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Abstract

A multimodal large language model (MLLM)
may struggle with answering visual-based
(personal) entity questions (VEQA), such as
“who is A?” or “who is A that B is talking
to?” for various reasons, e.g., the absence
of the name of A in the caption or the inabil-
ity of MLLMs to recognize A, particularly for
less common entities. Furthermore, even
if the MLLM can identify A, it may refrain
from answering due to privacy concerns. In
this paper, we introduce a novel methodol-
ogy called Matching-Augmented Reasoning
(MAR) to enhance VEQA. Given a collection
of visual objects with captions, MAR prepro-
cesses each object individually, identifying
faces, names, and their alignments within
the object. It encodes this information and
stores their vector representations in vec-
tor databases. When handling VEQA, MAR
retrieves matching faces and names and or-
ganizes these entities into a matching graph,
where nodes represent entities and edges in-
dicate their similarities. MAR then derives
the answer to the query by reasoning over
this matching graph. Extensive experiments
show that MAR significantly improves VEQA
compared with the state-of-the-art methods
using MLLMs.

1 Introduction

Multimodal language models (MLLMs) (Cui et al.,
2024) like GPT-4V (Zhang et al., 2023) and
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LLaVA (Liu et al., 2023) have significantly im-
proved visual question answering (VQA) by in-
tegrating text and images. However, they still
face challenges in visual-based entity question
answering (VEQA), a crucial subset of VQA that
focuses on extracting information about specific
entities, especially for personal entities.

MLLMs for VEQA: Advantages and Limitations.



In VEQA tasks, MLLMs excel at integrating visual
cues and textual information for effective rea-
soning and answer generation (Li et al., 2023bj;
Liu et al., 2024). For instance, as depicted in
Figure 1(a), GPT-4V, when tasked with answer-
ing question () regarding the face in region R,
leverages the associated caption 717 of image V
to precisely identify the person within the red
box as “Wang Yi”.

However, MLLMs often struggle to recognize
all details in images, particularly for less com-
mon entities (Li et al., 2023b). For instance, in
Figure 1(b), GPT-4V fails to answer question
(- about the person in the red rectangle Ry due
to the lack of information in the image caption
T5 and its limited knowledge base. Furthermore,
even when an MLLM identifies an entity, it may
withhold an answer due to privacy regulations.

Despite rapid advancements of MLLMs, accu-
rately identifying all (personal) entities in im-
ages and adhering to privacy regulations make
answering VEQA questions solely using MLLMs a
significant challenge (Chen et al., 2024; Li et al.,
2023a, 2024; Yu et al., 2023).

Matching-Augmented Reasoning (MAR). Given
a collection of visual objects with captions,
sourced from public or enterprise datasets with-
out privacy concerns, MAR identifies the faces of
entities within visual objects and the names of
entities within captions by tools like CLIP (Rad-
ford et al., 2021) and Deepface (Taigman et al.,
2014). These entities are encoded with respec-
tive visual and text encoders, and the resulting
embeddings are stored in vector databases e.g.,
Meta Faiss (Douze et al., 2024). When a VEQA
query is posed, MAR retrieves “similar” faces and
names from the database and performs reason-
ing over these matched pieces of information
to generate an accurate response. Note, in this
study, our focus is on personal entities. We plan

to extend our analysis to include additional types
of entities in future research.

As illustrated in Figure 1(c), if we can suc-
cessfully match the face in image V5 with the
face in image V1, and if we know that the face
in V1 is “Yi Wang”, we can easily answer (Js.

Contributions. Our notable contributions are
summarized as follows.

* We study VEQA, an important and com-
monly used subset of VQA, but is under-
explored. (Section 3)

* We propose matching graphs that can cap-
ture the relationships of the same enti-
ties over multiple captioned visual objects.
Based on a matching graph, we proposed
matching-augmenting reasoning (MAR), to
effective answer a VEQA. (Section 4)

* Given that VEQA is a relatively new prob-
lem, existing benchmarks are not suit-
able. Therefore, we have constructed a new
benchmark NewsPersonQA including 235k
images and 6k QA pairs. (Section 5)

* We conduct extensive experiments to show
that MAR > MLLMs + RAG > MLLMs, where
RAG is to feed the retrieved matching graph
to MLLMs. (Section 6)

2 Related Work

VQA. VQA aims at reasoning over visual and
textual content and cues to generate answers (Lu
et al., 2021; Stengel-Eskin et al., 2022; Agrawal
et al., 2023). It primarily utilizes approaches
such as Fusion-based (Zhang et al., 2019), Multi-
modal Learning (Ilievski and Feng, 2017), Mem-
ory Networks (Su et al., 2018), Visual Atten-
tion (Mahesh et al., 2023), etc., to discover and
integrate information from text and images.

MLLMs for VQA. MLLMs, such as GPT-
4V (Zhang et al., 2023) and LLaVa (Liu et al.,



2023), have played a pivotal role in advanc-
ing VQA. By seamlessly integrating textual and
visual information, these models have demon-
strated a remarkable ability to understand and
respond to complex queries about images.
RAG for VQA. However, in many cases, the
cues within images and text are insufficient for
reasoning and answering. Retrieval-augmented
generation (RAG) (Lewis et al., 2021) has been
studied for VQA, especially with Knowledge-
Based VQA approaches that incorporate exter-
nal knowledge to provide additional cues for
answers (Khademi et al., 2023; Lin et al., 2022).
VEQA. In this paper, we investigate VEQA, a crit-
ical subset of VQA that concentrates on query-
ing information about entities, especially per-
sons. As will be shown in Section 6, MLLMs of-
ten struggle with such questions due to limited
knowledge and privacy considerations. While
RAG can enhance MLLMs for VEQA tasks, MLLMs
still face challenges (or confused) in reasoning
with multiple interconnected visual objects.
Data Matching. Data matching refers to the
process of identifying, comparing, and merg-
ing records from multiple datasets to determine
whether they correspond to the same entities
(Christen and Christen, 2012). With the increas-
ing multimodality of data, the concept of match-
ing has been continually expanded from its origi-
nal string matching (Text-Text) and entity match-
ing (Tuple-Tuple) context. For instance, Image-
Text Matching (Lee et al., 2018; Li et al., 2019),
Image-Image matching (Zhu et al., 2018), etc.
In fact, matching can aggregate more clues, en-
hance the reasoning ability of models, and pos-
sess strong interpretability (Zheng et al., 2022).

3 Problem

Captioned Visual Objects. We consider a cap-
tioned visual object O as a pair O : (V,T)

where V' is an image, and 7T’ is an optional text
description relative to the image V.

Figure 1(a) and Figure 1(b) provide two
sample captioned visual objects, (Vi1,77) and
(Va, Ty), respectively.

Let O = {01,0,,...,0,} be a group of
captioned visual objects, sourced from public
or enterprise datasets without privacy concerns.
Note that, such a group is common in practice,
e.g., a collection of news articles.

Users can pose a Visual-based (Personal) En-
tity Question Answering (VEQA) on either a sin-
gle captioned visual object (Single-VEQA) or a
group of such objects (Group-VEQA), as defined
below.

Single-VEQA. Given a captioned visual object
O : (V,T), this type of queries allows the user
to provide a rectangle selection of the image
and ask the question like “who is he/she” or “is
he/she John”.

More formally, a Single-VEQA Q, is a pair
(R,Q), where R is a rectangle selection over
image V and @) is a natural language question.

Group-VEQA. Given a group of captioned vi-
sual objects O, we support two types of queries
Qg: (1) a simple natural language query @, such
as “how many news contain Donald Trump”;
and (2) a natural language query with a selected
face, i.e., a pair (R, @), such as “in which news
the selected person appears”.

We will simply use Q to represent either a
Single-VEQA or a Group-VEQA query, when it is
clear form the context.

4 Algorithms for VEQA

In this section, we will first discuss solely using
MLLMs for VEQA in Section 4.1. We will then
discuss coarse-grained retrieval-augmented gen-
eration (RAG) in Section 4.2. We then propose
a new concept, called matching graphs, which



can provide fine-grained information among re-
trieved objects in Section 4.3. Based on match-
ing graphs, we describe fine-grained RAG in
Section 4.4 and matching-augmented reasoning
(MAR) in Section 4.5.

41 MLLMS for VEQA

Given a VEQA query Q, a crude solution is to
directly prompt Q to a MLLM as:

Q — MLLM — answer \
Figure 2(a) depicts this solution.

4.2 Coarse-Grained RAG for VEQA

Alternatively, we can retrieve top-k captioned
visual objects and feed them to MLLMs as:

‘ (Q, top-k objects) — MLLM — answer ‘

Figure 2(b) illustrates this approach, which
we refer to as coarse-grained RAG. This method
is characterized by its transmission of entire re-
trieved objects to the MLLMs. Unfortunately, cur-
rent MLLMs perform poorly in reasoning with
multiple interconnected retrieved visual objects.

4.3 Matching Graphs

To improve the performance of RAG models,
it’s beneficial to focus on fine-grained informa-
tion rather than entire objects. By identifying
specific entities (e.g., faces, names) and their
connections within each object, we can provide
a more meaningful context for reasoning.

Matching Graphs. A matching graph G(N, E)
contains a set /V of nodes and a set I of undi-
rected edges. Each node n € N has two labels
face(n) and name(n), where face(n) is a face
image, and name(n) is a set of possible names.
If we are certain about a person’s name,
we will use a square bracket e.g., name(n) =
[Yi Wang] for the selected face in Figure 1(a); if
we are not sure about a person’s name, we will

@Q @ .

Matching Graph

Figure 2: Different algorithms for VEQA. (a) MLLMs.
(b) Coarse-grained RAG. (c) Fine-grained RAG.

use a curly bracket to indicate possible names
e.g., name(n) = {Xi Jinping, Trump, *} for the
selected face in Figure 1(b), where * is a wild-
card meaning that n’s name could be something
other than Xi Jinping and Trump.

Each undirected edge e(n;,n;) € E indi-
cates that the two faces corresponding to n; (i.e.,
face(n;)) and n; (i.e., face(n;)) are likely to
be the same person. Each edge has a weight
weight(e) € [0, 1], indicating the similarity of
the two faces.

Matching Graph Construction. It consists of
two steps: offline index construction (for all data
objects) and online matching graph construction
(for each query).

Offline Index Construction. We first preprocess
each captioned visual object O(V, T') as follows.

» Face identification. We use Meta Deep-
Face (Taigman et al., 2014) to extract face
entities as (f1, f2, ..., fr) from image V.

* Name identification. We use spaCy (Hon-
nibal et al., 2020) to extract name entities
as (z1,22,..., %) fromtext T

After pre-processing, we have constructed all
possible nodes for all possible matching graphs.
We then use pre-trained CLIP (Radford et al.,
2021) to convert each identified face and each



identified person names into its vector represen-
tation, and store them in two separate vector
database: faceDB and nameDB.

Iterative Online Matching Graph Construction.
Given a VEQA query, we construct a matching
graph as follows.

[Step 1: Initialization.] The user starts with a
seed node (for Single-VEQA) or a group of seed
nodes for (Group-VEQA). Each seed node con-
tains a face and its candidate names that could
be empty.

[Step 2: Graph Expansion.] For each node in
the graph, we search either similar faces from
faceDB with vector similarity above a given
threshold o, or similar names from nameDB
with vector similarity above a given threshold
oy. For each added node, the edge weight is set
as face similarity.

[Step 3: Iterative Search and Termination.]
When there are new nodes added in Step 2, we
will loop Step 2. The process terminates when
either there is no new nodes can be added or
we have done k iterations. From our empirical
findings, we set k = 2, which is enough to re-
trieve useful nodes (e.g., 10 nodes ) and edges
for reasoning.

4.4 Fine-Grained RAG for VEQA

Given the fine-graph matching graph relative to
a query Q, we prompt it to MLLMs as:

’ (Q, matching graph) — MLLM — answer ‘

Figure 2(c) shows this approach, which we
refer to as fine-grained RAG. It works as follows.
[Step 1: Image Stitching.] Most MLLMs (e.g.,
LLaVA) only support only single-image input,
thus we simply combine multiple retrieved vi-
sual objects into one visual object V.

[Step 2: Image Annotation.] We annotate each
node n; in the matching graphs on V in a red

box, resulting in an annotated image V'.

[Step 3: Matching Graph Serialization.] Each
node n; and edge e(n;, n;) will be serialized as:
ser(n;) = face(n;), name(n;)

ser(e) = n;, nj,weight(e)

Serializing a matching graph g(N, E) is to
serialize all nodes and edges as:

ser(g) = ser(N),ser(E)

We then prompt Q,V’, and ser(g) to MLLMs.
In order to enable it to consider information
from its own model simultaneously, we also
designed an Original knowledge-aware Prompt
(OP): “Please tell me [Q]. If you are unsure, read
the following.”

4.5 MAR for VEQA

MAR for Single-VEQA. This type of queries
asks the name of a single entity. Given a match-
ing graph g(N, E) where n* € N is the seed
node, our method works as follows.

[Step 1: Remove Uncertain Nodes.] For each
node n; € N \ {n*}, if its name is uncertain,
we remove n; and its associated edges, which
will resulted in a modified graph g(N', E’).
[Step 2: Name Aggregation for n*.] We count
all distinct names in the modified matching
graph ¢/, each associated with a weight as
> e(nin+)epr Weight(e).

[Step 3: Name Identification for n*.] We pick
the name with the highest weight, as the answer
to the Single-VEQA query.

MAR for Group-VEQA. This type of queries
ask for aggregated information of nodes whose
names are queried in the query, e.g., “which
image/how many images have person A”. Given
a matching graph g(NN, F), it works as follows.
[Step 1: Name Identification for Each Node.]
It first identifies the name of each node, as dis-
cussed above.

[Step 2: Answer Aggregation.] It aggregates



the information of each node to answer the given
Group-VEQA.

5 A New NewsPersonQA Benchmark

The problem of VEQA needs to address complex
interactions between multiple visual and textual
data. Despite its growing importance, existing
benchmarks fall short in adequately represent-
ing the diverse challenges posed by VEQA tasks.
Particularly in the domain of News QA, where
the accurate identification and understanding of
both common and uncommon persons are cru-
cial, current datasets (e.g., GoodNews (Biten
et al.,, 2019) and NewsQA (Trischler et al.,
2016)) do not provide the necessary depth and
breadth. To bridge this gap, based on Good-
News (Biten et al., 2019), we are constructing
a new benchmark, namely NewsPersonQA, that
encompasses a wide range of scenarios, includ-
ing both well-known and obscure individuals.
The construction of the dataset entails the
generation of QA pairs from the raw data in
GoodNews, which consists of images and cap-
tions. This process involves two main steps:
data preprocessing and QA pair construction.

Data Preprocessing: Raw data undergoes pre-
processing, which includes structuring news
data, extracting faces from images, annotating
original images, and recognizing named enti-
ties in captions. The processed data is then
randomly distributed into groups. Each group
contains thousands of images and is categorized
into Single-VEQA (100 groups) and Group-VEQA
(10 groups) queries.

Single-VEQA Question Generation: We be-
gin by counting the frequency of each person’s
name within each group. To ensure the avail-
ability of clues for answering, we select names
that appear at least three times in captions. We
then mask these names in the captions to gener-

Category Count
Total Images 235,912
Totally Extracted Faces 336,075
Totally Extracted Names 379,313
Single-VEQA Queries 4,937
Group-VEQA Queries 1,004
Total Queries 5,941

Table 1: Statistics of NewsPersonQA

ate QA pairs. For example: Question: “Who
is the person labeled *face n’ in the red box?”
Answer: “name”. In total, approximately 5,000
queries of this type are generated, about 50 per
group.
Group-VEQA Question Generation: Simi-
larly, we count the occurrences of names within
each group and store the image names as a set,
denoted as S. To prevent exceeding the maxi-
mum token limit of MLLMs in the answers and to
facilitate clearer visualization of experimental
results, we limit each person’s name to a max-
imum of 5 appearances within the same group.
We then randomly mask part of the captions cor-
responding to the images in the set to increase
the difficulty and encourage MLLMs to generate
correct answers through retrieved content. The
format of QA pairs is Question: "Which photos
are of the person named 'name’?" Answer: S.
The number of queries of this type is approxi-
mately 1,000.

Table 1 shows the statistics of NewsPersonQA.

6 Experiment

Methods. For answering VEQA queries, we
selected two well-known and highly capable
MLLMs to serve as baselines.

- LLaVA: This model utilizes CLIP-ViT-L-
336px with an MLP projection. We refer to the
1.5 version with 7 billion parameters as LLaVA-
7b and the version with 13 billion parameters as
LLaVA-13b.



- GPT-4V: Recognized as OpenAI’s most
powerful general-purpose MLLM to date, GPT-
4V boasts 1.37 trillion parameters.

- Human: This represents the human-
annotated results, showcasing the level of cog-
nitive ability and performance that humans can
achieve on this task.

+ FRAG: MLLMs struggle with reasoning
over coarse-grained RAG that consists of mul-
tiple captioned visual objects. Therefore, we
provide only fine-grained RAG (FRAQG), i.e.,
matching graph, to the above-mentioned models
and human evaluators.

Implementation. The experiments were con-
ducted in a zero-shot setting using RTX 4090
GPUs. For GPT-4V, we used the interface of the
GPT-4-vision-preview model. It’s worth noting
that GPT-4V often refrains from answering per-
son identify questions without additional clues
due to policy reasons. However, with the incor-
poration of matching graph techniques, it can
leverage weak signals and combine them with its
own knowledge base. In the case of Group-VEQA
queries, a maximum of 10 cases are recalled and
then filtered for subsequent processing.

Metrics. For Single-VEQA queries, we use accu-
racy (Acc) as an evaluation metric. Furthermore,
we assess the accuracy only for instances where
relevant clues are successfully retrieved (e.g.,
the case of Figure 1(c)), which is denoted as
Acchit. For Group-VEQA queries, we employ
recall (Recall) as the metric.

6.1 Single-VEQA Queries

The main results from the Single-VEQA queries
are summarized in Table 2, which leads to the
following insights:

1. Model Parameter Size: LLaVA-13b
demonstrates higher accuracy (27.93%) com-
pared to LLaVA-7b (22.26%), suggesting that

Models Acc (%) Acc™® (%)
Human 3.36 5.19
Human + FRAG 47.01 98.31
LLaVA-7b 22.26 27.53
LLaVA-7b + FRAG 31.19 62.81
LLaVA-13b 27.93 32.86
LLaVA-13b + FRAG | 31.13 62.34
GPT-4V - -

GPT-4V + FRAG 34.84 (4.2) | 68.31(2.6)
MAR 39.09 79.65

Table 2: Result for Singe-VEQA Queries. (Note: GPT-
4V could not answer these queries directly due to
policy constraints. Values within parentheses are
those GPT-4V still refuses to answer.)

a model’s recognition ability is positively cor-
related with its parameter size, which to some
extent reflects its knowledge base.

2. Impact of Matching Graph: Incorporat-
ing a matching graph leads to an 8.9% improve-
ment in accuracy for LLaVA-7b and a 3.2%
improvement for LLaVA-13b. GPT-4V, with
matching, achieves a character recognition accu-
racy of 34.83%.

3. Comparative Improvement: The en-
hancement from matching is more pronounced
for LLaVA-7b than for LLaVA-13b, indicating
that while matching can compensate for differ-
ences in parameters, a model’s inherent capabil-
ities still set an upper limit on its performance.

To further understand the impact of matching
on the models’ reasoning abilities, we analyzed
examples of successfully recalled clues:

i. Human Performance: Human identifica-
tion accuracy reaches 98.31% when incorporat-
ing matching clues, setting a high benchmark
for model performance.

ii. Algorithmic Strength: Our algorithm sur-
passes others in analytical capabilities, achiev-
ing an accuracy 11% higher than GPT-4V with
matching in non-human results. However, there
remains a gap compared to human performance.

iii. Model Comparison: Among LLaVA-7b,
LLaVA-13b, and GPT-4V with matching, GPT-



Models Recall

LLaVA-7b + FRAG 22.06%
LLaVA-13b + FRAG | 40.05%
GPT-4V + FRAG 65.04%
MAR 70.85 %

Table 3: Result for Group-VEQA Queries.

4V exhibits the best performance with an accu-
racy of 68%, attributed to its superior analytical
and reasoning abilities.

6.2 Group-VEQA Queries

Group-VEQA queries focus on identifying all per-
tinent clues for more reliable reasoning. The
result is shown in Table 3.

Our method achieves the highest recall rate
at 70.85%, outperforming GPT-4V, LLaVA-7b,
and LLaVA-13b combined with matching by
5.81%, 30.81%, and 48.79%, respectively. This
indicates that our approach excels in retrieval
tasks compared to MLLMs, likely due to the ef-
fectiveness of rule-based methods in managing
excessive information. Additionally, the per-
formance of baseline MLLMs diminishes with
reduced parameter sizes, suggesting a positive
correlation between their analytical reasoning
abilities and parameter sizes.

6.3 Further Study - The Influence of
Multi-Source Information

In principle, the effective recognition of per-
sonal information by a model depends on three
main sources: its inherent knowledge, clues
from the query, and clues from retrieved data.
Our FRAG framework leverages these sources
to guide accurate answers. As demonstrated
in Table 4, when recall is accurate, LLaVA-7b
correctly answers 42.86% of cases post-FRAG,
while LLaVA-13b achieves 39.18%.

However, in practice, the presence of noise
in the recalled information and the potential in-
ability of MLLMs to effectively integrate FRAG
information with the model’s original knowl-
edge may lead to incorrect answers. As shown

Models Acc™ (%)

LLaVA-7b
w/o FRAG X — with FRAG v | 42.86
w/o FRAG v'— with FRAG X | 7.32
LLaVA-13b
w/o FRAG X — with FRAG v* | 39.18
w/o FRAG v'— with FRAG X | 9.44

Table 4: Study on Successfully Recalled Data.

in Table 4, LLaVA-7b+FRAG and LLaVA-
13b+FRAG respectively provide incorrect an-
swers in 7.32% and 9.44% of cases that could
have been answered correctly before FRAG.

To assess the impact of the prompt on the
model’s original knowledge, we conducted ab-
lation experiments by removing the Original-
knowledge-aware Prompt (OP), as shown in Ta-
ble 5. The accuracy of LLaVA-7b, LLaVA-13b,
and GPT-4V combined with FRAG decreased by
6.05%, 1.72%, and 4.51% respectively. These
results highlight the importance of the model’s
own knowledge as a crucial clue in the reason-
ing process and underscore its significance in
achieving accurate outcomes.

Models Acc
LLaVA-7b with matching 31.19%
w/o OP | 25.14%
LLaVA-13b with matching | 31.13%
w/o OP | 29.41%
GPT-4V with matching 39.09%
w/o OP | 34.58%

Table 5: Original-knowledge-aware Prompt (OP)
ablation study result

7 Conclusion

In this paper, we explore a novel VEQA problem
that focuses on aggregating clues from multiple
captioned visual objects. We introduce match-
ing graphs designed to capture the relationships
between identical entities across various visual
objects. Extensive experiments demonstrate the
high accuracy of our method. While our work
has primarily focused on matching person enti-
ties, future research can aim to extend matching-
augmented reasoning to other tasks.



Limitations

Currently, our framework primarily relies on
similarity for face matching and does not con-
sider factors such as age-related changes and
facial blurring. This may result in inaccuracies
in matching certain nodes, representing a fu-
ture research direction. Additionally, in real-
world applications, news is dynamic. Efficient
retrieval and expansion strategies for a growing
data lake pose challenges as the dataset evolves,
warranting further investigation.

Ethics Statement

The authors declare that they have no conflict of
interest. Our work aims to enhance the answer
generation of visual question answering by re-
trieving entity-related clues. While improving
the accuracy of answer generation, our method
significantly saves resources as it does not re-
quire fine-tuning of large language models. We
strive to ensure that our approach is not only
accurate and efficient but also fair and unbiased.
We recognize the potential of significant impact
of visual question answering technology on so-
ciety and pledge to maintain transparency in
sharing our findings and progress with relevant
users and stakeholders.
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