
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REDUCING COMPLEXITY OF FORCE-DIRECTED
GRAPH EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph embedding is a critical pre-processing step that maps elements of a graph
network, such as its nodes or edges, to coordinates in a d-dimensional space. The
primary goal of the embedding process is to capture and preserve various features
of the graph network, including its topology and node attributes, in the generated
embedding. Maintaining these graph features in the embedding can significantly
enhance the performance of the downstream machine learning tasks. In this work,
we introduce a novel family of graph embedding methods that leverage kinematics
principles within a spring model and n-body simulation framework to generate
the graph embedding. The proposed method differs substantially from state-of-
the-art (SOTA) methods, as it does not attempt to fit a model (such as neural
networks) and eliminates the need for functions such as message passing or back-
propagation. Instead, it aims to position the nodes in the embedding space such
that the total net force of the system is reduced to a minimal threshold, resulting
in the system reaching an equilibrium state. The spring model is designed as a
linear summation of non-linear force functions, with the shortest-path distance
serving as the adjusting parameter for the force factor between each node pair,
and therefore, inducing the graph topology in the force functions. In this work,
we attempted to reduce the complexity of the original algorithm from log(n2)
to n log(n), while maintaining the performance metrics at a competitive level.
The proposed method is intuitive, parallelizable, and highly scalable. While the
primary focus of this work is on the feasibility of the force-directed approach, the
results in unsupervised graph embeddings are comparable to or better than SOTA
methods, demonstrating its potential for practical applications.

1 INTRODUCTION

Graphs have become the go-to data structure for representing complex systems and relationships
between data entities Wu et al. (2020); Li et al. (2021). A graph, denoted as G(V, E) is comprised
of a set of n nodes denoted as V = {u1, u2, ..., un}, and the set of edges connecting some node
pairs and denoted as E = {(ui, uj)}, such that ui, uj ∈ V . Graph embedding is the task of mapping
graph elements down to a vector space with d dimensions, such that d≪ n. It has gained significant
attention in recent years due to the emergence of big data and advancements in machine learning
and deep learning techniques for graph representation learning.

In this paper, we propose a new family of graph embedding methods, dubbed Force-Directed embed-
ding, based on the principles of motion physics and Newton’s second law and a n-body simulation
scheme. By treating graph nodes as objects with mass that exert forces on each other and using
shortest-path distance between each pair as a parameter for determining the magnitude of the force
factor, we aim to map the graph elements to a vector space while preserving the graph’s topological
features. The force-directed spring model employed in this approach converges to a state where the
vector representation of nodes in the embedding space reflects their relative distances in the graphs
as well as various graph features such as nodes clusters.

Unlike the conventional methods, we don’t fit a function based on a loss metric. Instead, we deploy
an iterative process to calculate the gradient of embedding, and update the node embeddings. There-
fore, the proposed method does not need backward pass to fit parameters of a function and provides
a performance advantage.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The proposed paradigm has an intuitive nature and is highly parallelizeable. By leveraging well-
established principles from physics and the mathematics of the n-body problem, this approach ex-
plores a new avenue for graph embedding. A proof of convergence for this Force-Directed method
was proposed in Lotfalizadeh & Al Hasan (2024) which also indicated the constraints for conver-
gence. In this paper, we extend the work at Lotfalizadeh & Al Hasan (2023) and reduce the com-
plexity of the algorithm by limiting the number of calculations to the forces between node pairs in a
limited subset, while maintaining the quality of the embedding at a competitive level.

The remainder of this paper is organized as follows: Section II discusses related work, Section III
presents the proposed Force-Directed graph embedding paradigm, Section IV details the experimen-
tal setup and results, and Section V concludes the paper and outlines future research directions.

2 RELATED WORKS

Existing graph embedding techniques can be broadly categorized into several types based on their
approach to capturing the structure and features of the graph. Walk-based methods, such as Deep-
Walk Perozzi et al. (2014) and node2vec Grover & Leskovec (2016), generate embeddings by con-
ducting random walks across the graph. Deep learning-based methods leverage graph neural net-
works (GNNs) to learn representations of graph vertices or entire graphs. Notable GNN approaches
include Graph Convolutional Networks (GCNs) Kipf & Welling (2016a); Chen et al. (2020), Graph-
SAGE Hamilton et al. (2017), Graph Attention Networks (GATs) Velickovic et al. (2017), and Vari-
ational Graph Auto-Encoders (VGAEs) Kipf & Welling (2016b). These methods incorporate both
local graph topology and node features to learn expressive embeddings. Spectral-based methods
Zhang et al. (2021); Li et al. (2018) aim to capture global graph properties into the node embeddings
by utilizing the eigenvalues and eigenvectors of the graph Laplacian to embed nodes in a way that
preserves global graph properties. Matrix factorization methods Qiu et al. (2018); Yang et al. (2008)
capture the graph structure through decomposing the adjacency matrix or other matrix representa-
tions of a graph into lower-dimensional matrices. These methods aim to preserve node connectivity,
community structure, and node centrality in the lower-dimensional representation.

Force-Directed approaches have been widely employed for graph visualization purposes Eades
(1984); Fruchterman & Reingold (1991); Kamada et al. (1989). These algorithms model the graph
as a physical system, where nodes are treated as particles and edges as springs or forces between
the particles, aiming to find a layout that minimizes the energy of the system. Advancements in
Force-Directed graph drawing algorithms Barnes & Hut (1986); Walshaw (2001); Hu (2005) have
enabled the visualization of larger and more complex graphs while preserving aesthetic properties
such as symmetry, uniform edge lengths, and minimal edge crossings.

3 OVERVIEW OF FORCE-DIRECTED FRAMEWORK

Force-Directed graph embedding is inspired by the principles of motion physics. In this approach,
nodes are taken as objects with mass that can relocate in the embedding space under the influence
of attractive and repulsive forces. Using kinematics equations and Newton’s second law, one can
derive the equation (equation 1) to calculate the gradient of embedding at each step. The details of
the derivation are discussed in Lotfalizadeh & Al Hasan (2023; 2024). In this equation, zu is the
vector representation or embedding of node u and dzu is the gradient of embedding. This gradient
is calculated by diving the net force on node u, Fu, by its mass. In this setting, the degree of a node
is taken as its mass. We need to define and calculate the net force.

dzu =
Fu

deg u
(1)

Each pair of nodes can exert mutual forces on each other. The objective is to set up the force
functions such that the exerted forces lead the system to an equilibrium state where the relative
positions of nodes in the embedding space reflect their topological distances. As a result, it should
also capture the topological features of the graph in a global perspective.

In the following subsections, the Force-Directed framework is concisely outlined

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.1 THE ALGORITHM

The procedure of Force-Directed graph embedding approach is outlined in Algorithm 1. The al-
gorithm iteratively calculates the gradient of embedding for each node from the net force on it.
Subsequently, it updates node embeddings.

Algorithm 1 Force-Directed Graph Embedding

1: Obtain huv (shortest-path distance) for all u, v ∈ V
2: Let huv = |V| if u and v are disconnected
3: Randomly initialize zu for all u ∈ V
4: while

∑
u∈V ∥Fu∥ > ϵ do

5: for all u ∈ V do ▷ Calculate gradients
6: dzu = Fu

deg u

7: end for
8: for all u ∈ V do ▷ Update embeddings
9: zu ← zu + dzu

10: end for
11: end while

3.2 THE FORCE FUNCTIONS

The equation equation 2 outlines the net force on node u as the normalized sum of forces exerted
on it by all other nodes. In this equation, Fu is the net force on node u, Fuv is the force exerted
from node v to u, and κ is the normalization factor for controlling the convergence properties of the
system.

Fu =
∑
v∈V

κFuv (2)

The force between a pair of nodes u and v is defined as equation 3 where zu and zv are the vector
representations of nodes u and v in the embedding space, and fuv is the force factor which is a scalar
function of the Euclidean distance between the two nodes, with the shortest path distance, huv , as a
constant. The force factor determines the magnitude and polarity of the force along the unit direction
from zu to zv , or zv−zu

∥zv−zu∥ . A positive force factor makes node u attract towards v, and a negative
force factor makes u move in the other direction. For the sake of brevity, we let zuv = zv − zu.

Fuv = fuv(∥zuv∥)
zuv
∥zuv∥

(3)

To ensure the convergence of the Force-Directed system, the constraint in equation 4 needs to be
satisfied. Letting κ = 1

|V| , a more simplified and constricted constraint can be derived as equation 5.
This constraint guarantees the existence of an equilibrium point where the net forces on all nodes
reach zero, as proven using Brouwer’s fixed-point theorem Lotfalizadeh & Al Hasan (2024). Figure
1a depicts the upper bound y = x for any force factor as a constraint.

A possible function that satisfies the constraints is depicted in 1a and provided in equation 6, with
x ∈ R≥0 as the Euclidean distance and huv as the shortest-path distance. The positive and negative
components of this function work as the attractive and repulsive force factors. Increase of x, in-
creases and decreases the attractive and repulsive components, respectively. On the other hand, huv

has the opposite effect.

lim
x→∞

κ
∑

v∈V fuv(x)

x
< 1 (4)

lim
x→∞

fuv(x)

x
< 1 (5)

fuv(x) = x·e−huv − huv · e−x (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fuv(x) = xe (huv 1) huve x

huv

y= x

(a) The constraint equation 5 suggests that the
force factor be a monotonically increasing
function with upper bound y = x.

fi

z
u

e

c

w

b

a

h

d
g

j

(b) The k-hop neighborhoods used for optimizing
the force functions. Nodes in a same-color band
pertain to the same neighborhood set.

Figure 1: The figures depicting the constraint and k-hop neighborhoods.

3.3 OPTIMIZING WITH k-HOP NEIGHBORHOOD SETS

The force factor indicated in equation 6 suffers from slow convergence rate and unsatisfying embed-
ding quality. In Lotfalizadeh & Al Hasan (2023), the force factor function was optimized by first
splitting the force factor into repulsive and attractive components and then, summing the average of
attractive forces from each k-hop neighborhood of u. The k-hops neighborhood of u is the set of
nodes at exactly k hops away from u, and is denoted and defined as Nk(u) = {v ∈ V | huv = k}.
equation 7 depicts the net force as sum of attractive and repulsive forces. equation 8 shows the net
attractive force on u as the sum average of attraction from nodes in each h-hop neighborhood, with
h ranging from 1 to a maximum value maxhu = max d(u,w), w ∈ V . equation 9 shows the net
repulsive force as a simple summation of repulsion from all nodes. The parameters k1, k2, k3, and
k4 adjust the effect of Euclidean and shortest path distances on the forces. Figure 1b shows the
k-hop neighborhoods of u in each colored band.

Fu = F(a)
u + F(r)

u (7)

F(a)
u =

maxhu∑
h=1

1

|Nh(u)|
∑

v∈Nh(u)

k1 · ∥zv − zu∥ · e−k2·(huv−1) · zv − zu
∥zv − zu∥

(8)

F(r)
u =

∑
v∈V

k3 · huv · e−k4·∥zv−zu∥ · zv − zu
∥zv − zu∥

(9)

4 THE PROPOSED METHOD FOR REDUCING THE COMPLEXITY

In this section, we present a stochastic method to reduce the complexity of Force-Directed method
by limiting the number of force computations to a limited subset of node pairs. While grouping
the nodes into k-hop neighborhoods enhances performance metrics, the process is still computa-
tionally expensive at O(n2). The proposed method decreases the complexity of the Force-Directed
embedding method to O(n∆(G)k + n log n), such that k ∈ {1, 2, 3, 4}.

4.1 THE IDEA

The proposed idea is to calculate the net force on node u from a limited number of nodes, denoted
here by V(u). This set is comprised of the k-ball centered at u and a maximum of m nodes beyond
the k-ball. In other words, we calculate the forces from all the nodes at a maximum of k-hops dis-
tance from u, and m random nodes at a further distance. In our experiments, we let m = O(log n).
In equation 10, Bk(u) is the k-ball centered at u, and Rm,k is a set of a maximum of m nodes,
sampled randomly from V , without substitution, and not in the k-ball.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

V(u) = Bk(u) ∪Rc,k(u) (10)
Bk(u) = {v ∈ V | d(u, v) ≤ k} (11)

Rm,k(u) = {v1, . . . , vm} ⊆ {v ∈ V | d(u, v) > k} (12)

We update the force functions by considering attraction on u only from the nodes in k-ball set, as in
equation 13, and considering the repulsion from nodes in V(u), as defined in equation 14.

F(a)
u =

k∑
h=1

1

|Nh(u)|
∑

v∈Nh(u)

k1 · ∥zuv∥ · e−k2·(huv−1) · zuv
∥zuv∥

(13)

F(r)
u =

∑
v∈V(u)

k3 · huv · e−k4·∥zuv∥ · zuv
∥zuv∥

(14)

4.2 THE RATIONALE

The logic behind definitions for V(u) and the updated force functions is that to reflect the topolofy
of the graph in local and global granularity. By enforcing attraction and repulsion on u from all
the nodes in a close proximity, we can reflect the local topology of the graph in a short Euclidean
proximity. On the other hand, enforcing repulsion from distant nodes helps with avoiding folding of
the distant clusters into close vicinity of u and reflecting global structure of the graph.

!!! A PICTURE TO BE INSERTED for CAMERA READY !!!

5 EXPERIMENTAL RESULTS

5.1 DATASETS AND BASELINE METHODS

To rigorously evaluate the efficacy of our proposed Force-Directed Graph Embedding method, we
employ a diverse set of benchmark datasets widely recognized in the graph representation learning
community. These datasets span various domains and exhibit different structural properties, enabling
a comprehensive assessment of our method’s performance across different graph types.

• Cora Sen et al. (2008): A citation network comprising 2,708 scientific publications cate-
gorized into seven classes, interconnected by 5,429 citation links.

• CiteSeer Sen et al. (2008): Another citation network consisting of 3,312 scientific publi-
cations across six topics, with 4,732 inter-publication citations.

• PubMed Diabetes Namata et al. (2012): A specialized dataset containing 19,717 diabetes-
related scientific publications from the PubMed database, classified into three categories
and linked by 44,338 citations.

• Ego-Facebook Leskovec & Mcauley (2012): A social network dataset representing ego-
networks of 10 Facebook users, encompassing 4,039 nodes (friends) connected by 88,234
links. The dataset includes 193 ground-truth communities (”circles”) manually labeled by
the ego users, with an average of 19 circles per ego-network, each containing approximately
22 friends.

• Wiki1: A network of Wikipedia pages, consisting of 2,405 pages interconnected by 17,981
hyperlinks, with pages categorized into 19 distinct classes.

• CORA-Full Bojchevski & Günnemann (2017): An extended version of the Cora dataset,
featuring 19,793 scientific publications classified into 70 categories. Each publication is
represented by a binary word vector indicating the presence or absence of 1,433 unique
words from the abstracts, with 65,311 citation links connecting the publications.

1https://github.com/thunlp/MMDW/ (accessed July 28, 2023)

5

https://github.com/thunlp/MMDW/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

All aforementioned datasets are utilized in our link prediction experiments. For node classification
tasks, we exclude the Ego-Facebook dataset due to the absence of node labels.

To benchmark our method’s performance, we conduct comparative analyses against state-of-the-
art graph embedding techniques, including LINE, SDNE, struc2vec, DeepWalk, and Node2vec.
Our evaluation metrics focus on accuracy and macro F1-scores for both link prediction and node
classification tasks, providing a comprehensive assessment of our method’s capabilities in capturing
both local and global graph structures.

5.2 LINK PREDICTION

Link prediction is a fundamental task in graph analysis that assesses the model’s ability to capture
the structural properties of the graph. In this study, we evaluate the performance of our reduced com-
plexity Force-Directed Graph Embedding method on link prediction tasks across various datasets,
focusing on the effects of key parameters: m, k, and d.

For the link prediction task, we employed a rigorous experimental protocol to ensure robust and
unbiased evaluation of our method. The dataset was partitioned into training and test sets with a
balanced 50:50 ratio, ensuring a comprehensive assessment of the model’s generalization capabili-
ties. Both sets were carefully constructed to maintain an equal distribution of positive (existing) and
negative (non-existing) edge samples, mitigating potential biases in the evaluation process.

To represent each edge in the embedding space, we utilized the Hadamard product of the embed-
dings of its corresponding nodes. This approach, widely adopted in graph representation learning
literature Grover & Leskovec (2016); Perozzi et al. (2014), effectively captures the pairwise inter-
actions between node features in the learned embedding space. Formally, for an edge (u, v), its
representation euv is computed as:

euv = zu ⊙ zv (15)

where zu and zv are the embeddings of nodes u and v respectively, and ⊙ denotes the Hadamard
(element-wise) product.

For the classification task, we employed a Random Forest classifier, known for its robustness and
ability to capture complex, non-linear decision boundaries ?. The classifier was trained on the edge
representations derived from the training set and evaluated on the held-out test set. We used the
implementation provided by the scikit-learn library Pedregosa et al. (2011), with hyperparameters
optimized through cross-validation to ensure optimal performance.

This experimental setup allows for a fair comparison with baseline methods and provides a compre-
hensive evaluation of our Force-Directed Graph Embedding method’s capability to capture structural
information relevant to the link prediction task.

The parameter m, defined as m = t log n, t ∈ {10, 20, ..., 100}, determines the number of ran-
domly sampled nodes beyond the k-ball for force calculations. The k ∈ {1, 2, 3} parameter defines
the radius of the k-ball centered at each node u, effectively controlling the extent of local neigh-
borhood considered in the embedding process. We used 3 levels of values Lastly, d represents the
dimensionality of the embedding space.

Figure 2 illustrates the impact of different values of t on link prediction accuracy, precision, and
recall, across different datasets for k = 1, 2, and 3. Each column of plots belongs to a specific value
of k, with the x-axis representing t and the y-axis showing the metric value. Different lines within
each plot represent distinct datasets.

As observed in Figure 2 and incontrast to intuition, link prediction metrics generally improve with
decreasing m across all datasets, except Ego-Facebook. Ego-Facebook is the only graph among
these that has one connected component, i.e. all its nodes are connected mutually.

Figure 3 shows a comparison of quality of embeddings generated by different methods in terms
of link prediction accuracy. This figure shows that the Force-Directed graph embedding with the
proposed complexity reduction technique can still maintain a competitive quality, with slight im-
provement over famous methods such as Node2vec.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.90

0.92

0.94

0.96

0.98

Link Prediction Accuracy vs. t, k=1 Link Prediction Accuracy vs. t, k=2 Link Prediction Accuracy vs. t, k=3

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Link Prediction Precision vs. t, k=1 Link Prediction Precision vs. t, k=2 Link Prediction Precision vs. t, k=3

20 40 60 80 100
t

0.88

0.90

0.92

0.94

0.96

0.98

Link Prediction Recall vs. t, k=1

20 40 60 80 100
t

Link Prediction Recall vs. t, k=2

20 40 60 80 100
t

Link Prediction Recall vs. t, k=3

Dataset
citeseer cora corafull pubmed wiki ego-facebook

Figure 2: Effect of varying values of t and k on accuracy, precision, and recall of link prediction
task on different datasets.

cit
ese

er cor
a

cor
afu

ll

eg
o-f

ace
bo

ok

pu
bm

ed wiki

Dataset

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Lp
_a

cc
ur

ac
y

Method
fd
node2vec
deepwalk
struc2vec
line
sdne

Figure 3: Comparison of link prediction accuracy against other methods.

5.3 NODE CLASSIFICATION

We used 50:50 train test to fit a random forest classifier. Figure 4 shows the node classification
metrics over varying values of t and k. Each column belongs to a specific value of k. According to
this figure, the node classification metrics remained relatively consistent over different combinations
of t and k, with slight improvement over smaller values of t. Figure 5 shows a comparison of quality
of embeddings generated by different methods in terms of node classification accuracy. This figure
shows that the Force-Directed graph embedding with the proposed complexity reduction technique
can still maintain a competitive quality, with slight improvement over famous methods such as
Node2vec.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.65

0.70

0.75

0.80

0.85

Node Classification Accuracy vs. t, k=1 Node Classification Accuracy vs. t, k=2 Node Classification Accuracy vs. t, k=3

0.65

0.70

0.75

0.80

0.85

Node Classification Precision vs. t, k=1 Node Classification Precision vs. t, k=2 Node Classification Precision vs. t, k=3

20 40 60 80 100
t

0.65

0.70

0.75

0.80

0.85

Node Classification Recall vs. t, k=1

20 40 60 80 100
t

Node Classification Recall vs. t, k=2

20 40 60 80 100
t

Node Classification Recall vs. t, k=3

Dataset
citeseer cora corafull pubmed wiki

Figure 4: Effect of varying values of t and k on accuracy, precision, and recall of node classification
task on different datasets.

cit
ese

er cor
a

cor
afu

ll

eg
o-f

ace
bo

ok

pu
bm

ed wiki

Dataset

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
c_

ac
cu

ra
cy

Method
fd
node2vec
deepwalk
struc2vec
line
sdne

Figure 5: Comparison Figure

5.4 MEMORY UTILIZATION

To assess memory utilization, we calculate the percentage of non-zero elements in the hops matrix
after keeping the entries that are used for calculating the corresponding forces. With an optimal
implementation of the algorithm, it is possible to use a compact form of the matrices to calculate the
forces. As depicted in 6, the percentage of memory utilization enhances with larger graphs (CORA-
FULL, and PubMed), while maintaininig the quality of the generated embedding at a competitive
level.

6 DISCUSSION

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

20 40 60 80 100
t

2

4

6

8

10

No
n-

ze
ro

 a
fte

r p
er

ce
nt

ag
e

citeseer
k

k=1
k=2
k=3

20 40 60 80 100
t

5

10

15

20

25

No
n-

ze
ro

 a
fte

r p
er

ce
nt

ag
e

cora
k

k=1
k=2
k=3

20 40 60 80 100
t

1

2

3

4

5

6

No
n-

ze
ro

 a
fte

r p
er

ce
nt

ag
e

corafull
k

k=1
k=2
k=3

20 40 60 80 100
t

1

2

3

4

5

6

No
n-

ze
ro

 a
fte

r p
er

ce
nt

ag
e

pubmed
k

k=1
k=2
k=3

20 40 60 80 100
t

10

20

30

40

50

60

No
n-

ze
ro

 a
fte

r p
er

ce
nt

ag
e

wiki

k
k=1
k=2
k=3

20 40 60 80 100
t

10

20

30

40

50

60

No
n-

ze
ro

 a
fte

r p
er

ce
nt

ag
e

ego-facebook

k
k=1
k=2
k=3

Figure 6: Memory utilization of the Force-Directed graph embedding algorithm with reduced com-
plexity over different values of t and k .

!!! TO BE ELABORATED for CAMERA READY !!!

REFERENCES

Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm. nature, 324(6096):
446–449, 1986.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020.

Peter Eades. A heuristic for graph drawing. Congressus numerantium, 42(11):149–160, 1984.

Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed placement.
Software: Practice and experience, 21(11):1129–1164, 1991.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica journal, 10(1):37–71,
2005.

Tomihisa Kamada, Satoru Kawai, et al. An algorithm for drawing general undirected graphs. Infor-
mation processing letters, 31(1):7–15, 1989.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. Advances
in neural information processing systems, 25, 2012.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Rui Li, Xin Yuan, Mohsen Radfar, Peter Marendy, Wei Ni, Terrence J O’Brien, and Pablo M
Casillas-Espinosa. Graph signal processing, graph neural network and graph learning on bio-
logical data: a systematic review. IEEE Reviews in Biomedical Engineering, 16:109–135, 2021.

Zhihui Li, Feiping Nie, Xiaojun Chang, Liqiang Nie, Huaxiang Zhang, and Yi Yang. Rank-
constrained spectral clustering with flexible embedding. IEEE transactions on neural networks
and learning systems, 29(12):6073–6082, 2018.

Hamidreza Lotfalizadeh and Mohammad Al Hasan. Force-directed graph embedding with hops
distance. In 2023 IEEE International Conference on Big Data (BigData), pp. 2946–2953. IEEE,
2023.

Hamidreza Lotfalizadeh and Mohammad Al Hasan. Kinematic-based force-directed graph embed-
ding. In Complex Networks XV: Proceedings of the 15th Conference on Complex Networks,
CompleNet 2024. Springer, 2024.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In 10th international workshop on mining and learning with graphs,
volume 8, pp. 1, 2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh
ACM international conference on web search and data mining, pp. 459–467, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Chris Walshaw. A multilevel algorithm for force-directed graph drawing. In Graph Drawing: 8th
International Symposium, GD 2000 Colonial Williamsburg, VA, USA, September 20–23, 2000
Proceedings 8, pp. 171–182. Springer, 2001.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Jianchao Yang, Shuicheng Yang, Yun Fu, Xuelong Li, and Thomas Huang. Non-negative graph
embedding. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8.
IEEE, 2008.

Xiaotong Zhang, Han Liu, Xiao-Ming Wu, Xianchao Zhang, and Xinyue Liu. Spectral embedding
network for attributed graph clustering. Neural Networks, 142:388–396, 2021.

10

	Introduction
	Related Works
	Overview of Force-Directed Framework
	The Algorithm
	The Force Functions
	Optimizing with k-hop Neighborhood Sets

	The Proposed Method for Reducing the Complexity
	The Idea
	The Rationale

	Experimental Results
	Datasets and Baseline Methods
	Link Prediction
	Node Classification
	Memory Utilization

	Discussion

