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ABSTRACT

Graph embedding is a critical pre-processing step that maps elements of a graph
network, such as its nodes or edges, to coordinates in a d-dimensional space. The
primary goal of the embedding process is to capture and preserve various features
of the graph network, including its topology and node attributes, in the generated
embedding. Maintaining these graph features in the embedding can significantly
enhance the performance of the downstream machine learning tasks. In this work,
we introduce a novel family of graph embedding methods that leverage kinematics
principles within a spring model and n-body simulation framework to generate
the graph embedding. The proposed method differs substantially from state-of-
the-art (SOTA) methods, as it does not attempt to fit a model (such as neural
networks) and eliminates the need for functions such as message passing or back-
propagation. Instead, it aims to position the nodes in the embedding space such
that the total net force of the system is reduced to a minimal threshold, resulting
in the system reaching an equilibrium state. The spring model is designed as a
linear summation of non-linear force functions, with the shortest-path distance
serving as the adjusting parameter for the force factor between each node pair,
and therefore, inducing the graph topology in the force functions. In this work,
we attempted to reduce the complexity of the original algorithm from log(n2)
to n log(n), while maintaining the performance metrics at a competitive level.
The proposed method is intuitive, parallelizable, and highly scalable. While the
primary focus of this work is on the feasibility of the force-directed approach, the
results in unsupervised graph embeddings are comparable to or better than SOTA
methods, demonstrating its potential for practical applications.

1 INTRODUCTION

Graphs have become the go-to data structure for representing complex systems and relationships
between data entities Wu et al. (2020); Li et al. (2021). A graph, denoted as G(V, E) is comprised
of a set of n nodes denoted as V = {u1, u2, ..., un}, and the set of edges connecting some node
pairs and denoted as E = {(ui, uj)}, such that ui, uj ∈ V . Graph embedding is the task of mapping
graph elements down to a vector space with d dimensions, such that d≪ n. It has gained significant
attention in recent years due to the emergence of big data and advancements in machine learning
and deep learning techniques for graph representation learning.

In this paper, we propose a new family of graph embedding methods, dubbed Force-Directed embed-
ding, based on the principles of motion physics and Newton’s second law and a n-body simulation
scheme. By treating graph nodes as objects with mass that exert forces on each other and using
shortest-path distance between each pair as a parameter for determining the magnitude of the force
factor, we aim to map the graph elements to a vector space while preserving the graph’s topological
features. The force-directed spring model employed in this approach converges to a state where the
vector representation of nodes in the embedding space reflects their relative distances in the graphs
as well as various graph features such as nodes clusters.

Unlike the conventional methods, we don’t fit a function based on a loss metric. Instead, we deploy
an iterative process to calculate the gradient of embedding, and update the node embeddings. There-
fore, the proposed method does not need backward pass to fit parameters of a function and provides
a performance advantage.
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The proposed paradigm has an intuitive nature and is highly parallelizeable. By leveraging well-
established principles from physics and the mathematics of the n-body problem, this approach ex-
plores a new avenue for graph embedding. A proof of convergence for this Force-Directed method
was proposed in Lotfalizadeh & Al Hasan (2024) which also indicated the constraints for conver-
gence. In this paper, we extend the work at Lotfalizadeh & Al Hasan (2023) and reduce the com-
plexity of the algorithm by limiting the number of calculations to the forces between node pairs in a
limited subset, while maintaining the quality of the embedding at a competitive level.

The remainder of this paper is organized as follows: Section II discusses related work, Section III
presents the proposed Force-Directed graph embedding paradigm, Section IV details the experimen-
tal setup and results, and Section V concludes the paper and outlines future research directions.

2 RELATED WORKS

Existing graph embedding techniques can be broadly categorized into several types based on their
approach to capturing the structure and features of the graph. Walk-based methods, such as Deep-
Walk Perozzi et al. (2014) and node2vec Grover & Leskovec (2016), generate embeddings by con-
ducting random walks across the graph. Deep learning-based methods leverage graph neural net-
works (GNNs) to learn representations of graph vertices or entire graphs. Notable GNN approaches
include Graph Convolutional Networks (GCNs) Kipf & Welling (2016a); Chen et al. (2020), Graph-
SAGE Hamilton et al. (2017), Graph Attention Networks (GATs) Velickovic et al. (2017), and Vari-
ational Graph Auto-Encoders (VGAEs) Kipf & Welling (2016b). These methods incorporate both
local graph topology and node features to learn expressive embeddings. Spectral-based methods
Zhang et al. (2021); Li et al. (2018) aim to capture global graph properties into the node embeddings
by utilizing the eigenvalues and eigenvectors of the graph Laplacian to embed nodes in a way that
preserves global graph properties. Matrix factorization methods Qiu et al. (2018); Yang et al. (2008)
capture the graph structure through decomposing the adjacency matrix or other matrix representa-
tions of a graph into lower-dimensional matrices. These methods aim to preserve node connectivity,
community structure, and node centrality in the lower-dimensional representation.

Force-Directed approaches have been widely employed for graph visualization purposes Eades
(1984); Fruchterman & Reingold (1991); Kamada et al. (1989). These algorithms model the graph
as a physical system, where nodes are treated as particles and edges as springs or forces between
the particles, aiming to find a layout that minimizes the energy of the system. Advancements in
Force-Directed graph drawing algorithms Barnes & Hut (1986); Walshaw (2001); Hu (2005) have
enabled the visualization of larger and more complex graphs while preserving aesthetic properties
such as symmetry, uniform edge lengths, and minimal edge crossings.

3 OVERVIEW OF FORCE-DIRECTED FRAMEWORK

Force-Directed graph embedding is inspired by the principles of motion physics. In this approach,
nodes are taken as objects with mass that can relocate in the embedding space under the influence
of attractive and repulsive forces. Using kinematics equations and Newton’s second law, one can
derive the equation (equation 1) to calculate the gradient of embedding at each step. The details of
the derivation are discussed in Lotfalizadeh & Al Hasan (2023; 2024). In this equation, zu is the
vector representation or embedding of node u and dzu is the gradient of embedding. This gradient
is calculated by diving the net force on node u, Fu, by its mass. In this setting, the degree of a node
is taken as its mass. We need to define and calculate the net force.

dzu =
Fu

deg u
(1)

Each pair of nodes can exert mutual forces on each other. The objective is to set up the force
functions such that the exerted forces lead the system to an equilibrium state where the relative
positions of nodes in the embedding space reflect their topological distances. As a result, it should
also capture the topological features of the graph in a global perspective.

In the following subsections, the Force-Directed framework is concisely outlined

2
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3.1 THE ALGORITHM

The procedure of Force-Directed graph embedding approach is outlined in Algorithm 1. The al-
gorithm iteratively calculates the gradient of embedding for each node from the net force on it.
Subsequently, it updates node embeddings.

Algorithm 1 Force-Directed Graph Embedding

1: Obtain huv (shortest-path distance) for all u, v ∈ V
2: Let huv = |V| if u and v are disconnected
3: Randomly initialize zu for all u ∈ V
4: while

∑
u∈V ∥Fu∥ > ϵ do

5: for all u ∈ V do ▷ Calculate gradients
6: dzu = Fu

deg u

7: end for
8: for all u ∈ V do ▷ Update embeddings
9: zu ← zu + dzu

10: end for
11: end while

3.2 THE FORCE FUNCTIONS

The equation equation 2 outlines the net force on node u as the normalized sum of forces exerted
on it by all other nodes. In this equation, Fu is the net force on node u, Fuv is the force exerted
from node v to u, and κ is the normalization factor for controlling the convergence properties of the
system.

Fu =
∑
v∈V

κFuv (2)

The force between a pair of nodes u and v is defined as equation 3 where zu and zv are the vector
representations of nodes u and v in the embedding space, and fuv is the force factor which is a scalar
function of the Euclidean distance between the two nodes, with the shortest path distance, huv , as a
constant. The force factor determines the magnitude and polarity of the force along the unit direction
from zu to zv , or zv−zu

∥zv−zu∥ . A positive force factor makes node u attract towards v, and a negative
force factor makes u move in the other direction. For the sake of brevity, we let zuv = zv − zu.

Fuv = fuv(∥zuv∥)
zuv
∥zuv∥

(3)

To ensure the convergence of the Force-Directed system, the constraint in equation 4 needs to be
satisfied. Letting κ = 1

|V| , a more simplified and constricted constraint can be derived as equation 5.
This constraint guarantees the existence of an equilibrium point where the net forces on all nodes
reach zero, as proven using Brouwer’s fixed-point theorem Lotfalizadeh & Al Hasan (2024). Figure
1a depicts the upper bound y = x for any force factor as a constraint.

A possible function that satisfies the constraints is depicted in 1a and provided in equation 6, with
x ∈ R≥0 as the Euclidean distance and huv as the shortest-path distance. The positive and negative
components of this function work as the attractive and repulsive force factors. Increase of x, in-
creases and decreases the attractive and repulsive components, respectively. On the other hand, huv

has the opposite effect.

lim
x→∞

κ
∑

v∈V fuv(x)

x
< 1 (4)

lim
x→∞

fuv(x)

x
< 1 (5)

fuv(x) = x·e−huv − huv · e−x (6)

3
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Figure 1: The figures depicting the constraint and k-hop neighborhoods.

3.3 OPTIMIZING WITH k-HOP NEIGHBORHOOD SETS

The force factor indicated in equation 6 suffers from slow convergence rate and unsatisfying embed-
ding quality. In Lotfalizadeh & Al Hasan (2023), the force factor function was optimized by first
splitting the force factor into repulsive and attractive components and then, summing the average of
attractive forces from each k-hop neighborhood of u. The k-hops neighborhood of u is the set of
nodes at exactly k hops away from u, and is denoted and defined as Nk(u) = {v ∈ V | huv = k}.
equation 7 depicts the net force as sum of attractive and repulsive forces. equation 8 shows the net
attractive force on u as the sum average of attraction from nodes in each h-hop neighborhood, with
h ranging from 1 to a maximum value maxhu = max d(u,w), w ∈ V . equation 9 shows the net
repulsive force as a simple summation of repulsion from all nodes. The parameters k1, k2, k3, and
k4 adjust the effect of Euclidean and shortest path distances on the forces. Figure 1b shows the
k-hop neighborhoods of u in each colored band.

Fu = F(a)
u + F(r)

u (7)

F(a)
u =

maxhu∑
h=1

1

|Nh(u)|
∑

v∈Nh(u)

k1 · ∥zv − zu∥ · e−k2·(huv−1) · zv − zu
∥zv − zu∥

(8)

F(r)
u =

∑
v∈V

k3 · huv · e−k4·∥zv−zu∥ · zv − zu
∥zv − zu∥

(9)

4 THE PROPOSED METHOD FOR REDUCING THE COMPLEXITY

In this section, we present a stochastic method to reduce the complexity of Force-Directed method
by limiting the number of force computations to a limited subset of node pairs. While grouping
the nodes into k-hop neighborhoods enhances performance metrics, the process is still computa-
tionally expensive at O(n2). The proposed method decreases the complexity of the Force-Directed
embedding method to O(n∆(G)k + n log n), such that k ∈ {1, 2, 3, 4}.

4.1 THE IDEA

The proposed idea is to calculate the net force on node u from a limited number of nodes, denoted
here by V(u). This set is comprised of the k-ball centered at u and a maximum of m nodes beyond
the k-ball. In other words, we calculate the forces from all the nodes at a maximum of k-hops dis-
tance from u, and m random nodes at a further distance. In our experiments, we let m = O(log n).
In equation 10, Bk(u) is the k-ball centered at u, and Rm,k is a set of a maximum of m nodes,
sampled randomly from V , without substitution, and not in the k-ball.

4
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V(u) = Bk(u) ∪Rc,k(u) (10)
Bk(u) = {v ∈ V | d(u, v) ≤ k} (11)

Rm,k(u) = {v1, . . . , vm} ⊆ {v ∈ V | d(u, v) > k} (12)

We update the force functions by considering attraction on u only from the nodes in k-ball set, as in
equation 13, and considering the repulsion from nodes in V(u), as defined in equation 14.

F(a)
u =

k∑
h=1

1

|Nh(u)|
∑

v∈Nh(u)

k1 · ∥zuv∥ · e−k2·(huv−1) · zuv
∥zuv∥

(13)

F(r)
u =

∑
v∈V(u)

k3 · huv · e−k4·∥zuv∥ · zuv
∥zuv∥

(14)

4.2 THE RATIONALE

The logic behind definitions for V(u) and the updated force functions is that to reflect the topolofy
of the graph in local and global granularity. By enforcing attraction and repulsion on u from all
the nodes in a close proximity, we can reflect the local topology of the graph in a short Euclidean
proximity. On the other hand, enforcing repulsion from distant nodes helps with avoiding folding of
the distant clusters into close vicinity of u and reflecting global structure of the graph.

!!! A PICTURE TO BE INSERTED for CAMERA READY !!!

5 EXPERIMENTAL RESULTS

5.1 DATASETS AND BASELINE METHODS

To rigorously evaluate the efficacy of our proposed Force-Directed Graph Embedding method, we
employ a diverse set of benchmark datasets widely recognized in the graph representation learning
community. These datasets span various domains and exhibit different structural properties, enabling
a comprehensive assessment of our method’s performance across different graph types.

• Cora Sen et al. (2008): A citation network comprising 2,708 scientific publications cate-
gorized into seven classes, interconnected by 5,429 citation links.

• CiteSeer Sen et al. (2008): Another citation network consisting of 3,312 scientific publi-
cations across six topics, with 4,732 inter-publication citations.

• PubMed Diabetes Namata et al. (2012): A specialized dataset containing 19,717 diabetes-
related scientific publications from the PubMed database, classified into three categories
and linked by 44,338 citations.

• Ego-Facebook Leskovec & Mcauley (2012): A social network dataset representing ego-
networks of 10 Facebook users, encompassing 4,039 nodes (friends) connected by 88,234
links. The dataset includes 193 ground-truth communities (”circles”) manually labeled by
the ego users, with an average of 19 circles per ego-network, each containing approximately
22 friends.

• Wiki1: A network of Wikipedia pages, consisting of 2,405 pages interconnected by 17,981
hyperlinks, with pages categorized into 19 distinct classes.

• CORA-Full Bojchevski & Günnemann (2017): An extended version of the Cora dataset,
featuring 19,793 scientific publications classified into 70 categories. Each publication is
represented by a binary word vector indicating the presence or absence of 1,433 unique
words from the abstracts, with 65,311 citation links connecting the publications.

1https://github.com/thunlp/MMDW/ (accessed July 28, 2023)
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All aforementioned datasets are utilized in our link prediction experiments. For node classification
tasks, we exclude the Ego-Facebook dataset due to the absence of node labels.

To benchmark our method’s performance, we conduct comparative analyses against state-of-the-
art graph embedding techniques, including LINE, SDNE, struc2vec, DeepWalk, and Node2vec.
Our evaluation metrics focus on accuracy and macro F1-scores for both link prediction and node
classification tasks, providing a comprehensive assessment of our method’s capabilities in capturing
both local and global graph structures.

5.2 LINK PREDICTION

Link prediction is a fundamental task in graph analysis that assesses the model’s ability to capture
the structural properties of the graph. In this study, we evaluate the performance of our reduced com-
plexity Force-Directed Graph Embedding method on link prediction tasks across various datasets,
focusing on the effects of key parameters: m, k, and d.

For the link prediction task, we employed a rigorous experimental protocol to ensure robust and
unbiased evaluation of our method. The dataset was partitioned into training and test sets with a
balanced 50:50 ratio, ensuring a comprehensive assessment of the model’s generalization capabili-
ties. Both sets were carefully constructed to maintain an equal distribution of positive (existing) and
negative (non-existing) edge samples, mitigating potential biases in the evaluation process.

To represent each edge in the embedding space, we utilized the Hadamard product of the embed-
dings of its corresponding nodes. This approach, widely adopted in graph representation learning
literature Grover & Leskovec (2016); Perozzi et al. (2014), effectively captures the pairwise inter-
actions between node features in the learned embedding space. Formally, for an edge (u, v), its
representation euv is computed as:

euv = zu ⊙ zv (15)

where zu and zv are the embeddings of nodes u and v respectively, and ⊙ denotes the Hadamard
(element-wise) product.

For the classification task, we employed a Random Forest classifier, known for its robustness and
ability to capture complex, non-linear decision boundaries ?. The classifier was trained on the edge
representations derived from the training set and evaluated on the held-out test set. We used the
implementation provided by the scikit-learn library Pedregosa et al. (2011), with hyperparameters
optimized through cross-validation to ensure optimal performance.

This experimental setup allows for a fair comparison with baseline methods and provides a compre-
hensive evaluation of our Force-Directed Graph Embedding method’s capability to capture structural
information relevant to the link prediction task.

The parameter m, defined as m = t log n, t ∈ {10, 20, ..., 100}, determines the number of ran-
domly sampled nodes beyond the k-ball for force calculations. The k ∈ {1, 2, 3} parameter defines
the radius of the k-ball centered at each node u, effectively controlling the extent of local neigh-
borhood considered in the embedding process. We used 3 levels of values Lastly, d represents the
dimensionality of the embedding space.

Figure 2 illustrates the impact of different values of t on link prediction accuracy, precision, and
recall, across different datasets for k = 1, 2, and 3. Each column of plots belongs to a specific value
of k, with the x-axis representing t and the y-axis showing the metric value. Different lines within
each plot represent distinct datasets.

As observed in Figure 2 and incontrast to intuition, link prediction metrics generally improve with
decreasing m across all datasets, except Ego-Facebook. Ego-Facebook is the only graph among
these that has one connected component, i.e. all its nodes are connected mutually.

Figure 3 shows a comparison of quality of embeddings generated by different methods in terms
of link prediction accuracy. This figure shows that the Force-Directed graph embedding with the
proposed complexity reduction technique can still maintain a competitive quality, with slight im-
provement over famous methods such as Node2vec.

6
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Figure 2: Effect of varying values of t and k on accuracy, precision, and recall of link prediction
task on different datasets.
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Figure 3: Comparison of link prediction accuracy against other methods.

5.3 NODE CLASSIFICATION

We used 50:50 train test to fit a random forest classifier. Figure 4 shows the node classification
metrics over varying values of t and k. Each column belongs to a specific value of k. According to
this figure, the node classification metrics remained relatively consistent over different combinations
of t and k, with slight improvement over smaller values of t. Figure 5 shows a comparison of quality
of embeddings generated by different methods in terms of node classification accuracy. This figure
shows that the Force-Directed graph embedding with the proposed complexity reduction technique
can still maintain a competitive quality, with slight improvement over famous methods such as
Node2vec.
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Figure 4: Effect of varying values of t and k on accuracy, precision, and recall of node classification
task on different datasets.
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Figure 5: Comparison Figure

5.4 MEMORY UTILIZATION

To assess memory utilization, we calculate the percentage of non-zero elements in the hops matrix
after keeping the entries that are used for calculating the corresponding forces. With an optimal
implementation of the algorithm, it is possible to use a compact form of the matrices to calculate the
forces. As depicted in 6, the percentage of memory utilization enhances with larger graphs (CORA-
FULL, and PubMed), while maintaininig the quality of the generated embedding at a competitive
level.

6 DISCUSSION
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Figure 6: Memory utilization of the Force-Directed graph embedding algorithm with reduced com-
plexity over different values of t and k .
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