
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

FG-CIBGC: A Unified Framework for Fine-Grained and
Class-Incremental Behavior Graph Classification

Anonymous Author(s)∗

Abstract
Learning-based Behavior Graph Classification (BGC) has been
widely adopted in Internet infrastructure for partitioning and identi-
fying similar behavior graphs. However, the research communities
realize significant limitations when deploying existing proposals in
real-world scenarios. The challenges are mainly concerned with (i)
fine-grained emerging behavior graphs, and (ii) incremental model
adaptations. To tackle these problems, we propose to (i) mine se-
mantics in multi-source logs using Large Language Models (LLMs)
under In-Context Learning (ICL), and (ii) bridge the gap between
Out-Of-Distribution (OOD) detection and class-incremental graph
learning. Based on the above core ideas, we develop the first uni-
fied framework termed as Fine-Grained and Class-Incremental
Behavior Graph Classification (FG-CIBGC). It consists of two
novel modules, i.e., gPartition and gAdapt, that are used for par-
titioning fine-grained graphs and performing unknown class de-
tection and adaptation, respectively. To validate the efficacy of
FG-CIBGC, we introduce a new benchmark, comprising a new
4,992-graph, 32-class dataset generated from 8 attack scenarios, as
well as a novel Edge Intersection over Union (EIoU) metric for eval-
uation. Extensive experiments demonstrate FG-CIBGC’s superior
performance on fine-grained and class-incremental BGC tasks, as
well as its ability to generate fine-grained behavior graphs that
facilitate downstream tasks. The code and dataset are available at:
https://anonymous.4open.science/r/FG-CIBGC-70BC/README.md.

CCS Concepts
•Mathematics of computing→Graph algorithms; •Networks
→ Network security.

Keywords
Fine-grained Behavior GraphClassification, Class-Incremental Graph
Learning

1 Introduction
Sophisticated attacks increasingly threaten the global internet in-
frastructure. As graph offers an ideal representation for security
investigation [13], analysts often transform audit logs into a large,
unified graph containing numerous operations. However, navigat-
ing and investigating the large-scale graph presents a non-trivial
challenge of heavy analysis workload [16]. Behavior Graph Clas-
sification (BGC) addresses this challenge by partitioning the large
graph into a set of smaller behavior graphs and subsequently clas-
sifying them, enabling analysts to focus on a few representative
behaviors. BGC has emerged as an indispensable technique for var-
ious security investigation domains [47], including Host Intrusion
Detection Systems (HIDSs), vulnerability detection, etc.

Existing solutions on BGC task can be categorized into three
types: pattern-based [48, 54], rule-based [12, 14, 15, 30], and learning-
based [42, 46]. The former two rely on static patterns and expert

Non-Incremental Incremental

C
oa

rs
e

Fi
ne

Old Classes

Fine-Grained
Old Classes

New Classes

Fine-Grained Old + New
Classes (Incremental)

Old Classes

Figure 1: An illustration of fine-grained and class-
incremental behavior graph classification task. This
task faces both fine-grained emerging behavior graphs
and incremental model adaptations challenges, leading to
performance degradation of state-of-the-art baselines.

knowledge, demanding heavy manual effort. Learning-based meth-
ods have addressed this limitation by leveraging machine learning
models. While it sounds promising, the research communities have
uncovered a series of limitations when implementing the learning-
based approaches in real-world scenarios. By summarizing those
issues in Fig. 1, we recognize the following two main challenges.

(i) Fine-Grained Emerging Behavior Graphs. Prior learning-
based proposals rely solely on coarse-grained behavior graphs.
That is to say, while these methods can ascertain whether a be-
havior graph is related to a specific service (e.g., "apache"), they
lack the granularity to differentiate between distinct operations of
that service, such as distinguishing "apache processing request 1"
from "apache processing request 2". Partitioning discrete operations
from large graphs generated by audit logs remains a formidable
challenge, as existing approaches consolidate all operatons on a
given object into a single graph, limiting their ability to differenti-
ate distinct service operations. Yet fine-grained labels are pivotal
for analysts to comprehend service activities and deploy effective
countermeasures. Existing coarse-grained BGC approaches present
a significant semantic gap between graph identification and action-
able intelligence. A more granular scheme capable of automatically
distinguishing distinct service operations would substantially en-
hance the understanding of attack vectors and facilitate targeted

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

defenses. Consequently, the primary challenge lies in developing a
methodology for fine-grained behavior graph partition.

(ii) Incremental Model Adaptations. In real-world scenarios,
behavior graphs evolve in an incremental manner, presenting the
requirement of class increments. Class increments refer to emerging
novel classes that should be incrementally updated into themodel to
become known classes subsequently. In production environments,
continuous service updates introduce novel behavior graph classes
unknown to analysts (also known as the open-world issue). Actively
detecting and attaching new classes to a model’s knowledge base
without catastrophic forgetting is a significant challenge. Despite
the importance, graph-level class-incremental learning with novel
class detection remains a largely unexplored area.

In this paper, we propose the first unified framework called Fine-
Grained and Class-Incremental Behavior Graph Classification (FG-
CIBGC), aiming to enable two vital abilities, i.e., the fine-grained
behavior graph partitioning and incremental model updates with
novel class detection. At the high level, FG-CIBGC is designed with
two novel components named gPartition and gAdapt. First, gPar-
tition processes multi-source logs by leveraging Large Language
Models (LLM) under In-Context Learning (ICL) paradigm to corre-
late semantically similar logs, forming behavior units. Each behavior
unit corresponds to a single operation performed by a service appli-
cation and is subsequently converted into a compact behavior graph.
Second, gAdapt is responsible for utilizing Out-Of-Distribution
(OOD) detection to identify unknown classes, assigns fine-grained
labels to both known and unknown classes of behavior graphs,
and incrementally updates the model accordingly. Finally, existing
BGC benchmarks suffer from insufficiencies in both completeness
(lacking multi-source logs) and diversity, as well as the absence
of metrics tailored to the fine-grained requirements of BGC tasks.
To address these issues, we introduce a new benchmark compris-
ing 8 attack scenarios and 3 log types, amounting to 4,992 graphs
across 32 classes. Additionally, we propose a novel metric, Edge
Intersection over Union (EIoU), to fully evaluate FG-CIBGC.

In summary, this paper makes three key contributions:

• Through analysis of current learning-based behavior graph
classification proposals, we identify two critical challenges
that impede their deployment. To tackle these challenges,
we propose FG-CIBGC, the first unified framework for fine-
grained and class-incremental behavior graph classification.

• Wedesign two novel components (i.e. gPartition and gAdapt)
for FG-CIBGC, thereby realizing the fine-grained behavior
graph identification and incremental model update with
novel class detection simultaneously.

• We construct a new benchmark that satisfies both com-
pleteness and diversity, featuring 3 log types, 4,992 graphs
across 32 classes, as well as a new EIoU metric for fine-
grained evaluation. Extensive experiments demonstrate the
superiority of FG-CIBGC.

2 RELATEDWORK
Behavior Graph Classification. Existing BGC methods can be
divided into three categories: (i) pattern-based methods [48, 54]
mine graph patterns from behaviors of interest and use them as tem-
plates to identify similar behaviors; (ii) rule-based methods [14,

15, 30, 31] match audit events against a knowledge store of rules that
describe behaviors; (iii) learning-based methods [42, 46] utilize
machine learning models to represent behavior graphs as vectors,
enabling identifying of semantically similar behaviors. Compared
with prior work, we pioneer the exploration of class-incremental
BGC task, thereby demonstrating greater competence in real-world
scenarios. Furthermore, we are the first to produce fine-grained
behavior graphs matching operations in services.
LLMs-based Log Processing. In recent years, with the increase
in model sizes and richer training corpora, LLMs have notably
grown in power. Given the vast pretraining datasets that encompass
logging-related data, LLMs possess immense potential for log pro-
cessing tasks. Existing research has explored the application of large
language models across a wide range of log-related tasks, includ-
ing log parsing [18, 39, 40, 51], vulnerability detection [35, 37]
and anomaly detection [9, 26, 32]. Compared with prior works,
we uniquely explore the capabilities of large language models in
correlating multi-source log data. Furthermore, we have designed a
novel type-position-aware prompt format to enable more effective
in-context inference of log correlation using the LLMs.
Class-Incremental Graph Learning. Recently, class-incremental
graph learning has garnered growing attention owing to its broad
applications [7, 41], with existing works in this domain generally
falling into three primary categories: regularization-based [22],
architecture-based [49], and replay-based [34, 52] methods. Cru-
cially, existing methods have largely assumed that all data comes
from a predefined set of classes known to humans. However, this
assumption does not hold for behavior graph classification task
in real-world scenarios, where previously unknown classes may
emerge during the learning process. Comparedwith prior works, we
are the first to bridge the gap between Out-of-Distribution (OOD)
detection methods and class-incremental graph learning, thereby
handling class increments in real-world scenarios.

3 Problem Definition
Our goal is to incrementally identify and classify semantically simi-
lar behavior graphs within a stream of multi-source logs. Given that
fine-grained and class-incremental behavior graph classification
involves two critical challenges, we provide precise definitions for
each of these respective aspects.
Fine-Grained Emerging Behavior Graphs. Given a prior dataset
D𝑡𝑟𝑎 comprising multi-source logs (e.g., audit, application, and net-
work logs), we first extract multiple fine-grained behavior graphs
G𝑡𝑟𝑎 from the dataset. The term fine-grained behavior graph denotes
a representation where each behavior graph precisely specifies an
operation of a service. Each behavior graph𝐺𝑖 ∈ D𝑡𝑟𝑎 corresponds
a category label 𝑦𝑖 ∈ Y𝑡𝑟𝑎 , where Y𝑡𝑟𝑎 = {𝑦1𝑡𝑟𝑎, 𝑦2𝑡𝑟𝑎, · · · , 𝑦𝑛𝑡𝑟𝑎}
where 𝑛 refers to the number of known classes. And we useD𝑡𝑟𝑎 as
the training set to fit the modelM. When deploying the modelM
in practice, it will encounter the open-world test set D𝑡 at stage 𝑡 ,
which includes: (i) samples whose ground-truth labels are present
in the training set D𝑡𝑟𝑎 ; and (ii) instances of emerging unknown
classes {𝑦1𝑡 , 𝑦2𝑡 , · · · , 𝑦𝑚𝑡 }, where𝑚 denotes the number of unknown
classes, which is unknown to us a priori.
Incremental Model Adaptations. The class increments represent
an inherent challenge in class-incremental learning, and it distin-
guishes our approach from existing techniques. We assume there is

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

FG-CIBGC: A Unified Framework for Fine-Grained and Class-Incremental Behavior Graph Classification Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

gPartition: Fine-Grained Graph Partition

gAdapt: Incremental Model Adaptation

Fine-Grained
Behavior Graphs

Audit Logs

Net Logs

App Logs

Multi-source Logs

Internet Services

Graph
Reduction

Large
Language

Model
Behavior Units

Behavior Graph
Generation

<latexit sha1_base64="lEqKVIictgEMhBJ55Emh5nQoPDE=">AAAC1nicjVG7SgNBFD2ur/hOFGxsFkWwChuLaCnaWFgoGA1ECbOTSRycfbA7q0iIndj6A7Za+Rf+g9hY6194Z9yAD0Rn2d0z595zZu69fqxkqj3vecAZHBoeGS2MjU9MTk3PFEuzB2mUJVzUeKSipO6zVCgZipqWWol6nAgW+Eoc+qdbJn54JpJURuG+vojFccA6oWxLzjRRzWLpKGD6hDPV3ek1u5Fq9ZrFJa/s2eX+BJUcLG3M773Ih83H3aj4hCO0EIEjQwCBEJqwAkNKTwMVeIiJO0aXuISQtHGBHsZJm1GWoAxG7Cl9O7Rr5GxIe+OZWjWnUxS9CSldLJMmoryEsDnNtfHMOhv2N++u9TR3u6C/n3sFxGqcEPuXrp/5X52pRaONdVuDpJpiy5jqeO6S2a6Ym7ufqtLkEBNncIviCWFulf0+u1aT2tpNb5mNv9pMw5o9z3MzvJlb0oAr38f5ExyslivVcnWPJr2Jj1XAAhaxQvNcwwa2sYsaeZ/jFne4d+rOpXPlXH+kOgO5Zg5flnPzDjy5mo4=</latexit>Lold

<latexit sha1_base64="WEE0rZUTpiQpqMhUBa6xvYOMHCo=">AAAC1nicjVG7SgNBFD2ur/hOFGxsFoNgFTYW0VJiY2ERwZiACWF2HHVwX+zOKiHETmz9AVut/Av/QWys9S+8M1lBDaKz7O6Zc+85M/deN/JkohznZcQaHRufmMxNTc/Mzs0v5AuLh0mYxlzUeeiFcdNlifBkIOpKKk80o1gw3/VEwz3f0fHGhYgTGQYHqhuJts9OA3kiOVNEdfKFls/UGWdeb6/f6QXist/JF52SY5Y9DMoZKG4v77/Kx+pTLcw/o4VjhOBI4UMggCLsgSGh5whlOIiIa6NHXExImrhAH9OkTSlLUAYj9py+p7Q7ytiA9tozMWpOp3j0xqS0sUaakPJiwvo028RT46zZ37x7xlPfrUt/N/PyiVU4I/Yv3Wfmf3W6FoUTbJkaJNUUGUZXxzOX1HRF39z+UpUih4g4jY8pHhPmRvnZZ9toElO77i0z8TeTqVm951luind9Sxpw+ec4h8HhRqlcKVX2adJVDFYOK1jFOs1zE9vYRQ118r7EHe7xYDWtK+vauhmkWiOZZgnflnX7AVbbmpk=</latexit>Lnew

Parsed Logs

Random
Sampling

Warmup Samples

New Prompt

Prompt Template

Flattening and Structuring

KATE
Selection

Flattening and Structuring

Warmup

Inference

Inference
Logs

<latexit sha1_base64="14JosYQ2aIuWgb2nODjb2v0Q3gA=">AAAC1XicjVHLSsNAFD2Nr1pfUcGNm6AIrkrqQl1KdSHoQsE+QKVMxlEH8yKZFErpTtz6A25151/4D+LGtf6Fd6Yp+EB0QpIz595zZu69XuzLVLnuS8EaGh4ZHSuOlyYmp6Zn7Nm5ehplCRc1HvlR0vRYKnwZipqSyhfNOBEs8HzR8K62dbzRFkkqo/BIdWJxGrCLUJ5LzhRRLds+CZi65Mzv7vda3b2dXstedsuuWc5PUMnB8tbC4at8rD4dRPYzTnCGCBwZAgiEUIR9MKT0HKMCFzFxp+gSlxCSJi7QQ4m0GWUJymDEXtH3gnbHORvSXnumRs3pFJ/ehJQOVkgTUV5CWJ/mmHhmnDX7m3fXeOq7dejv5V4BsQqXxP6lG2T+V6drUTjHpqlBUk2xYXR1PHfJTFf0zZ1PVSlyiInT+IziCWFulIM+O0aTmtp1b5mJv5lMzeo9z3MzvOtb0oAr38f5E9TXypX18vohTbqK/ipiEUtYpXluYAu7OECNvNu4wz0erIbVs66tm36qVcg18/iyrNsPbZuZ1A==</latexit>LKD

Outlier Detection Class Annotation Model Update

New
Backbone

Old Prototypes

<latexit sha1_base64="8v4JIKYcbkPOOO10IZ5pmVDJ7hE=">AAACyXicjVHLTsJAFD3UF+ILdemmgZhgTEhxgS6JLjRxg1EeiRDSlgFHSlvbqRGJK3/AhRv9McMf6F94ZyiJSoxO0/bMufecmXuv5Ts8FIYxSmgzs3PzC8nF1NLyyupaen2jGnpRYLOK7TleULfMkDncZRXBhcPqfsDMvuWwmtU7kvHaLQtC7rkXYuCzZt/surzDbVMQVT3PHbf4TiudNfKGWvo0KMQgW8o0dp9HpUHZS7+hgTY82IjQB4MLQdiBiZCeSxRgwCeuiSFxASGu4gwPSJE2oixGGSaxPfp2aXcZsy7tpWeo1Dad4tAbkFLHNmk8ygsIy9N0FY+Us2R/8x4qT3m3Af2t2KtPrMAVsX/pJpn/1claBDo4UDVwqslXjKzOjl0i1RV5c/1LVYIcfOIkblM8IGwr5aTPutKEqnbZW1PF31WmZOXejnMjfMhb0oALP8c5Dap7+UIxXzyjSR9ivJLYQgY5muc+SjhBGRXyvsYTXvCqnWo32p12P07VErFmE9+W9vgJ18SUAA==</latexit>

S(Gi)
OOD Scores

Relevance
Feedback

Analysts

Reference
Value

Labeled
Old Classes

Labeled
New Classes

Incoming
New Classes

Incoming
Old Classes

Sampling
Adapted
KMeans

<latexit sha1_base64="40B3CGtEj7GhGGvfrH0cyTm7mj8=">AAACxnicjVHLSsNAFD2Nr1pfVcGNm2ARXJXERXVZ6qbLVu0DailJOq1D8yKZKKUI/oBb/Qr/wn8QN671L7wzjaAW0QlJzpx7z5m599qhy2NhGC8ZbW5+YXEpu5xbWV1b38hvbjXjIIkc1nACN4jathUzl/usIbhwWTuMmOXZLmvZoxMZb12xKOaBfy7GIet61tDnA+5Ygqiz096oly8YRUMtfRaYKSiUd+qv/LHyVAvyz7hAHwEcJPDA4EMQdmEhpqcDEwZC4rqYEBcR4irOcIMcaRPKYpRhETui75B2nZT1aS89Y6V26BSX3oiUOvZJE1BeRFiepqt4opwl+5v3RHnKu43pb6deHrECl8T+pfvM/K9O1iIwwLGqgVNNoWJkdU7qkqiuyJvrX6oS5BASJ3Gf4hFhRyk/+6wrTaxql721VPxNZUpW7p00N8G7vCUN2Pw5zlnQPCyapWKpTpOuYLqy2MUeDmieRyijihoa5D3EHe7xoFU1X0u062mqlkk12/i2tNsPPgKT3Q==</latexit>

Rk

<latexit sha1_base64="dZiVO6VaPJGjcJiy0chWhm1r8Nw=">AAAC4XicjVHLSsNAFD3GV31XXeoiKEJFKWkX6rLoxpVUsK3QSJmMYx3Mi2QilOLGnTsRd/6AW/0Z8Q/0L7wzRvCB6IQkZ86958zce73Yl6lynOcBa3BoeGS0MDY+MTk1PVOcnWumUZZw0eCRHyWHHkuFL0PRUFL54jBOBAs8X7S8sx0db52LJJVReKB6sTgKWDeUJ5IzRVSnuOgGTJ1y5vf3LkpukHWq67abym7AOtXVTnHZKTtm2T9BJQfLtSV37fa51qtHxSe4OEYEjgwBBEIowj4YUnraqMBBTNwR+sQlhKSJC1xgnLQZZQnKYMSe0bdLu3bOhrTXnqlRczrFpzchpY0V0kSUlxDWp9kmnhlnzf7m3Tee+m49+nu5V0Cswimxf+k+Mv+r07UonGDL1CCpptgwujqeu2SmK/rm9qeqFDnExGl8TPGEMDfKjz7bRpOa2nVvmYm/mEzN6j3PczO86lvSgCvfx/kTNKvlykZ5Y58mvY33VcACllCieW6ihl3U0SDvS9zjAY8Wt66sa+vmPdUayDXz+LKsuzew8Z1A</latexit>

N (µ2,�2)

<latexit sha1_base64="/DtNLF9dOmi/Mzp5PChyBkisQvs=">AAAC4XicjVHLSsNAFD3GV31XXeoiVARFKYmL6rLoxpUoWCsYKZNxrIN5kUyEUrpx507EnT/gVn9G/AP9C++MEXwgOiHJmXPvOTP3Xj8JZKYc57nP6h8YHBoujYyOjU9MTpWnZw6yOE+5aPA4iNNDn2UikJFoKKkCcZikgoV+IJr++ZaONy9Emsk42ledRByHrB3JU8mZIqpVnvdCps44C7o7vSUvzFvuqu1lsh2ylrvcKi84Vccs+ydwC7BQr3grt8/1zm5cfoKHE8TgyBFCIIIiHIAho+cILhwkxB2jS1xKSJq4QA+jpM0pS1AGI/acvm3aHRVsRHvtmRk1p1MCelNS2lgkTUx5KWF9mm3iuXHW7G/eXeOp79ahv194hcQqnBH7l+4j8786XYvCKTZMDZJqSgyjq+OFS266om9uf6pKkUNCnMYnFE8Jc6P86LNtNJmpXfeWmfiLydSs3vMiN8erviUN2P0+zp/gYK3q1qq1PZr0Jt5XCXOoYInmuY46trGLBnlf4h4PeLS4dWVdWzfvqVZfoZnFl2XdvQGsJZ0+</latexit>

N (µ1,�1)

<latexit sha1_base64="mXxr9wNHOVWsAmy5DyBg6JtrK14=">AAAC4XicjVHLSsNAFD3GV62vqktdhIqgKCVVUJdFN65EwVbBSJmMYx3Mi2QilOLGnTsRd/6AW/0Z6R/oX3hnGsEHohOSnDn3njNz7/ViX6bKcbp9Vv/A4NBwYaQ4OjY+MVmamm6kUZZwUeeRHyVHHkuFL0NRV1L54ihOBAs8Xxx6F9s6fngpklRG4YFqx+IkYK1QnknOFFHN0pwbMHXOmd/ZvVp0g6y5tmK7qWwFrLm21CzNOxXHLPsnqOZgvlZ2l++7tfZeVHqBi1NE4MgQQCCEIuyDIaXnGFU4iIk7QYe4hJA0cYErFEmbUZagDEbsBX1btDvO2ZD22jM1ak6n+PQmpLSxQJqI8hLC+jTbxDPjrNnfvDvGU9+tTX8v9wqIVTgn9i/dR+Z/dboWhTNsmhok1RQbRlfHc5fMdEXf3P5UlSKHmDiNTymeEOZG+dFn22hSU7vuLTPxV5OpWb3neW6GN31LGnD1+zh/gsZqpbpeWd+nSW+htwqYRRmLNM8N1LCDPdTJ+xqPeMKzxa0b69a666VafblmBl+W9fAOtb2dQg==</latexit>

N (µ3,�3)

Old
Backbone

0.8
0.6

0.2

A B C

Incoming New
And Old Classes

Fine-tuning

Figure 2: The main framework of the proposed FG-CIBGC.

no prior knowledge when suffering unprecedented behavior graphs
in practice. When a novel class of behavior graphs emerges, we
aim to proactively detect it and seamlessly incorporate it into the
knowledge base, thereby strengthening the model’s classification
performance. Crucially, the updated model should be able to accu-
rately identify previously unseen classes of behavior graphs in the
future. This is a formidable challenge that eludes the capabilities of
existing approaches.

4 Proposed Method
In this section, we present the proposed Fine-Grained and Class-
Incremental Behavior Graph Classification (FG-CIBGC).

4.1 Overview
As shown in Fig. 2, the proposed FGCIBGC consists of two novel
modules: gPartition and gAdapt. First, gPartition is proposed to
learn the correlation of multi-source logs in a prompt and finish the

log correlation process. gPartition builds on the in-context learning
paradigmwith the large languagemodels (LLMs). The derived corre-
lation results, referred to as behavior units, are then used to partition
the audit logs into fine-grained behavior graphs, which are subse-
quently reduced to achieve greater compactness. Second, gAdapt
is proposed to proactively detect both known and unknown classes,
classify them accurately, and correspondingly update the model
in an incremental fashion. This is especially achieved through the
synergistic combination of Out-Of-Distribution (OOD) detection
and class-incremental graph learning.

4.2 gPartition: Fine-Grained Graph Partition
Challenges Analysis. Audit logs alone contain only low-level in-
formation about system activities, lacking the necessary knowledge
to partition them into fine-grained operations. To accurately capture
operations, the research communities observe that introducing logs
with high-level semantics offers a more promising solution [33, 45].
Specifically, application logs of services are designed to record each

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Behavior Unit:<Apache><line0>|<Net><line1>|<IM><line2>|<Audit><line3>|<Audit><line4>

"Select <type>|<line#>
pairs to form behavior

units based on
timestamp and key
common elements"

<Apache><line0>[2024-05-07 18:21:08]POST /imagemagic.php 183.173.132.67 166.111.82.74 80\n<Net><line1>[2024-05-07 18:21:08]183.173.132.67 166.111.82.74 80 POST /imagemagic.php filename="input.png”\n<IM><line2>[2024-05-07 18:21:08]convert /var/www/html/uploads/input.png output.png\n<Audit><line3>[2024-05-07 18:21:08]apache2 sys_openat /var/www/html/uploads/input.png\n<Audit><line4> [2024-05-07 18:21:08]convert sys_openat output.png\n

<Apache> <line0> [2024-05-07 18:21:08] POST /imagemagic.php 183.173.132.67 166.111.82.74 80
<Net> <line1> [2024-05-07 18:21:08] 183.173.132.67 166.111.82.74 80 POST /imagemagic.php filename="input.png"
<IM> <line2> [2024-05-07 18:21:08] convert /var/www/html/uploads/input.png output.png
<Audit> <line3> [2024-05-07 18:21:08] apache2 sys_openat /var/www/html/uploads/input.png
<Audit> <line4> [2024-05-07 18:21:08] convert sys_openat output.png

Example Logs

[2024-05-07 18:21:08] POST /imagemagic.php 183.173.132.67 166.111.82.74 80
[2024-05-07 18:21:08] 183.173.132.67 166.111.82.74 80 POST /imagemagic.php filename="input.png"
[2024-05-07 18:21:08] convert /var/www/html/uploads/input.png output.png
[2024-05-07 18:21:08] apache2 sys_openat /var/www/html/uploads/input.png
[2024-05-07 18:21:08] convert sys_openat output.png

Structured LogsStructuring

Flattening

<Instruction>

Example: <Flattened and Structured Logs>

Flattened and Structured Logs

Label: <Behavior Unit>

Prompt Template
Instruction

Behavior Unit

Query: <Flattened and Structured Logs>

Example: <Flattened and Structured Logs>

Label: <Behavior Unit>
...

Figure 3: The prompt templates omit insignificant log details for simplicity. Each prompt contains several labeled examples
and one query. The last example in the prompt is the most similar to the query, whereas the first example is the least similar.

operation and its attributes, while network logs explicitly track the
corresponding network sessions incurred by each operation.

A vanilla method would be to leverage existing log correlation
approaches to correlate these diverse log sources, allowing audit
logs belonging to the same operations to be used in generating
fine-grained behavior graphs. However, prior log correlation tech-
niques rely on static correlation rules and overlook the potential
for different logs to describe the same operation. This renders the
use of logs with high-level semantics to partition audit logs into
fine-grained behavior graphs a fundamentally new task.
Rationale Behind gPartition. To address this challenge of multi-
source log correlation, we resort to the In-Context Learning (ICL)
paradigm of large language models (LLMs), as LLMs have demon-
strated superiority in log processing tasks. ICL with LLMs not only
enables mining of the latent semantic correlations across multi-
source logs, but also bolsters the advantages of rapid deployment
and easy interactivity without large tuning costs. Additionally, we
propose a novel type-position-aware prompt template specifically
designed for log correlation tasks, coupled with a warmup mecha-
nism that enhances the ICL capabilities of LLMs.
Model Backbone. The performance of the large language model
is a key factor in the success of ICL. Considering that log messages
are semi-structured sentences that are mainly composed of natural
language descriptions (i.e., log template) [53], we chose GPT-3.5 [5],
an LLM that is pre-trained on an extremely large amount of seman-
tic information from the open-source corpus, as the backbone for
gPartition. Recent large language models, including GPT-3.5, have
demonstrated in-context learning (ICL) capabilities, motivating its
use as the backbone for gPartition. As gPartition utilizes the LLM
in a black-box manner, the backbone model can be replaced as long
as the relevant API is accessible.
Prompt Strategy. Prompt strategy is the most significant part of
ICL. To preprocess the influx of multi-source logs before prompt-
ing, we first parse the logs into standardized forms. After that, we
merge these parsed logs in chronological order and segment them
into batches of 400 entries. This approach considers that logs rep-
resenting the same operation are typically temporally close, and
a service’s related operations do not correlate with an excessive
number of logs.

Before designing the prompt template, an essential question
arises: How should we model log correlation task to facilitate under-
standing by LLMs? To enable LLMs to perform the "which-correlates-
with-which" task while adhering to the "one query, one inference"
principle, we explicitly represent log types and position information,

transforming the problem into a compact format. Specifically, we
have observed that position closeness is a crucial factor in log cor-
relation, and different types of logs contain various fields that serve
distinct roles in the correlating process. To address this, we insert
two special tokens, namely <type> and <line#>, at each newline
to indicate the log type and line ID, respectively, and subsequently
flatten the log sequences into a linear format. Additionally, the in-
struction necessitates that the model provide the <type>|<line#>
pairs to form a behavior unit, where each behavior unit represents
the complete set of multi-source logs generated by a single service
operation. This type-position-aware prompt format ensures both
efficiency and accuracy in inference, as illustrated in Fig. 3.

It is important to note that the selection of examples in the
prompt significantly impacts the downstream task performance of
LLMs under the ICL paradigm. In this study, we utilize KATE [24]
for in-context example augmentated selection. Due to page limit,
the details of the selection algorithm are provided in the Appendix.
Warmup Strategy. Given that the model’s ICL abilities can be en-
hanced through a warmup phase prior to ICL inference, we employ
the following warmup process: gPartition first randomly selects 800
samples from the validation set to serve as prompt queries for the
warmup. For each query, gPartition employs the aforementioned
selection algorithm to identify the eight most similar samples in
the training set as prompt examples, appending their ground-truth
labels. These are then combined with fixed instructions to form a
complete prompt. Subsequently, all prompts will be submitted to
GPT-3.5 for parameter tuning in batches.
Behavior Graph Generation. Prior works showed the conversion
of unstructured logs into a unified graph. Having obtained the
behavior units, we implement an audit log parser to transform the
audit logs within the same behavior units into a behavior graph,
where each edge represents an audit log. This allows the audit logs
to be partitioned intomultiple small-scale behavior graphs.However,
not all audit logs belonging to the same operation can be incorporated
into a behavior unit simply through log correlation. For instance,
system configuration activities of an operation may leave no traces
in high-level semantics. To tackle this issue, we design a novel
heuristic search algorithm to capture operations comprehensively.
The overall workflow is shown in Alg 2.
Graph Reduction. Background noisy events resulting from the
inherent low-level nature of auditing mechanism are massive, and
they do not impact BGC task according to prior works [10, 17]. To
reduce noisy events, we employ a few existing graph reduction
algorithms including LogGC [20], CPR [43] and NodeMerge [38].

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FG-CIBGC: A Unified Framework for Fine-Grained and Class-Incremental Behavior Graph Classification Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4.3 gAdapt: Incremental Model Adaptation
Challenges Analysis. A vanilla design would be to directly apply
an existing class-incremental graph learning method to implement
gAdapt. However, when deploying existing proposals in real-world
scenarios, the research community faces class increments challenge
that renders a straightforward design impractical. This is because
the unknown class labels are inherently unpredictable, as the set of
system operations is continuously expanding. Yet, the majority of
existing methods tend to overlook this open-world problem.

In order to detect unknown classes, Out-Of-Distribution (OOD)
Detection is showing promising potential recently. Therefore, a
straightforward method is to use existing graph OOD detection
method in an unsupervised way. However, they only finish partial
of task requirements, that is, they only tell if a given behavior graph
is OOD, but can not assign label to them so making it incapable of
attaching new classes to the model’s knowledge base. Besides, they
do not consider the challenge of determining a threshold to decide
if a datapoint is OOD.
Rationale Behind gAdapt. To address the aforementioned chal-
lenges, we implement gAdapt based on the idea that bridging the
gap between OOD detection and class-incremental learning. We
adopt a disentangled graph encoder as the model backbone, as
graph formation typically follows a complex relational process, and
such disentangled representation learning has shown promising
results. Additionally, we employ replay-based methods for model
updates. Upon receiving new samples, an OOD Detector generates
OOD scores to identify class increments. The OOD samples are then
clustered to obtain new-class labels, and used to update the model,
alongside the structure incremental samples.
Features Extraction. We propose a novel strategy to extract node
features for behavior graphs. In our analysis, we identified three
distinct types of nodes within each behavior graph: processes, files,
and sockets. Given the heterogeneous nature of these nodes, their
respective feature vectors comprise different elements. For pro-
cess nodes, we utilize [process_name, p_id, exe_name] as the
feature set. File nodes are characterized by [file_name, inode,
file_type], while socket nodes are represented by [ip, port,
socket_type]. To encode all textual components within these fea-
ture sets, we employ FastText [4], a library for efficient learning of
text representations.
Outlier Detection. We choose GOOD-D [25] as basic OOD Detec-
tor for its ability to detecting OOD graphs without using ground-
truth labels. It is worth noting that OOD samples are often noisy.
In real-world deployment, manual labeling is often required to
enable custom configuration and adapt the model to new OOD
samples [11]. However, this incurs nontrivial annotation cost.

With Weakly-supervised Relevance Feedback, we propose a
method to overcome the challenge of custom configuration and
human labeling. We introduce the hyperparameter 𝑞, which is a
domain-interpretable value of the expected ratio of new OOD be-
havior graphs in the next time step. Specifically, we first apply the
OOD detector to all inputs in the dataset D𝑡 and compute their
OOD scores 𝑆 (𝐺1), . . . , 𝑆 (𝐺𝑛). These scores are sorted in ascending
order, resulting in a permutation 𝜋 , 𝑆 (𝐺𝜋 (1)), . . . , 𝑆 (𝐺𝜋 (𝑛)). Subse-
quently, we allow analysts to assign pseudo labels to the datapoints
by selecting a domain-specific value for the hyperparameter 𝑞,

e.g. 0.05. The analysts label the top 𝑞 percent of the datapoints as
OOD and the lower 1 − 𝑞 percent as ID, receiving a labeled dataset
for OOD detection feedback, i.e. 𝐺𝜋 (1) . . . 𝐺𝜋 (𝑛) is labeled with
0𝜋 (1) , . . . , 0𝜋 (⌊𝑛 (1−𝑞) ⌋) , 1𝜋 (⌈𝑛 (1−𝑞) ⌉) , . . . , 1𝜋 (𝑛) . With this labeled
dataset, we fine-tune the OOD detector. The introduced hyperpa-
rameter 𝑞 represents the ratio of OOD scores in the domain, which
is not only an interpretable number but can also be determined
with the help of prior knowledge without extensive tuning.
ClassAnnotation. For new-class samples, we utilize a K-Means [36]
based clustering algorithm for class annotation due to its efficiency.
Given the uncertainty in the number of unknown classes, naive
K-Means, which requires a predefined cluster count, is not applica-
ble. This prompts us to consider whether reference values exist for
determining 𝐾 . Fortunately, we observe that the lower bound of 𝐾
is defined by the distinct types of application logs, as limitations
in logging tools and attack complexity prevent the capture of all
execution details, leading similar logs to potentially reflect different
behaviors. Thus, the number of different application log type can
serve as the reference value 𝑅𝑘 . Our goal is to find the optimal 𝑅𝑘
close to the reference value, evaluating the effectiveness using the
Silhouette Score. The process is demonstrated in Alg 1.

Algorithm 1: Kmeans with parameter selection
Input: Behavior graphs 𝐺𝑖 and behavior units𝑈𝑖 .
Output: Behavior Clusters 𝐶1,𝐶2,𝐶3 ...𝐶𝑛𝑐 .

1 𝑇 ← ∅, 𝑠 ← ∅;
2 for 𝑙𝑎𝑝𝑝,𝑗 ∈ 𝑈𝑖 do
3 𝑇𝑙𝑎𝑝𝑝,𝑗 ← Log templates of application logs in𝑈𝑖 ;

4 𝑛𝑟𝑒 𝑓 ← Get_Reference_Value(𝑇);
5 for i= 𝑛𝑟𝑒 𝑓 to 3𝑛𝑟𝑒 𝑓 do
6 𝑠𝑛𝑟𝑒𝑓 ← Get_Silhouette_Score(𝐺𝑖 , 𝑛𝑟𝑒 𝑓)

7 𝑛𝑐 ← Choose_Optimal(s)
8 𝐶1,𝐶2,𝐶3 ...𝐶𝑛𝑐 ← Minibatch_Kmeans(𝐺𝑖 , 𝑛𝑐);
9 Return 𝐶1,𝐶2,𝐶3 ...𝐶𝑛𝑐 .

Model Update. We choose DisenGCN [28] as the backbone graph
encoder considering its effectiveness and efficiency. Besides, to
enhance model adaptability to structural and class increments, we
adopt a replay-based incremental learning strategy utilizing class
prototypes. Specifically, after stage 𝑡 − 1, the old model has learned
the optimal parametersΘ𝑜𝑙𝑑 . By feedingD𝑡−1 intoM𝑜𝑙𝑑 , we obtain
old class embeddings. To overcome catastrophic forgetting, we
construct class prototypes N(𝜇𝑖 , 𝜎𝑖) to approximate D𝑡−1, where
𝜎𝑖 is the diagonal covariance. This reduces memory cost while
preserving key information, as disentangled embeddings have most
variance along the diagonal. For robustness, we use only correctly
predicted samples to estimate 𝜇𝑖 , 𝜎𝑖 .

In addition, since we only save the prototypes of the old data
rather than the raw data, the old saved prototypes may not be
available when the backbone is training on new data, i.e., the saved
prototypes cannot represent the current positions of the old data
in the embedding space. Therefore, when training the backbone
M at stage 𝑡 , we need to limit the shift of the old prototypes in the
embedding space to ensure their availability. Thus, we add a loss to
distill the knowledge of the old backboneMΘ𝑜𝑙𝑑

:
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Overview of dataset for FG-CIBGC evaluation. We implement 8 attack scenarios based on their detailed reports of
real-world APT campaigns [44]. This dataset consists of 4,992 graphs which can be categorized into 32 classes.

Scenarios Attack Cases #Graph #Class Avg of Node
unreduced

Avg of Edge
unreduced

Avg of Node
reduced

Avg of Edge
reduced #Audit #App #Net

Apache Data Leakage 502 3 10.01 46.02 5.10 16.99 11.7MB 43KB 216KB
IM-1 Data Leakage 1,040 4 88.12 401.69 28.12 102.54 1.25GB 52.1MB 6.93GB

Vim Unsafe Action 125 3 28.6 1,256.00 14.6 52.32 432MB 275KB -
Redis Unsafe Action 201 2 14.00 451.19 8.23 66.54 63.78MB 17KB 987KB
Pgsql Unsafe Action 512 9 30.27 145.20 17.75 54.30 48.5MB 360KB 65.2MB

ProFTPd Unsafe Action 1,001 3 11.13 179.90 8.34 29.01 112.2MB 95KB 2.5MB
IM-2 Unsafe Action 1,040 4 65.68 1,360.25 35.68 114.96 796.8MB 8.9MB 3.94GB

Nginx Misconfiguration 1,001 4 5.14 17.93 3.00 10.51 9.8MB 105KB 133KB

L𝑘𝑑 := E(G,Y)∼D𝑡

[
∥MΘ𝑜𝑙𝑑

(G) −MΘ (G)∥
]
. (1)

Besides, we use Prototype Augmentation (PA) [34] strategy to
enhance the incremental learning backbone. Let 𝑃𝑡 denote the class
prototypes before stage 𝑡 and 𝑓𝑃𝐴 be the classifier after adding the
classification heads of virtual classes. The loss function over old
data is calculated by:

L𝑜𝑙𝑑 := E(P,Y)∼𝑃𝑡 [L(𝑓𝑃𝐴 (P,Y))] . (2)

In addition, we use the following equation to calculate the clas-
sification loss on the new data:

L𝑐𝑙𝑠,𝑃𝐴 := E(G,Y)∼𝐷𝑡
[L(𝑓𝑃𝐴 ([MΘ (G)]𝑃𝐴,Y))] , (3)

where [MΘ (G)]𝑃𝐴 represents the embeddings obtained by using
MΘ (G) after the Prototype Augmentation step. Finally, we have
the total loss function as follows:

L = L𝑐𝑙𝑠,𝑃𝐴 + 𝛼 ∗ L𝑜𝑙𝑑 + 𝛽 ∗ L𝑘𝑑 , (4)
where 𝛼, 𝛽 are used to balance L𝑐𝑙𝑠,𝑃𝐴,L𝑜𝑙𝑑 and L𝑘𝑑 .

5 EXPERIMENT SETUP
In this section, we introduce the experimental setup, including the
datasets, baselines, evaluation metrics and implementation details.

5.1 Datasets
In order to support the thorough evaluation of FG-CIBGC, the
dataset should have the following properties:
• Completeness of Log Sources. The dataset should offer com-

plete log sources including application logs and network logs.
Without them, behavior graph identification relies either on a
static knowledge base or search within a pre-obtained graph,
both of which are impossible in a class-incremental setting.

• Diversity of Behavior Types. The dataset should contain a
diverse range of system behaviors. Limited types of behavior
graphs restrict thorough evaluation.

Open-source datasets like DARPA Trace [6] and StreamSpot [29]
lack application and network logs completely. Moreover, they also
fail to cover diverse operations in Internet Infrastructure. Given
the above limitations, we construct a new behavior dataset that
satisfies both properties, featuring 3 log types and 4,406 graphs
across 31 classes. The statistics of the dataset is shown in Table 1.
Due to page limit, more details are presented in the Appendix.

5.2 Baselines
To facilitate a comprehensive evaluation, we compare the proposed
FG-CIBGC framework with existing methods from two key per-
spectives: (i) Behavior Graph Classification Performance. (ii)
Efficacy in Attack Investigation.
(i) Behavior Graph Classification Performance. In terms of be-
havior graph classification task, we use 12 existing methods as base-
lines, covering state-of-the-art methods in the behavior graph classi-
fication landscape. (i) Three behavior graph classification methods:
Tgminer [54], Watson [46] and DepComm [42].(ii) Six class-
incremental incremental learning methods: EWC [19],LwF [21],
GEM [27], TWP [22], CPCA [34] and Fine-Tuning [3]. (iii) Three
graph-level dynamic graph learning methods: tdGraphEmbed [2],
GraphERT [1] and TP-GNN [23].
(ii) Efficacy in Attack Investigation. The fine-grained behav-
ior graph classification task is inherently designed to facilitate
downstream applications. Thus, we analyze whether the generated
behavior graphs can benefit downstream tasks. Specifically, we
select attack investigation as the representative downstream task,
given its practical significance. In brief, the attack investigation
task aims to identify attack-related edges within a given behavior
graph. We useWatson [46] and DepComm [42] which generate
coarse-grained behavior graphs as baselines. Besides, we employ
DepImpact [8] as the baseline for attack investigation.

5.3 Evaluation Metrics
Metrics such as F1-Score (F1) have been adopted in prior studies to
evaluate the behavior graph classification task. Following the con-
vention, we use F1 as evaluation metric to conduct the experiments
on behavior graph classification. However, none of these metrics
take into account the fine-grained requirements of behavior graph
classification. Considering such fine-grained characteristics could
enable a fair comparison between coarse-grained and fine-grained
behavior graph classification methods. In this regard, borrowing
the idea from the MIoU (Mean Intersection over Union) metric in
semantic segmentation, we propose a new metric called EIoU (Edge
Intersection over Union). The EIoU metric enables a comprehensive
evaluation of different methods by capturing fine-grained require-
ments. Specifically, EIoU reframes the graph classification problem
as an edge-level classification task, where the classification of a
graph into a specific category corresponds to the assignment of
its edges to that category. By applying matching criteria to the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FG-CIBGC: A Unified Framework for Fine-Grained and Class-Incremental Behavior Graph Classification Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Comparison results (EIoU % and F1 %) of fine-grained class-incremental behavior graph classification task across all
datasets. "(+)" indicates that the input to this baseline is the fine-grained behavior graphs generated by gPartition. The best
results are shown in bold type and the runner-ups are underlined.

Method Apache IM-1 IM-2 Vim Redis Pgsql ProFTPd Nginx
EIoU F1 EIoU F1 EIoU F1 EIoU F1 EIoU F1 EIoU F1 EIoU F1 EIoU F1

Tgminer 48.82 65.15 59.64 66.33 52.63 67.67 58.72 60.13 64.21 79.06 51.72 66.43 59.44 59.75 53.23 65.91
Watson 40.24 69.23 42.62 56.34 39.67 66.30 47.09 56.79 62.35 82.65 48.27 61.16 41.22 52.25 44.74 54.86

DepComm 41.09 70.54 51.39 75.99 43.61 72.51 54.80 72.84 60.71 80.80 52.75 70.45 57.70 67.91 57.56 76.46
Fine-Tuning(+) 50.84 71.08 52.63 76.35 55.93 74.94 56.05 73.75 64.23 78.97 56.24 73.27 54.38 68.21 57.41 78.92

EWC(+) 55.81 74.95 54.60 78.02 61.90 80.74 64.10 82.42 69.20 85.15 68.49 87.32 67.43 84.34 63.62 80.84
LwF(+) 62.32 83.22 58.46 77.83 59.75 76.85 62.80 76.10 64.21 85.84 57.29 81.61 66.46 87.26 63.54 82.23
GEM(+) 58.74 76.83 58.98 74.98 59.86 76.93 68.20 82.15 64.53 84.43 58.67 81.26 57.72 81.03 64.27 83.53
TWP(+) 69.42 86.88 65.64 85.55 67.04 86.57 72.08 84.43 70.12 85.43 50.74 76.95 70.16 85.46 61.64 85.89
CPCA(+) 67.08 86.42 59.94 81.91 67.63 87.84 71.27 83.26 70.29 87.24 67.93 85.54 71.09 87.82 71.60 87.60

tdGraphEmbed(+) 56.43 75.12 46.43 60.78 48.25 67.37 56.26 73.81 59.52 79.03 53.68 72.62 51.48 67.63 46.48 61.54
GraphERT(+) 67.62 77.71 52.36 68.44 58.69 78.23 65.71 75.32 64.52 78.39 64.15 79.42 62.08 77.89 55.37 75.32
TP-GNN(+) 62.32 78.56 55.32 71.84 57.36 77.93 64.08 74.26 63.12 76.21 59.34 73.45 53.48 72.09 60.02 79.84

Ours 74.62 91.62 70.35 90.26 73.93 93.92 76.08 96.07 78.24 98.32 74.56 93.08 74.28 92.73 73.31 93.27

ground truth at each fine-grained category, we construct a confu-
sion matrix delineating True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). With these defini-
tions in place, Intersection over Union (IoU) can be formulated by
IoU =

|𝑇𝑃𝑒 |
|𝐹𝑃𝑒 |+|𝑇𝑃𝑒 |+|𝐹𝑁𝑒 | , where |𝑇𝑃𝑒 |, |𝐹𝑃𝑒 |, and |𝐹𝑃𝑒 | respectively

stand for the number of edge-level TP, FP, and FN. For the EIoU
metric used in behavior graph classification, the matching criterion
is determined by the accurate edge-level prediction corresponding
to the ground truth fine-grained labels. The EIoU is calculated as:

EIoU =
∑︁𝑘

𝑖=0
IoU𝑖 , (5)

where IoU𝑖 represents the IoU of fine-grained class 𝑖 and 𝑘 + 1 is
the total number of fine-grained classes in the evaluated dataset.

To quantify the attack investigation performance, we treat the
task as an edge-level binary classification problem, as attack in-
vestigation inherently aims to identify attack-related edges. Con-
sequently, we compute the Accuracy (Acc) and F1-Score (F1) to
evaluate the attack investigation tasks.

5.4 Implementation Details
We prototype FG-CIBGC in 42K lines of Python code. The proposed
model is implemented by PyTorch 2.1 framework on Ubuntu 22.04,
and all the evaluations are conducted on NVIDIA GeForce RTX
3090 card. For a fair comparison, we tune the hyper-parameters of
the base Class-Incremental learning model using grid-search: learn-
ing rate 𝑙𝑟 ∈ {0.005, 0.001, 0.01}, batch size 𝑏 ∈ {512, 1024, 2048},
embedding dimension 𝑑 ∈ {32, 64, 128, 256}. We set 𝐶𝑘 : 𝐶𝑢 (repre-
senting the number of known and unknown classes) = 9 : 1.

6 RESULTS AND ANALYSIS
In this section, we conduct experiments regarding behavior graph
classification performance, ablation study, efficacy in attack inves-
tigation and hyper-parameter sensitivity to validate the proposed
FG-CIBGC. Due to the page limit, we have to move additional re-
sults, including but not limited to more ablation study results and
the associated time analysis to the Appendix.

Table 3: Ablation study results. The best results are shown in
bold type and the runner-ups are underlined.

Method Apache IM-1 IM-2
EIoU F1 EIoU F1 EIoU F1

Baseline 43.95 71.93 54.36 73.21 48.56 77.21
Baseline-T 50.95 77.93 55.36 76.21 65.56 82.21
Baseline-C 67.08 86.42 59.94 81.91 67.63 87.84
FG-CIBGC 74.62 91.62 70.35 90.26 73.93 93.92

6.1 Behavior Graph Classification Performance
In this section, we compare the behavior graph classification per-
formance of FG-CIBGC with the constructed baselines. The results
are shown in Table 2. By observing the experimental results, we
can have the following observations:

(1) Coarse-grained behavior graph-based baselines generally ex-
hibit relatively low EIoU performance. WatSon performs an adapted
DFS on every single data object found in the KG, except for libraries
that do not reflect the roots of user-intended goals. DepComm iden-
tifies process-centric communities. They all fail to find operations
centered around data/process objects, leading to undesirable perfor-
mance. Among all coarse-grained behavior graph-based methods,
Tgminer emerges as the top performer in terms of the EIoU metric.
This can be attributed to its strategic focus on finding frequent
patterns, rather than centering around data or processes, which
sets it apart from other methods. In contrast, FG-CIBGC excels by
leveraging more comprehensive information from diverse sources,
resulting in accuracy in identifying behavior boundaries.

(2) FG-CIBGC demonstrates significant superiority over class-
incremental graph learning baselines. These baselines struggle to
accommodate scenarios with unknown new classes, and thus fail to
adapt effectively. Furthermore, graph-level dynamic graph learning
baselines lag behind class-incremental learning methods, as they
lack the ability to adapt to known new classes.

(3) FG-CIBGC outperforms baselines across all datasets, achiev-
ing an average improvement of 4.89% in EIoU and 6.82% in F1-Score

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: Experimental results regarding effect on attack investigation task.

Figure 5: Hyper-parameter sensitivity analysis results for
different values of hyper-parameters 𝛼 and 𝛽 on Apache, IM-
1 and IM-2 datasets.

compared to the baselines. The superiority is largely attributed
to the combination of the innovative gPartition and gAdapt com-
ponents. Therefore, FG-CIBGC excels in fine-grained and class-
incremental behavior graph classification task.

6.2 Ablation Study
The proposed FG-CIBGC framework contains two major compo-
nents. We conduct an ablation study on 3 representative datasets
to further verify their effectiveness. Specifically, 4 combinations of
key modules are compared in the ablation study as follows:

• Baseline: For this variant, we employ Tgminer to identify
behavior graphs, and leverage CPCA to perform incremen-
tal graph classification.

• Baseline-T: For this variant, we substitute the gPartition
component of FG-CIBGC with the behavior graph genera-
tion algorithm of Tgminer.

• Baseline-C: For this variant, we replace the gAdapt com-
ponent of FG-CIBGC with the class-incremental learning
baseline CPCA.

• FG-CIBGC: This variant is the proposed FG-CIBGC model.
As shown in Table 3, we can draw the following conclusions:
(1) The 'Baseline' performs the worst due to its inability to gen-

erate behavior graphs matching service operations. Furthermore, it
lacks an efficient strategy to detect known classes.

(2) Incorporating gPartition or gAdapt into the 'Baseline'markedly
enhances its performance, highlighting the necessity of generating
fine-grained behavior graphs and combining OOD detection with
class-incremental learning.

(3) The two proposed modules achieve stable and effective per-
formance on different datasets. FG-CIBGC leverages the advantages
of its modules to achieve significant performance gains.

6.3 Efficacy In Attack Investigation
In this section, we seek to ascertain whether the proposed FG-
CIBGC can indeed generate fine-grained behavior graph classifica-
tion results that are effective in facilitating the downstream attack
investigation task. We utilize DepImpact to identify critical com-
ponents in a unified graph derived from raw audit logs. FG-CIBGC
and baselines partition the unified graph and classify the resulting
behavior subgraphs, which guide forward and backward causal-
ity analysis. As illustrated in Fig. 4, it is evident that FG-CIBGC
demonstrates the best performance in fine-grained behavior graph
generation, thereby optimally facilitating attack investigation.

6.4 Hyper-Parameter Sensitivity
In this section, we perform hyper-parameter sensitivity analysis on
3 representative datasets to investigate the impact of 𝛼 and 𝛽 on FG-
CIBGC by conducting a grid search for their optimal values. Initially,
we set 𝛽 = 0.3 and vary 𝛼 , followed by fixing 𝛼 = 1 while varying
𝛽 . The experimental results are illustrated in the Fig. 5. Overall,
FG-CIBGC maintains solid performance with different parameter
settings. The optimal performance is observed when 𝛼 = 3 and
𝛽 = 0.1, indicating its strongest capability under this setting.

7 CONCLUSION
This paper presents FG-CIBGC, the first unified framework for fine-
grained and class- incremental behavior graph classification. FG-
CIBGC comprises two novel modules: gPartition for fine-grained
graph partitioning, and gAdapt for unknown class detection and
adaptation. To validate its efficacy, we introduce a novel benchmark.
This benchmark includes a new dataset of 4,992 graphs across 32
classes, derived from 8 attack scenarios. It also features a novel
Edge Intersection over Union (EIoU) evaluation metric. Extensive
experiments demonstrate FG-CIBGC’s superior performance on
fine-grained and class-incremental behavior graph classification
tasks. Furthermore, FG-CIBGC has the ability to generate fine-
grained behavior graphs that facilitate downstream applications.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

FG-CIBGC: A Unified Framework for Fine-Grained and Class-Incremental Behavior Graph Classification Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Moran Beladev, Gilad Katz, Lior Rokach, Uriel Singer, and Kira Radinsky. 2023.

GraphERT–Transformers-based Temporal Dynamic Graph Embedding. In Pro-
ceedings of the 32nd ACM International Conference on Information and Knowledge
Management. 68–77.

[2] Moran Beladev, Lior Rokach, Gilad Katz, Ido Guy, and Kira Radinsky. 2020.
tdgraphembed: Temporal dynamic graph-level embedding. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management.
55–64.

[3] Eden Belouadah and Adrian Popescu. 2019. Il2m: Class incremental learning
with dual memory. In Proceedings of the IEEE/CVF international conference on
computer vision. 583–592.

[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the association
for computational linguistics 5 (2017), 135–146.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, Vol. 33. 1877–1901.

[6] DARPA. 2014. Transparent Computing Engagement 3 Data Release. https://
github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md

[7] Angel Daruna, Mehul Gupta, Mohan Sridharan, and Sonia Chernova. 2021. Con-
tinual learning of knowledge graph embeddings. IEEE Robotics and Automation
Letters 6, 2 (2021), 1128–1135.

[8] Pengcheng Fang, Peng Gao, Changlin Liu, Erman Ayday, Kangkook Jee, Ting
Wang, Yanfang (Fanny) Ye, Zhuotao Liu, and Xusheng Xiao. 2022. Back-
Propagating System Dependency Impact for Attack Investigation. In USENIX
Security Symposium. 2461–2478.

[9] Asma Fariha, Vida Gharavian, Masoud Makrehchi, Shahryar Rahnamayan, Sanaa
Alwidian, and Akramul Azim. 2024. Log Anomaly Detection by Leveraging LLM-
Based Parsing and Embedding with Attention Mechanism. In 2024 IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE). IEEE, 859–863.

[10] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,
Chung Hwan Kim, Sanjeev R Kulkarni, and Prateek Mittal. 2018. SAQL: A
stream-based query system for Real-Time abnormal system behavior detection.
In USENIX Security Symposium. 639–656.

[11] Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han
Zhang, Zhihua Wang, Minghui Jin, Jiahai Yang, et al. 2023. Anomaly Detection
in the Open World: Normality Shift Detection, Explanation, and Adaptation.. In
Proceedings of the Network and Distributed System Security Symposium.

[12] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical provenance
analysis for endpoint detection and response systems. In IEEE Symposium on
Security and Privacy. 1172–1189.

[13] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. 2019. Nodoze: Combatting threat alert fatigue
with automated provenance triage. In Proceedings of the Network and Distributed
System Security Symposium.

[14] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R Sekar, Scott Stoller, and VN Venkatakrishnan. 2017. SLEUTH: Real-
time attack scenario reconstruction from COTS audit data. In USENIX Security
Symposium. 487–504.

[15] Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. 2020. Combating dependence
explosion in forensic analysis using alternative tag propagation semantics. In
IEEE Symposium on Security and Privacy. 1139–1155.

[16] Muhammad Adil Inam, Yinfang Chen, Akul Goyal, Jason Liu, Jaron Mink, Noor
Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan. 2023. Sok: History is
a vast early warning system: Auditing the provenance of system intrusions. In
IEEE Symposium on Security and Privacy. 2620–2638.

[17] Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael, Sneha
Gaur, Adam Bates, andWajih Ul Hassan. 2022. FAuST: Striking a Bargain between
Forensic Auditing’s Security and Throughput. In Proceedings of the Computer
Security Applications Conference. 813–826.

[18] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong
Huo, Pinjia He, Jiazhen Gu, and Michael R Lyu. 2024. LILAC: Log parsing
using LLMs with adaptive parsing cache. Proceedings of the ACM on Software
Engineering 1, FSE (2024), 137–160.

[19] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences 114, 13 (2017), 3521–
3526.

[20] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. Loggc: garbage col-
lecting audit log. In Proceedings of the ACM SIGSAC Conference On Computer &

Communications Security. 1005–1016.
[21] Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 40, 12 (2017), 2935–2947.
[22] Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming catastrophic

forgetting in graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 8653–8661.

[23] Jie Liu, Jiamou Liu, Kaiqi Zhao, Yanni Tang, and Wu Chen. 2024. TP-GNN:
Continuous Dynamic Graph Neural Network for Graph Classification. In 2024
IEEE 40th International Conference on Data Engineering (ICDE). IEEE, 2848–2861.

[24] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2021. What Makes Good In-Context Examples for GPT-3? arXiv
preprint arXiv:2101.06804 (2021).

[25] Yixin Liu, Kaize Ding, Huan Liu, and Shirui Pan. 2023. Good-d: On unsuper-
vised graph out-of-distribution detection. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining. 339–347.

[26] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yuhang Chen,
Yanqing Zhao, Hao Yang, and Yanfei Jiang. 2024. Interpretable online log analysis
using large language models with prompt strategies. In Proceedings of the 32nd
IEEE/ACM International Conference on Program Comprehension. 35–46.

[27] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory for
continual learning. Advances in Neural Information Processing Systems 30 (2017).

[28] Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. 2019. Disen-
tangled graph convolutional networks. In International conference on machine
learning. PMLR, 4212–4221.

[29] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. 2016. Fast memory-
efficient anomaly detection in streaming heterogeneous graphs. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1035–1044.

[30] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan.
2019. Poirot: Aligning attack behavior with kernel audit records for cyber
threat hunting. In Proceedings of the ACM SIGSAC Conference On Computer and
Communications Security. 1795–1812.

[31] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, Ramachandran Sekar, and
VN Venkatakrishnan. 2019. Holmes: real-time apt detection through correlation
of suspicious information flows. In IEEE Symposium on Security and Privacy.
1137–1152.

[32] Jonathan Pan, Wong Swee Liang, and Yuan Yidi. 2024. RAGLog: Log Anomaly
Detection using Retrieval Augmented Generation. In 2024 IEEE World Forum on
Public Safety Technology (WFPST). IEEE, 169–174.

[33] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei
Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. 2016. Hercule: Attack story
reconstruction via community discovery on correlated log graph. In Proceedings
of the Conference on Computer Security Applications. 583–595.

[34] Yixin Ren, Li Ke, Dong Li, Hui Xue, Zhao Li, and Shuigeng Zhou. 2023. Incre-
mental graph classification by class prototype construction and augmentation.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. 2136–2145.

[35] Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan Bansal, Pedro Las-Casas,
Rodrigo Fonseca, and Saravan Rajmohan. 2024. Exploring llm-based agents for
root cause analysis. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering. 208–219.

[36] David Sculley. 2010. Web-scale k-means clustering. In Proceedings of the Interna-
tional Conference on World Wide Web. 1177–1178.

[37] Shiwen Shan, Yintong Huo, Yuxin Su, Yichen Li, Dan Li, and Zibin Zheng. 2024.
Face it yourselves: An llm-based two-stage strategy to localize configuration
errors via logs. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 13–25.

[38] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook Jee, Xusheng Xiao,
Zhenyu Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. 2018. Nodemerge: Tem-
plate based efficient data reduction for big-data causality analysis. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security. 1324–
1337.

[39] Junjielong Xu, Ziang Cui, Yuan Zhao, Xu Zhang, Shilin He, Pinjia He, Liqun Li, Yu
Kang, Qingwei Lin, Yingnong Dang, et al. 2024. UniLog: Automatic Logging via
LLM and In-Context Learning. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering. 1–12.

[40] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He. 2024.
DivLog: Log Parsing with Prompt Enhanced In-Context Learning. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering. 1–12.

[41] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark
Coates. 2020. Graphsail: Graph structure aware incremental learning for rec-
ommender systems. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. 2861–2868.

[42] Zhiqiang Xu, Pengcheng Fang, Changlin Liu, Xusheng Xiao, Yu Wen, and Dan
Meng. 2022. Depcomm: Graph summarization on system audit logs for attack
investigation. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 540–
557.

9

https://github.com/ darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/ darpa-i2o/Transparent-Computing/blob/master/README-E3.md

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[43] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High fidelity data
reduction for big data security dependency analyses. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security. 504–516.

[44] Tarun Yadav and Arvind Mallari Rao. 2015. Technical aspects of cyber kill
chain. In International Symposium on Security in Computing and Communication.
438–452.

[45] Le Yu, Shiqing Ma, Zhuo Zhang, Guanhong Tao, Xiangyu Zhang, Dongyan Xu,
Vincent E Urias, HanWei Lin, Gabriela F Ciocarlie, Vinod Yegneswaran, et al. 2021.
ALchemist: Fusing Application and Audit Logs for Precise Attack Provenance
without Instrumentation. In Proceedings of the Network and Distributed System
Security Symposium.

[46] Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang Ji, Zhenkai Liang, and Jian
Mao. 2021. WATSON: Abstracting Behaviors from Audit Logs via Aggregation
of Contextual Semantics. In Proceedings of the Network and Distributed System
Security Symposium.

[47] Jun Zengy, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng
Chua, and Zheng Leong Chua. 2022. Shadewatcher: Recommendation-guided
cyber threat analysis using system audit records. In IEEE Symposium on Security
and Privacy. 489–506.

[48] Huan Zhang, Lijun Cai, Lixin Zhao, Aimin Yu, Jiangang Ma, and Dan Meng. 2022.
LogMiner: A System Audit Log Reduction Strategy Based on Behavior Pattern
Mining. In MILCOM IEEE Military Communications Conference. 292–297.

[49] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2022. Hierarchical prototype
networks for continual graph representation learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45, 4 (2022), 4622–4636.

[50] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
before use: Improving few-shot performance of language models. In International
conference on machine learning. PMLR, 12697–12706.

[51] Aoxiao Zhong, Dengyao Mo, Guiyang Liu, Jinbu Liu, Qingda Lu, Qi Zhou, Jiesh-
eng Wu, Quanzheng Li, and Qingsong Wen. 2024. LogParser-LLM: Advancing
Efficient Log Parsing with Large Language Models. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4559–4570.

[52] Fan Zhou and Chengtai Cao. 2021. Overcoming catastrophic forgetting in graph
neural networks with experience replay. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 4714–4722.

[53] Junwei Zhou, Yijia Qian, Qingtian Zou, Peng Liu, and Jianwen Xiang. 2022.
Deepsyslog: Deep anomaly detection on syslog using sentence embedding and
metadata. IEEE Transactions on Information Forensics and Security 17 (2022),
3051–3061.

[54] Bo Zong, Xusheng Xiao, Zhichun Li, Zhenyu Wu, Zhiyun Qian, Xifeng Yan,
Ambuj K. Singh, and Guofei Jiang. 2015. Behavior query discovery in system-
generated temporal graphs. Proceedings of the VLDB Endowment 9, 4 (2015),
240–251.

A Overview
We provide in this Appendix that cannot fit into the main paper due
to the page limit, includingMore Ablation Studies on the variants
of FGC-CIBGC, the details of the Heuristic Search Algorithm,
More Hyper-Parameter Analysis regarding learning rate, batch
size, and hidden size, Complexity Analysis of the model. We also
give detailed descriptions on Datasets, Code File, and Further
Explanation of Implementation.

B More Ablation Studies
In this section, we seek to substantiate the rationale behind our
choice of the GPT-3.5 model. For the purpose of comparison, we
selected Codex, GPT-3 and LLaMa-2 as baselines. Results are sum-
marized in Table. 4.

It can be seen that FG-CIBGC has a relatively large accuracy
advantage when using Codex as the backbone compared to other
LLMs. The results indicate that the use of an appropriate baseline
model as the backbone greatly influences FG-CIBGC’s performance.

C The Search Algorithm
In this section, we present the details of the heuristic search algo-
rithm. For the unified graph without partitioning, we first retrieve
the time ranges of the edges belonging to the same behavior unit

Algorithm 2:Workflow of heuristic search algorithm
Input: The Unified graph G𝑢 , in which some audit events

are correlated with behavior units.
Output: Behavior graphs G.

1 𝑇 ← Time spans of all audit events (edges);
2 G ← Get_Components(G𝑢 ,T);
3 for 𝐺𝑖 ∈ G do
4 E𝑖 ← Entities included in 𝐺𝑖 ;
5 for node 𝑣 ∈ E𝑖𝑡 do
6 𝐸out ← Uncorrelated outgoing edges of node 𝑣 in

G𝑢 ;
7 𝐸in ← Uncorrelated incoming edges of node 𝑣 in G𝑢 ;
8 if 𝐸out ≠ ∅ or 𝐸in ≠ ∅ then
9 𝐸unalloc ← 𝐸out ∪ 𝐸in;

10 for edge 𝑒 ∈ 𝐸unalloc do
11 Gclosest ← Get_Closest(𝑒 , G)
12 Gclosest ← Gclosest ∪ {𝑒};

13 Return G.

in the unified graph. We then compute the minimum connected
components on the unified graph that contain these audit log edges
within the respective time ranges. Finally, we inspect each node
in the connected components to identify any edges that are not
assigned to higher-level behavior units. We allocate such edges
to the most recent behavior unit. The overall process is shown in
Alg. 2.

D More Comparison Experiments
Building upon our previous work, we have further incorporated
Accuracy (Acc) as an evaluation metric, resulting in the tabular
format shown in Table. 7. Based on the experimental results, we can
observe that FG-CIBGC significantly outperforms the comparative
methods in terms of the accuracy metric.

E Datasets
In this section, we will briefly introduce the eight datasets we use.
First, we will provide a brief overview of the CVE vulnerabilities. In
addition, we will present methods for data collection, data cleaning
and preprocessing, along with corresponding labeling rules for each
dataset.

E.1 Basic Information
In this section, we will briefly introduce the basic information of
each dataset, as well as the CVE vulnerabilities. In this work, we
not only consider web applications, but also explore a broader
range of scenarios including file editing, file transfer, and Internet
applications. Our goal is to validate the effectiveness of our method
across a diverse set of real-world use cases, beyond just web-based
applications.

By evaluating our approach in this expanded application scope,
we aim to demonstrate its generalizability and robustness. The

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

FG-CIBGC: A Unified Framework for Fine-Grained and Class-Incremental Behavior Graph Classification Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 4: Ablation study results (EIoU % and F1 %) of different LLM Backbones. The best results are shown in bold type and the
runner-ups are underlined.

Method Apache IM-1 IM-2 Vim Redis Pgsql ProFTPd Nginx
EIoU F1 EIoU F1 EIoU F1 EIoU F1 EIoU F1 EIoU F1 EIoU F1 EIoU F1

Codex 68.52 82.15 58.25 84.33 50.03 84.67 56.01 59.13 63.21 89.06 60.34 86.43 59.44 59.75 70.23 85.91
GPT-3 60.24 68.23 59.23 86.34 49.78 89.32 67.39 86.25 69.35 89.65 68.27 81.16 70.22 88.65 64.74 88.39

LLaMa-2 51.09 85.54 51.39 80.25 48.61 76.51 60.80 84.85 66.21 86.80 62.75 71.95 61.70 67.91 57.56 80.46
Ours 74.62 91.62 70.35 90.26 73.93 93.92 76.08 96.07 78.24 98.32 74.56 93.08 74.28 92.73 73.31 93.27

inclusion of file management, communication, and content cre-
ation tasks allows us to assess the performance of our technique in
contexts that go beyond typical web applications.

This comprehensive evaluation strategy enables us to thoroughly
verify that our method can achieve strong results across a wide
spectrum of application domains, rather than being limited to a
narrow set of web-centric scenarios. The breadth of the tested
scenarios strengthens the practical significance and impact of our
contributions.

We have selected applications that are critical for building the
Internet services.

(1) Apache Vulnerability : CVE-2021-41773
Apache is an open-source, cross-platform web server soft-
ware and stands as one of the most widely-used choices
for Internet services on the web today. It is developed and
maintained by the Apache Software Foundation. Apache,
renowned for stability, security, and efficiency, supports
various operating systems including Windows, Linux, etc.
It provides rich features and flexible configuration options,
making it suitable for building various types of websites, in-
cluding static websites, dynamic websites, and web applica-
tions. Apache supports a variety of programming languages
and technologies, including PHP, Python, Perl, CGI, and
more, empowering developers to effortlessly craft robust
web applications. Moreover, Apache supports advanced fea-
tures like virtual hosting, SSL/TLS encryption, URL rewrit-
ing, etc., catering to diverse requirements in website con-
struction and operation.
Apache HTTPd Server 2.4.49 version introduces a new func-
tion with a path traversal vulnerability, but it needs to be
combined with the traversal directory configuration "Re-
quire all granted". Attackers can exploit this vulnerability
to achieve path traversal, read arbitrary files, or execute
bash commands in httpd programs configured with CGI,
thereby gaining the opportunity to control the server and
access the root directory to read the files inside.

(2) Apache-Pgsql Vulnerability : CVE-2019-9193
PostgreSQL is one of the most popular database systems
today. It is the most commonly used database on Mac OSX
systems, but it also provides versions for Windows and
Linux operating systems. (Metasploit on Kali uses the Post-
greSQL database.)
The vulnerability is caused by a feature of PostgreSQL that
allows specific users to execute arbitrary code within the
PostgreSQL environment. This feature is enabled by de-
fault in PostgreSQL versions 9.3-11.2. Starting from version

9.3, PostgreSQL implemented a new feature called COPY
TO/FROM PROGRAM, which allows superusers and users
to execute arbitrary operating system commands.
In this dataset, we set up a web service using Apache and
PostgreSQL version 9.3. We utilized the vulnerability to
perform normal database operations and attack operations.
We collected application logs, audit logs, and network logs
from Apache and PostgreSQL.

(3) IM-1 Vulnerability : CVE-2016–3714
ImageMagick is a widely used image processing program
that many vendors use for tasks such as resizing, crop-
ping, watermarking, and format conversion. However, re-
searchers have discovered that when a user inputs an image
containing ’malformed content,’ it can trigger a command
injection vulnerability. One of the most serious vulnerabili-
ties is CVE-2016-3714, which allows remote code execution.
This vulnerability affects version 6.9.3-9 and all versions
prior.
ImageMagick has a feature called delegate, which is used
to call external libraries to handle files. The process of call-
ing external libraries uses the system’s system command,
which is the cause of this vulnerability.

(4) IM-2 Vulnerability : CVE-2022-44268
In ImageMagick versions prior to 7.1.0-51, there is a feature
in the code that handles PNG files. This feature can lead
to the reading of arbitrary files on the current operating
system when converting images, and then outputting the
contents of those files into the image content.
In the above two datasets of ImageMagick, we constructed
a web application using Apache and ImageMagick, and
collected logs from multiple sources.

(5) Nginx Vulnerability : Path Traversal
Nginx is a high-performance open-source web server and
reverse proxy server known for its exceptional performance
and high reliability. Nginx uses an event-driven architec-
ture and asynchronous non-blocking processing to han-
dle a large number of concurrent connections, making it
perform well under high loads. Nginx also offers flexible
configuration options and rich features, making it suitable
for various types of web services, including serving static
content, dynamic content, and reverse proxying. Due to its
low resource consumption, high stability, ease of configura-
tion, and scalability, Nginx has become the preferred server
software for many websites and applications.
In Nginx, when configuring an alias using the alias directive,
forgetting to include a trailing slash (/) (i.e., using "/files"

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

instead of "/files/") can result in a directory traversal vul-
nerability. The original purpose of this location block was
to allow users to access files under the /home/ directory.

(6) ProFTPD Vulnerability : CVE-2019-12815
ProFTPD is an open-source, highly configurable FTP server
software that supports multiple operating systems, includ-
ing Linux, Unix, and Windows. It offers rich features and
flexible configuration options to meet various FTP server
requirements. ProFTPD is known for its good performance
and security, supporting virtual users, restricting user per-
missions, logging, and SSL/TLS encrypted transmission for
data security. Easy to install and configure, ProFTPD is
suitable for networks of all sizes and is a popular choice
for many organizations and individuals as an FTP server
software.
There is a vulnerability in ProFTPD <= 1.3.6 that allows ar-
bitrary file copying. This vulnerability is due to the custom
SITE CPFR and SITE CPTO commands in the mod_copy
module not properly checking read/write permissions. An
attacker can exploit this vulnerability to copy any file on
the FTP server without permission.

(7) Redis Vulnerability : CVE-2022-0543
Redis is an open-source in-memory database that can also
be used as a cache and message broker. It supports various
data structures such as strings, hashes, lists, sets, and sorted
sets, providing rich commands and flexible configuration
options. Redis offers high performance, persistence, replica-
tion, clustering, andmore, making it versatile across various
applications. As an efficient key-value store and caching
solution, Redis is widely used in the Internet and big data
fields. Its simplicity and ease of use allow developers to
quickly build high-performance applications and provide
reliable data storage and access services in distributed en-
vironments.
Redis has a vulnerability where, after a user connects to
Redis, they can execute Lua scripts using the eval command.
However, these scripts are run in a sandbox, and under nor-
mal circumstances, cannot execute commands or read files.
Some distributions, such as Debian, Ubuntu, and CentOS,
patch the original software with additional packages. For
example, Debian’s patch for Redis includes an include state-
ment.
Unfortunately, in Debian and Ubuntu’s packaging of Redis,
a package object was inadvertently left in the Lua sandbox.
Attackers can exploit this object to load functions from
the liblua dynamic link library (DLL) and escape the sand-
box to execute arbitrary commands. By utilizing the pack-
age.loadlib function in the Lua sandbox to load functions
from /usr/lib/x86_64-linux-gnu/liblua5.1.so.0, an attacker
can gain access to the io library and use it to execute com-
mands.

(8) Vim Vulnerability : CVE-2019-12735
Vim is a powerful text editor widely used on Unix and Unix-
like systems. It boasts advanced features such as syntax
highlighting, code folding, auto-completion, multi-level un-
do/redo, and macro recording. Vim supports various modes
of operation, including insert mode, command mode, and

visual mode, making editing more efficient. Vim also sup-
ports a variety of plugins and scripts to extend its function-
ality. Due to its high degree of customization and powerful
features, Vim is favored by many developers and system
administrators as their preferred editor.
CVE-2019-12735 is a vulnerability in Vim versions before
8.1.1365 and Neovim versions before 0.3.6. It allows remote
attackers to execute arbitrary OS commands via the :source!
command in amodeline, as demonstrated by execute in Vim,
and assert_fails or nvim_input in Neovim.

E.2 Data Collection
For each dataset, the data collection process involves gathering
application logs, network logs, and audit logs. We employ Linux
Auditd, a widely used tool for recording audit logs [13], along
with built-in logs from Internet services for application logs, while
capturing network logs with tshark. It should be noted that log
collection configurations must be adjusted to capture comprehen-
sive fields, as default settings only gather a limited set, resulting
in incompleteness. In addition, we outline the specific collection
methods for these three types of logs [31, 33, 45].

(1) Application Logs
Different kinds of applications employ distinct logging
mechanisms tailored to their specific needs. Application
logs record important events with application-specific se-
mantics pertaining to the application’s behavior, errors, and
performance. To collect application logs, we conducted re-
search on the optional configurations of various application
logs, aiming to record all log fields that are useful for the
experiment to the fullest extent. We focused on fields such
as IP addresses, port numbers, payloads, and fields that can
reveal the type of event. This enabled us to achieve full
collection of application logs.
We have configured the application logs for Apache and
PostgreSQL with special configurations, while the rest of
the application logs use default configurations.
Apache:

1 $LogFormat "%h % l %u %t \ "% r \ " %> s
2 %O %a %A %p %P " combined
3 $CustomLog / var / l og / apache2 / a c c e s s . l og
4 combined

Postgresql:

1 # − Where to Log −
2 l o g _ d e s t i n a t i o n = ' s t d e r r , c s v l o g '

(2) Network Logs
Network logs are records of network traffic, detailing com-
munication between devices. They contain valuable infor-
mation such as source and destination IP addresses, ports,
protocols, and timestamps.
Tshark, a command-line network protocol analyzer, is a
powerful tool for capturing and analyzing network logs. It
can capture live traffic from a network interface or read
saved capture files. Tshark’s filtering capabilities allow ana-
lysts to focus on specific traffic of interest, making it easier

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

FG-CIBGC: A Unified Framework for Fine-Grained and Class-Incremental Behavior Graph Classification Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

to identify patterns or anomalies. Additionally, Tshark can
output captured data in various formats for further analysis
or integration with other tools. Overall, Tshark is a versa-
tile tool for analyzing network logs and gaining insights
into network activity. Therefore, We collect network logs
containing all fields using tshark, saving and reading them
in JSON format.
We have applied a uniform tshark configuration to all net-
work logs as follows:

1 $ t s h a r k −n − r t e s t . pcap −T f i e l d s −E
2 header=y −e frame . number
3 −e frame . t ime
4 −e i p . s r c −e t cp . s r c p o r t
5 −e i p . d s t −e t cp . d s t p o r t
6 −e i p . p ro to −e frame . l en
7 −e _ws . c o l . I n f o
8 −e frame . i n t e r f a c e _name
9 −e frame . i n t e r f a c e _ d e s c r i p t i o n
10 −e frame . encap_type
11 −e frame . o f f s e t _ s h i f t
12 −e frame . t ime_epoch −e frame . t im e _ d e l t a
13 −e frame . t im e _ d e l t a _ d i s p l a y e d
14 −e frame . t i m e _ r e l a t i v e
15 −e frame . c ap_ l en −e e th . d s t −e e th . s r c
16 −e e th . type −e h t t p . r e sponse . v e r s i o n
17 −e h t t p . r e sponse . code
18 −e h t t p . r e sponse . code . de sc
19 −e h t t p . r e sponse . phra se −e h t t p . s e r v e r
20 −e h t t p . r e sponse . l i n e
21 −e h t t p . c on t en t _ encod ing
22 −e h t t p . c o n t e n t _ l e n g t h
23 −e h t t p . c onnec t i on −e h t t p . c on t en t _ t yp e
24 −e h t t p . response_number
25 −e h t t p . t ime
26 −e h t t p . r e q u e s t _ i n
27 −e h t t p . r e s p on s e _ f o r . u r i
28 −e h t t p . f i l e _ d a t a
29 −e data − t e x t − l i n e s
30 > out . t s v

(3) Audit Logs
Audit logs are records that provide a detailed account of sys-
tem and application activity, helping organizations track
access, changes, and other events for security and com-
pliance purposes. Auditd is the user-space component of
the Linux Auditing System, responsible for writing audit
records to the disk. It monitors various system calls and
generates audit logs based on pre-defined rules.
Auditd allows administrators to configure what events to
monitor and how to handle them. It can log events such
as file access, process execution, user authentication, and
more. The audit logs produced by Auditd are stored in a
binary format and can be viewed using the ausearch or

aureport commands.
auditd provides detailed information about system activity,
helping administrators detect unauthorized access attempts,
track system changes, and investigate security incidents. It
is a critical component of a comprehensive security mon-
itoring strategy for Linux systems, offering insights into
system behavior and helping ensure compliance with secu-
rity policies and regulations.
We use Auditd to record the system calls related to processes
and files involved in the experiment. Then, we manually
analyze the data to remove redundant system call informa-
tion.
For audit logs, we have applied special configurations to
Pgsql, IM-1, and IM-2 datasets, while the rest of the datasets
use default configurations.
Apache-Pgsql:

1 −D
2 −b 8192
3 − f 1
4 −− ba ck l og_wa i t _ t ime 0
5 −a always , e x i t −S a l l −F exe =/ us r / l o c a l /
6 pg sq l / b in / p o s t g r e s −k p g s q l _ a u d i t
7 −w / e t c / passwd −p rwxa −k pas swd_aud i t
8 −a always , e x i t −S a l l −F exe =/ us r / s b i n /
9 apache2 −k apa che_aud i t
10 −a always , e x i t −F arch=b64 −S b ind
11 −a always , e x i t −S read , wr i t e , open , c l o s e ,
12 c lone , fork , v fork , execve , k i l l ,
13 mq_open , openat , sendto , recvfrom , s e n d f i l e ,
14 sendmsg , sendmmsg , recvmsg , recvmmsg ,
15 connect , socke t , un l ink , l i nk , l i n k a t ,
16 un l i nka t , rmdir , mkdir , reename ,
17 pipe , p ipe2 , dup , dup2 , getpeername ,
18 f c n t l

IM-1:

1 −D
2 −b 8192
3 −− ba ck l og_wa i t _ t ime 0
4 − f 1
5 −a always , e x i t −S f s t a t , getsockname ,
6 connect , read , c l o s e ,
7 shutdown , sendto ,
8 recvfrom , openat , wr i t ev , wr i t e , bind ,
9 un l i nk −F exe =/ us r / s b i n / apache2
10 −k apa che_aud i t
11 −a always , e x i t −S openat , execve , read ,
12 wri te , c l o s e −F exe =/ us r / b in / i d
13 −k mon i to r_ i d
14 −w / e t c / passwd −p rwxa −k pas swd_aud i t
15 −a always , e x i t −S c l one −F exe =/ b in / sh
16 −k moni tor_sh
17 −a always , e x i t −S a l l −F exe =/ us r / l o c a l /

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

0.005 0.001 0.01
Learning Rate

86
88
90
92
94
96

F1
(%

)

IM-1
IM-2
Apache

0.005 0.001 0.01
Learning Rate

64
66
68
70
72
74
76

E
Io

U
(%

)

IM-1
IM-2
Apache

Figure 6: Ablation study on learning rates.

18 b in / i d e n t i t y −k i d e n t i t y _ a u d i t
19 −a always , e x i t −S a l l −F exe =/ us r / l o c a l /
20 b in / magick −k imagemag ick_aud i t

IM-2:

1 −D
2 −b 8192
3 −− ba ck l og_wa i t _ t ime 0
4 − f 1
5 −a always , e x i t −S f s t a t , getsockname ,
6 connect , read , c l o s e , shutdown , sendto ,
7 recvfrom , openat , wr i t ev , wr i t e ,
8 bind , un l i nk −F exe =/ us r / s b i n / apache2
9 −k apa che_aud i t
10 −a always , e x i t −S openat , execve ,
11 read , wr i t e , c l o s e −F exe =/ us r / b in / i d
12 −k mon i to r_ i d
13 −w / e t c / passwd −p rwxa −k pas swd_aud i t
14 −a always , e x i t −S c l one −F exe =/ b in / sh
15 −k moni tor_sh −a always , e x i t −S a l l −F
16 exe =/ us r / l o c a l / b in / c onve r t −k
17 c o n v e r t _ a u d i t −a always , e x i t −S a l l −F
18 exe =/ us r / l o c a l / b in / magick −k
19 imagemag ick_aud i t

E.3 Labeling Rules
We will now place the full set of labeling rules for extracting behav-
ior units into the Table 6. We invite domain experts to define the
following types of behavior unit labeling rules:
• Event Division Rule. Rules partition atomic application and

network events within application and network logs.
• Direct Correlation Rule. Rules establish a direct correlation

between application and network events by examining whether
they possess identical key attributes.

• Indirect Equivalence Rule. Rules infer whether different appli-
cation events represent the same execution by assessing if they
are associated with identical network events.

F More Hyper-Parameter Analysis
F.1 Learning Rate
The results are shown in Fig. 6. It is clear that the best performance
is achieved when learning rate is set to 0.001.

512 1024 2048
Batch Size

86
88
90
92
94
96

F1
(%

)

IM-1
IM-2
Apache

512 1024 2048
Batch Size

64
66
68
70
72
74
76

E
Io

U
(%

)

IM-1
IM-2
Apache

Figure 7: Ablation study on batch sizes.

32 64 128 256
Hidden Size

86
88
90
92
94
96

F1
(%

)

IM-1
IM-2
Apache

32 64 128 256
Hidden Size

64
66
68
70
72
74
76

E
Io

U
(%

)

IM-1
IM-2
Apache

Figure 8: Ablation study on hidden sizes.

IM-1 IM-2 Apache Average
0

5

10

15

20

25

30

35

Ti
m

e
C

os
t (

m
in

s)

TWP
ER-GNN
FG-CIBGC

Figure 9: The time overhead compared with baselines.

F.2 Batch Size
The results are shown in Fig. 7. It is clear that the best performance
is achieved when bact size is set to 1024.

F.3 Hidden Size
The results are shown in Fig. 8. It is clear that the best performance
is achieved when hidden size is set to 128.

G Time Analysis
In this section, we conduct an experiment to verify the time effec-
tiveness of this framework. Specifically, as FG-CIBGC primarily
comprises two stages - first partitioning the fine-grained behavior
graphs, and then performing class-incremental learning - we con-
duct comparative evaluations against corresponding baselines in
each of these stages. Results are summarized in Fig. 9.

Notably, FG-CIBGC achieves a favorable balance between time
cost and performance. In terms of time efficiency of behavior graph
generation, whileWatson exhibits high time cost, its coarse-grained
graph generation leads to inferior performance. Conversely, Dep-
Comm demonstrates significantly higher time cost than FG-CIBGC,
coupled with a certain degree of coarse-grained graph generation.
Overall, our method effectively balances time cost and performance,
exhibiting a reasonable time cost. Besides, it also should be noted

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

FG-CIBGC: A Unified Framework for Fine-Grained and Class-Incremental Behavior Graph Classification Conference’17, July 2017, Washington, DC, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 5: Overview of Dataset for FG-CIBGC Evaluation.

Scenarios Vulnerability Description

Apache CVE-2021-41773 Vulnerability allows attackers to gain control of the server and access sensitive files.
IM-1 CVE-2016–3714 The vulnerability exists because of the insufficient filtering for the file names passed to a system() call.

Vim CVE-2019-12735 Vulnerability allows remote attackers to execute arbitrary OS commands via the :source! command
Redis CVE-2022-0543 Vulnerability allows remote attackers to escape the sandbox to execute arbitrary commands.
Pgsql CVE-2019-9193 Vulnerability allows specific users to execute arbitrary code within the PostgreSQL environment.

ProFTPd CVE-2019-12815 There is a vulnerability in ProFTPD <= 1.3.6 that allows arbitrary file copying.
IM-2 CVE-2022-44268 Vulnerability leads to the reading of arbitrary files on the current operating system when converting images

Nginx Path Traversal Forgetting to include a trailing slash can result in a directory traversal vulnerability.

Table 6: A complete List of Labeling Rules

Rule Type Rule Source Rule Target Fields Required Description

Event Division Network Log Network Log IP, Port, Time Range In a period of time, the traffic between two (IP, Port)
is considered as a connection.

Event Division Apache Log Apache Log IP, URL A single visit to a specific URL is considered as a
separate event.

Event Division PostgreSQL Log PostgreSQL Log IP, Port, PID A single transaction of a database operation is con-
sidered as a separate event.

Event Division Redis Log Redis Log IP, Port, Action A single database operation is considered as a sep-
arate event.

Event Division ImageMagick Log ImageMagick Log IP, Port, PID A single operation on the image is considered as a
separate event.

Event Division Nginx Log Nginx Log IP, URL A single visit to a specific URL is considered as a
separate event.

Event Division Proftpd Log Proftpd Log IP, Port, Filename A single file transfer between two IP addresses is
considered as a separate event.

Event Division Vim Log Vim Log Filename, Action A single operation on the file is considered as a
separate event.

Direct Correlation Network Log Apache Log IP, PORT,Time Range,URL Associate logs based on the resources accessed, IP
port, and time range.

Direct Correlation Network Log PostgreSQL Log IP, PORT,Time Range,HTTP Filedata Find database-related Network logs through HTTP
file data, time, IP, and port.

Direct Correlation Network Log Redis Log IP, PORT,Time Range,HTTP Filedata Find database-related Network logs through HTTP
file data, time, IP, and port.

Direct Correlation Network Log ImageMaick Log IP, PORT, PID, Time Range Find imagemagick-related Network logs through
time, IP, port and PID.

Direct Correlation Network Log Nginx Log IP, PORT,Time Range,URL Associate logs based on the resources accessed, IP
port, and time range.

Direct Correlation Network Log Proftpd Log IP, PORT,Time Range,Filename Associate logs based on the resources transferred,
IP port, and time range.

Indirect Equivalence Apache Log PostgreSQL Log No Field Required PostgreSQL Log and Apache Log relate with each
other by relating with any the same Network Logs.

Indirect Equivalence Apache Log ImageMagick Log No Field Required ImageMagick Log and Apache Log relate with each
other by relating with any the same Network Logs.

that we apply a few existing graph reduction algorithms to the gen-
erated behavior graphs. If we remove the graph reduction methods,
the time costs will be significantly reduced. The results are shown
in Fig. 10.

In the comparison of time cost with different backbone models,
we conducted experiments using various backbones. Notably, our
proposed method is able to strike a balance between time efficiency
and performance.

H Code File
The code of our system is placed in the code directory of this
material and detailed instructions for experiments are shown in
code/README.pdf file.

H.1 Python Environment Setup With Conda
Our code is written in Python3.10.8 with cuda 12.1 and pytorch
2.1.0 on Ubuntu 22.04.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference’17, July 2017, Washington, DC, USA Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Table 7: Comparison Results (Acc % and F1 %) of Class-Incremental Behavior Graph Classification Task Across Datasets. "(+)"
indicates that the input to this baseline is the fine-grained behavior graphs generated by gPartition. The best results are shown
in bold type and the runner-ups are underlined.

Method Apache IM-1 IM-2 Vim Redis Pgsql ProFTPd Nginx
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Tgminer 68.93 65.15 69.56 66.33 62.63 67.67 69.79 60.13 74.53 79.06 62.09 66.43 69.56 59.75 63.59 65.91
Watson 71.54 69.23 63.59 56.34 58.43 66.30 69.49 56.79 81.69 82.65 69.43 61.16 61.93 52.25 65.84 54.86

DepComm 71.63 70.54 73.49 75.99 74.60 72.51 75.89 72.84 80.71 80.80 72.75 70.45 78.91 67.91 78.76 76.46
Fine-Tuning(+) 73.44 71.08 73.33 76.35 76.95 74.94 76.35 73.75 85.12 78.97 75.93 73.27 72.98 68.21 78.45 78.92

EWC(+) 76.23 74.95 74.22 78.02 80.93 80.74 83.72 82.42 84.54 85.15 89.56 87.32 87.10 84.34 83.26 80.84
LwF(+) 82.78 83.22 78.54 77.83 79.55 76.85 81.89 76.10 83.90 85.84 76.94 81.61 86.66 87.26 83.97 82.23
GEM(+) 79.34 76.83 74.28 74.98 78.39 76.93 87.46 82.15 85.06 84.43 79.45 81.26 78.12 81.03 84.57 83.53
TWP(+) 89.54 86.88 86.73 85.55 87.31 86.57 88.14 84.43 85.37 85.43 71.14 76.95 89.03 85.46 81.22 85.89
CPCA(+) 86.82 86.42 79.91 81.91 88.93 87.84 86.27 83.26 88.39 87.24 87.59 85.54 89.90 87.82 87.69 87.60

tdGraphEmbed(+) 77.03 75.12 66.41 60.78 68.32 67.37 78.41 73.81 79.45 79.03 73.56 72.62 73.08 67.63 65.98 61.54
GraphERT(+) 86.96 77.71 72.59 68.44 78.79 78.23 85.91 75.32 84.69 78.39 85.02 79.32 82.14 77.89 75.63 75.32
TP-GNN(+) 81.53 78.56 76.29 71.84 77.59 77.93 84.68 74.26 82.67 76.21 78.94 73.45 73.77 72.09 81.63 79.84

Ours 95.19 91.62 91.26 90.26 94.12 93.92 96.13 96.07 98.65 98.32 94.73 93.08 94.39 92.73 93.63 93.27

IM-1 IM-2 Apache Average
0

2

4

6

8

10

12

Ti
m

e
C

os
t (

m
in

s)

Watson
DepComm
FG-CIBGC

Figure 10: The time overhead comparison in terms of behav-
ior graph partitioning without graph reduction.

install anaconda: https://repo.anaconda.com/archive/index.html.
install torch-scatter 2.1.2+pt21cu121 with the whl file down-

loaded from here.

1 $ conda c r e a t e −−name FG−CIBGC
2 $ conda a c t i v a t e FG−CIBGC
3 $ p ip i n s t a l l − r r equ i rmen t s . t x t

H.2 Dataset
Our full dataset’s compressed file size is around 2.3GB. Due to space
constraints, we are only providing a sample dataset (Apache) here.

H.3 Directory
We present a brief introduction about the directories.

H.4 Workflow
In this section, we introduce the workflow of the overall project.

H.4.1 Parse. The "hlogs_parse.py" file in this directory serves as
the entry point for all log preprocessing and parsing. This part is re-
sponsible for parsing audit logs, application logs, and network logs,
and it generates associated JSON files for subsequent correlation
with high-level behavior units and audit logs. See the following
command :

1 $ cd Pa r s e
2 $ python h l o g s _p a r s e . py
3 −−−da ta se tname= $ d a t a s e t

H.4.2 Embedding. The code in this directory accomplishes two
main tasks. Firstly, "run.py" correlates behavior units with audit
logs, ultimately generating fine-grained behavior graphs. Secondly,
"run.py" executes graph embedding. See the following command :

1 $ cd Embedding
2 $ python run . py −− d a t a s e t = $ d a t a s e t
3 −−kg= $a l go r i t hm

H.4.3 Classification. The code in this directory aims to produce
classification results. See the following command:

1 $ cd C l a s s i f i c a t i o n
2 $ python run . py −− d a t a s e t = $ d a t a s e t
3 −− c l a s s i f i c a t i o n = $ c l a s s i f i c a t i o n

H.4.4 Evaluate. The code in this directory produces evaluation
results. See the following command :

1 $ cd Too l s
2 $ python3 e v a l u a t e . py −− d a t a s e t $ d a t a s e t
3 > outpu t . t x t

H.5 Reproducibility
Use bash.sh to reproduce the results of performance comparison.

1 $ bash bash . sh
16

https://repo.anaconda.com/archive/index.html
https://pytorch-geometric.com/whl/torch-2.1.2%2Bcu121.html

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

FG-CIBGC: A Unified Framework for Fine-Grained and Class-Incremental Behavior Graph Classification Conference’17, July 2017, Washington, DC, USA

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Use basemode_grid_search.sh to reproduce the results of grid
search.

1 $ bash basemode_gr i d_ sea r ch . sh

I Further Explanation of Implementation
It is important to note that the labels for coarse-grained classi-
fication differ from those for fine-grained classification. When
comparing classification performance, we assess the F1 score of
coarse-grained classification using coarse-grained labels, while fine-
grained classification is evaluated using fine-grained labels. How-
ever, when evaluating the EIoU (Edge Intersection over Union), a
single coarse-grained label may correspond to multiple fine-grained
labels. For example, coarse-grained label 0 corresponds to fine-
grained labels 0, 1, and 2. In this case, when evaluating the EIoU, we
adhere to the principle of using fine-grained labels. Consequently,
the classifications made by the coarse-grained classification method
for the fine-grained labels 1 and 2 are considered incorrect.We select
GOOD-D [25] as the baseline OOD detector, as it is the sole open-
source unsupervised graph-level OOD detection method available.
We leave the exploration of alternative OOD detection techniques
for future work.

J KATE Algorithm Description
In FG-CIBGC, we choose KATE, a simple 𝑘NN-based sampling
algorithm that does not involve much computational overhead
in practice, for in-context example augmentation. Specifically, we
begin by embedding all parsed log batch candidates 𝑥𝑖 from training
data into vector representations 𝑣𝑖 . Then, for each vectorized query
𝑣𝑞 , we calculate the similarity metric 𝑑 (𝑣𝑞, 𝑣𝑖) between it and all
candidates, outputting the top-8 results as examples. Note that in
our implementation, the similarity metric 𝑑 (𝑣, 𝑣𝑖) represents the
cosine distance as shown in Eq. 6.

𝑑 (𝑣𝑞, 𝑣𝑖) := cos(𝑣𝑞, 𝑣𝑖) =
𝑣𝑞 · 𝑣𝑖
∥𝑣𝑞 ∥2∥𝑣𝑖 ∥2

, (6)

Moreover, some studies have also shown that the permutation of
different examples in the context can also affect the performance of
ICL seriously. For example, Zhao [50] pointed out that the model’s
prediction for a query tends to be biased towards the closest exam-
ple (i.e., recency bias), which means if the example closest to the
query in the prompt is similar enough to the query, the model’s
prediction for the query will tend towards the results closest to the
query (i.e., obtaining the correct prediction according to the nearest
example’s label supervision). Therefore, we choose to directly use
the similarity measure 𝑑 obtained in the previous step to arrange
these examples in ascending order, so that the example closest to
the query is most similar to the query.

17

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Problem Definition
	4 Proposed Method
	4.1 Overview
	4.2 gPartition: Fine-Grained Graph Partition
	4.3 gAdapt: Incremental Model Adaptation

	5 EXPERIMENT SETUP
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Metrics
	5.4 Implementation Details

	6 RESULTS AND ANALYSIS
	6.1 Behavior Graph Classification Performance
	6.2 Ablation Study
	6.3 Efficacy In Attack Investigation
	6.4 Hyper-Parameter Sensitivity

	7 CONCLUSION
	References
	A Overview
	B More Ablation Studies
	C The Search Algorithm
	D More Comparison Experiments
	E Datasets
	E.1 Basic Information
	E.2 Data Collection
	E.3 Labeling Rules

	F More Hyper-Parameter Analysis
	F.1 Learning Rate
	F.2 Batch Size
	F.3 Hidden Size

	G Time Analysis
	H Code File
	H.1 Python Environment Setup With Conda
	H.2 Dataset
	H.3 Directory
	H.4 Workflow
	H.5 Reproducibility

	I Further Explanation of Implementation
	J KATE Algorithm Description

