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Abstract—We give a self-contained proof of a recently es-
tablished B(H)-valued version of Jaffards Lemma. That is, we
show that the Jaffard algebra of B(H)-valued matrices, whose
operator norms of their respective entries decay polynomially
off the diagonal, is a Banach algebra which is inverse-closed in
the Banach algebra B(ℓ2(X;H)) of all bounded linear operators
on ℓ2(X;H), the Bochner-space of square-summable H-valued
sequences.

Index Terms—Jaffard’s Lemma, Wiener’s Lemma, inverse-
closed, spectral invariance, polynomial off-diagonal decay,
operator-valued matrices, matrix algebras.

I. INTRODUCTION

Let H be a Hilbert space and ℓ2(X;H) be the Bochner-
space of H-valued sequences (gl)l∈X , whose associated
sequence of norms (∥gl∥)l∈X is square-summable. Then
ℓ2(X;H) itself is a Hilbert space and B(ℓ2(X;H)), the space
of all bounded linear operators on ℓ2(X;H), is a C*-algebra.
By the matrix calculus for B(ℓ2(X;H)) as explained in [22,
Sec. 3.1], every operator A ∈ B(ℓ2(X;H)) can be uniquely
identified with a B(H)-valued matrix [Ak,l]k,l∈X in the sense
that the action of A on (gl)l∈X ∈ ℓ2(X;H) precisely corre-
sponds to matrix multiplication of [Ak,l]k,l∈X with (gl)l∈X

viewed as column vector. Moreover, composition of operators
from B(ℓ2(X;H)) corresponds to matrix multiplication of
their respective matrix representations, and taking adjoints in
B(ℓ2(X;H)) corresponds to the involution

([Ak,l]k,l∈X)∗ = ([A∗
k,l]k,l∈X)T , (I.1)

where the exponent T denotes transposition. Thus
B(ℓ2(X;H)) can be identified with a certain Banach
algebra of B(H)-valued matrices (see also [19, Thm. 5.28]).

Based on the latter point of view, we consider the Jaffard
class Js = Js(X;B(H)) of B(H)-valued matrices A =
[Ak,l]k,l∈X , for which there exists C > 0, such that

∥Ak,l∥ ≤ C(1 + |k − l|)−s (∀k, l ∈ X). (I.2)

It has been shown [21], that for sufficiently regular index
sets X and a sufficiently large decay parameter s > 0, the
Jaffard class is a unital Banach *-algebra with respect to matrix
multiplication and involution as in (I.1), which is contained

in B(ℓ2(X;H)) and, in fact, inverse-closed in B(ℓ2(X;H)),
meaning that

A ∈ Js and ∃A−1 ∈ B(ℓ2(X;H)) =⇒ A−1 ∈ Js. (I.3)

Property (I.3) can be seen as a variant of Wiener’s Lemma
on absolutely convergent Fourier series [25] for B(H)-valued
matrices with polynomial off-diagonal decay and is known as
Jaffard’s Lemma [16] in the scalar-valued setting. This result
(compare also with [1]–[4], [17], [21]) is not only interesting
from an abstract point of view, but also has an enormous
potential as a powerful tool for the study of localized g-frames
[18], [20], operator theory [8], the study of Fourier series of
operators [9] or harmonic quantum analysis [7], [24].

In [21] the inverse-closedness of Js in B(ℓ2(X;H)) is de-
duced from the inverse-closedness of certain weighted Schur-
type algebras in B(ℓ2(X;H)) via methods from [12]. Here we
give a more self-contained presentation of this fact by adapting
methods from [13], [23] to the B(H)-valued setting.

II. RESULTS

A. Banach algebra properties

We consider B(H)-valued matrices indexed by a relatively
separated set X ⊂ Rd, meaning that

sup
x∈Rd

|X ∩ (x+ [0, 1]d)| < ∞. (II.1)

For such X the following hold:

Lemma II.1. Let X ⊂ Rd be a relatively separated set.
(a) [10, Lemma 1] For any s > d, there exists a constant

C = C(s) > 0 such that

sup
x∈Rd

∑
k∈X

(1 + |x− k|)−s = C < ∞

(b) [10, Lemma 2 (a)] For any s > d, there exists a constant
C = C(s) > 0 such that for all k, l ∈ X∑
n∈X

(1 + |k − n|)−s(1 + |l − n|)−s ≤ C(1 + |k − l|)−s.

Definition II.2. Let X ⊂ Rd be relatively separated and
νs(x) : Rd −→ [0,∞) the polynomial weight function given



by νs(x) = (1 + |x|)s, s ≥ 0. Let Js = Js(X;B(H)) be the
space of all B(H)-valued matrices A = [Ak,l]k,l∈X , for which

∥A∥Js := sup
k,l∈X

∥Ak,l∥νs(k − l) (II.2)

is finite. We call Js the Jaffard class (and later −once
justified− the Jaffard algebra) and ∥ . ∥Js the Jaffard norm.

Since Js is nothing else than the weighted Bochner space
Js = ℓ∞us

(X × X;B(H)), where us(k, l) = νs(k − l), the
Jaffard class (Js, ∥ . ∥Js

) is a Banach space [15, Chap. 1].

Proposition II.3. Let s > d + r, r ≥ 0 and m : Rd →
[0,∞) be a function for which there exists some C > 0, such
that m(x + y) ≤ Cm(y)νr(y) for all x, y ∈ Rd. Then each
A ∈ Js defines a bounded operator on ℓpm(X;H) for every
d

s−r < p ≤ ∞.

Proof. For d
s−r < p ≤ 1, the function f : R≥0 −→

R≥0, f(x) = xp is subadditive. Hence, for g = (gl)l∈X ∈
ℓpm(X;H), we obtain

∥Ag∥p
ℓpm(X;H)

=
∑
k∈X

∥∥∥∥∥∑
l∈X

Ak,lgl

∥∥∥∥∥
p

m(k)p

≤ Cp
∑
k∈X

∑
l∈X

∥Ak,l∥p∥gl∥pm(l)p(1 + |k − l|)rp

≤ Cp∥A∥pJs

∑
l∈X

∥gl∥pm(l)p
∑
k∈X

(1 + |k − l|)−p(s−r)

≤ C1∥A∥pJs
∥g∥p

ℓpm(X;H)
,

where we applied [10, Lemma 2 (a)] is the last step.
The case p = ∞ is proven similarly.
Finally, the case 1 < p < ∞ follows from Riesz-Thorin

interpolation [15, Thm. 2.2.1].

Setting r = 0 and m ≡ 1 above yields the following.

Corollary II.4. If s > d, then

Js(X) ⊂
⋂

1≤p≤∞

B(ℓp(X;H)).

Since Js ⊂ B(ℓ2(X;H)), the matrix calculus [22, Sec.
3.1] for the Banach algebra B(ℓ2(X;H)), mentioned in the
introduction, motivates us to define a multiplication on Js

via matrix multiplication. For the same reason, we define an
involution on Js as in (I.1).

Proposition II.5. For s > d, the Jaffard class (Js, ∥ . ∥Js
) is

a unital *-algebra with respect to matrix multiplication and
involution as defined in (I.1). Furthermore, the involution is
an isometry.

Proof. Let A = [Ak,l]k,l∈X , B = [Bk,l]k,l∈X ∈ Js. For
arbitrary k, l ∈ X we have

∥[A ·B]k,l∥ ≤
∑
n∈X

∥Ak,n∥ ∥Bn,l∥

≤ ∥A∥Js ∥B∥Js

∑
n∈X

νs(k − n)−1νs(n− l)−1

≤ C∥A∥Js ∥B∥Jsνs(k − l)−1,

where we applied Lemma II.1 (b) in the last step. Conse-
quently

∥A ·B∥Js
≤ C∥A∥Js

∥B∥Js
, (II.3)

which implies that the Jaffard class is an algebra. Moreover,
the neutral element IJs

= IB(ℓ2(X;H)) = diag[IB(H)]k∈X is
contained in Js, since ∥IJs

∥Js
= νs(0) = 1. The involution

property in Js follows from the matrix calculus with respect
to B(ℓ2(X;H)) via Corollary II.4. Finally, νs(−x) = νs(x)
for all x ∈ Rd implies that the involution is an isometry.

By (II.3), the Jaffard norm is not a Banach algebra norm.
However, we may equip the Jaffard class with the equivalent
norm

|∥A∥|Js
:= sup

B∈Js

∥B∥Js=1

∥A ·B∥Js
(A ∈ Js), (II.4)

which is indeed a Banach algebra norm. As a consequence we
obtain:

Corollary II.6. [21] For any s > d, (Js, |∥ . ∥|Js
) is a unital

Banach *-algebra.

B. Inverse-closedness

In this section we show property (I.3), i.e., that Js is inverse-
closed in B(ℓ2(X;H)). While inverse-closedness in principal
is an algebraic property, Hulanicki’s Lemma [14] allows for
an analytical treatment of this task. We refer the reader to
[11, Prop. 2.5] for a proof of this simple but beautiful fact.
Let σB(B) and rB(B) denote the spectrum and the spectral
radius of an element B from a Banach algebra B, respectively.

Proposition II.7 (Hulanicki’s Lemma). [14] Let A ⊆ B
be a pair of unital Banach *-algebras with common identity
and common involution, and suppose that B is symmetric,
i.e. σB(B

∗B) ⊆ [0,∞) (∀B ∈ B). Then the following are
equivalent:
(i) A is inverse-closed in B.

(ii) rA(A) = rB(A) (∀A = A∗ ∈ A).
(iii) rA(A) ≤ rB(A) (∀A = A∗ ∈ A).
In case the above conditions hold, A is symmetric as well.

In order to be able to employ Hulanicki’s Lemma, we need
some preparation.

Lemma II.8. [13, Lemma 5.13] Let X ⊂ Rd be relatively
separated, s > d and τ0 > 0 be given. For any k ∈ X and
any τ > τ0, let Mτ

1,k := {n ∈ X : |k − n|∞ ≤ ⌈τ⌉} and
Mτ

2,k := {n ∈ X : |k − n|∞ > ⌈τ⌉}. Then there exists a



constant C = C(X, s, τ0) > 0, such that for all k ∈ X and
all τ > τ0

|Mτ
1,k| ≤ Cτd and

∑
n∈Mτ

2,k

νs(k − n)−1 ≤ Cτd−s. (II.5)

Proof. In order to show the first inequality in (II.5), recall
that X ⊂ Rd being relatively separated means that γ :=
supx∈Rd |X ∩ (x + [0, 1]d)| is finite. Since Mτ

1,k can be
covered by (2⌈τ⌉)d many translated unit cubes, we see that
|Mτ

1,k| ≤ (2⌈τ⌉)dγ. Since ⌈τ⌉ ≤ 1+τ ≤ ( 1
τ0
+1)τ , we obtain

|Mτ
1,k| ≤ 2dγ( 1

τ0
+ 1)dτd.

In order to show the second inequality in (II.5) fix some
arbitrary k ∈ X . Since |z|∞ ≤ |z| for all z ∈ Rd, it suffices to
estimate the series

∑
n∈Mτ

2,k
(1+|k−n|∞)−s. We may assume

W.L.O.G. that X is separated, i.e. that infx,y∈X,x ̸=y |x−y| =:
δ > 0, since any relatively separated set X ⊂ Rd is a finite
union of separated sets [6, Sec. 9.1]. Now, observe that if n ∈
Mτ

2,k, i.e. n ∈ X and |k − n|∞ > ⌈τ⌉, then ∃l ∈ Sτ := {l ∈
Zd : |l|∞ ≥ ⌈τ⌉} such that n = k+ l+x for some x ∈ [0, 1)d.
Thus, if for any l ∈ Sτ we define Xl,k := X∩(k+l+[0, 1)d),
then we see that the family {Xl,k : l ∈ Sτ} covers Mτ

2,k, hence

∑
n∈Mτ

2,k

(1+ |k−n|∞)−s ≤
∑
l∈Sτ

∑
n∈Xl,k

(1+ |k−n|∞)−s = (∗).

Since, by our previous observation, n = k + l + x for some
l ∈ Sτ and some x ∈ [0, 1)d, we see that 1 + |k − n|∞ =
1 + |l + x|∞ ≥ 1 + |l|∞ − |x|∞ ≥ |l|∞. Using this together
with the observation that |Xl,k| ≤ C ′, where the constant C ′

only depends on δ and the dimension d, we obtain that

(∗) ≤ C ′
∑
l∈Sτ

|l|−s
∞ =: (∗∗).

Now, for each m ∈ N with m ≥ ⌈τ⌉ set Sm := {l ∈ Zd :
|l|∞ = m}. Then Sτ =

⋃
m≥⌈τ⌉ Sm and each Sm consists

of the integer lattice points located on the surface of a cube
of side-length 2m. Since the number of lattice points on each
face of such a cube equals (2m+1)d−1 and there are 2d faces
per cube in total, we obtain

(∗∗) ≤ C ′
∞∑

m=⌈τ⌉

∑
l∈Sm

|l|−s
∞

≤ 2dC ′
∞∑

m=⌈τ⌉

m−s(2m+ 1)d−1

≤ 2dC ′
∞∑

m=⌈τ⌉

m−s(4m)d−1

= 2dC ′4d−1

⌈τ⌉d−s−1 +

∞∑
m=⌈τ⌉+1

md−s−1

 .

Since ⌈τ⌉d−s−1 ≤ ⌈τ⌉d−s and md−s−1 ≤
∫m

m−1
xd−s−1 dx,

we obtain in total that∑
n∈Mτ

2,k

(1 + |k − n|)−s ≤ C ′′

(
⌈τ⌉d−s +

∫ ∞

⌈τ⌉
xd−s−1 dx

)

= C ′′
(
1 +

1

s− d

)
⌈τ⌉d−s,

which yields the desired inequality.

Next we show that Js is continuously embedded in
B(ℓ2(X;H)).

Lemma II.9. Let s > d. Then there exists C > 0, such that

∥A∥B(ℓ2(X;H)) ≤ C∥A∥Js
(∀A ∈ Js). (II.6)

Proof. The statement is proved essentially as [13, Lemma 5.2]:
Let A ∈ Js be arbitrary. Since (Js, |∥ . ∥|Js

) is a unital
Banach *-algebra by Corollary II.6, we have by Gelfand’s for-
mula for the spectral radius that rJs

(A) = limn→∞ |∥An∥|
1
n

Js

for any A ∈ Js. Furthermore, since Js ⊂ B(ℓ2(X;H)) by
Corollary II.4, a simple argument (see e.g. [11, Lemma 2.4])
shows that rB(ℓ2(X;H))(A) ≤ rJs(A) for all A ∈ Js. Thus

∥A∥2B(ℓ2(X;H)) = ∥A∗A∥B(ℓ2(X;H))

= rB(ℓ2(X;H))(A
∗A)

≤ rJs
(A∗A)

= lim
n→∞

|∥(A∗A)n∥|
1
n

Js

≤ |∥A∗A∥|Js

≤ |∥A∗∥|Js
|∥A|∥Js

≤ C∥A∥2Js
,

for all A ∈ Js, where we used (II.4) in the last line.

Lemma II.10. Let A = [Ak,l]k,l∈X be a B(H)-valued matrix
and 1 ≤ p ≤ ∞. If A defines an element in B(ℓp(X;H)),
then the following hold:
(a) For 1 ≤ p < ∞,

sup
l∈X

sup
∥f∥H=1

(∑
k∈X

∥Ak,lf∥pH

) 1
p

≤ ∥A∥B(ℓp(X;H)).

(b)
sup
k,l∈X

∥Ak,l∥ ≤ ∥A∥B(ℓp(X;H)).

Proof. (a) For l ∈ X and 1 ≤ p ≤ ∞, define P p
l :

ℓp(X;H) −→ ℓp(X;H), P p
l (fk)k∈X = (δk,lfk)k∈X . Then

for arbitrary but fixed l ∈ X and 1 ≤ p < ∞ we see that

∥A∥pB(ℓp(X;H)) = sup
∥f∥ℓp(X;H)=1

∑
k∈X

∥∥∥∥∥∑
l∈X

Ak,lfl

∥∥∥∥∥
p

≥ sup
f=Pp

l f
∥f∥ℓp(X;H)=1

∑
k∈X

∥Ak,lfl∥p

= sup
∥f∥H=1

∑
k∈X

∥Ak,lf∥p.



Taking the p-th root and supremum over all l ∈ X yields (a).
(b) For 1 ≤ p < ∞, we have by (a) that

∥Ak,l∥ ≤ sup
∥f∥H=1

(∑
k∈X

∥Ak,lf∥p
) 1

p

≤ ∥A∥B(ℓp(X;H))

for all k, l ∈ X . Taking the supremum over all k, l ∈ X yields
the claim. The case p = ∞ is omitted.

After these preparatory results, we are able to prove the
decisive ingredient for proving our main theorem.

Lemma II.11. Let s > d and γ = 1 − d
s > 0. Then there

exists a positive constant C, such that

∥A2∥Js
≤ C∥A∥2−γ

Js
∥A∥γB(ℓ2(X;H)) (∀A ∈ Js). (II.7)

Proof. We abbreviate B = B(ℓ2(X;H)). Let A ∈ Js be
arbitrary and assume W.L.O.G. that A ̸= 0. Hölder’s inequality
on R2 with respect to the exponent s (and its conjugated
Hölder exponent) implies that

νs(k − l) < 2s (νs(k − n) + νs(n− l)) (∀k, l, n ∈ X).

Thus, for arbitrary k, l ∈ X we can estimate

∥[A2]k,l∥νs(k − l)

≤
∑
n∈X

∥Ak,n∥∥An,l∥νs(k − l)

< 2s
∑
n∈X

∥Ak,n∥∥An,l∥ (νs(k − n) + νs(n− l))

≤ 2s∥A∥Js

(∑
n∈X

∥An,l∥+
∑
n∈X

∥Ak,n∥

)
.

Recall from Proposition II.9, that there exists C1 > 0, such
that ∥A∥B ≤ C1∥A∥Js . In particular, for θ > 0 (to be chosen
later), there exists τ0 > 0, such that

τ := ∥A∥θJs
∥A∥−θ

B ≥ C−θ
1 > τ0 > 0. (II.8)

Hence we are in the setting of Lemma II.8 and may estimate∑
n∈X

∥An,l∥

≤
∑

n∈Mτ
1,l

∥An,l∥+
∑

n∈Mτ
2,l

∥An,l∥

≤ |Mτ
1,l|∥A∥B + ∥A∥Js

∑
n∈Mτ

2,l

νs(n− l)−1

≤ C2

(
τd∥A∥B + ∥A∥Js

τd−s
)

= C2

(
∥A∥dθJs

∥A∥1−dθ
B + ∥A∥1+(d−s)θ

Js
∥A∥(−(d−s)θ)

B

)
,

where we applied Lemma II.10 (b) in the second estimate, and
C2 > 0 denotes the constant arising in Lemma II.8. Analogous
reasoning also yields∑

n∈X

∥Ak,n∥

≤ C2

(
∥A∥dθJs

∥A∥1−dθ
B + ∥A∥1+(d−s)θ

Js
∥A∥(−(d−s)θ)

B

)
.

Altogether, we obtain

∥[A2]k,l∥νs(k − l)

≤ 2s+1C2

(
∥A∥1+dθ

Js
∥A∥1−dθ

B + ∥A∥2+(d−s)θ
Js

∥A∥(−(d−s)θ)
B

)
for all k, l ∈ X . Now, we choose θ = 1

s > 0, which yields
1 + (d− s)θ = d

s = dθ, and therefore

∥[A2]k,l∥νs(k − l) ≤ 2s+2C2∥A∥2−γ
Js

∥A∥γB.

Taking the supremum over all k, l ∈ X yields the claim.

Now we are finally able to prove the main result of this
section. The main contribution to its proof is Lemma II.11. In
fact, having Lemma II.11 available at our hands, the proof of
the subsequent theorem can be established exactly as the proof
of [13, Theorem 5.15]. For completeness reason we provide
the details.

Theorem II.12. [21, Cor. 4.5] For every s > d, the Jaf-
fard algebra (Js, |∥ . ∥|Js

) is inverse-closed in B(ℓ2(X;H)).
In particular, (Js, |∥ . ∥|Js

) is a symmetric Banach algebra
whenever s > d.

Proof. Since B := B(ℓ2(X;H)) is a symmetric Banach *-
algebra, we can deduce both the inverse-closedness of Js in
B and the symmetry of Js from Hulanicki’s Lemma II.7, once
we have verified the inequality of spectral radii

rJs(A) ≤ rB(A) (∀A = A∗ ∈ Js). (II.9)

We establish the verification of (II.9) via Brandenburg’s trick
[5], which relies on an estimate of the kind (II.7).

By norm equivalence (II.4) there exist positive constants
K1,K2 such that

K1|∥An∥|Js ≤ ∥An∥Js ≤ K2|∥An∥|Js

for all A ∈ Js and all n ∈ N. Taking n-th roots and letting
n → ∞ implies via Gelfand’s formula that

rJs(A) = lim
n→∞

|∥An∥|
1
n

Js
= lim

n→∞
∥An∥

1
n

Js
(∀A ∈ Js).

Now we combine the latter observation with Lemma II.11 and
obtain that

rJs
(A) = lim

n→∞
∥A2n∥

1
2n

Js

≤ lim
n→∞

C
1
2n

(
∥An∥

1
n

Js

) 2−γ
2
(
∥An∥

1
n

B

) γ
2

= rJs
(A)

2−γ
2 rB(A)

γ
2

holds for all A ∈ Js. Rearranging the latter yields

rJs
(A)

γ
2 ≤ rB(A)

γ
2 (∀A ∈ Js).

Since γ > 0, this implies (II.9).
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[10] K. Gröchenig. Localization of Frames, Banach Frames, and the Invert-
ibility of the Frame Operator. J. Fourier Anal. Appl., 10(2):105–132,
2004.
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