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Abstract
A multimodal large language model (MLLM)001
may struggle with answering visual-based002
(personal) entity questions (VEQA), such as003
“who is A?” or “who is A that B is talking004
to?” for various reasons, e.g., the absence005
of the name of A in the caption or the inabil-006
ity of MLLMs to recognize A, particularly for007
less common entities. Furthermore, even008
if the MLLM can identify A, it may refrain009
from answering due to privacy concerns. In010
this paper, we introduce a novel methodol-011
ogy called Matching-Augmented Reasoning012
(MAR) to enhance VEQA. Given a collection013
of visual objects with captions, MAR prepro-014
cesses each object individually, identifying015
faces, names, and their alignments within016
the object. It encodes this information and017
stores their vector representations in vec-018
tor databases. When handling VEQA, MAR019
retrieves matching faces and names and or-020
ganizes these entities into a matching graph,021
where nodes represent entities and edges in-022
dicate their similarities. MAR then derives023
the answer to the query by reasoning over024
this matching graph. Extensive experiments025
show that MAR significantly improves VEQA026
compared with the state-of-the-art methods027
using MLLMs.028

1 Introduction029

Multimodal language models (MLLMs) (Cui et al.,030

2024) like GPT-4V (Zhang et al., 2023) and031

(left) meets with US Secretary of State 
Antony Blinken at the State Department 
in Washington on Oct 26, 2023.

V1

T1 China's Foreign Minister Wang Yi

Q1

V2

 Xi Jinping and Trump reached
important consensus in the meeting. 

(a) The advantages of MLLMs

(b) The limitations of MLLMs

(c) Matching-augmented reasoning (MAR)

Wang Yi

Who is he in the red box. 
And tell me your reasoning.

The individual in the red box 
is China's Foreign Minister 
Wang Yi. The reasoning for 
the identification is solely 
based on the textual 
information given in the image 
caption and not on the 
recognition of the individual's 
face.

Who is he in the red box.

I’m sorry. I cannot provide the 
identity in the image

T2

The one in the red box is Yi 
Wang

V2 T2+ +

R1

Q2R2

Matching

matched faces and text from a 
collection of captioned visual objects Q2R2

Figure 1: Data (V : image, T : text) pair; Query
(R : entity selection, Q : question) pair. (a) The
advantages of MLLMs; (b) The limitations of MLLMs,
and (c) Our proposal MAR.

LLaVA (Liu et al., 2023) have significantly im- 032

proved visual question answering (VQA) by in- 033

tegrating text and images. However, they still 034

face challenges in visual-based entity question 035

answering (VEQA), a crucial subset of VQA that 036

focuses on extracting information about specific 037

entities, especially for personal entities. 038

MLLMs for VEQA: Advantages and Limitations. 039
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In VEQA tasks, MLLMs excel at integrating visual040

cues and textual information for effective rea-041

soning and answer generation (Li et al., 2023b;042

Liu et al., 2024). For instance, as depicted in043

Figure 1(a), GPT-4V, when tasked with answer-044

ing question Q1 regarding the face in region R1,045

leverages the associated caption T1 of image V1046

to precisely identify the person within the red047

box as “Wang Yi”.048

However, MLLMs often struggle to recognize049

all details in images, particularly for less com-050

mon entities (Li et al., 2023b). For instance, in051

Figure 1(b), GPT-4V fails to answer question052

Q2 about the person in the red rectangle R2 due053

to the lack of information in the image caption054

T2 and its limited knowledge base. Furthermore,055

even when an MLLM identifies an entity, it may056

withhold an answer due to privacy regulations.057

Despite rapid advancements of MLLMs, accu-058

rately identifying all (personal) entities in im-059

ages and adhering to privacy regulations make060

answering VEQA questions solely using MLLMs a061

significant challenge (Chen et al., 2024; Li et al.,062

2023a, 2024; Yu et al., 2023).063

Matching-Augmented Reasoning (MAR). Given064

a collection of visual objects with captions,065

sourced from public or enterprise datasets with-066

out privacy concerns, MAR identifies the faces of067

entities within visual objects and the names of068

entities within captions by tools like CLIP (Rad-069

ford et al., 2021) and Deepface (Taigman et al.,070

2014). These entities are encoded with respec-071

tive visual and text encoders, and the resulting072

embeddings are stored in vector databases e.g.,073

Meta Faiss (Douze et al., 2024). When a VEQA074

query is posed, MAR retrieves “similar” faces and075

names from the database and performs reason-076

ing over these matched pieces of information077

to generate an accurate response. Note, in this078

study, our focus is on personal entities. We plan079

to extend our analysis to include additional types 080

of entities in future research. 081

As illustrated in Figure 1(c), if we can suc- 082

cessfully match the face in image V2 with the 083

face in image V1, and if we know that the face 084

in V1 is “Yi Wang”, we can easily answer Q2. 085

Contributions. Our notable contributions are 086

summarized as follows. 087

• We study VEQA, an important and com- 088

monly used subset of VQA, but is under- 089

explored. (Section 3) 090

• We propose matching graphs that can cap- 091

ture the relationships of the same enti- 092

ties over multiple captioned visual objects. 093

Based on a matching graph, we proposed 094

matching-augmenting reasoning (MAR), to 095

effective answer a VEQA. (Section 4) 096

• Given that VEQA is a relatively new prob- 097

lem, existing benchmarks are not suit- 098

able. Therefore, we have constructed a new 099

benchmark NewsPersonQA including 235k 100

images and 6k QA pairs. (Section 5) 101

• We conduct extensive experiments to show 102

that MAR > MLLMs + RAG > MLLMs, where 103

RAG is to feed the retrieved matching graph 104

to MLLMs. (Section 6) 105

2 Related Work 106

VQA. VQA aims at reasoning over visual and 107

textual content and cues to generate answers (Lu 108

et al., 2021; Stengel-Eskin et al., 2022; Agrawal 109

et al., 2023). It primarily utilizes approaches 110

such as Fusion-based (Zhang et al., 2019), Multi- 111

modal Learning (Ilievski and Feng, 2017), Mem- 112

ory Networks (Su et al., 2018), Visual Atten- 113

tion (Mahesh et al., 2023), etc., to discover and 114

integrate information from text and images. 115

MLLMs for VQA. MLLMs, such as GPT- 116

4V (Zhang et al., 2023) and LLaVa (Liu et al., 117
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2023), have played a pivotal role in advanc-118

ing VQA. By seamlessly integrating textual and119

visual information, these models have demon-120

strated a remarkable ability to understand and121

respond to complex queries about images.122

RAG for VQA. However, in many cases, the123

cues within images and text are insufficient for124

reasoning and answering. Retrieval-augmented125

generation (RAG) (Lewis et al., 2021) has been126

studied for VQA, especially with Knowledge-127

Based VQA approaches that incorporate exter-128

nal knowledge to provide additional cues for129

answers (Khademi et al., 2023; Lin et al., 2022).130

VEQA. In this paper, we investigate VEQA, a crit-131

ical subset of VQA that concentrates on query-132

ing information about entities, especially per-133

sons. As will be shown in Section 6, MLLMs of-134

ten struggle with such questions due to limited135

knowledge and privacy considerations. While136

RAG can enhance MLLMs for VEQA tasks, MLLMs137

still face challenges (or confused) in reasoning138

with multiple interconnected visual objects.139

Data Matching. Data matching refers to the140

process of identifying, comparing, and merg-141

ing records from multiple datasets to determine142

whether they correspond to the same entities143

(Christen and Christen, 2012). With the increas-144

ing multimodality of data, the concept of match-145

ing has been continually expanded from its origi-146

nal string matching (Text-Text) and entity match-147

ing (Tuple-Tuple) context. For instance, Image-148

Text Matching (Lee et al., 2018; Li et al., 2019),149

Image-Image matching (Zhu et al., 2018), etc.150

In fact, matching can aggregate more clues, en-151

hance the reasoning ability of models, and pos-152

sess strong interpretability (Zheng et al., 2022).153

3 Problem154

Captioned Visual Objects. We consider a cap-155

tioned visual object O as a pair O : (V, T )156

where V is an image, and T is an optional text 157

description relative to the image V . 158

Figure 1(a) and Figure 1(b) provide two 159

sample captioned visual objects, (V1, T1) and 160

(V2, T2), respectively. 161

Let O = {O1, O2, . . . , On} be a group of 162

captioned visual objects, sourced from public 163

or enterprise datasets without privacy concerns. 164

Note that, such a group is common in practice, 165

e.g., a collection of news articles. 166

Users can pose a Visual-based (Personal) En- 167

tity Question Answering (VEQA) on either a sin- 168

gle captioned visual object (Single-VEQA) or a 169

group of such objects (Group-VEQA), as defined 170

below. 171

Single-VEQA. Given a captioned visual object 172

O : (V, T ), this type of queries allows the user 173

to provide a rectangle selection of the image 174

and ask the question like “who is he/she” or “is 175

he/she John”. 176

More formally, a Single-VEQA Qs is a pair 177

(R,Q), where R is a rectangle selection over 178

image V and Q is a natural language question. 179

Group-VEQA. Given a group of captioned vi- 180

sual objects O, we support two types of queries 181

Qg: (1) a simple natural language query Q, such 182

as “how many news contain Donald Trump”; 183

and (2) a natural language query with a selected 184

face, i.e., a pair (R,Q), such as “in which news 185

the selected person appears”. 186

We will simply use Q to represent either a 187

Single-VEQA or a Group-VEQA query, when it is 188

clear form the context. 189

4 Algorithms for VEQA 190

In this section, we will first discuss solely using 191

MLLMs for VEQA in Section 4.1. We will then 192

discuss coarse-grained retrieval-augmented gen- 193

eration (RAG) in Section 4.2. We then propose 194

a new concept, called matching graphs, which 195
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can provide fine-grained information among re-196

trieved objects in Section 4.3. Based on match-197

ing graphs, we describe fine-grained RAG in198

Section 4.4 and matching-augmented reasoning199

(MAR) in Section 4.5.200

4.1 MLLMS for VEQA201

Given a VEQA query Q, a crude solution is to202

directly prompt Q to a MLLM as:203

Q → MLLM → answer204

Figure 2(a) depicts this solution.205

4.2 Coarse-Grained RAG for VEQA206

Alternatively, we can retrieve top-k captioned207

visual objects and feed them to MLLMs as:208

(Q, top-k objects) → MLLM → answer209

Figure 2(b) illustrates this approach, which210

we refer to as coarse-grained RAG. This method211

is characterized by its transmission of entire re-212

trieved objects to the MLLMs. Unfortunately, cur-213

rent MLLMs perform poorly in reasoning with214

multiple interconnected retrieved visual objects.215

4.3 Matching Graphs216

To improve the performance of RAG models,217

it’s beneficial to focus on fine-grained informa-218

tion rather than entire objects. By identifying219

specific entities (e.g., faces, names) and their220

connections within each object, we can provide221

a more meaningful context for reasoning.222

Matching Graphs. A matching graph G(N,E)223

contains a set N of nodes and a set E of undi-224

rected edges. Each node n ∈ N has two labels225

face(n) and name(n), where face(n) is a face226

image, and name(n) is a set of possible names.227

If we are certain about a person’s name,228

we will use a square bracket e.g., name(n) =229

[Yi Wang] for the selected face in Figure 1(a); if230

we are not sure about a person’s name, we will231

Who is he in the red box ?

Query

MLLMs

Xi Jinping and Trump reached...

Xi Jinping and 

Trump reached...

Wang Yi answers 

questions ...

Wang Yi: Ministers 

of China...

Matching Graph

[Wang Yi]

0.7
0.75 0.85

{Wang Yi, *}

{Xi Jinping, Trump, *}

(a) Q

(b) (Q, top-k objects)

(c) (Q, matching graph)

top-k

RAG

Figure 2: Different algorithms for VEQA. (a) MLLMs.
(b) Coarse-grained RAG. (c) Fine-grained RAG.

use a curly bracket to indicate possible names 232

e.g., name(n) = {Xi Jinping, Trump, *} for the 233

selected face in Figure 1(b), where ∗ is a wild- 234

card meaning that n’s name could be something 235

other than Xi Jinping and Trump. 236

Each undirected edge e(ni, nj) ∈ E indi- 237

cates that the two faces corresponding to ni (i.e., 238

face(ni)) and nj (i.e., face(nj)) are likely to 239

be the same person. Each edge has a weight 240

weight(e) ∈ [0, 1], indicating the similarity of 241

the two faces. 242

Matching Graph Construction. It consists of 243

two steps: offline index construction (for all data 244

objects) and online matching graph construction 245

(for each query). 246

Offline Index Construction. We first preprocess 247

each captioned visual object O(V, T ) as follows. 248

• Face identification. We use Meta Deep- 249

Face (Taigman et al., 2014) to extract face 250

entities as (f1, f2, . . . , fk) from image V . 251

• Name identification. We use spaCy (Hon- 252

nibal et al., 2020) to extract name entities 253

as (x1, x2, . . . , xm) from text T . 254

After pre-processing, we have constructed all 255

possible nodes for all possible matching graphs. 256

We then use pre-trained CLIP (Radford et al., 257

2021) to convert each identified face and each 258
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identified person names into its vector represen-259

tation, and store them in two separate vector260

database: faceDB and nameDB.261

Iterative Online Matching Graph Construction.262

Given a VEQA query, we construct a matching263

graph as follows.264

265 [Step 1: Initialization.] The user starts with a266

seed node (for Single-VEQA) or a group of seed267

nodes for (Group-VEQA). Each seed node con-268

tains a face and its candidate names that could269

be empty.270

271 [Step 2: Graph Expansion.] For each node in272

the graph, we search either similar faces from273

faceDB with vector similarity above a given274

threshold σf , or similar names from nameDB275

with vector similarity above a given threshold276

σn. For each added node, the edge weight is set277

as face similarity.278

279 [Step 3: Iterative Search and Termination.]280

When there are new nodes added in Step 2, we281

will loop Step 2. The process terminates when282

either there is no new nodes can be added or283

we have done k iterations. From our empirical284

findings, we set k = 2, which is enough to re-285

trieve useful nodes (e.g., 10 nodes ) and edges286

for reasoning.287

4.4 Fine-Grained RAG for VEQA288

Given the fine-graph matching graph relative to289

a query Q, we prompt it to MLLMs as:290

(Q,matching graph) → MLLM → answer291

Figure 2(c) shows this approach, which we292

refer to as fine-grained RAG. It works as follows.293
294 [Step 1: Image Stitching.] Most MLLMs (e.g.,295

LLaVA) only support only single-image input,296

thus we simply combine multiple retrieved vi-297

sual objects into one visual object V.298
299 [Step 2: Image Annotation.] We annotate each300

node ni in the matching graphs on V in a red301

box, resulting in an annotated image V′. 302

303[Step 3: Matching Graph Serialization.] Each 304

node ni and edge e(ni, nj) will be serialized as: 305

ser(ni) = face(ni), name(ni) 306

ser(e) = ni, nj , weight(e) 307

Serializing a matching graph g(N,E) is to 308

serialize all nodes and edges as: 309

ser(g) = ser(N), ser(E) 310

We then prompt Q, V′, and ser(g) to MLLMs. 311

In order to enable it to consider information 312

from its own model simultaneously, we also 313

designed an Original knowledge-aware Prompt 314

(OP): “Please tell me [Q]. If you are unsure, read 315

the following.” 316

4.5 MAR for VEQA 317

MAR for Single-VEQA. This type of queries 318

asks the name of a single entity. Given a match- 319

ing graph g(N,E) where n∗ ∈ N is the seed 320

node, our method works as follows. 321
322[Step 1: Remove Uncertain Nodes.] For each 323

node ni ∈ N \ {n∗}, if its name is uncertain, 324

we remove ni and its associated edges, which 325

will resulted in a modified graph g(N ′, E′). 326
327[Step 2: Name Aggregation for n∗.] We count 328

all distinct names in the modified matching 329

graph g′, each associated with a weight as 330∑
e(ni,n∗)∈E′ weight(e). 331

332[Step 3: Name Identification for n∗.] We pick 333

the name with the highest weight, as the answer 334

to the Single-VEQA query. 335

MAR for Group-VEQA. This type of queries 336

ask for aggregated information of nodes whose 337

names are queried in the query, e.g., “which 338

image/how many images have person A”. Given 339

a matching graph g(N,E), it works as follows. 340
341[Step 1: Name Identification for Each Node.] 342

It first identifies the name of each node, as dis- 343

cussed above. 344
345[Step 2: Answer Aggregation.] It aggregates 346
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the information of each node to answer the given347

Group-VEQA.348

5 A New NewsPersonQA Benchmark349

The problem of VEQA needs to address complex350

interactions between multiple visual and textual351

data. Despite its growing importance, existing352

benchmarks fall short in adequately represent-353

ing the diverse challenges posed by VEQA tasks.354

Particularly in the domain of News QA, where355

the accurate identification and understanding of356

both common and uncommon persons are cru-357

cial, current datasets (e.g., GoodNews (Biten358

et al., 2019) and NewsQA (Trischler et al.,359

2016)) do not provide the necessary depth and360

breadth. To bridge this gap, based on Good-361

News (Biten et al., 2019), we are constructing362

a new benchmark, namely NewsPersonQA, that363

encompasses a wide range of scenarios, includ-364

ing both well-known and obscure individuals.365

The construction of the dataset entails the366

generation of QA pairs from the raw data in367

GoodNews, which consists of images and cap-368

tions. This process involves two main steps:369

data preprocessing and QA pair construction.370

Data Preprocessing: Raw data undergoes pre-371

processing, which includes structuring news372

data, extracting faces from images, annotating373

original images, and recognizing named enti-374

ties in captions. The processed data is then375

randomly distributed into groups. Each group376

contains thousands of images and is categorized377

into Single-VEQA (100 groups) and Group-VEQA378

(10 groups) queries.379

Single-VEQA Question Generation: We be-380

gin by counting the frequency of each person’s381

name within each group. To ensure the avail-382

ability of clues for answering, we select names383

that appear at least three times in captions. We384

then mask these names in the captions to gener-385

Category Count

Total Images 235,912
Totally Extracted Faces 336,075
Totally Extracted Names 379,313

Single-VEQA Queries 4,937
Group-VEQA Queries 1,004

Total Queries 5,941

Table 1: Statistics of NewsPersonQA

ate QA pairs. For example: Question: “Who 386

is the person labeled ’face n’ in the red box?” 387

Answer: “name”. In total, approximately 5,000 388

queries of this type are generated, about 50 per 389

group. 390

Group-VEQA Question Generation: Simi- 391

larly, we count the occurrences of names within 392

each group and store the image names as a set, 393

denoted as S. To prevent exceeding the maxi- 394

mum token limit of MLLMs in the answers and to 395

facilitate clearer visualization of experimental 396

results, we limit each person’s name to a max- 397

imum of 5 appearances within the same group. 398

We then randomly mask part of the captions cor- 399

responding to the images in the set to increase 400

the difficulty and encourage MLLMs to generate 401

correct answers through retrieved content. The 402

format of QA pairs is Question: "Which photos 403

are of the person named ’name’?" Answer: S. 404

The number of queries of this type is approxi- 405

mately 1,000. 406

Table 1 shows the statistics of NewsPersonQA. 407

6 Experiment 408

Methods. For answering VEQA queries, we 409

selected two well-known and highly capable 410

MLLMs to serve as baselines. 411

- LLaVA: This model utilizes CLIP-ViT-L- 412

336px with an MLP projection. We refer to the 413

1.5 version with 7 billion parameters as LLaVA- 414

7b and the version with 13 billion parameters as 415

LLaVA-13b. 416
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- GPT-4V: Recognized as OpenAI’s most417

powerful general-purpose MLLM to date, GPT-418

4V boasts 1.37 trillion parameters.419

- Human: This represents the human-420

annotated results, showcasing the level of cog-421

nitive ability and performance that humans can422

achieve on this task.423

+ FRAG: MLLMs struggle with reasoning424

over coarse-grained RAG that consists of mul-425

tiple captioned visual objects. Therefore, we426

provide only fine-grained RAG (FRAG), i.e.,427

matching graph, to the above-mentioned models428

and human evaluators.429

Implementation. The experiments were con-430

ducted in a zero-shot setting using RTX 4090431

GPUs. For GPT-4V, we used the interface of the432

GPT-4-vision-preview model. It’s worth noting433

that GPT-4V often refrains from answering per-434

son identify questions without additional clues435

due to policy reasons. However, with the incor-436

poration of matching graph techniques, it can437

leverage weak signals and combine them with its438

own knowledge base. In the case of Group-VEQA439

queries, a maximum of 10 cases are recalled and440

then filtered for subsequent processing.441

Metrics. For Single-VEQA queries, we use accu-442

racy (Acc) as an evaluation metric. Furthermore,443

we assess the accuracy only for instances where444

relevant clues are successfully retrieved (e.g.,445

the case of Figure 1(c)), which is denoted as446

Acchit. For Group-VEQA queries, we employ447

recall (Recall) as the metric.448

6.1 Single-VEQA Queries449

The main results from the Single-VEQA queries450

are summarized in Table 2, which leads to the451

following insights:452

1. Model Parameter Size: LLaVA-13b453

demonstrates higher accuracy (27.93%) com-454

pared to LLaVA-7b (22.26%), suggesting that455

Models Acc (%) Acchit (%)
Human 3.36 5.19
Human + FRAG 47.01 98.31
LLaVA-7b 22.26 27.53
LLaVA-7b + FRAG 31.19 62.81
LLaVA-13b 27.93 32.86
LLaVA-13b + FRAG 31.13 62.34
GPT-4V - -
GPT-4V + FRAG 34.84 (4.2) 68.31 (2.6)
MAR 39.09 79.65

Table 2: Result for Singe-VEQA Queries. (Note: GPT-
4V could not answer these queries directly due to
policy constraints. Values within parentheses are
those GPT-4V still refuses to answer.)

a model’s recognition ability is positively cor- 456

related with its parameter size, which to some 457

extent reflects its knowledge base. 458

2. Impact of Matching Graph: Incorporat- 459

ing a matching graph leads to an 8.9% improve- 460

ment in accuracy for LLaVA-7b and a 3.2% 461

improvement for LLaVA-13b. GPT-4V, with 462

matching, achieves a character recognition accu- 463

racy of 34.83%. 464

3. Comparative Improvement: The en- 465

hancement from matching is more pronounced 466

for LLaVA-7b than for LLaVA-13b, indicating 467

that while matching can compensate for differ- 468

ences in parameters, a model’s inherent capabil- 469

ities still set an upper limit on its performance. 470

To further understand the impact of matching 471

on the models’ reasoning abilities, we analyzed 472

examples of successfully recalled clues: 473

i. Human Performance: Human identifica- 474

tion accuracy reaches 98.31% when incorporat- 475

ing matching clues, setting a high benchmark 476

for model performance. 477

ii. Algorithmic Strength: Our algorithm sur- 478

passes others in analytical capabilities, achiev- 479

ing an accuracy 11% higher than GPT-4V with 480

matching in non-human results. However, there 481

remains a gap compared to human performance. 482

iii. Model Comparison: Among LLaVA-7b, 483

LLaVA-13b, and GPT-4V with matching, GPT- 484
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Models Recall
LLaVA-7b + FRAG 22.06%
LLaVA-13b + FRAG 40.05%
GPT-4V + FRAG 65.04%
MAR 70.85%

Table 3: Result for Group-VEQA Queries.

4V exhibits the best performance with an accu-485

racy of 68%, attributed to its superior analytical486

and reasoning abilities.487

6.2 Group-VEQA Queries488

Group-VEQA queries focus on identifying all per-489

tinent clues for more reliable reasoning. The490

result is shown in Table 3.491

Our method achieves the highest recall rate492

at 70.85%, outperforming GPT-4V, LLaVA-7b,493

and LLaVA-13b combined with matching by494

5.81%, 30.81%, and 48.79%, respectively. This495

indicates that our approach excels in retrieval496

tasks compared to MLLMs, likely due to the ef-497

fectiveness of rule-based methods in managing498

excessive information. Additionally, the per-499

formance of baseline MLLMs diminishes with500

reduced parameter sizes, suggesting a positive501

correlation between their analytical reasoning502

abilities and parameter sizes.503

6.3 Further Study - The Influence of504

Multi-Source Information505

In principle, the effective recognition of per-506

sonal information by a model depends on three507

main sources: its inherent knowledge, clues508

from the query, and clues from retrieved data.509

Our FRAG framework leverages these sources510

to guide accurate answers. As demonstrated511

in Table 4, when recall is accurate, LLaVA-7b512

correctly answers 42.86% of cases post-FRAG,513

while LLaVA-13b achieves 39.18%.514

However, in practice, the presence of noise515

in the recalled information and the potential in-516

ability of MLLMs to effectively integrate FRAG517

information with the model’s original knowl-518

edge may lead to incorrect answers. As shown519

Models Acchit (%)
LLaVA-7b
w/o FRAG ✘ → with FRAG ✓ 42.86
w/o FRAG ✓→ with FRAG ✘ 7.32

LLaVA-13b
w/o FRAG ✘ → with FRAG ✓ 39.18
w/o FRAG ✓→ with FRAG ✘ 9.44

Table 4: Study on Successfully Recalled Data.

in Table 4, LLaVA-7b+FRAG and LLaVA- 520

13b+FRAG respectively provide incorrect an- 521

swers in 7.32% and 9.44% of cases that could 522

have been answered correctly before FRAG. 523

To assess the impact of the prompt on the 524

model’s original knowledge, we conducted ab- 525

lation experiments by removing the Original- 526

knowledge-aware Prompt (OP), as shown in Ta- 527

ble 5. The accuracy of LLaVA-7b, LLaVA-13b, 528

and GPT-4V combined with FRAG decreased by 529

6.05%, 1.72%, and 4.51% respectively. These 530

results highlight the importance of the model’s 531

own knowledge as a crucial clue in the reason- 532

ing process and underscore its significance in 533

achieving accurate outcomes. 534

Models Acc
LLaVA-7b with matching 31.19%

w/o OP 25.14%
LLaVA-13b with matching 31.13%

w/o OP 29.41%
GPT-4V with matching 39.09%

w/o OP 34.58%

Table 5: Original-knowledge-aware Prompt (OP)
ablation study result

7 Conclusion 535

In this paper, we explore a novel VEQA problem 536

that focuses on aggregating clues from multiple 537

captioned visual objects. We introduce match- 538

ing graphs designed to capture the relationships 539

between identical entities across various visual 540

objects. Extensive experiments demonstrate the 541

high accuracy of our method. While our work 542

has primarily focused on matching person enti- 543

ties, future research can aim to extend matching- 544

augmented reasoning to other tasks. 545
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Limitations546

Currently, our framework primarily relies on547

similarity for face matching and does not con-548

sider factors such as age-related changes and549

facial blurring. This may result in inaccuracies550

in matching certain nodes, representing a fu-551

ture research direction. Additionally, in real-552

world applications, news is dynamic. Efficient553

retrieval and expansion strategies for a growing554

data lake pose challenges as the dataset evolves,555

warranting further investigation.556
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