL-S, since the best optimality gap decreases from 23.72% (10x05)
to 18.81% (15x05), and the average rank decreases from 3.10 to 2.70. However,
we note that the retrained DRL-S model remains inferior to the DRL-GF mod-
els trained on either classical FJSP or FJSP-SDST instances. It implies that
DRL-GF generalizes better to FJSP instances with unseen characteristics.

4.3 Experiment on FJSP-SRMN

We proceed to benchmark our DRL-GF on FJSP-SRMN. Here, we follow a
similar approach as in the first two experiments, where models are trained on
instances of several different sizes (17×02, 42×02, 64×04 and 88×08), and tested
on a diverse set of instance sizes. More specifically, instances where the number
of jobs ranges between 5 and 100 and the number of machines ranges between
2 and 10 are considered. An instance of size 100x10 should match the industry
scale. We use these instances in order to test generalizability and scalability.

Table 3 displays the results on FJSP-SRMN instances. Note that the makespan
is significantly larger than the aforementioned results, because the makespan is
given in seconds for these instances. As shown, the DRL-GF model trained on
17×02 instances performs best, with an optimality gap of 4.96%. The models

DRL-GF for FJSP under Practical Constraints 13

Method Training Size Ĉmax Gopt Win Count Average Rank
LB 132173 - - -
MWKR 266848 101.89% 1 6.85
RANDOM 195869 46.95% 3 5.29
GREEDY 164040 23.07% 24 3.16
EGA 161651 22.31% 13 3.14

DRL-G
17x02 177421 34.23%

1 3.9642x02 181551 37.44%
64x04 192354 45.53%
88x08 187690 42.00%

DRL-S
17x02 175477 32.76%

5 3.5142x02 182804 38.31%
64x04 177147 34.03%
88x08 183488 38.82%
15x10∗ 188850 42.88%

DRL-GF
17x02 138733 4.96%

81 1.2142x02 160726 21.60%
64x04 142333 7.69%
88x08 144898 9.63%
15x10∗ 143992 8.03%

Table 3. Results on FJSP-SRMN test dataset (i.e., wfdata). LB (lower bound) is
calculated by the best makespan found per instance across all algorithms. ∗ indicates
that models are trained on classical FJSP.

trained on 64×04 and 88×08 instances achieve 7.69% and 9.63%, respectively.
The average rank of DRL-GF is 1.21, with a total win count of 81 (out of 100).

DRL-S tends to outperform DRL-G, given the fact that DRL-S samples ac-
tions, whereas DRL-G picks actions in a greedy fashion. When training on in-
stances of sizes 17×02, 64×04 and 88×08, DRL-S improves performance by 1.5%,
11.5% and 3.2%, respectively. However, DRL-S underperforms greedy schedul-
ing and EGA (while it has advantage for FJSP and FJSP-SDST), receiving a
significantly lower rank. We also tried to retrain DRL-GF and E2E-DRL models,
which can increase performance by around 3% and 10%, but are still inferior to
DRL-GF. In combination with results for mkdata and ftdata, we summarize that
the proposed DRL-GF outperforms the baselines, showing a stronger versatility
to solve FJSPs under diverse practical constraints.

5 Conclusion

We propose a DRL-based genetic framework (DRL-GF) for solving FJSPs under
various practical constraints. We assess the DRL-GF on the classical FJSP, the
FJSP with SDST constraint, and a real-world FJSP with various practical con-
straints. Extensive results show that the proposed DRL-GF generally exceeds
conventional heuristics and end-to-end DRL methods. Despite the significant
superiority of DRL-GF on complex FJSP variants, one limitation of our work
is that DRL-GF cannot consistently outperform E2E-DRL on all classical FJSP
datasets, which we will explore underlying reasons for the performance variance.

Bibliography

Brandimarte, P., 1993. Routing and scheduling in a flexible job shop by tabu
search. Annals of Operations Research 41, 157–183.

Chen, R., Yang, B., Li, S., Wang, S., 2020. A self-learning genetic algorithm
based on reinforcement learning for flexible job-shop scheduling problem.
Computers & industrial engineering 149, 106778.

Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M., 2006. Tight ap-
proximation algorithms for maximum general assignment problems, in: SODA,
Citeseer. pp. 611–620.

Gao, K., Cao, Z., Zhang, L., Chen, Z., Han, Y., Pan, Q., 2019. A review on
swarm intelligence and evolutionary algorithms for solving flexible job shop
scheduling problems. IEEE/CAA Journal of Automatica Sinica 6, 904–916.

Hurink, J., Jurisch, B., Thole, M., 1994. Tabu search for the job-shop scheduling
problem with multi-purpose machines. OR Spectrum = OR Spektrum 15,
205–215. doi:https://doi.org/10.1007/BF01719451.

Lee, K.M., Yamakawa, T., Lee, K.M., 1998. A genetic algorithm for gen-
eral machine scheduling problems, in: 1998 Second International Conference.
Knowledge-Based Intelligent Electronic Systems. Proceedings KES’98 (Cat.
No. 98EX111), IEEE. pp. 60–66.

Lei, K., Guo, P., Zhao, W., Wang, Y., Qian, L., Meng, X., Tang, L., 2022.
A multi-action deep reinforcement learning framework for flexible job-shop
scheduling problem. Expert Systems with Applications 205, 117796.

Liang, X., Chen, J., Gu, X., Huang, M., 2021. Improved adaptive non-dominated
sorting genetic algorithm with elite strategy for solving multi-objective flexible
job-shop scheduling problem. Ieee Access 9, 106352–106362.

Liu, C.L., Chang, C.C., Tseng, C.J., 2020. Actor-critic deep reinforcement learn-
ing for solving job shop scheduling problems. Ieee Access 8, 71752–71762.

Luo, S., Zhang, L., Fan, Y., 2021. Dynamic multi-objective scheduling for flexible
job shop by deep reinforcement learning. Computers & Industrial Engineering
159, 107489.

Park, J., Chun, J., Kim, S.H., Kim, Y., Park, J., 2021. Learning to schedule job-
shop problems: representation and policy learning using graph neural network
and reinforcement learning. International Journal of Production Research 59,
3360–3377.

Reijnen, R., van Straaten, K., Bukhsh, Z., Zhang, Y., 2023a. Job shop scheduling
benchmark: Environments and instances for learning and non-learning meth-
ods. arXiv preprint arXiv:2308.12794 .

Reijnen, R., Zhang, Y., Bukhsh, Z., Guzek, M., 2023b. Learning to adapt
genetic algorithms for multi-objective flexible job shop scheduling prob-
lems, in: Proceedings of the Companion Conference on Genetic and Evo-
lutionary Computation, Association for Computing Machinery, New York,
NY, USA. p. 315–318. URL: https://doi.org/10.1145/3583133.3590700,
doi:https://doi.org/10.1145/3583133.3590700.

DRL-GF for FJSP under Practical Constraints 15

Reijnen, R., Zhang, Y., Lau, H.C., Bukhsh, Z., 2024. Online control of adaptive
large neighborhood search using deep reinforcement learning, in: Proceedings
of the International Conference on Automated Planning and Scheduling, pp.
475–483.

Saidi-Mehrabad, M., Fattahi, P., 2007. Flexible job shop scheduling with tabu
search algorithms. The international journal of Advanced Manufacturing tech-
nology 32, 563–570.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal
policy optimization algorithms. arXiv:1707.06347.

Sels, V., Gheysen, N., Vanhoucke, M., 2012. A comparison of priority rules
for the job shop scheduling problem under different flow time-and tardiness-
related objective functions. International Journal of Production Research 50,
4255–4270.

Sharma, M., Komninos, A., López-Ibáñez, M., Kazakov, D., 2019. Deep rein-
forcement learning based parameter control in differential evolution, in: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 709–
717.

Song, W., Chen, X., Li, Q., Cao, Z., 2022. Flexible job-shop scheduling via
graph neural network and deep reinforcement learning. IEEE Transactions on
Industrial Informatics 19, 1600–1610.

Song, Y., Wu, Y., Guo, Y., Yan, R., Suganthan, P.N., Zhang, Y., Pedrycz, W.,
Das, S., Mallipeddi, R., Ajani, O.S., et al., 2024. Reinforcement learning-
assisted evolutionary algorithm: A survey and research opportunities. Swarm
and Evolutionary Computation 86, 101517.

Yang, S., Xu, Z., 2021. Intelligent scheduling and reconfiguration via deep rein-
forcement learning in smart manufacturing. International Journal of Produc-
tion Research , 1–18.

Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X., 2020. Learning to
dispatch for job shop scheduling via deep reinforcement learning, in: Advances
in Neural Information Processing Systems, pp. 1621–1632.

Zhang, F., Mei, Y., Nguyen, S., Zhang, M., 2023a. Survey on genetic program-
ming and machine learning techniques for heuristic design in job shop schedul-
ing. IEEE Transactions on Evolutionary Computation .

Zhang, G., Gao, L., Shi, Y., 2011. An effective genetic algorithm for the flexible
job-shop scheduling problem. Expert Systems with Applications 38, 3563–
3573.

Zhang, J.D., He, Z., Chan, W.H., Chow, C.Y., 2023b. Deepmag: Deep rein-
forcement learning with multi-agent graphs for flexible job shop scheduling.
Knowledge-Based Systems 259, 110083.

Zhou, T., Zhang, W., Niu, B., He, P., Yue, G., 2024. Parameter control frame-
work for multiobjective evolutionary computation based on deep reinforcement
learning. International Journal of Intelligent Systems 2024, 6740701.

