
DIFFSERVE: EFFICIENTLY SERVING TEXT-TO-IMAGE DIFFUSION MODELS
WITH QUERY-AWARE MODEL SCALING

Sohaib Ahmad * 1 Qizheng Yang * 1 Haoliang Wang 2 Ramesh K. Sitaraman 1 Hui Guan 1

ABSTRACT
Text-to-image generation using diffusion models has gained increasing popularity due to their ability to produce
high-quality, realistic images based on text prompts. However, efficiently serving these models is challenging
due to their computation-intensive nature and the variation in query demands. In this paper, we aim to address
both problems simultaneously through query-aware model scaling. The core idea is to construct model cascades
so that easy queries can be processed by more lightweight diffusion models without compromising image
generation quality. Based on this concept, we develop an end-to-end text-to-image diffusion model serving system,
DIFFSERVE, which automatically constructs model cascades from available diffusion model variants and allocates
resources dynamically in response to demand fluctuations. Our empirical evaluations demonstrate that DIFFSERVE
achieves up to 24% improvement in response quality while maintaining 19-70% lower latency violation rates
compared to state-of-the-art model serving systems.

1 INTRODUCTION

Text-to-image diffusion models are a powerful class of gen-
erative models that create images from textual descriptions
(queries) by progressively denoising an initial noise input
into a coherent image. They have gained increasing popu-
larity and been integrated into various interactive content
creation workflows such as Adobe FireFly (Adobe, 2024)
and Midjourney (Midjourney, 2024). With their growing
adoption, it is essential to develop efficient diffusion model
serving systems that deliver fast and accurate responses to
queries. In such systems, providers must guarantee ser-
vice level objectives (SLOs) to users with regard to latency
deadlines. At the same time, providers aim to maximize
hardware utilization by increasing throughput, i.e., serving
as many queries per unit time.

Efficiently serving text-to-image diffusion models, how-
ever, presents two main challenges. First, high-quality dif-
fusion models are computationally intensive, limiting the
serving throughput of the model serving system. Here,
serving throughput refers to the number of queries (i.e.,
text prompts) that can be processed by the system per unit
of time (queries per second, QPS). For instance, the Sta-
ble Diffusion XL model (Podell et al., 2023) achieves a

*Equal contribution 1University of Massachusetts Amherst,
Amherst, MA, USA 2Adobe Research, San Jose, CA, USA. Cor-
respondence to: Qizheng Yang <qizhengyang@cs.umass.edu>,
Sohaib Ahmad <sohaib@cs.umass.edu>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

30% improvement in generated image quality on Diffu-
sionDB (Wang et al., 2022) dataset compared to the base-
line SDXL-Lightning (Lin et al., 2024) but is 4.6× slower
when processing a batch of 16 queries on a Nvidia A100-
80GB GPU. This example highlights the typical trade-off
between accuracy and efficiency often encountered in ma-
chine learning models. Second, the query demand for a
model serving system fluctuates over time (Shahrad et al.,
2020; twi, 2018). Hardware resources provisioned to handle
peak demand may remain largely idle during periods of low
query demand, resulting in inefficient resource utilization.

This work introduces query-aware model scaling to tackle
the challenges. The central concept of query-aware model
scaling is the creation of a diffusion model cascade, where
each query is first processed by a lightweight diffusion
model (also called light model) to generate an image. If the
output meets predefined quality requirements, as determined
by a discriminator, it is used as the final response. If not,
the query is routed to a more computationally intensive but
higher-quality diffusion model (also called heavy model) to
produce the final result. The rationale is that certain queries,
known as easy queries, are inherently simpler and can be
processed by small models with no or minor quality degra-
dation. The approach is called query-aware as it routes
queries based on the complexities of each query.

Model cascades address the computational burden of dif-
fusion models by allowing easy queries to be processed
exclusively by light models that execute faster. This time
saving from handling easy queries enables the system to
achieve higher serving throughput. In addition, our diffu-



DIFFSERVE

sion model cascade uses a confidence threshold to control
the proportion of queries classified as easy. By adjusting
this threshold, the model cascade offers a way to balance im-
age generation quality with serving throughput. Leveraging
the quality-throughput trade-off in this fashion to manage
query demand variations is called model scaling. Model
scaling allows the system to adapt to demand variation and
improves hardware utilization by avoiding the need to pro-
vision resources for peak demand.

The core idea of query-aware model scaling presents two
major research challenges. The first challenge is to develop
a discriminator that can automatically, efficiently, and accu-
rately identify easy queries. The discriminator must assess
whether a generated image meets quality standards without
requiring manual intervention. It also needs to operate effi-
ciently to minimize runtime overhead. Moreover, accuracy
in classifying the queries is essential, as routing easy queries
to the heavyweight model wastes computational resources,
while handling complex queries solely with the lightweight
model can degrade the quality of responses. We later show
that diffusion model cascades relying on existing quantita-
tive metrics perform no better than random classification due
to their inherent limitations in capturing the nuanced image
quality differences. The second challenge lies in efficiently
allocating resources to optimize performance when serving
diffusion model cascades. The key parameter in such cas-
cades, the confidence threshold, must be co-optimized with
other system parameters to achieve optimal performance.

This work introduces DIFFSERVE, a system that leverages
query-aware model scaling to efficiently serve text-to-image
diffusion models. To address the first challenge, DIFFSERVE
constructs a diffusion model cascade by training a machine
learning (ML) model to assess the quality of generated im-
ages. The key insight is that an ML model can be trained
to accurately distinguish between images generated by dif-
fusion models and real images. This ML model can be
repurposed to differentiate whether the images produced by
the lightweight model meet quality requirements based on
its classification confidence. To address the second chal-
lenge, DIFFSERVE carefully models system performance as
functions of key configuration parameters and formulates
the resource allocation problem in a mixed integer linear
programming (MILP) framework to identify the optimal
allocation plan that maximizes response quality while satis-
fying query demand. DIFFSERVE periodically solves it and
re-allocates resources to adapt to varying query demands.

We evaluate DIFFSERVE on three light-heavy diffusion
model pairs using both synthetic and real traces and find that
it consistently outperforms state-of-the-art systems. Com-
pared to Proteus (Ahmad et al., 2024) which leverages
model scaling but randomly routes queries to model vari-
ants based on system load, DIFFSERVE can improve system

accuracy by up to 20% since its query routing considers
their complexities. Compared to serving systems that use a
fixed confidence threshold, DIFFSERVE demonstrates up to
24% improvement in quality and 19-70% reduction in SLO
violations, owing to its better resource allocation.

We summarize the contributions of this work as follows:

• We introduce query-aware model scaling which con-
structs diffusion model cascades to optimize the effi-
ciency of diffusion model serving systems.

• We leverage adversarial training to build discriminators
that enable the cascading of diffusion model variants.

• We formulate the resource allocation problem as a
mixed integer linear programming (MILP) framework
to determine optimal configuration parameters when
serving diffusion model cascades.

• We implement these techniques in the DIFFSERVE
model serving system and evaluate its performance
across various workload traces and diffusion models.

2 MOTIVATION AND CHALLENGES

This section motivates query-aware model scaling for serv-
ing diffusion models and explains the research challenges.

2.1 Background and Motivations

Model developers often train diffusion models with vary-
ing architectures and sizes to explore trade-offs between
model quality and efficiency. Several quantitative metrics
can be used to measure the generated image quality of text-
to-image diffusion models, each with its own limitations.
We highlight a few. (1) Fréchet Inception Distance (FID)
score (Heusel et al., 2017): it quantifies diffusion model
quality by comparing the distribution of generated images
with that of real images given a set of prompts. A lower FID
score indicates a better model quality. As FID compares two
data distributions, it is not suited for assessing the quality
of individual images generated from diffusion models. In
this work, we use FID score to quantify the response qual-
ity of our serving system given a set of text prompts. (2)
PickScore (Kirstain et al., 2023): It compares the quality of
images generated using the same text prompt. It evaluates
alignment relative to each specific prompt, not across vary-
ing prompts, making scores incomparable between different
prompt-image pairs. We later use PickScore to motivate
the existence of easy queries. (3) CLIP Score (Hessel et al.,
2021): It measures the alignment between a text prompt
and a generated image from it. A higher CLIP score indi-
cates better semantic alignment. However, CLIP scores of
different model variants can be very close and it does not
consistently reflect the image’s perceptual quality such as
visual realism or aesthetic appeal.

The orange points in Figure 1a illustrate response quality-



DIFFSERVE

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.0016

18

20

22

24

26

FI
D

H: SDv1.5, L: SD-Turbo
Random
Discriminator
PickScore
ClipScore

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Latency

16

18

20

22

24

26

FI
D SD-Turbo SDv1.5(DPMS++)

SDv1.5

SDXL-Turbo

SDXS
TinySD(DPMS++)

H: SDv1.5, L: SDXS

(a) FID vs. average inference latency

1 0 1 2
Difference of PickScore

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

H: SDv1.5, L: SD-Turbo

2 1 0 1 2 3
Difference of PickScore

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

H: SDv1.5, L: SDXS

0.4 0.2 0.0 0.2 0.4 0.6
Difference of Confidence Score

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0.4 0.2 0.0 0.2 0.4
Difference of Confidence Score

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) CDF of image quality difference

20 40 60 80
Serving Throughput (QPS)

17

18

19

20

21

22

FI
D

Pareto Frontier

(c) FID vs. serving throughput

Figure 1. (a) The quality-latency trade-offs of systems serving independent diffusion models and diffusion model cascades with different
discriminator designs with batch size one. The top panel uses diffusion model cascades built with SDv1.5 as the heavyweight model (H)
and SD-Turbo as the lightweight model (L). The bottom panel uses SDXS as the lightweight model instead. Lower latency is achieved by
using lighter models or treating more queries as easy in diffusion model cascades. FID is the lower the better. (b) The distribution of the
difference in image quality between a lightweight model and a heavyweight model. Negative values in the x-axis mean the lightweight
model’s generated image quality is better than those from the heavyweight model. Top panels use PickScore as the quality metric while
bottom panels use confidence score from our proposed discriminator. (c) Illustration of how different resource allocation configurations
affect serving throughput (QPS) and response quality (FID). All results use the dataset MS-COCO 2017 (Lin et al., 2014).

latency trade-offs for a system serving diffusion models
from HuggingFace (Hugging Face, 2024), each point repre-
senting a model variant. These model variants come from
off-the-shelf diffusion models with different architectures
or the same model executed with a different number of
diffusion steps. Serving heavier diffusion models can de-
liver higher-quality images but comes at the cost of higher
inference latency and thus lower serving throughput.

Query-aware model scaling is motivated by the observation
that certain “easy” queries can be processed by lighter dif-
fusion model variants without compromising the quality of
the generated images. Figure 1b illustrates the distribution
of the difference in image quality for two light-heavy dif-
fusion model pairs: SD-Turbo vs. SDv1.5 and SDXS vs.
SDv1.5. As we need a quality metric that compares the
image quality from the same text prompt, we use PickScore
(top panels) and confidence scores from our discriminator
(bottom panels). The discriminator design is elaborated in
§3.2. The figure shows that, for 20-40% of the queries (i.e.,
easy queries), the lightweight model generates images with
similar or even better quality than the heavyweight model.
This observation drives the design of a model serving sys-
tem that dynamically serves both lightweight and heavy-
weight model variants, routing easy queries exclusively to
the lightweight model to improve system efficiency.

2.2 Challenges

Challenge 1: Model Cascading for Diffusion Models.
One effective approach in identifying easy queries involves

constructing diffusion model cascades that combine models
of varying sizes, guided by discriminators (Viola & Jones,
2001; Bolukbasi et al., 2017). The discriminator outputs
a confidence score indicating whether the generated image
meets a predefined quality standard.

However, designing the discriminator for diffusion models
is non-trivial. The curves in Figure 1a show the quality-
efficiency trade-offs across various model cascades, each
using a unique discriminator design. We compare the follow-
ing approaches: (1) PickScore and ClipScore: This design
leverages widely used quantitative metrics, CLIP Score and
PickScore respectively, to assess image quality. If the gener-
ated image’s score exceeds a confidence threshold, the query
is classified as easy. (2) Random: This approach uses a ran-
dom classifier to assign queries, with each query classified
as easy with a given probability. (3) Discriminator: This ap-
proach uses our discriminator design detailed in Section 3.2.
The curves are generated by adjusting the confidence thresh-
old for the PickScore, ClipScore, and Discriminator and the
probability for the Random. For the Random classifier, we
conducted the experiments 20 times, with the shaded area
representing standard deviations across these runs.

Surprisingly, the results show that discriminators based on
established metrics, CLIP Score and PickScore, underper-
form relative to the baseline Random classifier. This coun-
terintuitive finding shows limitations of these metrics in cas-
cading diffusion models, as they fail to reliably differentiate
between easy and difficult queries, resulting in suboptimal
routing. In contrast, our discriminator design overcomes
these challenges and outperforms the Random classifier.



DIFFSERVE

Another surprising observation is that FID gets worse as the
latency increases in the end, implying that the overall system
response quality can decrease as more queries are routed
to the heavyweight model. This is consistent across differ-
ent light-heavy diffusion pairs. We hypothesize the reason
is that including a portion of outputs from the lightweight
model yields a more balanced and diverse image representa-
tion, which better aligns with the distribution of real images
and results in lower FID scores.

Challenge 2: Resource Allocation. The second challenge
lies in effectively leveraging the time savings in processing
easy queries to optimize system performance. A model
serving system must co-optimize the confidence threshold
with other system parameters to maximize serving through-
put and response quality while meeting latency deadlines.
Specifically, a higher confidence threshold imposes a stricter
constraint on image quality, leading to better system re-
sponse quality. However, this increased stringency results
in a greater proportion of queries being redirected to the
heavyweight model, thereby requiring more workers to host
it. This increases system loads for a specific query demand
and thus decreases the serving throughput of the system.
On top of these, the batch size to execute the lightweight
and heavyweight model affects both their throughput and
the overall end-to-end latency of queries, which need to be
adjusted accordingly depending on the system loads.

Figure 1c illustrates how different resource allocation config-
urations affect serving throughput and response quality. We
cascade SD-Turbo and SDv1.5 using our proposed discrimi-
nator and serve it on 10 A100 GPUs. We vary three system
configurations: the confidence threshold in the model cas-
cade, batch size, and the model placement. Out of all ∼9K
possible configurations, we are only interested in those at
the Pareto frontier, due to the fact that for a given query de-
mand, configurations at the Pareto frontier yield the highest
possible response quality compared to other configurations.

3 DESIGN OF DIFFSERVE

We now present the architecture of DIFFSERVE, a diffusion
model serving system that leverages query-aware model
scaling to efficiently serve test-to-image diffusion models.

3.1 Overview

Figure 2 shows the system architecture. It has separate data
and control paths. In the data path, clients send queries to
the system’s Load Balancer, which routes them to suitable
workers and returns generated images. In the control path,
the Controller periodically re-allocates resources depending
on the system runtime statistics collected from the workers.

Controller. The Controller manages the resources in the
system. It uses the Resource Manager to allocate a model

Client

Discriminator

Lightweight 
Model

Queue

Worker

Heavyweight
Model

Queue

Worker

Load Balancer Controller

Resource Manager

Model Profiler

Model 
RepositoryHeavyweight

Model

Queue

Worker

Discriminator

Lightweight 
Model

Queue

Worker

Runtime Statistics

1

2

3

4

Control path
Data path

5

Figure 2. System architecture of DIFFSERVE: (1) The query from
the client is sent to the load balancer, (2) The load balancer sends
it to a worker with the lightweight model and the discriminator, (3)
If the confidence score is greater than the threshold, the response
is sent back to client, (4) Else, the query is sent to a worker with
the heavyweight model, and (5) its output is sent to the client.

variant to each worker and set its batch size and the con-
fidence threshold for the workers hosting the lightweight
model and its discriminator. It periodically collects runtime
information from the workers to update model execution
profiles as well as the queue lengths and demands seen by
each of the workers to inform resource allocation decisions.

Model Repository. It manages the registration of diffusion
model variants and hosts these registered variants, along
with the discriminators used to cascade between them.

Load Balancer. The Load Balancer sits on the data path
between a client and workers. Upon receiving queries from
clients, the Load Balancer initially routes each query to
a worker running a lightweight diffusion model. If the
generated image’s quality estimated by the discriminator
meets the quality requirement, specified as a confidence
threshold, it is returned to the Load Balancer as the response.
Otherwise, the query is forwarded to a worker hosting the
heavyweight diffusion model to generate the final response.

Workers. Each worker executes its hosted model variant to
serve queries routed to it and kept in its local queue. Some
workers host the lightweight models together with the dis-
criminators while the rest host the heavyweight models. The
batch size, which model variant to host, and the confidence
threshold for each worker are determined by the Controller.

We next explain the two technical innovations of DIFF-
SERVE, the discriminator design for cascading diffusion
models (§3.2) and the resource allocation algorithm (§3.3).

3.2 Discriminator Design for Model Cascading

At the core of a diffusion model cascade is the discriminator,
which evaluates the quality of images generated by a diffu-



DIFFSERVE

GLM GHMReal

GLM GHM

Discriminator

Datasets
Training

Inference

Binary
Classifier

Real

Fake

Softmax Confidence
Estimator

Training Path
Inference Path

Figure 3. Training and inference paths of the discriminator. ‘Real’
refers to images sourced from real-world high-quality datasets.
‘Fake’ refers to the generated images from diffusion models. GLM:
Generated images from Lightweight diffusion Model; GHM:
Generated images from Heavyweight diffusion Model.

sion model to determine whether deferral to a heavyweight
model is necessary. The discriminator must be accurate in
quality estimation and efficient to minimize runtime over-
head. Our approach leverages the insight that an ML model
can be trained to accurately distinguish between images gen-
erated by diffusion models and real images. This ML model
can then be repurposed as the discriminator to differentiate
whether the images produced by the lightweight model meet
quality requirements based on its classification confidence.

Discriminator Design. Figure 3 illustrates the offline train-
ing process for preparing the discriminator and the inference
process for its use within the diffusion model cascade. The
discriminator is trained on a binary classification task to dis-
tinguish between high-quality, real-world images (labeled
as ‘real’) and generated images (labeled as ‘fake’). Real
images are sourced from datasets like MSCOCO (Lin et al.,
2014) and DiffusionDB (Wang et al., 2022), while generated
images come from both the lightweight and heavyweight
diffusion models. This task enables the discriminator to
detect visual differences between high-quality real images
and generated ones, including variations in sharpness, tex-
ture coherence, and artifact presence, equipping it to assess
image quality accurately within the cascade framework.

During inference, the discriminator receives the image pro-
duced by the lightweight model and outputs a softmax value
between 0 and 1, representing the likelihood that the image
belongs to the ‘real’ or ‘fake’ class. This value is referred to
as the confidence score, representing how likely the input
image is to resemble a ‘real’ image, implying higher quality.
Our implementation uses EfficientNet as the discriminator
architecture because it has much lower computation com-
plexity compared to even the lightweight diffusion model
variants while achieving high classification accuracy. Sec-
tion 4.4 evaluates the impact of alternative design choices.

Model Cascading. Using the discriminator, cascading a
light-heavy diffusion model pair is straightforward by set-
ting a confidence threshold to quantify image quality re-
quirements. If the confidence score of an image for a query
exceeds the specified confidence threshold, the image is
returned to the user, as it meets the quality standard.

3.3 Resource Manager

The Resource Manager dynamically adjusts the confidence
threshold, allocates models across servers in a cluster, and
configures batch sizes to respond to varying query demands.
By tuning the confidence threshold, the model serving sys-
tem leverages the quality-latency trade-off inherent in model
cascades to adapt efficiently. For instance, during periods
of low demand, a higher threshold prioritizes image qual-
ity, while at peak times, a lower threshold ensures latency
deadlines are met by allowing minor quality compromises.

This model scaling approach enables a cluster to manage
high query volumes gracefully, avoiding overload while tol-
erating minor reductions in response quality as necessary.
Unlike traditional resource provisioning, which typically
dedicates resources based on peak demands and results in
underutilization during off-peak times, model scaling op-
timizes resource usage across fluctuating loads. Previous
work Proteus (Ahmad et al., 2024) explored model scaling
by selecting appropriate model variants to host based on
loads. However, model cascades introduce dependencies be-
tween model variants for query-aware processing based on
query complexities, necessitating a new resource allocation
algorithm to manage these dependencies effectively.

Our resource allocation algorithm centers on building perfor-
mance models for three key performance metrics: serving
throughput, latency, and response quality. With these mod-
els, identifying the optimal resource allocation can be stated
as an optimization problem and formulated within a mixed
integer linear programming (MILP) framework, allowing for
efficient solutions using MILP solvers. Response quality is
directly influenced by the confidence threshold, denoted as
t. Below, we describe the constraints on latency and serving
throughput and then our resource allocation formulation.

Latency Constraints. Model dependencies in model cas-
cades introduce complexities in estimating the total time a
query spends in the system. To keep query latency within
the defined SLO, the Resource Allocation component must
consider two main factors: (i) execution latency and (ii)
queuing delays. Appropriate batch size settings for each
model are essential for managing these latencies. While
larger batch sizes increase throughput, they also raise the
execution latency for each query within the batch. As the
execution time of text-to-prompt diffusion models is highly
deterministic, execution latency can be accurately predicted
and profiled across different batch sizes.

To estimate queuing delays for each model, we apply Little’s
law (Shortle et al., 2018), i.e. W = L

λ , where W is the
waiting or queuing time, L is the length of the queue, and λ
is the query arrival rate. As mentioned in Section 3.1, the
Controller maintains a record of the queue length for each
worker and the demand seen by each worker. Using these



DIFFSERVE

values, we can estimate the queuing delay for each model.

Mathematically, let b1 and b2 be the batch size used to
execute the light and heavy models respectively. let e(.)
measures the execution latency and q(.) models the queuing
delays. The latency a query experienced in the system
should be less than the deadline in SLO requirement L:

e(b1) + q(b1) + e(b2) + q(b2) ≤ L (1)

Throughput Constraints. The system’s serving throughput
can be limited by the throughput of workers hosting either
the lightweight or heavyweight model. Mathematically, let
xi represent the number of devices allocated to serve the
i-th model variant and Ti(.) represents the throughput of a
single worker for the i-th model variant, collected through
profiling. Here, i = 1 refers to the light model and i = 2
refers to the heavy model. The serving throughput of each
model variant in the model cascade must meet or exceed
their respective estimated query demands:

x1.T1(b1) ≥ D, (2)
x2.T2(b2) ≥ D.f(t), (3)
x1 + x2 ≤ S, (4)

where D is the total estimated query demand entering the
system (which is also the demand for the lightweight model),
f(t) represents the fraction of queries deferred to the heavy-
weight model when the confidence threshold is set to t, and
S denote the total number of devices available to the sys-
tem. f(t) is initialized through offline profiling and updated
during model serving as t changes.

The resource allocation problem. We formulate an optimiza-
tion problem that maximizes the confidence threshold given
incoming query demand. The optimization is a mixed inte-
ger linear program (MILP) that tunes server count allocated
for each model variant (x1, x2) and batch sizes (b1, b2).

max
x1,x2,b1,b2

t (5)

s.t. Constraints Eq. 1 - 4

Solving the MILP. The optimization problem is solved pe-
riodically by invoking a MILP solver. We estimate query
demand D using an exponentially weighted moving average
on demand history. To accommodate micro-scale variations
in query arrivals, we use λD as the estimated query demand
in Eq. 4, where λ is the over-provisioning factor and set to
1.05 by default. The time overhead to solve the MILP does
not lie on the critical path of query processing as the MILP
is called asynchronously and its execution is in the control
path. We compare the resource allocation algorithm with
alternatives and report its runtime overhead in Section 4.5.

4 EVALUATION

This section evaluates the efficacy of DIFFSERVE by answer-
ing the following questions: Q1: How does the performance
of DIFFSERVE compare to alternative approaches on both
synthetic traces (§4.2) and real-world traces (§4.3)? Q2:
How does the model cascading design (§4.4) and the re-
source allocation algorithm (§4.5) compare to alternative
approaches? What is the runtime overhead of the MILP
solvers? Q3: How do different SLO settings affect the
performance of DIFFSERVE (§4.6)?

4.1 Experiment Settings

Implementation of DIFFSERVE. We implement DIFF-
SERVE in a simulator and on a testbed cluster. (1) The
simulator-based implementation consists ∼7K lines of
Python code. It uses an event queue and a timer to record
the arrival and processing of queries. The execution time
of queries for the diffusion models is profiled for offline
usage. (2) The cluster-based implementation aims to test the
performance of DIFFSERVE on actual GPU hardware. We
use the HuggingFace (von Platen et al., 2022) and PyTorch
frameworks (Paszke et al., 2019) to execute the diffusion
models and discriminator for inference. Our cluster consists
of 16 NVIDIA A100 GPU workers, and we use gPRC for
fast and lightweight communication between system com-
ponents such as the Controller and Workers. The results we
reported in the paper are collected from the simulator unless
noted differently. We later show that the results from our
simulator closely match the results from our cluster-based
implementation, with a slight discrepancy caused by vari-
ance in processing queries on actual GPUs. The detailed
difference is reported in Section 4.3. We use Gurobi (Gurobi,
2024) to solve our MILP optimization.

Diffusion Models and Datasets. We construct model cas-
cades using three light-heavy diffusion model pairs. These
different diffusion pairs aim to show the generalizability of
the proposed discriminator design and the effectiveness of
DIFFSERVE across different model configurations. Cascade
1: We use SD-Turbo (Sauer et al., 2023) as the lightweight
model and SDv1.5 (Rombach et al., 2022) as the heavy-
model. SD-Turbo is a fast generative text-to-image model
that can generate an image from a prompt in only one step.
We use SDv1.5 with 50 steps. The inference latency to gen-
erate one image for a text prompt on A100-80GB for SDv1.5
and SD-Turbo is ∼1.78s and ∼0.1s respectively. We set the
SLO for this Cascade to be 5s for our experiments and ex-
plore the effect of different SLO values on performance in
§4.6. Cascade 2: We use SDXS-512-0.9 (referred to as
SDXS) (Song et al., 2024) as the lightweight model and
SDv1.5 as the heavymodel. SDXS takes ∼0.05s to generate
an image from a prompt in one step on an A100-80G GPU.
We again use an SLO of 5s for this Cascade. Cascade 3:



DIFFSERVE

Approach Allocation Query-aware
Clipper-Light Static No
Clipper-Heavy Static No
Proteus Dynamic No
DIFFSERVE-Static Static Yes
DIFFSERVE Dynamic Yes

Table 1. Comparison of DIFFSERVE with baselines

We use SDXL-Lightning (Lin et al., 2024) with two steps
(∼0.5s to generate an image for a prompt) as the lightweight
model and SDXL (Podell et al., 2023) with 50 steps (∼6s
for the same generation) as the heavyweight model. As this
cascade is heavier, we use an SLO of 15s.

For datasets, we use MS-COCO 2017 (Lin et al., 2014)
for Cascades 1-2 which generate images at a resolution
of 512x512, and DiffusionDB (Wang et al., 2022) for Cas-
cade 3 which generates images at a resolution of 1024x1024.
We select the first 5K text-image pairs from each dataset
with text prompts serving as queries and images applied in
calculating FID scores for evaluation. Further, we use the
Microsoft Azure Functions trace (Shahrad et al., 2020) as
a representative real-world workload to drive load on the
system. We scale the trace using shape-preserving transfor-
mations to match the capacity of our system.

Evaluation Metrics. We access system performance using
two key metrics. (1) Response quality (FID): FID measures
the similarity between two distributions – generated images
and ground truth images. To compute the FID score for a
given system configuration, we process all text prompts in a
dataset through the system and evaluate the quality of the
generated images. (2) SLO Violation Ratio: This metric
represents the proportion of queries that fail to meet the
SLO latency requirement or are preemptively dropped by
the system when they are predicted to miss the deadline.
We vary the query demand (in QPS) entering the system
and report how changes in demand affect system response
quality and the SLO violation ratio.

Counterparts for Comparison. We evaluate DIFFSERVE
against four approaches. Table 1 highlights their difference.

• Clipper-Light and Clipper-Heavy are static baselines
that route all queries to the lightweight diffusion model
and the heavyweight diffusion model, respectively.
They implement Clipper (Crankshaw et al., 2017a)
to serve these models. Although we use Clipper, this
baseline is also representative of other static and query-
agnostic model serving systems, such as TensorFlow-
Serving (Olston et al., 2017).

• Proteus (Ahmad et al., 2024) is a model serving sys-
tem that dynamically selects models based on chang-
ing query demand. However, its query routing strat-
egy does not account for query complexity; instead, it

randomly assigns incoming queries to model variants,
disregarding the content or difficulty of each query.

• DIFFSERVE-Static is a variant of our system that uses
a model cascade with a discriminator to estimate query
difficulty and route queries appropriately. It is static as
it is provisioned for peak and does not adapt confidence
threshold to changing system demand. We consider
this a practical baseline as it reflects a common practice
in production systems where resources are provisioned
to accommodate maximum anticipated demand.

4.2 Performance Comparison on Synthetic Traces

Figure 4 shows the performance of DIFFSERVE against the
baselines on synthetic, static traces for Cascade 1. We vary
the load from low to high and observe the effect on all ap-
proaches. Under static query demand, DIFFSERVE-Static
and DIFFSERVE perform identically, as there is no need for
dynamic adjustment of the confidence threshold. To gener-
ate multiple performance points under static query demand,
we vary the over-provisioning factor (see §3.3) for both the
dynamic approaches, i.e., Proteus and DIFFSERVE, to ex-
plore the quality-latency trade-off. The static approaches,
i.e., Clipper-Light and Clipper-Heavy only offer a single
point of performance for each graph since they cannot be
tuned to navigate this quality-latency trade-off.

We see that DIFFSERVE offers the Pareto optimal trade-off
between the FID (i.e., response quality) and SLO viola-
tions across all three levels of load. Although Clipper-Light
achieves the smallest SLO violations because it serves the
lightweight model for all queries, it suffers from poor re-
sponse quality. The Clipper-Heavy counterpart offers better
quality as it uses the heavyweight model for all queries, but
has the highest SLO violations (45.10%-74.11%) across all
approaches. Proteus offers a middle-ground performance
between the two Clipper extremes by tuning the model vari-
ant based on demand. However, since it routes queries to the
model variants randomly instead of considering query con-
tent, it still offers sub-optimal performance. As we can see
from the Figure, DIFFSERVE offers the Pareto optimal be-
tween FID and SLO violations as the DIFFSERVE curve lies
on the lower left portion of the graph across all loads. We
attribute this to the query-aware nature of DIFFSERVE, as it
can select the appropriate model for each query based on its
content and difficulty. As we show in §4.4, the overhead of
estimating the query difficulty is negligible.

Note that DIFFSERVE can even outperform Clipper-Heavy
in terms of FID because, as shown in §2.1, the lightweight
model offers similar or better quality for 20-40% of the
queries. This phenomenon is also reported by (Ding et al.,
2024) for LLMs, where small LLMs outperform large LLMs
for certain queries. This further emphasizes the importance
of query-awareness for model selection.



DIFFSERVE

0.0 0.2 0.4 0.6 0.8 1.0
SLO Violation Ratio

16

17

18

19

20

21

22
FI

D
Low Load

Clipper-Light
Clipper-Heavy
Proteus
DiffServe

0.0 0.2 0.4 0.6 0.8 1.0
SLO Violation Ratio

16

17

18

19

20

21

22

FI
D

Medium Load
Clipper-Light
Clipper-Heavy
Proteus
DiffServe

0.0 0.2 0.4 0.6 0.8 1.0
SLO Violation Ratio

16

17

18

19

20

21

22

FI
D

High Load
Clipper-Light
Clipper-Heavy
Proteus
DiffServe

Figure 4. Performance comparison on static trace. DIFFSERVE offers Pareto optimal between FID and SLO violations (lower left curve).

0
5

10
15
20
25
30
35
40

De
m

an
d 

(Q
PS

)

16
17
18
19
20
21
22
23

FI
D

0 50 100 150 200 250 300 350
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

SL
O 

Vi
ol

at
io

n 
Ra

tio

Clipper-Light
Clipper-Heavy
Proteus

DiffServe-Static
DiffServe

Figure 5. Performance comparison on real-world trace for Cascade
1. DIFFSERVE improves quality by up to 23.4% over baselines
while maintaining low SLO violations. During peak, it offers
similar or better quality than static approaches with significantly
lower SLO violations (from 19-70%).

4.3 Performance Comparison on Real Traces

Production systems observe significant variations in demand
throughout the day. An approach that dynamically responds
to demand variations can offer significant performance im-
provements over static approaches. We now show how
DIFFSERVE performs on a real-world dynamic trace against
the baselines.

Figure 5 reports the comparison using Cascade 1. We again
observe that Clipper-Light has the lowest quality (highest
FID) and low SLO violations due to sending all queries to
the lightweight model. Clipper-Heavy offers higher qual-
ity (∼15%) but suffers from significant SLO violations at

Clipper-Light
Clipper-Heavy

Proteus

DiffServe-Static
DiffServe

18
20
22
24
26
28
30
32

Av
g.

 F
ID 0.6

0.7
Cascade 2
Cascade 3

Clipper-Light
Clipper-Heavy

Proteus

DiffServe-Static
DiffServe

0.0

0.1

Av
g.

 S
LO

 V
io

la
tio

n 
Ra

tio

Figure 6. Comparison of approaches on the testbed. Across both
Cascade 2 and 3, DIFFSERVE achieves an 6%-24% reduction in av-
erage FID compared to all baselines, except Clipper-Heavy which
yields significantly high SLO violations. DIFFSERVE reduces the
average SLO violation by up to 1.4×, 1.9× and 52× compared to
DIFFSERVE-Static, Proteus and Clipper-Heavy. Clipper-Light’s
avg. SLO Violation Ratio is zero.

the peak (up to 75%) as the heavyweight model has a long
execution time. Proteus dynamically tunes the resource al-
location according to demand changes and thus experiences
an almost consistent level of quality throughout the trace.
However, as it is query-agnostic, its quality improvement
over Clipper-Light is minimal (<5%). We also study the
performance of DIFFSERVE-Static in this case. As it is
query-aware but static, it also experiences a consistent level
of quality (FID) throughout the trace. Due to its query-
aware nature, it can improve quality over Clipper-Light and
Proteus by up to 9%. However, as it cannot change its al-
location to accommodate demand changes, it suffers from
high SLO violations (up to 19%) during the peak.

DIFFSERVE offers the best performance throughout due to
its dynamic resource allocation and query-awareness. Dur-
ing the off-peak, it can significantly improve quality (up
to 23.4%) while guaranteeing very low SLO violations. It
does so by using the heavyweight model intelligently, only
sending it queries that have a low confidence score from the
lightweight model, thus ensuring high quality while main-
taining low latency. As demand increases and resources get
constrained, it keeps SLO violations low by routing more
queries to the lightweight model. At peak demand, its FID
score is momentarily worse only than Clipper-Heavy, but as



DIFFSERVE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Latency

17

18

19

20

21

22

23

FI
D

ResNet w GT
ViT w GT
EfficientNet w Fake
EfficientNet w GT

(a) SD-Turbo

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Latency

17
18
19
20
21
22
23
24
25

FI
D

(b) SDXS

Figure 7. Discriminator comparison. EfficientNet trained with
ground truth images achieves the lowest FID given latency require-
ments, outperforming all other approaches across both cascades.

mentioned before, Clipper-Heavy suffers from significantly
high SLO violations at this time. Therefore, DIFFSERVE
adapts dynamically to the real-world trace and outperforms
baselines in terms of both quality and SLO violations. Un-
der imbalanced workloads dominated by easy or difficult
queries, while resources would shift toward lightweight or
heavyweight models respectively, DIFFSERVE would still
balance response quality and SLO violations by tuning the
confidence threshold.

Figure 6 presents testbed results for Cascades 2 and 3. As
both configurations exhibit similar trends to Cascade 1, we
report the average FID scores and SLO violation rates. We
observe that DIFFSERVE reduces average FID scores by 6%-
24% for Cascade 2 and by 8%-15% for Cascade 3 compared
to all other baselines, except Clipper-Heavy, which incurs a
high SLO violation (68.4% and 73%). DIFFSERVE outper-
forms all baselines in terms of SLO violations with 1.4×,
1.7×, and 26× lower violation ratio than DIFFSERVE-Static,
Proteus, and Clipper-Heavy, respectively, for Cascade 2, and
1.2×, 1.9×, and 52× lower violation ratio for Cascade 3.

We conducted the same experiments on the simulator, ob-
serving an average difference of only 0.56% for FID and
1.1% for SLO violations compared to the testbed. This
close alignment between the simulator and testbed results
confirms the simulator’s reliability. Therefore, we use the
simulator for the remaining subsections to efficiently evalu-
ate DIFFSERVE across a broad range of scenarios.

4.4 Evaluation of the Discriminator Design

We have shown in Figure 1a that using a discriminator sur-
passes other methods, such as PickScore, ClipScore, and
Random selection, for diffusion model cascading. To further
illustrate the choice of discriminator design, we examine
the effectiveness of using EfficientNet-V2 as the discrimi-
nator in our model cascading architecture by comparing it
against several variants of our approach. The variants in-
clude: (1) ResNet w GT: using ResNet-34 (He et al., 2015)
trained with ground truth images as “real” samples, (2) ViT

0
5

10
15
20
25
30
35
40

De
m

an
d 

(Q
PS

)

16
17
18
19
20
21
22
23

FI
D

0 50 100 150 200 250 300 350
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

SL
O 

Vi
ol

at
io

n 
Ra

tio

DiffServe
Static Threshold

No queuing model
AIMD

Figure 8. Performance of the resource allocation algorithm in DIFF-
SERVE and alternative approaches. DIFFSERVE reduces SLO vio-
lations by 20% and improves quality by up to 19%.

w GT: using Vision Transformer (Dosovitskiy et al., 2021)
(i.e., ViT b 16) trained with ground truth images as “real”
samples, (3) EfficientNet w Fake: using EfficientNet-V2
trained with images generated by the heavymodel as “real”
samples, and (4) EfficientNet w GT: using EfficientNet-v2
trained with ground truth images as “real” samples, which
is the final configuration applied in our paper. We evaluate
all the variants across two cascade configurations, where the
lightweight models are SD-Turbo and SDXS, respectively,
and the heavyweight model is SDV1.5 for both. The ground
truth images are taken from the MS-COCO dataset.

Our results reported in Figure 7 reflect that EfficientNet
w GT consistently has the highest response quality (i.e.,
lowest FID scores) given a latency requirement among all
the variants of approach, which means it outperforms all
the other baselines. The latency of EfficientNet, ResNet,
and ViT on an A100 GPU is 10ms, 2ms, and 5ms, respec-
tively, which are negligible compared to the execution time
of the diffusion models which are in the order of seconds.
EfficientNet’s architectural efficiency likely contributes to
its superior performance, allowing it to capture complex
quality features in images more effectively than the other
models. Additionally, using ground truth images as “real”
samples for training provides a more robust discriminator
that aligns well with human-perceived quality, outperform-
ing the configuration trained with generated images as “real”
samples. These findings validate our choice of EfficientNet
with ground truth images as the optimal configuration for



DIFFSERVE

0 2 4 6 8 10
SLO requirement (secs)

18

19

20

21

22
Av

g 
FI

D

0 2 4 6 8 10
SLO requirement (secs)

0.00

0.01

0.02

0.03

0.04

0.05

Av
g 

SL
O 

vi
ol

at
io

n 
ra

tio

Figure 9. Effect of SLO on performance for Cascade 1. DIFF-
SERVE guarantees low SLO violations and high quality over a
broad range of SLO values.

the discriminator in DIFFSERVE, leading to improved ac-
curacy in confidence estimation and overall performance
within the cascading architecture.

4.5 Evaluation of Resource Allocation

We now show an ablation study of our resource allocation
in Figure 8 to understand the effect of various parts of our
optimization such as threshold tuning, dynamic batch size
selection, and our queuing model, against the following:

Static threshold. We fix the threshold to remain static in
DIFFSERVE throughout the experiment while letting the
optimization tune server allocation and batch size. Note that
this approach is different from DIFFSERVE-Static where all
the optimization parameters are fixed and provisioned for
the peak. As the threshold is fixed, this approach cannot
adapt to demand changes, and thus loses out on the quality
improvement offered by DIFFSERVE (up to 19%) during
off-peak by sending more queries to the heavyweight model.

AIMD batching. Instead of letting our optimization tune
the batch size, we use a heuristic used by prior work such as
Clipper (Crankshaw et al., 2017b): additive-increase multi-
plicative decrease. This heuristic decreases the batch size by
a multiplicative factor upon experiencing an SLO timeout
and increases it additively otherwise. As this approach is
reactive based on SLO violations as signal, it experiences a
significantly higher SLO violation ratio throughout the ex-
periment. DIFFSERVE proactively sets the batch size based
on the system demand and available resources, and thus
experiences significantly lower SLO violations (up to 20%).

No queuing model. Since DIFFSERVE uses a queuing
model to estimate the queuing delays, we replace the the-
oretical model with a heuristic used by prior work such as
Proteus to estimate queuing delays by assuming it to be
twice the execution delay. This approach works well when
query load is low and a query can always be executed in the
next batch after it arrives. However, during off-peak times,
it experiences significantly lower quality (up to 12%) due to

under-estimation of queuing delay. DIFFSERVE avoids this
problem by estimating queuing delay based on real-time
queue length and query arrival information.

Overhead of MILP Solver. We measure the average run-
time of the MILP solver to be ∼10 milliseconds. This incurs
a minimal overhead on the system for periodically changing
resource allocation in real-time. Moreover, since the MILP
solver does not lie on the critical path of query serving, this
overhead does not affect individual queries.

4.6 Sensitivity to SLO

Figure 9 explores the effect of different SLO values on the
accuracy and SLO violation ratios. We note that DIFFSERVE
consistently guarantees low SLO violations and high quality
across a broad range of SLO values.

5 DISCUSSION

Scalability of DIFFSERVE. DIFFSERVE is scalable
and can be generalized to various situations. For longer
pipelines, DIFFSERVE can be extended by applying a dis-
criminator after each model, with adjustments to the MILP
formulation to include multiple confidence thresholds as
optimization variables. For higher-resolution image genera-
tion, the overhead of the discriminator remains negligible
compared to the overall pipeline as the computational com-
plexities of the discriminator and the diffusion models grow
with the image resolution. For other models and tasks (e.g.,
LLMs), the basic technique of model cascading is still appli-
cable with specific quality metrics like BARTScore (Yuan
et al., 2021) used in the discriminator. For deploying DIFF-
SERVE in heterogeneous GPU clusters, a slightly more com-
plex MILP formulation would be required to account for
different server classes and model runtimes on each class.
Although this adjustment would increase the runtime com-
plexity of the MILP, there is no fundamental limitation that
prevents its implementation.

Reuse Opportunities. A potential optimization to im-
prove DIFFSERVE is the reuse of intermediate outputs
from lightweight models during the execution of heavy-
weight models. This approach compensates for the over-
head of both difficulty estimation and the initial execution of
lightweight models, as the heavyweight model can directly
build upon the results from the lightweight model instead
of starting from scratch. While reuse opportunities exist in
cascaded inference, they introduce additional complexity in
selecting compatible lightweight and heavyweight models,
as reuse may even potentially negatively impact the image
generation quality of the heavyweight model. For instance,
in our experiments, with 50 denoising steps, reusing im-
ages from SD-Turbo with SDv1.5 showed no significant
change in FID, but reusing those from SDXS increased FID



DIFFSERVE

from 18.55 to 19.75 on the MS-COCO dataset, implying
worse image quality. While reuse is feasible, ensuring com-
patibility between models is critical to maintaining output
quality.

Design of Predictive Router. While DIFFSERVE relies
on a discriminator to assess the quality of generated images
for routing decisions, an alternative approach is to use the
query itself to make routing decisions before executing any
diffusion models. However, predicting image generation
quality solely from text inputs is challenging, as image
quality is highly dependent on the specific diffusion models
used, making it non-trivial to accurately estimate outcomes
based on the query alone. Thus, it remains an open question
whether a query-based routing strategy would yield better
performance in image-generation pipelines.

6 RELATED WORK

Model Serving. Existing model serving systems gener-
ally fall into two categories, neither of which addresses the
resource management challenges with query-aware model
scaling. The first category requires users to specify the mod-
els for inference, leaving the system to handle resource man-
agement alone. This category includes production systems
like SageMaker (sag, 2020), Triton (tri, 2022), TensorFlow
Serving (TensorFlow Authors, 2023), and TorchServe (Py-
Torch Authors, 2023), as well as academic prototypes such
as Nexus (Shen et al., 2019), BATCH (Ali et al., 2020),
and Clockwork (Gujarati et al., 2020). These systems are
limited in that they do not automatically manage model
variants for the same task, providing only a narrow scope
of services. The second category improves upon the first
by automatically managing both resources and model vari-
ants. Works such as Clipper (Crankshaw et al., 2017b),
Rafiki (Wang et al., 2018), and Cocktail (Gunasekaran et al.,
2022) use model ensembles to enhance response quality. IN-
FaaS (Romero et al., 2021a), Model Switching (Zhang et al.,
2020), and Sommelier (Guo et al., 2022) dynamically se-
lect model variants based on system load to process queries.
Proteus (Ahmad et al., 2024) is the first to formalize and
address the resource management problem when serving
model variants with different accuracy-efficiency tradeoffs.
However, these systems route queries based primarily on
system workload, overlooking the optimization potential
inherent in varying query difficulties.

Cascaded Inference. A cascading architecture for model
inference has been explored across various machine learning
domains in recent years. CascadeBERT (Li et al., 2021) and
Tabi (Wang et al., 2023) speed up inference by cascading
progressively larger pre-trained language models, using cal-
ibrated confidence scores to decide whether to return results
or re-route inputs to complex models. (Shen et al., 2017)
introduces a cascade of CNN models with adaptive decision-

making for efficient video classification. WILLUMP (Kraft
et al., 2020) cascades feature computation by classifying
simple inputs with inexpensive key features while routing
complex ones to a more powerful model. For generative
language models, (Gupta et al., 2024) leverages token-level
uncertainty for deferral rules in LM cascades, and Frugal-
GPT (Chen et al., 2023) proposes a flexible LLM cascade
that learns optimal combinations of models to use for dif-
ferent queries. Nonetheless, unlike discriminative inference
and language generation tasks, diffusion models lack clear
intermediate decision points to evaluate and cascade based
on partial outputs or confidence, making these methods
incompatible with text-to-image generation pipelines.

Pipeline Serving. Works that serve inference pipelines are
relevant as model cascades are a type of inference pipeline.
InferLine (Crankshaw et al., 2020) minimizes the cost of in-
ference serving by scaling hardware in response to changes
in demand. A lot of work has been specifically related to
video analytics pipelines such as VideoStorm (Zhang et al.,
2017), Scrooge (Hu et al., 2021), Llama (Romero et al.,
2021b), and Nexus (Shen et al., 2019). DIFFSERVE differs
in its focus on cascading models within the pipeline, using
a confidence-based decision process to dynamically switch
between lightweight and heavyweight models, balancing
both computational efficiency and response quality.

7 CONCLUSION

This work proposed DIFFSERVE, an innovative system that
optimizes the efficiency of text-to-image diffusion model
serving by leveraging query-aware model scaling. DIFF-
SERVE employs a dynamic approach to model placement,
implementing a cascading framework in which an ML-
based discriminator routes queries based on their complexity,
thereby preserving image generation quality. By framing
resource allocation as a mixed integer linear programming
(MILP) problem, DIFFSERVE efficiently manages real-time
query demand with optimized response quality. Our evalua-
tions across various benchmarks indicate that DIFFSERVE
enhances response quality by up to 24% over existing sys-
tems while decreasing SLO violations by 19-70%, demon-
strating that query-aware scaling is both a robust and flexible
solution for diffusion model serving.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under grants CNS-2106463, CNS-
1901137, CNS-2312396, CNS-2338512, CNS-2224054,
and DMS-2220211. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation. Part of this work is also
supported by Adobe gift funding.



DIFFSERVE

REFERENCES

Twitter streaming traces. https:
//archive.org/details/
archiveteam-twitter-stream-2018-04,
2018.

Amazon sagemaker. build, train, and deploy machine learn-
ing models at scale. https://aws.amazon.com/
sagemaker/, 2020. Accessed: 2021-06-23.

Triton inference server. https:
//developer.nvidia.com/
nvidia-triton-inference-server, 2022.

Adobe. Adobe firefly. https://www.adobe.com/
products/firefly.html, 2024. Accessed: 2024-
10-07.

Ahmad, S., Guan, H., Friedman, B. D., Williams, T., Sitara-
man, R. K., and Woo, T. Proteus: A high-throughput
inference-serving system with accuracy scaling. In Pro-
ceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 1, pp. 318–334, 2024.

Ali, A., Pinciroli, R., Yan, F., and Smirni, E. Batch: Machine
learning inference serving on serverless platforms with
adaptive batching. In SC20: International Conference
for High Performance Computing, Networking, Storage
and Analysis, pp. 1–15. IEEE, 2020.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V. Adap-
tive neural networks for efficient inference. In Interna-
tional Conference on Machine Learning, pp. 527–536.
PMLR, 2017.

Chen, L., Zaharia, M., and Zou, J. Frugalgpt: How to use
large language models while reducing cost and improv-
ing performance, 2023. URL https://arxiv.org/
abs/2305.05176.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J.,
Gonzalez, J. E., and Stoica, I. Clipper: A low-latency
online prediction serving system. In 14th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 17), pp. 613–627, Boston, MA,
March 2017a. USENIX Association. ISBN 978-1-
931971-37-9. URL https://www.usenix.org/
conference/nsdi17/technical-sessions/
presentation/crankshaw.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gon-
zalez, J. E., and Stoica, I. Clipper: A low-latency online
prediction serving system. In NSDI, volume 17, pp. 613–
627, 2017b.

Crankshaw, D., Sela, G.-E., Mo, X., Zumar, C., Stoica, I.,
Gonzalez, J., and Tumanov, A. Inferline: latency-aware
provisioning and scaling for prediction serving pipelines.
In Proceedings of the 11th ACM Symposium on Cloud
Computing, pp. 477–491, 2020.

Ding, D., Mallick, A., Wang, C., Sim, R., Mukherjee, S.,
Ruhle, V., Lakshmanan, L. V. S., and Awadallah, A. H.
Hybrid llm: Cost-efficient and quality-aware query rout-
ing, 2024. URL https://arxiv.org/abs/2404.
14618.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers
for image recognition at scale, 2021. URL https:
//arxiv.org/abs/2010.11929.

Gujarati, A., Karimi, R., Alzayat, S., Hao, W., Kaufmann,
A., Vigfusson, Y., and Mace, J. Serving {DNNs} like
clockwork: Performance predictability from the bottom
up. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pp. 443–462,
2020.

Gunasekaran, J. R., Mishra, C. S., Thinakaran, P., Sharma,
B., Kandemir, M. T., and Das, C. R. Cocktail: A multi-
dimensional optimization for model serving in cloud. In
USENIX NSDI, pp. 1041–1057, 2022.

Guo, P., Hu, B., and Hu, W. Sommelier: Curating dnn
models for the masses. In Proceedings of the 2022 Inter-
national Conference on Management of Data, pp. 1876–
1890, 2022.

Gupta, N., Narasimhan, H., Jitkrittum, W., Rawat, A. S.,
Menon, A. K., and Kumar, S. Language model cascades:
Token-level uncertainty and beyond, 2024. URL https:
//arxiv.org/abs/2404.10136.

Gurobi, 2024. URL https://www.gurobi.com/.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015. URL https://
arxiv.org/abs/1512.03385.

Hessel, J., Holtzman, A., Forbes, M., Le Bras, R., and Choi,
Y. CLIPScore: A reference-free evaluation metric for
image captioning. In Moens, M.-F., Huang, X., Specia,
L., and Yih, S. W.-t. (eds.), Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 7514–7528, Online and Punta Cana, Domini-
can Republic, November 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.
595. URL https://aclanthology.org/2021.
emnlp-main.595.

 https://archive.org/details/archiveteam-twitter-stream-2018-04
 https://archive.org/details/archiveteam-twitter-stream-2018-04
 https://archive.org/details/archiveteam-twitter-stream-2018-04
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://www.adobe.com/products/firefly.html
https://www.adobe.com/products/firefly.html
https://arxiv.org/abs/2305.05176
https://arxiv.org/abs/2305.05176
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://arxiv.org/abs/2404.14618
https://arxiv.org/abs/2404.14618
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2404.10136
https://arxiv.org/abs/2404.10136
https://www.gurobi.com/
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://aclanthology.org/2021.emnlp-main.595
https://aclanthology.org/2021.emnlp-main.595


DIFFSERVE

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 6629–6640, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Hu, Y., Ghosh, R., and Govindan, R. Scrooge: A cost-
effective deep learning inference system. In Proceedings
of the ACM Symposium on Cloud Computing, pp. 624–
638, 2021.

Hugging Face. Hugging face models hub, 2024. URL
https://huggingface.co/models. Accessed:
2024-10-30.

Kirstain, Y., Polyak, A., Singer, U., Matiana, S., Penna,
J., and Levy, O. Pick-a-pic: An open dataset of user
preferences for text-to-image generation, 2023. URL
https://arxiv.org/abs/2305.01569.

Kraft, P., Kang, D., Narayanan, D., Palkar, S., Bailis, P., and
Zaharia, M. Willump: A statistically-aware end-to-end
optimizer for machine learning inference, 2020. URL
https://arxiv.org/abs/1906.01974.

Li, L., Lin, Y., Chen, D., Ren, S., Li, P., Zhou, J., and
Sun, X. Cascadebert: Accelerating inference of pre-
trained language models via calibrated complete models
cascade, 2021. URL https://arxiv.org/abs/
2012.14682.

Lin, S., Wang, A., and Yang, X. Sdxl-lightning: Progressive
adversarial diffusion distillation, 2024. URL https:
//arxiv.org/abs/2402.13929.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Midjourney. Midjourney. https://www.midjourney.
com/home, 2024. Accessed: 2024-10-07.

Olston, C., Li, F., Harmsen, J., Soyke, J., Gorovoy, K.,
Lao, L., Fiedel, N., Ramesh, S., and Rajashekhar, V.
Tensorflow-serving: Flexible, high-performance ml serv-
ing. In Workshop on ML Systems at NIPS 2017, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library, 2019. URL
https://arxiv.org/abs/1912.01703.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

PyTorch Authors. Torchserve. https://pytorch.
org/serve/, 2023. Accessed: 2024-09-26.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with la-
tent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10684–10695, June 2022.

Romero, F., Li, Q., Yadwadkar, N. J., and Kozyrakis, C.
{INFaaS}: Automated model-less inference serving. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21), pp. 397–411, 2021a.

Romero, F., Zhao, M., Yadwadkar, N. J., and Kozyrakis,
C. Llama: A heterogeneous & serverless framework for
auto-tuning video analytics pipelines. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’21,
pp. 1–17, New York, NY, USA, 2021b. Association for
Computing Machinery. ISBN 9781450386388. doi: 10.
1145/3472883.3486972. URL https://doi.org/
10.1145/3472883.3486972.

Sauer, A., Lorenz, D., Blattmann, A., and Rombach, R.
Adversarial diffusion distillation, 2023. URL https:
//arxiv.org/abs/2311.17042.

Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P.,
Cooke, J., Laureano, E., Tresness, C., Russinovich, M.,
and Bianchini, R. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pp. 205–218, 2020.

Shen, H., Han, S., Philipose, M., and Krishnamurthy, A.
Fast video classification via adaptive cascading of deep
models. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2197–2205, 2017.
doi: 10.1109/CVPR.2017.236.

Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Philipose,
M., Krishnamurthy, A., and Sundaram, R. Nexus: A gpu
cluster engine for accelerating dnn-based video analysis.
In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pp. 322–337, 2019.

Shortle, J. F., Thompson, J. M., Gross, D., and Harris, C. M.
Fundamentals of queueing theory, volume 399. John
Wiley & Sons, 2018.

Song, Y., Sun, Z., and Yin, X. Sdxs: Real-time one-step
latent diffusion models with image conditions, 2024. URL
https://arxiv.org/abs/2403.16627.

https://huggingface.co/models
https://arxiv.org/abs/2305.01569
https://arxiv.org/abs/1906.01974
https://arxiv.org/abs/2012.14682
https://arxiv.org/abs/2012.14682
https://arxiv.org/abs/2402.13929
https://arxiv.org/abs/2402.13929
https://www.midjourney.com/home
https://www.midjourney.com/home
https://arxiv.org/abs/1912.01703
https://pytorch.org/serve/
https://pytorch.org/serve/
https://doi.org/10.1145/3472883.3486972
https://doi.org/10.1145/3472883.3486972
https://arxiv.org/abs/2311.17042
https://arxiv.org/abs/2311.17042
https://arxiv.org/abs/2403.16627


DIFFSERVE

TensorFlow Authors. Tensorflow serving. https://www.
tensorflow.org/tfx/guide/serving, 2023.
Accessed: 2024-09-26.

Viola, P. and Jones, M. Rapid object detection using a
boosted cascade of simple features. In Proceedings of
the 2001 IEEE computer society conference on computer
vision and pattern recognition. CVPR 2001, volume 1,
pp. I–I. Ieee, 2001.

von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lam-
bert, N., Rasul, K., Davaadorj, M., Nair, D., Paul, S.,
Berman, W., Xu, Y., Liu, S., and Wolf, T. Diffusers:
State-of-the-art diffusion models. https://github.
com/huggingface/diffusers, 2022.

Wang, W., Wang, S., Gao, J., Zhang, M., Chen, G., Ng, T. K.,
and Ooi, B. C. Rafiki: Machine learning as an analytics
service system. arXiv preprint arXiv:1804.06087, 2018.

Wang, Y., Chen, K., Tan, H., and Guo, K. Tabi: An ef-
ficient multi-level inference system for large language
models. In Proceedings of the Eighteenth European
Conference on Computer Systems, EuroSys ’23, pp.
233–248, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9781450394871. doi: 10.
1145/3552326.3587438. URL https://doi.org/
10.1145/3552326.3587438.

Wang, Z. J., Montoya, E., Munechika, D., Yang, H.,
Hoover, B., and Chau, D. H. DiffusionDB: A large-
scale prompt gallery dataset for text-to-image gener-
ative models. arXiv:2210.14896 [cs], 2022. URL
https://arxiv.org/abs/2210.14896.

Yuan, W., Neubig, G., and Liu, P. Bartscore: Evaluating
generated text as text generation. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 27263–27277. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.
pdf.

Zhang, H., Ananthanarayanan, G., Bodik, P., Philipose,
M., Bahl, P., and Freedman, M. J. Live video analytics
at scale with approximation and Delay-Tolerance. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pp. 377–392, Boston,
MA, March 2017. USENIX Association. ISBN 978-1-
931971-37-9. URL https://www.usenix.org/
conference/nsdi17/technical-sessions/
presentation/zhang.

Zhang, J., Elnikety, S., Zarar, S., Gupta, A., and Garg, S.
{Model-Switching}: Dealing with fluctuating workloads

in {Machine-Learning-as-a-Service} systems. In 12th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://doi.org/10.1145/3552326.3587438
https://doi.org/10.1145/3552326.3587438
https://arxiv.org/abs/2210.14896
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang


DIFFSERVE

A ARTIFACT APPENDIX

A.1 Abstract

This artifact describes the complete workflow to set up
the cluster testbed experiments for DIFFSERVE. We intro-
duce the hardware and software requirements of the cluster
testbed. We then describe how to obtain the code, and then
describe how to install the dependencies. Finally, we explain
how to run the experiments and plot the results.

A.2 Artifact check-list (meta-information)
• Algorithm: Optimization using a trained DNN model as a

discriminator, combined with mixed integer linear program-
ming (Gurobi is used).

• Data set: Multiple text files included in the repository.
• Run-time environment: Linux Ubuntu
• Hardware: Multiple powerful GPUs (A100-40G/80G,

L40s, etc.) for execution of diffusion model, or multiple
Nvidia GPUs (1080Ti, V100, etc.) for simulated execution.

• Metrics: Confidence threshold, FID score, SLO violation
ratio.

• Output: Log files are output by the testbed, which are then
used by the plotting scripts to generate graphs.

• Experiments: End-to-end experiment of DIFFSERVE for
three cascaded pipelines shown in the paper on dynamic
traces.

• How much disk space required (approximately)?: Ap-
proximately 15GB of disk space to download all diffusion
models.

• How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes.

• How much time is needed to complete experiments (ap-
proximately)?: 10 minutes for each cascaded pipeline.

• Publicly available?: Yes. See Section A.3.1 for details.

A.3 Description

A.3.1 How delivered

The cluster testbed code and workload trace can be ac-
cessed at https://github.com/qizhengyang98/
DiffServe. It is also accessible at the fol-
lowing DOI: https://doi.org/10.5281/zenodo.
14984970.

A.3.2 Hardware dependencies

The DIFFSERVE testbed requires a CPU server and multiple
GPU servers.

• CPU: a CPU server with 10 cores, 16G RAM for the
controller, load balancer, sink worker, and client processes.

• GPU: multiple servers with powerful GPUs (e.g., A100-
40G/80G, L40s, etc) to execute diffusion models. The num-
ber of servers depends on how many workers are used in the
experiments. At a minimum, 4 servers are needed. In the
paper, we used 16 servers with A100-80G for 16 workers.

Alternatively, we provide simulated execution in the artifact,
which simulates the execution of diffusion models. In this

case, any Nvidia GPUs can be used, and multiple workers
can be created on a single GPU server by using tmux such
that the experiments can be done with fewer GPUs.

A.3.3 Software dependencies

• Linux OS, conda environment with Python=3.8, and several
Python packages listed in the requirements.txt.

• Gurobi optimization software.
• A Gurobi license.

A.3.4 Datasets

We have three cascaded pipelines: sdturbo&sdv1.5,
sdxs&sdv1.5, and sdxl-lightning&sdxl. The name of the
cascade indicates the lightweight and heavyweight models
used. Each cascade uses a specific dataset and trace.

For query content, We use the MS-COCO 2017 dataset for
Cascades 1 and 2, and DiffusionDB for Cascade 3. We
select the first 5K text-image pairs from each dataset with
text prompts serving as queries and the respective images
used to calculate FID scores for evaluation. We provide text
files in the artifact that are required to run the end-to-end
experiments.

For query arrivals, we use the Microsoft Azure Functions
trace and scale it using shape-preserving transformations
to match the capacity of our system. All traces used in the
paper are included in the artifact. The trace files follow
the naming format trace {A}to{B}qps.txt, where A and B
represent the minimum and maximum query rates in the
trace, respectively. For cascade 1 and 2, We used 4to32qps,
while for cascade 3, we used 1to8qps, on a cluster of 16
GPUs.

A.4 Installation

To set up the environments, first clone the repository via the
link in Section A.3.1. Then, go to the root folder and create
a conda environment:

• conda create -n diffserve python=3.8
• conda activate diffserve
• pip install -r requirements.txt

We implement the MILP optimization of DIFFSERVE using
Gurobi. Therefore, it is required to obtain a Gurobi license
as follows:

• Follow the instructions on the official website to get a com-
mercial or a free academic license for Gurobi.

• Once the license is obtained, Gurobi will provide a gurobi.lic
file.

• Place the license file under the path gurobi/gurobi.lic.

Then, download the pretrained discriminators and image
datasets by running “python prepare ds mod.py” under the
conda environment. Note that this step can be skipped if
you use simulated execution.

https://github.com/qizhengyang98/DiffServe
https://github.com/qizhengyang98/DiffServe
https://doi.org/10.5281/zenodo.14984970
https://doi.org/10.5281/zenodo.14984970
https://www.gurobi.com/solutions/licensing/


DIFFSERVE

A.5 Experiment workflow

In this section, we provide instructions on how to execute
experiments using the scripts in the artifact. In the following
steps, {Step Num.-R} means steps for doing real execution
of diffusion models, while {Step Num.-S} means steps for
doing simulated execution.

• Step 1-R For preparation, open one terminal on each GPU
server and 4 terminals on the CPU server.

• Step 2-R In the terminals of the CPU server, run {tmux new
-s contr}, {tmux new -s loadb}, {tmux new -s sink}, {tmux
new -s client}, respectively.

• Step 3-R Activate the conda environment in each terminal
by running {conda activate diffserve}.

• Step 4-R To run experiments of cascade-1, in tmux contr
terminal, run the script start controller.sh which starts the
controller process. Copy the IP address printed in the
console and replace the original IP address after -cip in
start worker.sh and start worker sink.sh.

• Step 5-R In tmux loadb terminal, run start load balancer.sh
which starts the load balancer process.

• Step 6-R In tmux sink terminal, run start worker sink.sh
which starts the sink worker process.

• Step 7-R In each terminal of GPU server, modify the number
after -p in start worker.sh, then run the script. This number
is the port number of each worker. Make sure the number
you assign to each worker is unique, and is between [50051,
50066]. Note that if you execute the worker for the first
time, diffusion models will be downloaded automatically to
models folder.

• Step 8-R If all the processes have been set up successfully,
there will be logs corresponding to each process under
the folder logs, and worker processes will report “Worker
is ready” in the console. The logs include controller,
load balancer, worker {port number}, and model {port
number}.

• Step 9-R Then in tmux client, run start client.sh to start the
client process, which keeps sending queries in 6 minutes.
Modify the flag -trace given the number of workers you
allocate. Use 1to8qps, 2to16qps, 2 5to20qps, 3to24qps,
4to32qps if you have ∼4, 8, 10, 12, 16 workers, respectively.

• Step 10-R The Client process will report “Trace ended”
when it stops sending queries. Then stop all the processes.

• Step 11-R Under folder logs, there will be three csv files
which contains the end-to-end experiment results. To
generate graphs, go to folder plotting, and run the script
run plot results.sh.

• Step 12-R Be sure to remove all the log files before starting
a new experiment.

For simulated execution,

• Step 1-S For preparation, open one or multiple terminals on

each GPU server and 4 terminals on the CPU server. The
total number of terminals on GPU servers should be equal to
the total number of workers you want to allocate.

• Step 2.1-S In the terminals of the CPU server, run {tmux
new -s contr}, {tmux new -s loadb}, {tmux new -s sink},
{tmux new -s client}, respectively.

• Step 2.2-S In each terminal of the GPU servers, run {tmux
new -s workerX} respectively, where X is a number or charac-
ter. Make sure X is unique to each terminal on a single server.

• Step 2.3-S In start worker.sh, add a flag --do simulate at the
end of the python command.

• Step (3-12)-S Steps 3-12 are the same as Step 3-R to Step
12-R explained above.

The above steps describe the end-to-end experiment flow
of cascade 1. To run experiments for Cascades 2 and 3,
simply replace the flag -c sdturbo with -c sdxs and -c sdxlltn
in all shell scripts in the root folder, then follow the same
steps. For Cascade 3, it is recommended to use simulated
execution when the number of GPUs is less than 16, as the
controller may struggle to find a solution due to insufficient
available workers.

A.6 Evaluation and expected result

The testbed produces log files in the logs folder. The log files
contain snapshots of the system at regular intervals, includ-
ing the resource allocation, user demands, system capacity,
queries served/dropped/late, and confidence thresholds set
given the demand changes.

To generate the graphs from the logs, the Python script
plotting/plot results.py can be used to plot the following:
confidence threshold over time, SLO violation ratio over
time, and FID score over time, which should be similar to
the one in Figure 5. The script also prints the average SLO
violation ratio and the average FID score, which should be
similar to those in Figure 6. The results can vary slightly
given different hardware and trace files in use. To generate
the graphs, simply modify the flag --cascade with [sdturbo,
sdxs, sdxlltn] for different cascades, then run the script
run plot results.sh.


