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Abstract
Artificial intelligence will play a significant role
in decision making in numerous aspects of soci-
ety. Numerous fairness criteria have been pro-
posed in the machine learning community, but
there remains limited investigation into fairness
as defined through specified attributes in a sequen-
tial decision-making framework. In this paper, we
focus on causal logistic bandit problems where
the learner seeks to make fair decisions, under
a notion of fairness that accounts for counterfac-
tual reasoning. We propose and analyze an al-
gorithm by leveraging primal-dual optimization
for constrained causal logistic bandits where the
non-linear constraints are a priori unknown and
must be learned in time. We obtain sub-linear
regret guarantees with leading term similar to
that for unconstrained logistic bandits (Lee et al.,
2024) while guaranteeing sub-linear constraint
violations. We show how to achieve zero cumula-
tive constraint violations with a small increase in
the regret bound.

1. Introduction
Artificial intelligence (AI) models, using techniques from
statistics and machine learning, are increasingly being used
to make decisions that affect people’s lives. In light of this, a
plethora of formal fairness criteria have been proposed (Dar-
lington, 1971; Dwork et al., 2012; Hardt et al., 2016; Zhang
et al., 2016; Kusner et al., 2017; Zafar et al., 2017; Nabi
& Shpitser, 2018; Chiappa, 2019; Chouldechova & Roth,
2020; Imai & Jiang, 2023; Plecko & Bareinboim, 2024).
There has been growing interest in the sequential decision-
making community for accounting for fairness, including in
settings such as classic and contextual bandits (Joseph et al.,
2018), combinatorial bandits (Xu et al., 2020), bandits with
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long-term constraints (Liu et al., 2022), and reinforcement
learning (Jabbari et al., 2017), just to name a few. Notably,
rather than addressing fairness through the lens of specified
attributes, these studies typically operationalize fairness in
a different manner by defining it with respect to one-step
rewards and introducing a notion of meritocratic fairness
(Joseph et al., 2018). An algorithm should never assign a
higher selection probability to a less qualified decision than
to a more qualified one, i.e., arms with higher empirical
rewards should be picked more frequently than those with
lower empirical rewards, which is distinguishable from the
fairness criteria based on specified attribute.

In this paper, we focus on a problem structure wherein
arms arrive in a sequential and stochastic manner from an
underlying fixed distribution and decisions are made in an
online fashion by the agent. The objective of the agent is
to optimize cumulative rewards while achieving fairness
counterfactually with respect to specified attributes, i.e. the
outcome would not have been substantially different if the
specified attributes had different values. In general, this type
of task belongs to the setting of dynamic treatment regimes
(Murphy, 2003; Lavori & Dawson, 2008; Zhang, 2020) for
finding a sequence of decisions over a finite set of treatments
which appears across a broad range of applications.

1.1. Contributions

In light of the above, the goal of this paper is to analyze the
foundations of online causal fair decision-making. More
specially, our contributions are as follows:

• We formulate a constrained causal logistic bandits prob-
lem where the online decision-making processes are
characterized within a causal structure. We formalize a
(non-linear) fairness constraint based on the counterfac-
tual outcome effect that is a priori unknown and must
be learned in time. To the best of our knowledge, this
is the first work to study constrained logistic bandits
without a known safe decision subset (see Footnote 1).

• We provide an unified analysis for the confidence set
construction, algorithm design, and performance guar-
antee, i.e., sublinear reward regret and sublinear cumu-
lative constraint violations by leveraging the regret-to-
confidence-set conversion and the primal-dual online
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Table 1: Comparison of reward model, constraint types, frequentist regret guarantees, and cumulative violations upper
bounds for select related works. Notation: horizon T , the dimension for arm feature vector n, bounded bandit parameter
S, truncated parameter ρ (see Section 3.2), Slater’s constant δ (see Assumption 3), decision-set-dependent term RZ(T ),
generalized linear model (GLM). Problem dependent constant κ∗,κZ ,κ, where

√
1/κ∗ < 1≪ κZ ≪ κ when compared

within the same decision and parameter spaces. † Requires prior knowledge (see Footnote 1) of a safe action or policy (
per-round zero constraint violations with high probability).

Algorithm Model Constraint Regret Violation
Safe UCB-GLM

(Amani et al., 2020) GLM GLM Õ
(
κn
√
T
)

0 †

OFULog-r
(Abeille et al., 2021) Logistic No Õ

(
nS

5
2

√
T

κ∗(T )
+min{n2S4κZ , RZ(T )}

)
–

F-UCB
(Huang et al., 2022b)

Causal
MAB Linear O

(√
|W |T

)
0 †

OFULog+
(Lee et al., 2024) Logistic No Õ

(
nS

√
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)
–

CCLB
Theorem 1
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logistic

Mixture
logistics

Õ
(
ρnS

√
T + ρn2S2κZ + ρ

√
T
)

Õ
(
nS

√
T + n2S2κZ +

√
T
)

Zero CCLB
Proposition 4

Causal
logistic

Mixture
logistics

Õ
(
ρnS

√
T + ρn2S2κZ + ρ

√
T (1 + δ)2

)
0

optimization. We show that the leading term of our
regret, Õ(ρnS

√
T ), is significantly better than regret

bounds for related works handling constraints and is
similar to the bound for the unconstrained problem
(Lee et al., 2024) (see Remark 3). Furthermore, by in-
troducing an user-chosen parameter, one can trade off
the regret slightly to achieve zero cumulative constraint
violations.

1.2. Related works

We next briefly discuss two lines of literature closely related
to our work. See Appendix B for more discussions on
additional works.

Firstly, in terms of formulating causal fairness within a
multi-armed bandit setting, the closest related work is
(Huang et al., 2022b). Like us, they considered a stochastic,
contextual MAB problem with a (known) causal graph gov-
erning relationships between the stochastic contexts (seen
by the learner before making decisions) and the rewards.
They assume all variables are discrete. Like us, they pro-
posed characterizing fairness with counterfactual fairness
(Kusner et al., 2017; Wu et al., 2019; Chiappa, 2019) w.r.t.
specified attributes in the context (e.g. specified user fea-
tures in an online recommendation system). They make an
assumption1 about a fair policy; they provide high probabil-

1 Pacchiano et al. (2021) (which Huang et al. (2022b)’s analy-
sis is based on) requires explicit a priori knowledge of a feasible
action/policy (Assumption 5) and states that it is “absolutely neces-
sary” to do so for the problem they study (Remark 1). Huang et al.
(2022b)’s Assumption 3 only requires the existence of a safe policy
π0; π0 is not explicitly used in estimating rewards or estimating a

ity guarantees that all actions are fair. We model fairness as
a long-term constraint, for which we seek to bound cumula-
tive violations, as it is unclear whether it is possible to certify
policies as fair (feasible) before collecting data to estimate
the reward parameter upon which the (non-linear) constraint
depends. Unlike our work, they considered that all variables
except the reward are discrete-valued with non-parametric
(thus more flexible) distributions. They proposed simpler
empirical estimation methods for rewards, for which the
counterfactual constraints became linear. While the struc-
tural causal model was discrete-valued but non-parametric,
their regret bound in turn depended on |W |, the number
of realizations of the set of parent variables of the reward,
which is exponential in the size of the parent set (see Ta-
ble 1). In contrast, we model rewards parametrically (using
a logistic model), depending on feature maps of the con-
text and decision variables. This dramatically improves the
dimensional dependence, though the fairness constraint be-
comes a mixture of logistic functions for which estimating
confidence bounds (to estimate region of fair actions) is
more challenging.

Among works on MAB with parametric rewards and un-
known (stochastic) constraints, there are numerous works
on logistic rewards without constraints and linear rewards
with linear constraints (see Appendix B for discussions on
those works). The only prior work that like us considered
a non-linear (parametric) reward model with non-linear un-

set of feasible policies in the main paper. However, to the best of
our knowledge it is unclear how the conservatively estimated sets
of policies Φ̄t (shown w.h.p. to be feasible for all rounds) that are
used to select actions could be guaranteed to be non-empty in early
rounds without a known safe policy π0 or additional assumptions.
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known (stochastic) constraints is (Amani et al., 2020). They
considered generalized linear rewards where the generalized
function is assumed to be twice-differentiable and Lipschitz
constant of which logistic rewards is a sub-class. We note
that in terms of regret bound alone, their bound specialized
to logistic rewards is linearly dependent on the worst case
parameter κ (see Table 1), which can be arbitrarily large.
They considered generalized linear constraints; like in our
work, the constraints depend on the unknown parameter
vector θ∗ in the reward function. However, they consider a
priori knowledge of some feasible actions. At a high level,
they explore the environment (improving their estimate of
θ∗) using those feasible actions and are able to get high
probability guarantees of per-round feasibility. We do not
assume such prior knowledge. We instead bound long-term
constraint violations.

1.3. Preliminaries

In this section, we introduce the basic notations and defini-
tions used throughout the paper. For a twice-differentiable
function g, the notation ġ and g̈ denote the first and second
derivative of function g respectively. For a random variable
Z, let Z represent the domain of Z and |Z| the latter’s car-
dinality. For two real-valued symmetric matrices A and B,
the notation A ⪰ B indicates that A− B is positive semi-
definite, and when A is positive definite, we denote A-norm
for a vector z as ∥z∥A =

√
z⊺Az. Finally, for two univari-

ate real-valued functions f and g, we denote f = Õ(g) to
indicate that g dominates f up to logarithmic factors; and
for an event E ∈ Ω, we write 1{E} the indicator function
of E.

We adopt the language of Structural Causal Models (SCMs)
(Pearl, 2009, Ch. 7). An SCM M is a tuple ⟨U, V,F ,P(u)⟩,
where U is a set of exogenous (unobserved or latent) vari-
ables, V is a set of endogenous (observed) variables, F is
a set of structural functions, and P(u) is a distribution over
the latent variables. For the set of structural functions F ,
fi ∈ F decides values of an endogenous variable i ∈ V
taking as argument a combination of other variables. That
is, i← fi(Pai, Ui), Pai ⊆ V,Ui ⊆ U , where Pai denotes
the parent set (explained below) of i. Realizations of the
set of latent variables U ∼ P(u) induce an observational
distribution P(v) over V . An intervention on a variable
i ∈ V , denoted by do(i = c)2 is an operation where value
of i is set to a constant c regardless of the structural function
{fi : i ∈ V }. Each SCM is associated with a directed
acyclic graph (DAG) G (e.g., see Figure 1), called the causal
diagram, where nodes correspond to endogenous variables
i ∈ V , solid arrows represent arguments of each function fi.
A bi-directed arrow between nodes i and j indicates an un-

2When the variable being intervened on is clear from context,
we write do(c) for short notation.

observed confounder affecting both i and j, i.e., Ui∩Uj ̸= ∅.
We will use the graph-theoretic family abbreviations, e.g.,
Pa(V )G stand for the set of parents of V in G. We omit
the subscript G when it is obvious. A path from a node X
to a node Y in G is a sequence of edges which does not
include a particular node more than once. Two nodes X and
Y are said to be d-separated by a third set Z in a DAG G
denoted by (X ⊥⊥ Y |Z)G if and only if Z blocks all paths
from every node in X to every node in Y . The criterion of
blockage follows (Pearl, 2009, Def. 1.2.3) and is included
in Appendix A with formal definitions for completeness.

2. A Theoretical Framework for Constrained
Causal Logistic Bandits

In this section, we formalize the theoretical framework of
constrained causal logistic bandits in the semantics of SCMs
and MABs. We start by considering a recruitment exam-
ple (see Appendix C for more motivating examples), where
applicants arrive sequentially and stochastically from an
underlying fixed distribution, and the hiring decisions made
by an employer are based on some decision-making strate-
gies to optimize organizational productivity and efficiency
while achieving individual fairness for each applicant. The
decision-making process is characterized by the extended
Standard Fairness Model (SFM) (Zhang & Bareinboim,
2018; Plecko & Bareinboim, 2024). See Figure 1 for a
graphical model of the SFM. The variable A represents
the specified attribute, W is a set of confounded features,
and M is a set of intermediate features, D and Y represent
the decision and outcome reward. Contextual information
Xt = {wt,mt, at} is accessible by the learner before mak-
ing decisions.

2.1. Logistic bandits with structural causal model

At every round t, the learner observes the contextual fea-
tures Xt = {wt,mt, at}, which are drawn from a stochastic
distribution and then is presented a set of decisionsD that de-
pend on the candidate’s context. The learner chooses a deci-
sion dt ∈ D and receives an outcome reward yt+1 ∈ {0, 1}.
The learner’s decision is based on previous round knowl-
edge Ft = (F0, {wt,mt, at, dt, yt+1}t−1

t=1) and causal in-
formation, where F0 represents any prior knowledge. In
our problem, we assume that the outcome variable Y has a
generalized linear relationship (Filippi et al., 2010; Li et al.,
2017) with the feature Z, specifically,

E[Y |Z] = g(f(Z)⊺θ∗), (1)

where the fixed but unknown parameters θ∗ belong to Rn,
g(x) = (1 + e−x)−1 is the standard logistic function, f is
the mapping function known ahead of time to the learner,
and the encoded feature vector f(Z) is in Rn. Then the
interventional distribution for the expected reward of do(dt)
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and do(at) given the observed contextual features mt and
wt is represented as (Plecko & Bareinboim, 2024):

E[Y |do(dt), do(at), wt,mt] = g(f(Zdt
)⊺θ∗), (2)

where Zdt is the feature consisting of the decision dt and the
contexts Xt = {wt,mt, at}, In this paper, we consider one
specified attribute variable A, which in general is a parent of
the decision and outcome variable in the causal graph (see
Figure 1). Note that the specified attribute value at round t
is at and we denote the counterfactual value as a′t. Both the
decision and (hypothetical) counterfactual intervention on
the specified attribute value are atomic interventions (Correa
& Bareinboim, 2020). Thus, the expected reward for the
counterfactual feature a′t for any decision dt ∈ D is

E[Y |do(dt), do(a′t), wt,mt] = g(f(Z ′
dt
)⊺θ∗), (3)

where Z ′
dt

is the counterfactual feature for interventions
do(a′t) and do(dt). Notice that for our problem, we consider
that the factual feature Zdt

and counterfactual feature Z ′
dt

are both in the feature space Z . The identification of (2)
and (3) follows by the do-calculus rule (Pearl, 1995), which
expresses the do intervention as the functions of observed
data. Readers can refer Appendix C for a more detailed
analysis. Therefore, the counterfactual fairness effect for
decision dt is represented as:

∆dt
(Xt) = g(f(Zdt

)⊺θ∗)− g(f(Z ′
dt
)⊺θ∗). (4)

Remark 1. The above counterfactual fairness measure
is the conditional average treatment effect (CATE) (Pearl,
2009; Imbens & Rubin, 2015) compared to the total effect,
direct effect, or indirect effect (Pearl, 2001). The causal
fairness notation proposed in (Kusner et al., 2017) is the
average effect of treatment on the treated (ETT), while both
CATE and ETT could be decomposed as (conditional) path-
specific effect, i.e., (conditional) counterfactual direct effect,
indirect effect, and spurious effect (Zhang & Bareinboim,
2018; Plecko & Bareinboim, 2024).

2.2. Counterfactual fairness modeling via soft constraint

In this section, we discuss modeling fairness as part of the
learner’s decision-making problem. Consider a stochastic
bandit optimization with a soft constraint for our decision-
making problem. In particular, at every round t ∈ [T ], the
learner selects a decision dt to maximize the expected re-
ward E[Y |do(dt), Xt] subject to a constraint on (violations
to) counterfactual fairness (4),

|∆dt(Xt) | ≤ τ, (5)

where τ is a predefined fairness threshold. In this work,
the counterfactual fairness constraint by (5) requires that
the expected reward is similar regardless if the value of the

Figure 1: Extended Standard Fairness Model (SFM). Vari-
able A denotes the specified attribute, W is a set of con-
founded features, M is a set of intermediate features, D is
the decision, and Y is the outcome. Let X = {W,M,A}
denote contextual information the learner has available to
make the decision, and let Z = {W,M,A,D} denote vari-
ables the reward distribution may depend on.

specified attribute had been different. In addition, the learner
only receives bandit feedback (the reward). The learner does
not observe feedback on constraint violations.

Huang et al. (2022b) were the first to propose a counterfac-
tual fairness constraint in a bandit framework. We note that
their setting confines the learner to decisions from a safe
action set (see Footnote 1). To the best of our knowledge,
that setting requires strong assumptions on prior knowledge
of a subset of safe actions that can be used even before
rewards are estimated (the constraint (4) depends on the
unknown reward parameter vector θ∗). Prior knowledge of
safe actions can be mild in some settings, though we argue
counterfactual fairness (a convex combination of logistic
functions that depend on the unknown reward parameter
vector θ∗) is more complex, thereby it is less obvious for
us to construct a prior safe decision without knowing any
information about the reward distribution. Therefore, for
the setting we consider, since no safe actions might known
a priori, we allow for instantaneous violations but bound the
cumulative violations.

The goal of the learner is to maximize the cumulative ex-
pected outcome reward while minimize the cumulative ex-
pected counterfactual fairness constraint violations through-
out the learning process. Define the cumulative expected
regret and cumulative expected counterfactual fairness con-
straint violations as

R(T ) =

T∑
t=1

[
g(f(Zd∗

t
)⊺θ∗)− g(f(Zdt)

⊺θ∗)
]
, (6)

V(T ) =

T∑
t=1

[
|∆dt

(Xt)| − τ
]
+
, (7)
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where d∗t = argmax{d∈D:|∆d(Xt)|≤τ} g(f(Zd)
⊺θ∗) and

[·]+ = max{·, 0}. In this paper, we establish a stronger ver-
sion of regret (Liu et al., 2021; Zhou & Ji, 2022), specifically,
let π ∈ Π be a probability distribution over the set of actions
D, and let ⟨π, g(f(Zd)

⊺θ∗)⟩ =
∑

d∈D g(f(Zd)
⊺θ∗)π(d)

and ⟨π, |∆d(Xt)| − τ⟩ =
∑

d∈D[|∆d(Xt)| − τ ]π(d). We
compare the received reward with the (baseline) expected
reward for π∗ and π∗ is the optimal solution of the optimiza-
tion problem: maxπ{⟨π, g(f(Zd)

⊺θ∗)⟩ : ⟨π, |∆d(Xt)| −
τ⟩ ≤ 0}. Thus, the stronger regret is defined as:

R+(T ) =

T∑
t=1

⟨π∗, (f(Zd)
⊺θ∗)⟩ − g(f(Zdt

)⊺θ∗). (8)

Note that the probability distribution πt could include some
decisions that violate the constraint but on average the con-
straint is satisfied, while for a single action it must be a
feasible one, therefore,R+(T ) ≥ R(T ).

2.3. Model assumptions and definition

To study the constrained causal logistic bandits problem,
we make the following standard assumptions (Yu et al.,
2017; Efroni et al., 2020; Zhou & Ji, 2022). Let Θ denote a
compact set in Rn. Let Z denote the feature space domain.

Assumption 1 (Bounded Bandit Parameter). There is a
known bound S on the norm of the (unknown) reward pa-
rameter vector θ, ∥θ∥2 ≤ S, ∀ θ ∈ Θ.

Assumption 2. The feature mapping function f : Z 7→ Rn

is in a reproducing kernel Hilbert space (RKHS) with a
bounded norm (i.e., a measure of smoothness), such that
∥f(Z)∥2 ≤ 1, ∀ Z ∈ Z .

Assumption 3 (Slater’s Constraint Qualification). There is
a constant δ > 0 such that there exists a feasible prob-
ability distribution π0 over decision set D that satisfies
⟨π0, [|∆d(Xt)| − τ ]⟩ ≤ −δ, ∀ t ∈ [T ]. Without loss of
generality, we assume δ ≤ 1.

Notice that this is a mild assumption since it only requires
that one could find a stochastic policy π0 under which the
expected constraint violations will be strictly less than a
negative value. Whereas for hard constraints (Amani et al.,
2019; Khezeli & Bitar, 2020; Pacchiano et al., 2021), they
typically assume the non-empty known safe decision set
which is stronger than the assumption of existence for a
Slater’s constant δ about the learner’s knowledge.

We next define a problem dependent quantity that impacts
learnability.

Definition 1 (Problem Dependent Constant3).

κZ(θ∗) = max
Z∈Z

1/ġ(f(Z)⊺θ∗). (9)

3We will drop the dependency on θ∗ when there is no ambigu-
ity.

We recall the problem dependent constants discussed in Ta-
ble 1: κ∗ = 1/ġ(f(Z∗)

⊺θ∗), κZ = maxZ∈Z g(f(Z)⊺θ∗),
and κ = maxZ∈Z,θ∈Θ 1/ġ(f(Z)⊺θ), clearly,

√
1/κ∗ <

1 ≪ κZ ≪ κ. Notice that such problem dependent con-
stants are defined through the first order of logistic function,
which quantifies the level of non-linearity of plausible ex-
pected reward signals with different scales. In particular, κ
can be significantly large even for reasonable logistic ban-
dits problems. Readers can refer Section 2 of (Faury et al.,
2020) for a detailed discussion on the importance of this
quantity.

3. Methods for Constrained Causal Logistic
Bandits

We next design an online algorithm for the constrained
causal logistic bandits problem. We will then develop an
unified analysis of regret and constraint violations with rig-
orous performance guarantees for our decision making strat-
egy. Before proposing the algorithm, we first construct a
convex confidence set for the reward parameter θ∗ using a
regret-to-confidence set conversion (Foster et al., 2018; Lee
et al., 2024).

3.1. Convex confidence set

For logistic bandit problems, a natural way to estimate the
reward parameter θ∗ given Ft is to use maximum-likelihood
estimation. We build on the works for the unconstrained
problem (Abeille et al., 2021; Lee et al., 2024). At every
round t, a reward value yt+1 is sampled from a Bernoulli
distribution with expected value (or success probability)
g(f(Zdt

)⊺θ∗). The unregularized cumulative logistic loss
can be written as:

Lt(θ) = −
t−1∑
τ=1

[
yτ+1 log g(f(Zτ )

⊺θ)

+ (1− yτ+1) log(1− g(f(Zτ )
⊺θ))

]
. (10)

The loss Lt(θ) is a strongly convex function of θ (Abeille
et al., 2021; Lee et al., 2024). The reward parameter is
estimated using maximum likelihood estimation (MLE),
defined as θ̂t = argmin||θ||2≤S Lt(θ). For α ∈ (0, 1], we
use the confidence set:

Ct(α) =
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(α)

2
}
, (11)

where βt(α) =
√

10n log( St
2n + e) + 2((e− 2) + S) log 1

α .
Then the following proposition ensures that Ct(α) is a
confidence set for θ∗ with high probability:

Proposition 1 (Theorem 1 in (Lee et al., 2024)).

P
(
∀t ≥ 1, θ∗ ∈ Ct(α)

)
≥ 1− α.
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The proof is provided in Appendix D. The proof uses the ap-
proach from the online logistic regression regret guarantee
of (Foster et al., 2018) without running the online learning
algorithm explicitly. We notice that the radius of the convex
confidence set in (Abeille et al., 2021, Lemma 1) is around
βt(α) = O(

√
nS3 log(t)), while the above tightened loss-

based confidence set results in O(
√

n log(St) + S), lead-
ing to an overall improvement in the factor of S, especially
when S is large, e.g., S ≥ |D|.

3.2. Online learning algorithm

We consider a constrained stochastic causal logistic bandit
over horizon T as described in Section 2.2. The objec-
tive for the learner is to maximize the cumulative rewards
while minimizing cumulative counterfactual fairness vio-
lations over time horizon T . To address the challenges on
the unknown reward and the unknown counterfactual fair-
ness constraint, we develop a Constrained Causal Logistic
Bandits (CCLB) algorithm by leveraging the primal-dual
optimization techniques.

The pseudo code for our CCLB algorithm is in Algorithm 1.
At every round t, let the Lagrangian of the primal prob-
lem maxπ{⟨π, g(f(Zd)

⊺θ∗)⟩ : ⟨π, |∆d(Xt)| − τ⟩ ≤ 0} be
L(π, ϕ) = ⟨π, g(f(Zd)

⊺θ∗)⟩ − ϕ⟨π, |∆d(Xt)| − τ⟩ and
then the associated dual function is defined as q(ϕ) =
maxπ L(π, ϕ). Since both the reward and counterfactual
fairness constraint depend on the unknown parameter θ∗,
we first estimate it through maximal likelihood estimation
and construct a confidence set Ct(α) using the observed
histories, i.e., feature vectors and rewards. The greedy pro-
cedure is based on the principle of optimism in the face
of uncertainty (OFU) (Auer et al., 2002; 2008; Osband
& Van Roy, 2014), where the optimistic estimate (θ̃t) is
obtained by maximizing the expected reward across the
confidence set Ct(α), however, we penalize the expected
reward for the constraint violations when the greedy ac-
tion (dt) is picked by the learner over the decision do-
main D. The dual update that minimizes q(ϕ) with re-
spect to ϕ is by taking a projected gradient descent with
1/η being the step size. Note that the truncated param-
eter ρ is chosen to be larger than the optimal dual vari-
able ϕ∗. And the optimal dual variable ϕ∗ is bounded un-
der the Slater’s constraint qualification, specifically, ϕ∗ ≤(
⟨π∗, g(f(Zd)

⊺θ∗)⟩−⟨π0, g(f(Zd)
⊺θ∗)⟩

)
/δ, ∀d ∈ D from

Theorem 8.42 in (Beck, 2017).

Remark 2. We remark that the computational complex-
ity (O(t) per-round) of Algorithm 1 is the same as stan-
dard algorithms for unconstrained logistic bandits problems
(Abeille et al., 2021; Lee et al., 2024), since the dual update
is executed via a single-step projection, and the primal op-
timization retains the character of the unconstrained case
without constructing a prior safe subset designed for hard

Algorithm 1 CCLB Algorithm

1: Input: Horizon T , truncated parameter ρ, step size
η =
√
T/ρ, and the initial dual value ϕ1 = 0.

2: for t = 1, 2, 3, . . . , T do
3: The learner observes the contextual information

Xt = {at, wt,mt}.
4: Update the estimated reward parameter θ̂t.
5: Build a confidence set Ct(α) from (11),

Ct(α) =
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(α)

2
}
.

6: Greedy procedure. Choose the optimistic reward
parameter θ̃t and select the greedy action dt:

θ̃t = argmax
θ∈Ct

max
d∈D

g(f(Zd)
⊺θ), (12)

dt = argmax
d∈D

g(f(Zd)
⊺θ̃t)− ϕt(|∆̂d(Xt)| − τ). (13)

7: Update the estimates of the dual variable:

ϕt+1 = Proj[0,ρ]
[
ϕt + 1/η(|∆̂dt

(Xt)| − τ)
]
. (14)

8: Received a random reward yt+1.
9: end for

constraints as in (Amani et al., 2020). Additionally, the
reward and counterfactual fairness constraint in our algo-
rithm share the same unknown parameter θ∗.

3.3. Regret and constraint violations bounds

In this section, we provide the theoretic upper bounds for
both regret and constraint violations of Algorithm 1 and
explain the main idea behind the proof of Theorem 1.

Theorem 1. Suppose ρ ≥ 2/δ, and η =
√
T/ρ. For

0 ≤ τ < 1, under the Slater’s constraint qualification
in Assumption 3 and regularity assumptions in Assump-
tion 1 and 2, the CCLB algorithm achieves the following
bounds simultaneously with probability at least 1 − α for
any α ∈ (0, 1],

R+(T ) = Õ
(
ρnS
√
T + ρn2S2κZ + ρ

√
T
)
,

V(T ) = Õ
(
nS
√
T + n2S2κZ +

√
T
)
.

Where bothR+(T ) and V(T ) hides dependencies on log 1
α .

Remark 3. We remark that: (1) the leading term of our
regret Õ(ρnS

√
T ) is similar to the bound Õ(nS

√
T/κ∗)

established in (Lee et al., 2024) as the logarithmic growth of
T , which improves upon (Abeille et al., 2021) (OFULog-r)
by a factor of S3/2 and improves upon (Zhang & Sugiyama,
2024) by at least a factor of

√
S. Though it acquires a mul-

tiplicative factor ρ, one could note that, at an extreme case,

6
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when the Slater’s constant δ is optimized to 1/
√
log(T ), the

leading term scales as Õ(n
√
T ). (2) Compared to the un-

constrained case (Abeille et al., 2021; Zhang & Sugiyama,
2024; Lee et al., 2024), the regret boundR+(T ) exhibits an
additional term ρ

√
T , which roughly captures the impact

of the unknown counterfactual fairness constraint, i.e., a
convex combination of logistic functions, which is not lo-
gistic function any more. More specifically, the non-convex
nature of the logistic mixture introduces a non-linear rela-
tionship between the constraint and the reward parameter,
thereby resulting in a more complex estimated feasible re-
gion of safe decisions at every round. (3) Compared to the
constrained generalized linear bandits (Amani et al., 2020),
our regret bound shows a big improvement on the worst
case constant κ (see Table 1). (4) If τ ≥ 1, the constraint
violations bound V(T ) will be zero since the counterfactual
fairness constraint is satisfied for all the decisions (see (5))
and our problem falls into the setting of logistic bandits
without constraint.

See Appendix F for the full proof. We next highlight a few
key parts of the proof.

Proof Sketch of Theorem 1. We first derive the following
key decomposition of total regret and constraint violations
that holds for any ϕ ∈ [0, ρ] : R+(T ) + ϕV(T ) ≤ R1 +
R2 +

√
Tρ, where

R1 ≤
T∑

t=1

(ϕt − 1) · ⟨π∗, g(f(Zd)
⊺θ̃t)− g(f(Zd)

⊺θ∗)⟩,

R2 ≤
T∑

t=1

[
g(f(Zdt)

⊺θ̃t)− g(f(Zdt)
⊺θ∗) +

ϕ ·
(
g(f(Z ′

dt
)⊺θ̃t)− g(f(Z ′

dt
)⊺θ∗)

)]
.

This is attained by employing a dual variable update and
necessary algebraic operations. Note that this bound will
serve as the cornerstone for the subsequent analysis of both
the regret and constraint violations. To further bound R1

and R2, we apply the following proposition for logistic
bandits regret:

Proposition 2. With probability at least 1 − α for any
α ∈ (0, 1], under the CCLB algorithm, we have:

T∑
t=1

g(f(Zdt)
⊺θ̃t)− g(f(Zdt)

⊺θ∗) = Õ
(
nS
√
T + n2S2κZ

)
.

The central idea to obtain the above regret (Proposition 2) is
by applying Taylor expansion which tightly links estimation
errors (e.g. between θ̃t and θ∗) to prediction errors (e.g.
between g(f(Zdt

)⊺θ̃t) and g(f(Zdt
)⊺θ∗)), readers can refer

Appendix E for more technical details. As for the logistic
bandits regret based on the counterfactual feature vectors,

i.e.,
∑T

t=1 g(f(Z
′
dt
)⊺θ̃t)− g(f(Z ′

dt
)⊺θ∗), we observe that

the counterfactual feature vector Z ′
dt

and the factual feature
vector Zdt are both lie in the same feature space Z for
our problem. Thus,

∑T
t=1 g(f(Z

′
dt
)⊺θ̃t) − g(f(Z ′

dt
)⊺θ∗)

exhibits the same asymptotic upper bound up to logarithmic
factors as

∑T
t=1 g(f(Zdt

)θ̃t)− g(f(Zdt
)θ∗), thus R1 and

R2 are bounded.

Therefore, the regret upper boundR+(T ) can be obtained
by choosing ϕ = 0. Inspired by (Beck, 2017), we ap-
ply tools from constrained convex optimization to obtain
the bound on constraint violations V(T ). First, we define
the the probability distribution π′ by ⟨π′, g(f(Zd)

⊺θ∗)⟩ =
g(f(Zdt)

⊺θ∗) and ⟨π′, |∆̂d(Xt)| − τ⟩ = |∆̂dt(Xt)| − τ
where the policy π′ only puts probability mass (equal to 1)
on decision dt chosen by the learner after the observation
of contextual information at every round t. Then, we have,

R+(T ) + ϕV(T ) =
T∑

t=1

[
⟨π∗, g(f(Zd)

⊺θ∗)⟩ −

⟨π′, g(f(Zd)
⊺θ∗)⟩+ ϕ · ⟨π′, |∆̂d(Xt)| − τ⟩

]
.

Since ⟨π∗, g(f(Zd)
⊺θ∗)⟩ is convex over π∗, both

⟨π′, g(f(Zd)
⊺θ∗)⟩ and ⟨π′, |∆̂d(Xt)| − τ⟩ are convex over

π′, by utilizing (Beck, 2017, Theorem 3.60), we obtain the
upper bound on the cumulative constraint violations:

ρ ·
T∑

t=1

[
|∆dt

(Xt)| − τ
]
+
≤ 2

(
R1 +R2 +

√
Tρ

)
.

Which finishes the proof. ■

3.4. Improved regret and constraint violations bounds

In Section 3.3, our analysis demonstrates that the proposed
CCLB algorithm (Algorithm 1) achieves both sublinear re-
gret and sublinear constraint violations upper bounds. An-
other natural question to consider is whether the constraint
violations bound can be further improved. It turns out that
by introducing a tightness parameter ϵ in the dual update in
Algorithm 1, for ϵ < δ,

ϕt+1 = Proj[0,ρ]
[
ϕt + 1/η(|∆̂dt(Xt)| − τ + ϵ)

]
, (15)

one can achieve a bounded and in some cases even zero
constraint violations by trading the regret slightly while
still preserving the same asymptotic order of regret as be-
fore. Intuitively, with a tightness parameter ϵ > 0 in the
constraint, the learner will be more cautious in selecting
actions by effectively working with a stricter constraint (e.g.
with fairness threshold τ − ϵ instead of τ ). Then, under
this new hypothetical pessimistic constraint function, the
primal problem is modified as: maxπ{⟨π, g(f(Zd)

⊺θ∗)⟩ :
⟨π, |∆̂d(Xt)| − τ + ϵ⟩ ≤ 0}. Let π∗

ϵ be the optimal solution

7
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to this new constrained optimization problem, then we have
the following relationship between policy π∗

ϵ and π∗:

Proposition 3. Let policies π∗ and π∗
ϵ be the optimal solu-

tions for the constrained problem maxπ{⟨π, g(f(Zd)
⊺θ∗)⟩ :

⟨π, |∆̂d(Xt)| − τ⟩ ≤ 0} and maxπϵ
{⟨πϵ, g(f(Zd)

⊺θ∗)⟩ :
⟨πϵ, |∆̂d(Xt)| − τ⟩ ≤ 0}. For ϵ < δ, we have,

T∑
t=1

⟨π∗, g(f(Zd)
⊺θ∗)⟩ −

T∑
t=1

⟨π∗
ϵ , g(f(Zd)

⊺θ∗)⟩ ≤
ϵT

δ
.

To further investigate how the user-chosen parameter ϵ
will impact the regret and constraint violations upper
bounds, we define the regret associated with the policy π∗

ϵ

as: Rϵ
+(T ) =

∑T
t=1⟨π∗

ϵ , g(f(Zd)
⊺θ∗)⟩ − g(f(Zdt

)⊺θ∗),
while the constraint violations remain defined by V(T ) =∑T

t=1

[
|∆dt(Xt)| − τ

]
+

. We then state the following theo-
retical results forRϵ

+(T ) and V(T ):

Theorem 2. Suppose ρ ≥ 2/δ, and η =
√
T/ρ. For

0 ≤ τ < 1 and the user-chosen parameter ϵ ∈ [0, δ), under
Slater’s constraint qualification in Assumption 3 and regu-
larity assumptions in Assumption 1 and 2, the CCLB algo-
rithm with refined constraint condition (see Equation (15))
attains the following theoretical upper bounds with proba-
bility at least 1− α for any α ∈ (0, 1] :

Rϵ
+(T ) = Õ

(
ρnS
√
T + ρn2S2κZ + ρ

√
T (1 + ϵ)2

)
,

V(T ) = Õ
(
nS
√
T + n2S2κZ + (1 + ϵ)2

√
T − ϵT

)
.

Again, bothRϵ
+(T ) and V(T ) hides dependencies on log 1

α .

Remark 4. One could notice that (1) by introducing a tight-
ness parameter ϵ in the dual update, the associated regret
Rϵ

+(T ) still achieves a comparable asymptotic upper bound
asR+(T ) in Theorem 1; nevertheless, the constraint viola-
tions V(T ) upper bound exhibits an ϵT reduction compared
to the result in Theorem 1. Consequently, by selecting ϵ
appropriately, one can offset the other terms through the
subtraction of ϵT , thereby obtaining a constant upper bound
(with respect to the horizon T ) on the constraint violations.
(2) The difference in regret bounds between Theorem 2 with
a user selected ϵ ∈ [0, δ) and Theorem 1 is ρ

√
T (2ϵ+ ϵ2).

For a problem-dependent (fixed) Slater’s constraint qualifi-
cation constant δ > 0, increasing ϵ only worsens the regret
bound, as the learner is increasingly cautious (increasing in
ϵ), selecting from a smaller set of actions than the learner
would have with ϵ = 0. If δ is large, ρ shrinks towards 2 and
so for a fixed tightness ϵ the regret bound reduces. Larger δ
also allow for a bigger range of ϵ and thus more room for
caution (and regret).

Proposition 4. By conditions stated in Theo-
rem 2, for the user-selected parameter ϵ′ = (

√
T−

√
T − 4C4(

√
T+C1n log(T )+(C2+C3κZ)n2((log(T ))2

√
1/T )

)
/2C4 − 1, where C1, C2, C3, C4 are the universal constants
independent of n, S, T,κZ , if n ≥ 2 and ϵ′ < δ then
one could achieve a zero upper bound on the cumulative
constraint violations when selecting ϵ ∈ (ϵ′, δ).

Note that this user-chosen parameter ϵ trades off between
the upper bounds of the regret and constraint violations
(Jenatton et al., 2016). Minimizing regret often encour-
ages exploration and adaptability to changing environments,
which might lead to occasional violations of constraints.
Conversely, strictly adhering to constraints may limit the
algorithm’s ability to adapt, potentially increasing regret.

4. Numerical Experiments
We next evaluate the empirical performance of our proposed
methods on a synthetic data set. See Appendix H for ad-
ditional experiments for different values of the constraint
threshold τ and tightness parameter ϵ.

Data set description:4 We generated the synthetic dataset
from a structural causal model (modified an example from
(Plecko & Bareinboim, 2024)), i.e.,

F =



A← UAW ,

W ← N (0, 1− UAW

2 ),

M ←

{
N (0, |W |/2 + |UM |/3) if A = 1,

N (0, |W |/3 + |UM |/2) if A = 0,

Di ← N (0,max{|W |, |M |}) i = 1, ..., 20,

D ← {D1, D2, ..., D20},
Y ← 1(UY + 1

3MD − 1
5W > 0),

P(U) = {UAW ∼ Bern(0.5), UM , UY ∼ N (0, 1).}

As defined in Figure 1, A denotes the sensitive attribute
(binary valued), W is the confounded feature, M represents
the intermediate feature, D ∈ D is the agent’s decision, and
Y is the outcome. At every round, we generate a set of 20
feature vectors {[A,W,M,Di]}20i=1 along with their corre-
sponding counterfactual feature vectors. We use rejection
sampling over the sets to make sure that at least twelve of
the feature vectors are feasible.

Algorithms:5 We evaluate four different algorithms: GLM-
UCB (Filippi et al., 2010) (unconstrained generalized linear
bandits ), OFULog+ (Lee et al., 2024) (unconstrained lo-
gistic bandits ), CCLB (our method, causal logistic bandits

4The source code is available at https://github.com/
jchen-research/CCLB.

5Another potential baseline is (Huang et al., 2022b), which also
studied counterfactual fairness in the causal bandits framework,
though for a different causal graph. Their code was not available
at the time of this work.

8

https://github.com/jchen-research/CCLB
https://github.com/jchen-research/CCLB


Causal Logistic Bandits with Counterfactual Fairness Constraint

(a) (b) (c)

Figure 2: Plots for different algorithms GLM-UCB, OFULog+, CCLB (τ = 0.2), and ϵ-CCLB (ϵ = 0.14, τ = 0.2) on (a)
cumulative regret; (b) cumulative constraint violations; (c) penalized cumulative regret.

with counterfactual fairness constraints, Algorithm 1), and ϵ-
CCLB (our method with a user-chosen tightness parameter
ϵ, Algorithm 2).

Metrics: We evaluated the algorithms using cumulative
regret (6), cumulative constraint violations (7), and a penal-
ized form of cumulative regret for different horizons. For the
penalized cumulative regret, when the action picked by the
learner violates the counterfactual fairness constraint, the
learner still observes the reward value (i.e. the learner can
improve the reward parameter estimate θ̂), but we count the
reward earned as being 0. In this way, constraint violations
are allowed but are not (directly) profitable. This penalized
form combines the two primary metrics for simpler analysis.

Results: The results are plotted in Figure 2. Beginning with
penalized cumulative regret (Figure 2 (c)), where rewards
are only received for fair actions, there is a large gap be-
tween our method (CCLB) and the methods of OFULog+
and GLM-UCB, with the gap growing larger for longer hori-
zons. This is expected since GLM-UCB and OFULog+ do
not account for constraints. Both baselines have nearly lin-
ear penalized cumulative regret across horizons used. OFU-
Log+ does because it frequently violates constraints, and
thus large cumulative constraint violations, despite learning
good actions (for the unconstrained problem). For cumula-
tive regret (unpenalized), OFULog+ performs better than
our method (which seeks to satisfy the constraint).

GLM-UCB performs poorly at identifying good actions
within the horizons (Figure 2 (a)). GLM-UCB’s regret
bound has a linear dependence on the κ (see Table 1). GLM-
UCB is also designed for a more general class of reward
functions. Though ϵ-CCLB has a larger cumulative regret
and (slightly) larger cumulative constraint violations than
CCLB (but less than GLM-UCB), the penalized regret of
ϵ-CCLB are smaller than CCLB when T goes larger (Fig-
ure 2 (c)), especially, the growth rate of ϵ-CCLB is nearly
0 from horizon T = 6, 000 to horizon T = 10, 000, which

rarely violates the constraints.

5. Conclusion
This paper introduced a framework for logistic bandits with
counterfactual fairness constraints built within a causal struc-
ture. The proposed approach attains satisfactory results,
demonstrating sublinear growth in both regret and constraint
violations by effectively balancing exploration and exploita-
tion within the environment via primal-dual optimization.
By introducing a user-chosen parameter, one can trade the
upper bounds between regret and constraint violations to
achieve zero cumulative constraint violations.

Several promising directions emerge for future research. (1)
One important direction is to extend our method to work
with unobserved confounders (i.e. W would be unobserved).
(2) Another interesting direction is to extend our model to
handle distribution shifts over time. (3) A third interesting
direction would be to extend our work to handle budget
constraints and consider a fairness notion defined by the
resource assignment, potentially building on existing work
in bandits with knapsacks (Tran-Thanh et al., 2012; Badani-
diyuru et al., 2018; Nie et al., 2024).
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A. Preliminaries
We first provide a formal definition for d-separation discussed in Section 1.3,

Definition 2 (d-separation (Pearl, 2009)). A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if
(1) p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z, (2) p contains an intervened
fork (or collider) i→ m← j such that the middle node m is not in Z.

We then detail below some useful notations that have been used throughout the paper.

D The set of all the decisions.
θ∗ true reward parameter vector (Rn).
Y reward variable {0, 1}.
Xt context vector including the specified attribute, the confounded features, and the intermediate features.
f(Zdt

) mapping feature vector (Rn).
λt regularization parameter.
ϕt dual variable.
ρ truncated parameter.
ϵ user-chosen tightness parameter.
δ Slater’s constant.
α failure probability.
Ct(α) confidence set.
Bnp (1) n-dimensional ball of radius 1 under the ℓp norm.
|| · || ℓ2 norm.
|| · ||H H-weighted Euclidean norm (H is a symmetric positive definite matrix).
Bern(p) Bernoulli distribution with parameter p.

We further recall and introduce the following functions and use it for the following analysis,

∆dt
(Xt) = g(f(Zdt

)⊺θ∗)− g(f(Z ′
dt
)⊺θ∗) (16)

Vt =

t−1∑
τ=1

f(Zdτ ) f(Zdτ )
⊺ + λtIn (17)

Ht(θ∗) =

t−1∑
τ=1

ġ(f(Zdτ
)⊺θ∗)f(Zdτ

)f(Zdτ
)⊺ + λtIn (18)

Gt(θ, θ∗) =

t−1∑
τ=1

∫ 1

v=0

(1− v)ġ
(
f(Zdτ )

⊺θ + v f(Zdτ )
⊺(θ − θ∗)

)
dv f(Zdτ ) f(Zdτ )

⊺ + λtIn (19)

ω(f(Zdτ ), θ̃t, θ∗) =

∫ 1

v=0

ġ
(
f(Zdτ )

⊺θ̃t + v f(Zdτ )
⊺(θ∗ − θ̃t)

)
dv (20)

Where the regularized design matrices Vt, Ht(θ∗), Gt(θ, θ∗), and ω(f(Zdτ
), θ̃t, θ∗) are defined for the proof of logistic

bandits regret upper bound in Appendix E. In particular, Ht(θ∗) measures the local behavior of the logistic function through
ġ
(
f(Zdτ

)⊺θ∗
)
.

B. Additional Related Works
Logistic bandits. The logistic bandits model represents a sequential decision-making framework that has attracted substantial
attention within the parametric bandits literature (Li et al., 2010; Filippi et al., 2010; Li et al., 2017; Dong et al., 2019). In a
recent work, Faury et al. (2020) proposed an optimistic algorithm based on a finer examination of the non-linearities of the
reward function to study the prohibitive linear dependencies introduced by κ in the regret upper bound. Abeille et al. (2021)
proved a minimax-optimal rate by deriving an Ω

(
n
√
T/κ∗(T )

)
problem-dependent lower-bound, which implies that the

non-linearity in logistic bandits can ease the exploration-exploitation trade-off in the long-term regime, i.e. κ∗(T ) > 1.
Faury et al. (2022) addressed the issue of computational tractability while preserving statistical efficiency by designing a new
convex confidence set. Additionally, another line of research is the multinomial logit contextual bandit problem (Agrawal
et al., 2017; Oh & Iyengar, 2019; Zhang & Sugiyama, 2024; Lee et al., 2024), which generalizes the binary logistic bandit
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by allowing the learner to select a subset of arms. In particular, (Zhang & Sugiyama, 2024; Lee et al., 2024) also improve
the logistic bandits on the regret guarantee (with respect to S) and computational complexity, respectively.

Fairness. The body of research in fair machine learning is expanding and encompasses a variety of contexts. Within this
field, three distinct tasks can be identified: (1) the detection and quantification of biases in currently deployed policies; (2)
the development of fair predictive models for outcomes; and (3) the formulation of fair decision-making policies. Our work
falls under the setting of online outcome control (task (3)) that explores fairness through a causal lens (Huang et al., 2022a;b;
Plecko & Bareinboim, 2023; 2025). Unlike us, Plecko & Bareinboim (2023; 2025) explored the fairness through the
path-specific counterfactual effect in an offline setting along with budget constraint. As for the online setting, Hu & Zhang
(2022) studied achieving long-term fairness within a Markov Decision Process (MDP) framework, in which they quantified
long-term fairness by evaluating the path-specific effects in a causal graph under interventions on sensitive attributes and
predicted decisions. More recently, Hu et al. (2024) studied long-term fair decision-making through deep generative models.

Constrained MABs. There is a large body of work on bandits with different types of constraints, including knapsack
bandits (Wu et al., 2015; Agrawal & Devanur, 2016), submodular maximization (Krause & Guestrin, 2007; Nie et al.,
2023), bandits with hard safety constraints (Amani et al., 2019; Pacchiano et al., 2021), and bandits with cumulative soft
constraints (Liu et al., 2021; Zhou & Ji, 2022). Among them, the bandit setting with cumulative soft constraints is most
closely related to ours in that the goal is also to minimize the cumulative constraint violation. In particular, Zhou & Ji
(2022) considered a general unknown reward function and a general unknown constraint function in kernelized bandits via
primal-dual optimization. More broadly, this type of constrained problem has also been studied in the reinforcement learning
(RL) setting (Efroni et al., 2020; Ding et al., 2021) where constraints are managed through convex optimization methods.

(a) (b)

Figure 3: (a) A causal diagram representing GD; (b) another causal diagram representing GD,A.

C. Causal Logistic Bandits Framework
Here, we provide another example to motivate our constrained causal logistic bandits problem.

Online Recommendation System (Huang et al., 2022b). Customers arrive sequentially according to an underlying
stochastic distribution, and an online decision-making model selects and recommends a specific item to each incoming
individual based on a predefined strategy. In this context, each arm represents a distinct item or content piece available for
recommendation to a user. The reward is determined by the user’s interaction with the recommended item, such as whether
the user clicks on it or not. The fairness constraint mandates that customers with similar profiles receive similar rewards,
irrespective of their specific attributes and the particular items being recommended.

Next, we provide proofs for (2) and (3), which follow by the do-calculus rule (Pearl, 1995).

E[Y |do(dt), do(at), wt,mt] = E[Y |dt, at, wt,mt] (21)
= E[Y |Zdt ] (22)
= g(f(Zdt)

⊺θ∗), (23)

where (21) follows by (D,A ⊥⊥ Y |W,M)GD,A
(see Figure 3b); (22) follows by denoting Zdt as the features from dt, wt,mt
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and at; and (23) follows by the logistic reward assumption ((1)). As for (3),

E[Y |do(dt), do(a′t), wt,mt] = E[Y |dt, a′t, wt,mt] (24)
= E[Y |Z ′

dt
] (25)

= g(f(Z ′
dt
)⊺θ∗), (26)

where (24) follows by (D,A ⊥⊥ Y |W,M)GD,A
(see Figure 3b); (25) follows by denoting Z ′

dt
as the features from dt, wt,mt

and a′t; and (26) the last equality follows by the logistic reward assumption, similar as above. ■

D. Confidence Sets
In this section, we provide proofs for the construction of the improved convex confidence set for the estimated bandit
parameter presented in Section 3.1. We borrow the techniques from (Lee et al., 2024, Section 3) to obtain the results.

Recall the convex confidence set definition:

Ct(α) =
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(α)

2
}
,

where:

βt(α) =

√
10n log(

St

2n
+ e) + 2((e− 2) + S) log

1

α
.

Proposition 1. Let α ∈ (0, 1], then

P
(
∀t ≥ 1, θ∗ ∈ Ct(α)

)
≥ 1− α.

Proof. The proof unfolds through three principal technical components similar with (Lee et al., 2024). First, we invoke
decomposition identities for the logistic loss, expressing Lt(θ)− Lt(θ̂t) as the sum of (i) the regret of the online learning
algorithm, (ii) a martingale difference sequence, and (iii) a collection of KL-divergence terms. Second, in controlling the
martingale sum, we derive and apply an anytime variant of Freedman’s inequality tailored to martingales. Third, to bound
the KL-divergence contribution, we fuse the self-concordant analysis of Abeille et al. (2021) with an information-geometric
interpretation of the KL divergence.

Firstly, we denote ξτ as a real-valued martingale difference noise where yτ = g(f(Zdτ )
⊺θ∗) + ξτ , thus for the logistic loss

ℓτ (θ) = −yτ log g(f(Zdτ
)⊺θ)− (1− yτ ) log

(
1− g(f(Zdτ

)⊺θ)
)
, we have that the following equality holds for any θ:

ℓτ (θ∗) = ℓτ (θ) + ξτ ⟨f(Zdτ
), θ − θ∗⟩ −KL

(
Bern(g(f(Zdτ

)⊺θ∗)),Bern(g(f(Zdτ
)⊺θ̃t))

)
.

The equality follows from the first order Taylor expansion with an integral remainder (see (Lee et al., 2024, Appendix C.4.1)
for more details). Setting θ to be the optimistic estimate θ̃τ and taking a sum over time steps τ :

0 =

t∑
τ=1

ℓτ (θ̃τ )− ℓτ (θ∗)−KL
(
Bern(g(f(Zdτ

)⊺θ∗)),Bern(g(f(Zdτ
)⊺θ̃t)) + ξτ ⟨f(Zdτ

), θ̃τ − θ∗⟩

=

t∑
τ=1

ℓτ (θ̃τ )− ℓτ (θ̂t) + ℓτ (θ̂t)− ℓτ (θ∗)−KL
(
Bern(g(f(Zdτ )

⊺θ∗)),Bern(g(f(Zdτ )
⊺θ̃t)) + ξτ ⟨f(Zdτ ), θ̃τ − θ∗⟩

(27)

=

t∑
τ=1

ℓτ (θ̂t)− ℓτ (θ∗)−KL
(
Bern(g(f(Zdτ )

⊺θ∗)),Bern(g(f(Zdτ )
⊺θ̃t)) + ξτ ⟨f(Zdτ ), θ̃τ − θ∗⟩+

t∑
τ=1

ℓτ (θ̃τ )− ℓτ (θ̂t)

(28)

where in (27) we add and subtract ℓτ (θ̂t) and in (28) we rearrange terms. We further define ζ1(t) =
∑t

τ=1 ξτ ⟨f(Zdτ ), θ̃τ −
θ∗⟩, ζ2(t) =

∑t
τ=1 KL

(
Bern(g(f(Zdτ

)⊺θ∗)),Bern(g(f(Zdτ
)⊺θ̃t)), and ζ3(t) =

∑t
τ=1

[
ℓτ (θ̃τ ) − ℓτ (θ̂t)

]
. Using (28),

we then have

Lt(θ)− Lt(θ̂t) =

t∑
τ=1

[
ℓτ (θ∗)− ℓτ (θ̂t)

]
= ζ1(t)− ζ2(t) + ζ3(t). (29)
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Upper Bounding ζ1(t). Recall that Fτ = σ
(
{f(Zd1

), y1, ..., f(Zdτ
), yτ , f(Zdτ+1

)}
)

is the filtration for our bandit model,
f(Zdτ

) and θ̃τ are Fτ−1-measurable, and ξτ is a martingale difference sequence w.r.t. Fτ−1. Thus, we have that,

E
[
ξ2τ ⟨f(Zdτ ), θ̃τ − θ∗⟩2|Fτ−1

]
= ⟨f(Zdτ ), θ̃τ − θ∗⟩2 E[ξ2τ |Fτ−1] (30)

= ⟨f(Zdτ
), θ̃τ − θ∗⟩2 g(f(Zdτ

)⊺θ∗)
(
1− g(f(Zdτ

)⊺θ∗)
)

(31)

= ġ(f(Zdτ
)⊺θ∗)⟨f(Zdτ

), θ̃τ − θ∗⟩2. (32)

Where (30) follows by the measurability of ⟨f(Zdτ
), θ̃τ − θ∗⟩ w.r.t. Fτ−1; (31) is because E[ξ2τ |Fτ−1] = V ar(yτ ) =

g(f(Zdτ
)⊺θ∗)

(
1− g(f(Zdτ

)⊺θ∗)
)
. Also,

|ξτ ⟨f(Zdτ
), θ̃τ − θ∗⟩| ≤ |ξτ | · |⟨f(Zdτ

), θ̃τ − θ∗⟩|
≤ |⟨f(Zdτ ), θ̃τ ⟩|+ |⟨f(Zdτ ), θ∗⟩| (33)
≤ 2S. (34)

Where (33) is by triangle inequality and |ξτ | ≤ 1. From (Beygelzimer et al., 2011, Theorem 1), we could apply Freedman’s
inequality to obtain the following result,

Lemma 1. (Lee et al., 2024, Lemma 3). Let Z1, ..., Zt be martingale difference sequence satisfying maxτ |Zτ | ≤ R a.s.,
and let Fτ be the σ−field generated by Z1, ..., Zt. Then for any α ∈ (0, 1) and any η ∈ [0, 1/R], the following holds with
probability at least 1− α:

t∑
τ=1

Zτ ≤ (e− 2)η

t∑
τ=1

E[Z2
τ |Fτ−1] +

1

η
log

1

α
, ∀t ≥ 1.

Thus, for η ∈ [0, 1
2S ] to be chosen later, by invoking Lemma 1 for the martingale difference sequence Z1, ..., Zt, the

following holds with probability at least 1− α, ∀t ≥ 1:

ζ1(t) ≤ (e− 2)η

t∑
τ=1

ġ(f(Zdτ
)⊺θ∗)⟨f(Zdτ

), θ̃τ − θ∗⟩2 +
1

η
log

1

α
. (35)

Lower Bounding ζ2(t). From the standard result in information geometry (Amari, 2016; Brekelmans et al., 2020), we have
the following result:

Lemma 2. (Lee et al., 2024, Lemma 4). Let m(z) := log(1+ ez) be the log-partition function for the Bernoulli distribution
and g(z) = 1

1+e−z . Then, we have that

KL
(
Bern(g(z2)),Bern(g(z1))

)
= Dm(z1, z2),

where Dm(z1, z2) is the Bregman Divergence defined as Dm(z1, z2) =
∫ z1
z2

m̈(z)(z1 − z) dz.

Notice that

Dm(z1, z2) =

∫ z1

z2

m̈(z)(z1 − z) dz =

∫ z1

z2

(
log(1 + ez)

)′′
(z1 − z) dz =

∫ z1

z2

ġ(z)(z1 − z) dz. (36)

Thus, we have the following lower bound on ζ2(t),

ζ2(t) =

t∑
τ=1

KL
(
Bern(g(z2)),Bern(g(z1))

)
(37)

=

t∑
τ=1

Dm

(
f(Zdτ

)⊺θ̃τ , f(Zdτ
)⊺θ∗

)
(38)

=

t∑
τ=1

∫ f(Zdτ )
⊺θ̃τ

f(Zdτ )
⊺θ∗

ġ(z)(f(Zdτ )
⊺θ̃τ − z) dz (39)
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=

t∑
τ=1

⟨f(Zdτ ), θ∗ − θ̃τ ⟩2
∫ 1

0

(1− v)ġ
(
f(Zdτ )

⊺(vθ̃τ + (1− v)θ∗
)
dv (40)

≥
t∑

τ=1

⟨f(Zdτ
), θ∗ − θ̃τ ⟩2

ġ(f(Zdτ )
⊺θ∗)

2 + |f(Zdτ
)⊺(θ∗ − θ̃τ )|

(41)

≥
t∑

τ=1

⟨f(Zdτ
), θ∗ − θ̃τ ⟩2

ġ(f(Zdτ
)⊺θ∗)

2 + 2S
. (42)

Where (37) follows by definition of ζ2; (38) uses Lemma 2; (39) uses (36); (40) follows by change of variables; (41) follows
by Lemma 6; and (42) follows by Assumptions 1 and 2.

Upper Bounding ζ3(t) (Lee et al., 2024, Theorem 2). From (Foster et al., 2018, Theorem 3), there exists an (improper
learning) algorithm for online logistic regression with the following regret:

ζ3(t) ≤ 10n log
(
e+

St

2n

)
. (43)

Though our selected decisions are more conservative than those of (Lee et al., 2024) (we add a penalty term when selecting
decisions to account for constraint violations), the estimation method to obtain θ̂t (i.e., MLE) and the way to compute
the optimistic estimate θ̃t (i.e., θ̃t = argmaxθ∈Ct

maxd∈D g(f(Zd)
⊺θ)) are the same as (Lee et al., 2024). See more

justifications for using the improper learning algorithm in (Lee et al., 2024, Appendix B.2).

Combining Equation (29), (35), (42), and (43),

Lt(θ)− Lt(θ̂t) = ζ1(t)− ζ2(t) + ζ3(t)

≤ (e− 2)η

t∑
τ=1

ġ(f(Zdτ
)⊺θ∗)⟨f(Zdτ

), θ̃τ − θ∗⟩2 +
1

η
log

1

α
+

t∑
τ=1

⟨f(Zdτ
), θ∗ − θ̃τ ⟩2

ġ(f(Zdτ )
⊺θ∗)

2 + 2S

+ 10n log
(
e+

St

2n

)
≤ 10n log(

St

2n
+ e) + 2((e− 2) + S) log

1

α
. (44)

Where (44) follows by η = 1
2(e−2)+2S < 1

2S , which finishes the proof. ■

E. Logistic Error Upper Bound
In this section, we provide the proofs for error in mean reward from an action dt based on optimistic θ̃t instead of θ∗. Some
of the details follow from (Faury et al., 2020, Appendix B) and (Abeille et al., 2021, Appendix C).

Rlog =

T∑
t=1

[
E[Ŷ |do(dt), do(at), wt,mt]− E[Y |do(dt), do(at), wt,mt]

]
=

T∑
t=1

[
g(f(Zdt

)⊺θ̃t)− g(f(Zdt
)⊺θ∗)

]
(45)

=

T∑
t=1

[
ġ(f(Zdt

)⊺θ∗) f(Zdt
)⊺(θ̃t − θ∗)

]
︸ ︷︷ ︸

term (a)

+

T∑
t=1

[ ∫ f(Zdt )
⊺θ̃t

f(Zdt )
⊺θ∗

g̈(u)(f(Zdt
)⊺θ̃t − u) du

]
︸ ︷︷ ︸,

term (b)

(46)

where the (45) comes from the expected reward in (2); the (46) is by performing the Taylor Series Expansion of g(f(Zdt
)⊺θ̃t)

on f(Zdt)
⊺θ∗ with a first order integral remainder. Then we rewrite the logistic regretRlog as term (a) and term (b), where,

term (a) =

T∑
t=1

[
ġ(f(Zdt)

⊺θ∗) f(Zdt)
⊺(θ̃t − θ∗)

]
18
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term (b) =

T∑
t=1

[ ∫ f(Zdt )
⊺θ̃t

f(Zdt )
⊺θ∗

g̈(u)(f(Zdt)
⊺θ̃t − u) du

]
.

We separately upper bound both terms. Firstly, we prove the following Lemma (Lee et al., 2024, Lemma 6) used throughout
this section.

Lemma 3. With λt =
1

4S2(2+2S) , η = 1
2(e−2)(2+2S) , and ϵt =

n
t , for any θ ∈ Ct(α), the following holds with probability at

least 1− α:

∥θ − θ∗∥2Ht(θ∗)
≤ γt(α)

2,

where γt(α)
2 = 2(2 + 2S)

[
βt(α)

2 + 2(2 + 2S)(e− 2)
(
log 1

α + log 5St
n

)
+
(

(e−2)
4

(
4Sη + ηϵt

)
+ 1

)
n
]
+ 2.

Proof. By Proposition 1, we have that with probability at least 1− α, Lt(θ∗)− Lt(θ̂t) ≤ βt(α)
2, we assume this event is

true throughout this proof. Then,

Lt(θ) = Lt(θ∗) +∇Lt(θ∗)
⊺(θ − θ∗) +

∫ 1

0

(1− v)(θ − θ∗)
⊺∇2Lt

(
θ∗ + v(θ − θ∗)

)
(θ − θ∗)dv (47)

= Lt(θ∗) +∇Lt(θ∗)
⊺(θ − θ∗) + ∥θ − θ∗∥2Gt(θ,θ∗)−λtIn

(48)

= Lt(θ∗) +∇Lt(θ∗)
⊺(θ − θ∗) + ∥θ − θ∗∥2Gt(θ,θ∗)

− λt∥θ − θ∗∥22.

Where (47) is by the second-order Taylor expansion of Lt(θ) around θ∗; (48) comes from
∫ 1

0
(1 − v)∇2Lt

(
θ∗ + v(θ −

θ∗)
)
dv =

∫ 1

0
(1− v)

∑t
τ=1 ġ

(
f(Zdτ

)⊺(θ∗ + v(θ − θ∗))
)
f(Zdτ

)f(Zdτ
)⊺dv = Gt(θ, θ∗)− λtIn.

As for the relationship between Gt(θ, θ∗) (19) and Ht(θ∗) (18), we have the following result:

Gt(θ, θ∗) =

t−1∑
τ=1

∫ 1

v=0

(1− v)ġ
(
f(Zdτ

)⊺θ + v f(Zdτ
)⊺(θ∗ − θ)

)
dv f(Zdτ

) f(Zdτ
)⊺ + λtIn

⪰
t−1∑
τ=1

ġ
(
f(Zdτ )

⊺θ∗

)
2 + |f(Zdτ

)⊺θ − f(Zdτ
)⊺θ∗|

f(Zdτ
) f(Zdτ

)⊺ + λtIn (49)

⪰ 1

2 + 2S

t−1∑
τ=1

ġ
(
f(Zdτ

)⊺θ∗

)
f(Zdτ

) f(Zdτ
)⊺ + λtIn (50)

⪰ 1

2 + 2S
Ht(θ∗).

Where (49) follows by Lemma 6; (50) follows by Assumptions 1 and 2. Thus, we have that,

∥θ − θ∗∥2Ht(θ∗)
≤ (2 + 2S)∥θ − θ∗∥2Gt(θ,θ∗)

(51)

= (2 + 2S)
(
Lt(θ)− Lt(θ∗) +∇Lt(θ∗)

⊺(θ∗ − θ) + λt∥θ − θ∗∥22
)

≤ (2 + 2S)
(
Lt(θ)− Lt(θ̂t) +∇Lt(θ∗)

⊺(θ∗ − θ) + λt∥θ − θ∗∥22
)

(52)

≤ (2 + 2S)βt(α)
2 + (2 + 2S)∇Lt(θ∗)

⊺(θ∗ − θ) + 1. (53)

Where (51) is by semi-definite order monotonicity; (53) follows by λt = 1
4S2(2+2S) ; and (52) comes from θ̂t =

argmin||θ||2≤S Lt(θ). Since βt(α) =
√
10n log( St

2n + e) + 2((e− 2) + S) log 1
α , we then go to bound∇Lt(θ∗)

⊺(θ∗−θ),
which is done via a new concentration-type argument. Let Bn(2S) be a n dimensional ball of radius 2S and an arbitrary
v ∈ Bn(2S). Firstly,

∇Lt(θ∗)
⊺v =

t∑
τ=1

(
g(f(Zdτ

)⊺θ∗)− yτ
)
f(Zdτ

)⊺v =

t∑
τ=1

ζτf(Zdτ
)⊺v.
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As |ζτf(Zdτ
)⊺v| < 2S and E[(ζτf(Zdτ

)⊺v)2|Fτ−1] = ġ(f(Zdτ
)⊺θ∗)(f(Zdτ

)⊺v)2 from (34) and (32), by Freedman’s
inequality (35), for any η ∈ [0, 1

2BS ], the following holds:

P
[ t∑
τ=1

ζτf(Zdτ
)⊺v ≤ (e− 2)η

t∑
τ=1

ġ(f(Zdτ
)⊺θ∗)(f(Zdτ

)⊺v)2 +
1

η
log

1

α

]
≥ 1− α

By (Vershynin, Corollary 4.2.13) and (Lee et al., 2024, Appendix C.4.4) the following holds with probability at least 1− α:

∇Lt(θ∗)
⊺(θ∗ − θ) ≤ (e− 2)η||θ∗ − θ||2Ht(θ∗)

+
1

η
log

1

α
+

n

η
log

5S

ϵt
+

( (e− 2)

4

(
4Sη + ηϵt

)
+ 1

)
ϵtt.

By (53), we finally have:

||θ − θ∗||2Ht(θ∗)
≤ 2 + 2S

1− (2 + 2S)(e− 2)η

[
βt(α)

2 +
1

η
log

1

α
+

n

η
log

5S

ϵt
+
( (e− 2)

4

(
4Sη + ηϵt

)
+ 1

)
ϵtt

]
+ 1

≤ 2(2 + 2S)
[
βt(α)

2 + 2(2 + 2S)(e− 2)
(
log

1

α
+ log

5St

n

)
+
( (e− 2)

4

(
4Sη + ηϵt

)
+ 1

)
n
]
+ 2.

(54)

Where (54) follows by η = 1
2(e−2)(2+2S) <

1
2S , ϵt = n

t . Which finishes the proof. ■

We start by examining term (a) and show the following upper bounds:

term (a) =
T∑

t=1

[
ġ(f(Zdt

)⊺θ∗) f(Zdt
)⊺(θ̃t − θ∗)

]
(55)

≤
T∑

t=1

ġ(f(Zdt)
⊺θ∗) ||f(Zdt)||H−1

t (θ∗)
∥θ̃t − θ∗∥Ht(θ∗) (56)

≤
T∑

t=1

ġ(f(Zdt
)⊺θ∗) ||f(Zdt

)||H−1
t (θ∗)

γt(α) (57)

≤ γT (α)

T∑
t=1

ġ(f(Zdt
)⊺θ∗) ||f(Zdt

)||H−1
t (θ∗)

(58)

≤ γT (α)

√√√√ T∑
t=1

ġ(f(Zdt)
⊺θ∗)

√√√√ T∑
t=1

ġ(f(Zdt)
⊺θ∗) ||f(Zdt)||2H−1

t (θ∗)
(59)

≤ γT (α)

√√√√ T∑
t=1

ġ(f(Zdt
)⊺θ∗)

√√√√ T∑
t=1

||ut||2Ṽ −1
t

(60)

≤ 2γT (α)

√√√√ T∑
t=1

ġ(f(Zdt)
⊺θ∗)

√
n log

(
λT +

T

n

)
. (61)

Where (56) and (59) is by the Cauchy-Schwarz inequality (ġ
(
f(Zdt

)⊺θ∗
)

is non-negative); (57) comes from Lemma 3
and (58) is because γT (α) = maxt∈[T ] γt(α); in (60), we define vector ut =

√
ġ(f(Zdt

)⊺θ∗) f(Zdt
) and matrix Ṽt =∑t−1

τ=1 ut u
⊺
t + λtIn, and obtain:

ġ(f(Zdt
)⊺θ∗) ||f(Zdt

)||2
H−1

t (θ∗)
= ||

√
ġ(f(Zdt

)⊺θ∗) f(Zdt
)||2

H−1
t (θ∗)

= ||ut||2Ṽ −1
t

;

and (61) follows by Lemma 8.
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We then take a look at the first order of the logistic function ġ(f(Zdt
)⊺θ∗) and derive a upper bound for it by a first-order

Taylor expansion:

T∑
t=1

ġ(f(Zdt
)⊺θ∗) =

T∑
t=1

ġ(f(Zdt
)⊺θ̃t) +

T∑
t=1

∫ f(Zdt )
⊺θ∗

f(Zdt )
⊺θ̃t

g̈(u) du (62)

=

T∑
t=1

ġ(f(Zdt)
⊺θ̃t) +

T∑
t=1

[ ∫ 1

v=0

g̈
(
f(Zdt)

⊺θ̃t + vf(Zdt)
⊺(θ∗ − θ̃t)

)
dv

]
f(Zdt)

⊺(θ∗ − θ̃t) (63)

≤
T∑

t=1

ġ(f(Zdt
)⊺θ̃t) +

T∑
t=1

∣∣∣∣[ ∫ 1

v=0

g̈
(
f(Zdt

)⊺θ̃t + vf(Zdt
)⊺(θ∗ − θ̃t)

)
dv

]
f(Zdt

)⊺(θ∗ − θ̃t)

∣∣∣∣
(64)

≤
T∑

t=1

ġ(f(Zdt
)⊺θ̃t) +

T∑
t=1

∣∣∣∣[ ∫ 1

v=0

g̈
(
f(Zdt

)⊺θ̃t + vf(Zdt
)⊺(θ∗ − θ̃t)

)
dv

]∣∣∣∣f(Zdt
)⊺(θ̃t − θ∗)

(65)

=

T∑
t=1

ġ(f(Zdt
)⊺θ̃t) +

T∑
t=1

[ ∫ 1

v=0

∣∣∣∣g̈(f(Zdt
)⊺θ̃t + vf(Zdt

)⊺(θ∗ − θ̃t)
)∣∣∣∣ dv]f(Zdt

)⊺(θ̃t − θ∗)

(66)

≤
T∑

t=1

ġ(f(Zdt
)⊺θ̃t) +

T∑
t=1

[ ∫ 1

v=0

ġ
(
f(Zdt

)⊺θ̃t + vf(Zdt
)⊺(θ∗ − θ̃t)

)
dv

]
f(Zdt

)⊺(θ̃t − θ∗) (67)

=

T∑
t=1

ġ(f(Zdt
)⊺θ̃t) +

T∑
t=1

[
g
(
f(Zdt

)⊺θ̃t

)
− g

(
f(Zdt

)⊺θ∗

)]
(68)

=

T∑
t=1

ġ(f(Zdt)
⊺θ̃t) +Rlog (69)

≤ T +Rlog. (70)

Where (62) comes from the Taylor Expansion; (63) follows by changing variables; (64) is by taking the absolute value;
(65) is because the optimistic estimate at step t, hence, f(Zdt

)⊺θ̃t ≥ f(Zdt
)⊺θ∗; (67) follows by the self-concordance

property of logistic function |ġ| ≥ |g̈| and ġ > 0; and (68) is from the fundamental theorem of calculus; and (70) follows by
ġ(f(Zdt)

⊺θ̃t) ≤ 1.

Therefore, by (61) and (70), we intermediately obtain the following upper bound on term (a):

term (a) ≤ 2γT (α)

√
n log

(
λT +

T

n

)√
T +Rlog

≤ 2γT (α)

√
n log

(
λT +

T

n

)(√
T +

√
Rlog

)
, (71)

where (71) is because
√
T +Rlog ≤

√
T +

√
Rlog for T > 0, Rlog > 0.

In order to upper bound the logistic bandits regret Rlog in (46), we still need to upper bound term (b) that includes the
second order of logistic function:

term (b) =

T∑
t=1

[ ∫ f(Zdt )
⊺θ̃t

f(Zdt )
⊺θ∗

g̈(u)(f(Zdt
)⊺θ̃t − u) du

]
(72)

=

T∑
t=1

[ ∫ 1

v=0

(1− v)g̈
(
f(Zdt

)⊺θ∗ + v f(Zdt
)⊺(θ̃t − θ∗)

)
dv

](
f(Zdt

)⊺(θ̃t − θ∗)
)2

(73)

≤
T∑

t=1

1

2

(
f(Zdt)

⊺(θ̃t − θ∗)
)2

(74)
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≤
T∑

t=1

1

2
∥f(Zdt)∥2H−1

t (θ∗)
∥θ̃t − θ∗∥2Ht(θ∗)

(75)

≤
T∑

t=1

1

2
∥f(Zdt

)∥2
H−1

t (θ∗)
γ2
t (α) (76)

≤ 1

2
γ2
T (α)

T∑
t=1

∥f(Zdt
)∥2

H−1
t (θ∗)

(77)

≤ 1

2
γ2
T (α) κZ

T∑
t=1

∥f(Zdt)∥2V t−1(θ∗)
(78)

≤ 2n γ2
T (α) κZ log

(
λT +

T

n

)
. (79)

Where (73) follows by changing variables; (74) is because g̈ ≤ 1; (75) follows by Cauchy-Schwarz inequality; (76) comes
from Lemma 3; (77) is by CT (α) = maxt∈[T ] Ct(α); as for (78), we note that

Ht(θ∗) =
t−1∑
τ=1

ġ
(
f(Zdτ

)⊺θ∗

)
f(Zdτ

) f(Zdτ
)⊺ + λtIn

⪰ 1

κZ

[ t−1∑
τ=1

f(Zdτ
) f(Zdτ

)⊺ + λtIn

]
(80)

=
1

κZ
Vt(θ∗),

where (80) follows by Definition 1, thus, H−1
t (θ∗) ⪯

√
κZV

−1
t (θ∗); and the last inequality (79) follows by Lemma 8.

Then by the upper bounds on term (a) in (71) and term (b) in (79), we then finally upper bound the logistic bandits regret
Rlog in (46):

Rlog = term (a) + term (b)

≤ 2γT (α)

√
n log

(
λT +

T

n

)(√
T +

√
Rlog

)
+ 2n γ2

T (α) κZ log
(
λT +

T

n

)
.

This is a second-order polynomial equation in
√
Rlog, by Lemma 5, we have

√
Rlog ≤ 2γT (α)

√
n log

(
λT +

T

n

)
+

√
2TγT (α)

√
n log

(
λT +

T

n

)
+ 2n γ2

T (α) κZ log
(
λT +

T

n

)
.

Using (x+ y)2 ≤ 2x2 + 2y2, we obtain:

Rlog ≤ 8nγ2
T (α) log

(
λT +

T

n

)
+ 4γT (α)

√
n log

(
λT +

T

n

)√
T + 4nγ2

T (α) κZ log
(
λT +

T

n

)
.

To further simplify the logistic bandits regretRlog, we write γt(α) as:

γt(α) = O
(
S

√
n log

(
e+

St

2n

)
+ log

5St

n

)
= O

(
S
√
n log(t)

)
.

Therefore, as for theRlog, we obtain the following bounds:

Rlog ≤ 8nγ2
T (α) log

(
λT +

T

n

)
+ 4γT (α)

√
n log

(
λT +

T

n

)√
T + 4nγ2

T (α) κZ log
(
λT +

T

n

)
= O

(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
, (81)

which finishes the proof. ■
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F. Regret and Constraint Violations Upper Bounds
In this section, we provide proofs for upper bounds of both reward regret and constraint violations. Our proofs build on the
greedy procedure in Algorithm 1 and standard convex optimization analysis.

F.1. Proof of Theorem 1

We first prove the regret upper bound. Under Slater’s constraint qualification in Assumption 3, we have the boundedness of
the optimal dual solution by standard convex optimization analysis from (Beck, 2017, Theorem 8.42), where,

0 ≤ ϕ∗ ≤
⟨π∗, g(f(Zd)

⊺θ∗)⟩ − ⟨π0, g(f(Zd)
⊺θ∗)⟩

δ
≤ 1

δ
,

the r.h.s. is because the logistic function is less than 1. Now, we turn to establish a bound overR+(T ) + ϕV(T ). Firstly,

R+(T ) + ϕV(T ) =
T∑

t=1

[
⟨π∗, g(f(Zd)

⊺θ∗)⟩ − g(f(Zdt
)⊺θ∗) + ϕ(|∆dt

(Xt)| − τ)
]

(82)

≤
T∑

t=1

[
⟨π∗, g(f(Zd)

⊺θ∗)⟩ − g(f(Zdt
)⊺θ∗) + ϕ(|∆dt

(Xt)| − τ)− ϕt⟨π∗, |∆d(Xt)| − τ⟩
]

(83)

=

T∑
t=1

(
⟨π∗, g(f(Zd)

⊺θ∗)⟩ − ϕt⟨π∗, |∆d(Xt)| − τ⟩
)
−
(
g(f(Zd)

⊺θ̃t)− ϕt(|∆̂dt(Xt)| − τ)
)
+︸ ︷︷ ︸

term (1)
T∑

t=1

[(
g(f(Zd)

⊺θ̃t)− g(f(Zdt
)⊺θ∗)

)
+ ϕ

(
(|∆dt

(Xt)| − τ)− (|∆̂dt
(Xt)| − τ)

)]
+︸ ︷︷ ︸

term (2)
T∑

t=1

[
ϕ(|∆̂dt(Xt)| − τ)− ϕt(|∆̂dt(Xt)| − τ)

]
︸ ︷︷ ︸

term (3)

(84)

≤

T∑
t=1

(
⟨π∗, g(f(Zd)

⊺θ∗)⟩ − ϕt⟨π∗, |∆d(Xt)| − τ⟩
)
−
(
g(f(Zd)

⊺θ̃t)− ϕt(|∆̂dt
(Xt)| − τ)

)
+︸ ︷︷ ︸

term (1)
T∑

t=1

g(f(Zd)
⊺θ̃t)− g(f(Zdt)

⊺θ∗) + ϕ
(
(|∆dt(Xt)| − τ)− (|∆̂dt(Xt)| − τ)

)
︸ ︷︷ ︸

term (2)

+
√
Tρ, (85)

where (83) holds since ϕt ≥ 0 and ⟨π∗, |∆dt
(Xt)| − τ⟩ ≤ 0; (84) holds by adding and subtracting∑T

t=1 g(f(Zd)
⊺θ̃t),

∑T
t=1 ϕt(|∆̂dt

(Xt)| − τ),
∑T

t=1 ϕ(|∆̂dt
(Xt)| − τ); and (85) follows by upper bounding term (3)

from Lemma 4.

We are then going to bound term (1):

term (1) =

T∑
t=1

(
⟨π∗, g(f(Zdt

)⊺θ∗)⟩ − ϕt⟨π∗, |∆d(Xt)| − τ⟩
)
−
(
g(f(Zd)

⊺θ̃t)− ϕt(|∆̂dt
(Xt)| − τ)

)
=

T∑
t=1

⟨π∗, g(f(Zd)
⊺θ∗)− g(f(Zd)

⊺θ̃t)⟩+ ϕt · ⟨π∗, (|∆̂d(Xt)| − τ)− (|∆d(Xt)| − τ)⟩ +

⟨π∗, g(f(Zd)
⊺θ̃t)− ϕt · (|∆̂d(Xt)| − τ)⟩ − g(f(Zdt)

⊺θ̃t) + ϕt · (|∆̂dt(Xt)| − τ) (86)
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≤
T∑

t=1

⟨π∗, g(f(Zd)
⊺θ∗)− g(f(Zd)

⊺θ̃t)⟩+
T∑

t=1

ϕt · ⟨π∗, (|∆̂d(Xt)| − τ)− (|∆d(Xt)| − τ)⟩ (87)

≤
T∑

t=1

ϕt · ⟨π∗, (|∆̂d(Xt)| − τ)− (|∆d(Xt)| − τ)⟩ (88)

≤ ρ ·
T∑

t=1

⟨π∗, (|∆̂d(Xt)| − τ)− (|∆d(Xt)| − τ)⟩ (89)

= ρ · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
. (90)

Where (86) follows by adding and subtracting terms; (87) comes from the greedy action dt (see (13)) chosen at step t in
Algorithm 1; (88) comes from the optimistic estimate θ̃t (see (12)) in Algorithm 1; and (89) is because ϕt ≤ ρ; as for the
result in (90), we note that if ∆̂d(Xt) ≥ 0 then ∆d(Xt) ≥ 0, and by the counterfactual fairness effect (see (4)), we have,

(|∆̂d(Xt)| − τ)− (|∆d(Xt)| − τ) = g(f(Zd)
⊺θ̃t)− g(f(Z ′

d)
⊺θ̃t)− g(f(Zd)

⊺θ∗) + g(f(Z ′
d)

⊺θ∗)

≤ g(f(Zd)
⊺θ̃t)− g(f(Zd)

⊺θ∗). (91)

where (91) follows by selecting optimistic reward parameter at every round (see (12)) in Algorithm 1, thus f(Z ′
d)

⊺θ∗ ≤
f(Z ′

d)
⊺θ̃t. On the another hand, if ∆̂d(Xt) < 0 then ∆d(Xt) < 0,

(|∆̂d(Xt)| − τ)− (|∆d(Xt)| − τ) = g(f(Z ′
d)

⊺θ̃t)− g(f(Zd)
⊺θ̃t) + g(f(Zd)

⊺θ∗)− g(f(Z ′
d)

⊺θ∗)

≤ g(f(Z ′
d)

⊺θ̃t)− g(f(Z ′
d)

⊺θ∗). (92)

Again, (92) follows by selecting optimistic reward parameter at every round (see (12)) in Algorithm 1, thus f(Zd)
⊺θ∗ ≤

f(Zd)
⊺θ̃t. Here, we notice that, the factual feature Zdt and the counterfactual feature Z ′

dt
reside within the feature space

Z , in which the boundness assumption (Assumption 1) and problem dependent constant (Definition 1) are defined by.
Therefore, the logistic bandits regret of g(f(Zdt

)θ̃t)− g(f(Zdt
)θ∗) has the same asymptotic upper bound up to logarithmic

factors as g(f(Z ′
dt
)θ̃t)− g(f(Z ′

dt
)θ∗) (see (81)).

We further bound term (2). When ∆̂d(Xt) ≥ 0:

term (2) =
T∑

t=1

(
g(f(Zdt

)⊺θ̃t)− g(f(Zdt
)⊺θ∗)

)
+ ϕ

(
(|∆dt

(Xt)| − τ)− (|∆̂dt
(Xt)| − τ)

)
=

T∑
t=1

g(f(Zdt)
⊺θ̃t)− g(f(Zdt)

⊺θ∗) + ϕ
(
g(f(Zdt)

⊺θ∗)− g(f(Z ′
dt
)⊺θ∗)

)
− ϕ

(
g(f(Zdt)

⊺θ̃t)− g(f(Z ′
dt
)⊺θ̃t)

)
(93)

≤
T∑

t=1

(
g(f(Zdt)

⊺θ̃t)− g(f(Zdt)
⊺θ∗)

)
+ ϕ

(
g(f(Z ′

dt
)⊺θ̃t)− g(f(Z ′

dt
)⊺θ∗)

)
. (94)

Where (93) follows by the counterfactual fairness effect (see (4)); and (94) follows by (12) in Algorithm 1.

When ∆̂d(Xt) < 0, we have that:

term (2) =
T∑

t=1

(
g(f(Zdt

)⊺θ̃t)− g(f(Zdt
)⊺θ∗)

)
+ ϕ

(
(|∆dt

(Xt)| − τ)− (|∆̂dt
(Xt)| − τ)

)
=

T∑
t=1

g(f(Zdt)
⊺θ̃t)− g(f(Zdt)

⊺θ∗) + ϕ
(
g(f(Z ′

dt
)⊺θ∗)− g(f(Zdt)

⊺θ∗)
)
− ϕ

(
g(f(Z ′

dt
)⊺θ̃t)− g(f(Zdt

)⊺θ̃t)
)

(95)

≤
T∑

t=1

(
g(f(Zdt

)⊺θ̃t)− g(f(Zdt
)⊺θ∗)

)
+ ϕ

(
g(f(Zdt

)⊺θ̃t)− g(f(Zdt
)⊺θ∗)

)
. (96)
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Similarly with above, (95) follows by the counterfactual fairness effect (see (4)); and (96) follows by (12) in Algorithm 1.

Since the logistic bandits regret of g(f(Zdt)θ̃t) − g(f(Zdt)θ∗) has the same asymptotic upper bound up to logarithmic
factors as g(f(Z ′

dt
)θ̃t)− g(f(Z ′

dt
)θ∗) (see discussions on (90)), thus combining (94) and (96),

term (2) ≤ (1 + ϕ) · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
. (97)

Thus, by (90) and (97), the upper bound onR+(T ) + ϕV(T ) for any ϕ ∈ [0, ρ] is the following:

R+(T ) + ϕV(T ) = (1 + ϕ) · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+

ρ · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+O(ρ

√
T ).

RegretR+(T ). By setting ϕ = 0, then we obtain the upper bounds on the total regret guarantee with high probability:

R+(T ) = (ρ+ 1) · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+O(ρ

√
T )

= O
(
ρ
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+ ρ
√
T

)
. (98)

= Õ
(
ρ(nS

√
T + n2S2κZ) + ρ

√
T
)
, (99)

where (98) is because the truncated parameter ρ ≥ 2/δ; and (99) is to write the regret upper bound in a logarithmic
asymptotic notation.

Constraint violations. Next, to obtain a bound on V(T ), we employ tools from constrained convex optimization. First, we
define probability distribution π′

t by

⟨π′, g(f(Zd)
⊺θ∗)⟩ = g(f(Zdt)

⊺θ∗) and ⟨π′, |∆d(Xt)| − τ⟩ = |∆dt(Xt)| − τ,

Thus, we could rewriteR+(T ) + ϕV(T ) in (82) as:

R+(T ) + ϕV(T ) =

T∑
t=1

[
⟨π∗, g(f(Zd)

⊺θ∗)⟩ − ⟨π′, g(f(Zd)
⊺θ∗)⟩+ ϕEπ′

t
(|∆d(Xt)| − τ)

]
. (100)

Then we apply the following theorem from Theorem 3.60 in (Beck, 2017).

Theorem 3. Consider the following convex constrained problem f(π∗) = maxπ∈Π {f(π) : g(π) ≤ 0}, where both f and
g are convex over the convex set Π in a vector space. Suppose f(π∗) is finite and there exists a slater point π0 such that
g(π0) ≤ −δ, and a constant ρ ≥ 2ϕ∗ where ϕ∗ is the optimal dual variable, i.e., ϕ∗ = argminϕ≥0(maxπ f(π)− ϕg(π)).
Assume that π′ ∈ Π satisfies

f(π∗)− f(π′) + ρ[g(π′)]+ ≤ ϵ,

for some ϵ > 0, then we have [g(π′)]+ ≤ 2ϵ
ρ .

Since
∑T

t=1⟨π∗, g(f(Zd)
⊺θ∗)⟩ is convex over {π∗

t }Tt=1,
∑T

t=1⟨π′, g(f(Zd)
⊺θ∗)⟩ and

∑T
t=1⟨π′, |∆d(Xt)| − τ⟩ are convex

over {π′
t}Tt=1. Then (100) satisfies the conditions in Theorem 3 and we have that:

V(T ) =

T∑
t=1

(|∆dt
(Xt)| − τ)

= O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2 +
√
T
)

(101)

= Õ
(
nS
√
T + n2S2κZ +

√
T
)
. (102)

Where (101) follows by ϕ ∈ [0, ρ] and 1/ρ < 1; and (102) writes the bound up to polylogarithmic factors. ■
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Lemma 4. Under the dual update of ϕt in Algorithm 1, we have the following for any ϕ ∈ [0, ρ]:

T∑
t=1

(ϕ− ϕt)(|∆̂dt(Xt)| − τ) ≤ 1

2η
(ϕ1 − ϕ)2 +

T∑
t=1

η

2
((|∆̂dt(Xt)| − τ))2.

Proof. By the dual update of ϕt in Algorithm 1:

(ϕt+1 − ϕ)2 = (ϕt +
1

η
(|∆̂dt(Xt)| − τ)− ϕ)2 (103)

= (ϕt − ϕ)2 + (
1

η
(|∆̂dt

(Xt)| − τ))2 + 2(ϕt − ϕ)(
1

η
[|∆̂dt

(Xt)| − τ ]) (104)

= (ϕt − ϕ)2 +
2

η
(ϕt − ϕ)(|∆̂dt

(Xt)| − τ) + (
1

η
(|∆̂dt

(Xt)| − τ))2. (105)

Where (103) follows by (14); both (104) and (105) write the technical terms. Summing over T steps and multiplying both
sides by η

2 :

T∑
t=1

η

2
(ϕt+1 − ϕ)2 =

T∑
t=1

η

2
(ϕt − ϕ)2 +

T∑
t=1

(ϕt − ϕ)(|∆̂dt(Xt)| − τ) +

T∑
t=1

1

2η
((|∆̂dt(Xt)| − τ))2. (106)

Therefore:

T∑
t=1

(ϕ− ϕt)(|∆̂dt
(Xt)| − τ) =

T∑
t=1

η

2
(ϕt − ϕ)2 −

T∑
t=1

η

2
(ϕt+1 − ϕ)2 +

T∑
t=1

1

2η
((|∆̂dt

(Xt)| − τ))2 (107)

=
η

2
(ϕ1 − ϕ)2 − η

2
(ϕT+1 − ϕ)2 +

T∑
t=1

1

2η
((|∆̂dt(Xt)| − τ))2 (108)

≤ η

2
(ϕ1 − ϕ)2 +

T∑
t=1

1

2η
((|∆̂dt

(Xt)| − τ))2 (109)

=

√
T

2ρ
ϕ2 +

ρ
√
T

2
((|∆̂dt(Xt)| − τ))2 (110)

≤
√
Tρ

2
+

ρ
√
T

2
(111)

= O(
√
Tρ).

Where (107) follows by (106); (108) comes from telescopic sum; (109) is because η
2 (ϕT+1 − ϕ)2 ≥ 0; (110) follows by

ϕ1 = 0 and η =
√
T/ρ initialized in Algorithm 1; and (111) is because |∆̂dt(Xt)| ∈ [0, 1], ϕ ∈ [0, ρ], and 0 ≤ τ ≤ 1. ■

F.2. Proof of Proposition 3

Proposition 3 states the relationship between policy π∗ and π∗
ϵ for the regret upper bounds, we provide a proof in the

following.

Proposition 3. Let policies π∗ and π∗
ϵ be the optimal solution for constrained problem maxπ{⟨π, g(f(Zd)

⊺θ∗)⟩ :
⟨π, |∆d(Xt)| − τ⟩ ≤ 0} and maxπ{⟨π, g(f(Zd)

⊺θ∗)⟩ : ⟨π, |∆d(Xt)| − τ + ϵ⟩ ≤ 0}, we have,

T∑
t=1

⟨π∗, g(f(Zd)
⊺θ∗)⟩ −

T∑
t=1

⟨π∗
ϵ , g(f(Zd)

⊺θ∗)⟩ ≤
ϵT

δ
.

Proof. The policies π∗ and π∗
ϵ are defined as:

π∗ = max
π
{⟨π, g(f(Zd)

⊺θ∗)⟩ : ⟨π, |∆d(Xt)| − τ⟩ ≤ 0}
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π∗
ϵ = max

π
{⟨π, g(f(Zd)

⊺θ∗)⟩ : ⟨π, |∆d(Xt)| − τ + ϵ⟩ ≤ 0}.

Let one policy πϵ = (1 − ϵ
δ )π

∗ + ϵ
δπ0, where π0 is the policy satisfies the Slater’s constrained qualification, i.e.,

⟨π0, |∆d(Xt)| − τ⟩ ≤ −δ, ∀ t ∈ [T ]. Note that

⟨πϵ, |∆d(Xt)| − τ⟩ = (1− ϵ

δ
)⟨π∗, |∆d(Xt)| − τ⟩+ ϵ

δ
⟨π0, |∆d(Xt)| − τ⟩ ≤ 0 +

ϵ

δ
(−δ) ≤ −ϵ.

Therefore, πϵ is a feasible solution of the baseline problem ⟨πϵ, g(f(Zd)
⊺θ∗)⟩ : ⟨πϵ, |∆d(Xt)| − τ + ϵ⟩ ≤ 0. Thus,

T∑
t=1

⟨π∗, g(f(Zd)
⊺θ∗)⟩ −

T∑
t=1

⟨π∗
ϵ , g(f(Zd)

⊺θ∗)⟩

≤
T∑

t=1

⟨π∗, g(f(Zd)
⊺θ∗)⟩ −

T∑
t=1

⟨πϵ, g(f(Zd)
⊺θ∗)⟩ (112)

=

T∑
t=1

⟨π∗, g(f(Zd)
⊺θ∗)⟩ − (1− ϵ

δ
)⟨π∗, g(f(Zd)

⊺θ∗)⟩ −
ϵ

δ
⟨π0, g(f(Zd)

⊺θ∗)⟩ (113)

=

T∑
t=1

ϵ

δ

(
⟨π∗, g(f(Zd)

⊺θ∗)⟩ − ⟨π0, g(f(Zd)
⊺θ∗)⟩

)
≤ ϵT

δ
. (114)

Where (112) follows by that π∗
ϵ is the optimal solution while πϵ is a feasible solution to ⟨πϵ, g(f(Zd)

⊺θ∗)⟩ : ⟨πϵ, |∆d(Xt)|−
τ + ϵ⟩ ≤ 0; (113) is from πϵ = (1− ϵ

δ )π
∗ + ϵ

δπ0; and (114) comes from g(f(Zd)
⊺θ∗) ∈ [0, 1]. ■

Algorithm 2 ϵ−CCLB Algorithm

1: Input: Horizon T , truncated interval ρ, step size η =
√
T/ρ, and the initial dual value ϕ1 = 0, user-select parameter

ϵ ∈ [0, δ).
2: for t = 1, 2, 3, . . . , T do
3: The learner observes the contextual information Xt = {at, wt,mt}.
4: Update the estimated reward parameter θ̂t.
5: Build a confidence set Ct(α) from (11),

Ct(α) =
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(α)

2
}
. (115)

6: Greedy procedure. Choose the optimistic reward parameter and select the greedy action:

θ̃t = argmaxθ∈Ct
maxd∈D g(f(Zd)

⊺θ∗) (116)

dt = argmax
d∈D

g(f(Zd)
⊺θ̃t)− ϕt(|∆̂d(Xt)| − τ + ϵ). (117)

7: Update the dual variable:

ϕt+1 = Proj[0,ρ]
[
ϕt + 1/η(|∆̂dt

(Xt)| − τ + ϵ)
]
. (118)

8: Received a random reward yt+1.
9: end for

F.3. Proof of Theorem 2

In this section, we establish upper bounds on both regret and constraint violation for the revised constraint condition (see
Algorithm 2). This is achieved by introducing a slackness variable ϵ, which serves to tighten the constraint. First, we
decomposeRϵ

+(T ) + ϕVϵ(T ) as follows, where Vϵ(T ) =
∑T

t=1 |∆dt
(Xt)| − τ + ϵ.

Rϵ
+(T ) + ϕVϵ(T ) =

T∑
t=1

[
⟨π∗

ϵ , g(f(Zd)
⊺θ∗)⟩ − g(f(Zdt)

⊺θ∗) + ϕ[|∆dt(Xt)| − τ + ϵ]
]

(119)
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≤
T∑

t=1

⟨π∗
ϵ , g(f(Zd)

⊺θ∗)⟩ − g(f(Zdt)
⊺θ∗) + ϕ[|∆dt(Xt)| − τ + ϵ]− ϕt⟨π∗

ϵ , |∆d(Xt)| − τ + ϵ⟩

=

T∑
t=1

⟨π∗
ϵ , g(f(Zd)

⊺θ∗)⟩ − ϕt⟨π∗
ϵ , |∆d(Xt)| − τ + ϵ⟩ − g(f(Zd)

⊺θ̃t) + ϕt[|∆̂dt
(Xt)| − τ + ϵ] +︸ ︷︷ ︸

term (1-ϵ)
T∑

t=1

[(
g(f(Zd)

⊺θ̃t)− g(f(Zdt
)⊺θ∗)

)
+ ϕ

(
[|∆dt

(Xt)| − τ + ϵ]− [|∆̂dt
(Xt)| − τ + ϵ]

)]
+︸ ︷︷ ︸

term (2-ϵ)
T∑

t=1

[
ϕ[|∆̂dt(Xt)| − τ + ϵ]− ϕt[|∆̂dt(Xt)| − τ + ϵ]

]
.︸ ︷︷ ︸

term (3-ϵ)

(120)

Where (119) holds since ϕt ≥ 0 and ⟨π∗, |∆dt
(Xt)| − τ + ϵ⟩ ≤ 0; and (120) follows by adding and subtracting technical

terms. Similar to the techniques in Section F.1, we can upper bound term (1-ϵ), term (2-ϵ), term (3-ϵ) according to (90), (97),
and Lemma 4 as following:

term (1-ϵ) =
T∑

t=1

⟨π∗
ϵ , g(f(Zd)

⊺θ∗)⟩ − ϕt⟨π∗
ϵ , |∆d(Xt)| − τ + ϵ⟩ − g(f(Zd)

⊺θ̃t) + ϕt[|∆̂dt
(Xt)| − τ + ϵ]

= ρ · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
,

term (2-ϵ) =

T∑
t=1

[(
g(f(Zd)

⊺θ̃t)− g(f(Zdt)
⊺θ∗)

)
+ ϕ

(
[|∆dt(Xt)| − τ + ϵ]− [|∆̂dt(Xt)| − τ + ϵ]

)]
= (1 + ϕ) · O

(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
,

term (3-ϵ) =

T∑
t=1

[
ϕ[|∆̂dt

(Xt)| − τ + ϵ]− ϕt[|∆̂dt
(Xt)| − τ + ϵ]

]
= O(ρ(1 + ϵ)2

√
T ).

Thus, we haveR+(T )+ϕV(T ) = (ρ+ϕ) ·O
(
nS log(T )

√
T +n2S2(log(T ))2+n2S2κZ(log(T ))

2
)
+O(ρ(1+ϵ)2

√
T ).

RegretRϵ
+(T ). By setting ϕ = 0, we have:

R+(T ) = O
(
ρ
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
))

= Õ
(
ρnS
√
T + ρn2S2κZ + ρ

√
T (1 + ϵ)2

)
.

Constraint violations. By applying (Beck, 2017, Theorem 3.60), we have Vϵ(T ) = Õ
(
nS
√
T +n2S2κZ +(1+ ϵ)2

√
T
)

,
to obtain a bound V(T ), we notice that:

V(T ) = Vϵ(T )−
T∑

t=1

ϵ = Õ
(
nS
√
T + n2S2κZ + (1 + ϵ)2

√
T − ϵT

)
.

Which finishes the proof. ■

F.4. Proof of Proposition 4

Proposition 4. By conditions stated in Theorem 2, for the user-selected parameter ϵ′ =
(√

T −√
T − 4C4

(√
T + C1n log(T ) + (C2 + C3κZ)n2((log(T ))2

√
1/T

) )
/2C4 − 1, where C1, C2, C3, C4 are the universal con-
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stants independent of n, S, T,κZ , if n ≥ 2 and ϵ′ < δ, then one could achieve a zero upper bound on the constraint
violations when select ϵ ∈ [ϵ′, δ).

Proof. To show the result in cumulative zero constraint violations, we write it as the following where C1, C2, C3, C4 are the
universal constants which is independent of n, S, T,κZ , and ϵ ∈ [0, δ):

V(T ) ≤ C1nS log(T )
√
T + C2n2S2(log(T ))2 + C3κZ n2S2(log(T ))2 + C4(1 + ϵ)2

√
T − ϵT,

we solve it when the right-hand-side is less than 0:

T − 2C4
√
T −

√
(T − 2C4

√
T )2 − 4C4

√
TΓ

2C4
√
T

≤ ϵ ≤
T − 2C4

√
T +

√
(T − 2C4

√
T )2 − 4C4

√
TΓ

2C4
√
T

,

where Γ = C1nS log(T )
√
T + C2n2S2((log(T )))2 + C3κZ n2S2(log(T ))2 + C4

√
T . First, The upper bound of ϵ have the

following inequality:

δ ≤ 1 ≤
√
T

2C4
− 1 ≤

T − 2C4
√
T +

√
(T − 2C4

√
T )2 − 4C4

√
TΓ

2C4
√
T

. (121)

Where (121) is because C4 = ρ while T ≫ ρ (typically we choose ρ < 100 for the numerical experiments). Now we look at
the lower bound of ϵ,

ϵ′ =

T − 2C4
√
T −

√
(T − 2C4

√
T )2 − 4C4

√
T
(
C1nS log(T )

√
T + C2n2S2((log(T ))2 + C3κZ n2S2(log(T ))2 + C4

√
T
)

2C4
√
T

=

T − 2C4
√
T −

√
T 2 − 4C4

(
T
√
T + C1nS log(T )T + C2n2S2((log(T ))2

√
T + C3κZ n2S2(log(T ))2

√
T
)

2C4
√
T

.

=

√
T −

√
T − 4C4

(√
T + C1nS log(T ) + (C2 + C3κZ)n2S2((log(T ))2

√
1/T

)
2C4

− 1.

If the lower bound ϵ′ is less than the Slater’s constant, then when the learner choose ϵ ∈ [ϵ′, δ), we could achieve zero
cumulative constraint violations. ■

G. Technical Lemmas
Lemma 5 ((Abeille et al., 2021) Lemma 7). Let b, c ∈ R+, and u ∈ R. The following implication holds:

u2 ≤ bu+ c =⇒ u ≤ b+
√
c.

Lemma 6 ((Abeille et al., 2021) Lemma 8). Let g be a strictly increasing function such that |g̈| ≤ |ġ|, and let Z be any
bounded interval of R. Then, for all z1, z2 ∈ Z:∫ 1

v=0

(1− v)ġ(z1 + v(z2 − z1)) dv ≥
ġ(z)

2 + |z1 − z2|
.

Lemma 7 ((Abeille et al., 2021) Lemma 11). Let {uτ}∞τ=1 be a sequence in Rn such that ||uτ || ≤ B for all τ ∈ N, and let
λ be a non-negative scalar. For t ≥ 1 define Vt =

∑t−1
τ=1 uτu

⊺
τ + λIn. The following inequality holds:

det(Vt) ≤
( tr(Vt)

n

)n

≤
(
λ+

(t− 1)B2

n

)n

.

Lemma 8 ((Abeille et al., 2021) Lemma 12). Let {uτ}∞τ=1 be a sequence in Rn such that ||uτ || ≤ B for all τ ∈ N. Further
let {λτ}∞τ=1 be an non-decreasing sequence in R+ s.t. λ1 = 1. For t ≥ 1 define Vt =

∑t−1
τ=1 uτu

⊺
τ + λtIn. Then:

T∑
t=1

||ut||2V −1
t
≤ 2n(1 +B2) log

(
λT +

TB2

n

)
.
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H. Additional Experiments
In this section, we provide additional evaluations for the ϵ-CCLB and CCLB algorithms when selecting different tightness
parameter ϵ (Figure 4) and counterfactual fairness threshold τ (Figure 5), respectively.

Figure 4. Increasing the user-chosen tightness parameter ϵ, the cumulative regret increases as well, but the cumulative
constraint violations decreases (the learner becomes more conservative). When we pick the ϵ equals τ (both are 0.16), we
observe that it incurs a high cumulative constraint violations (Figure 4 (b)) since ⟨π∗, |∆d(Xt)| − τ + ϵ⟩ > 0 therefore there
does not exist feasible decisions (notice that ϵ < δ ≤ τ).

Figure 5. As the counterfactual fairness threshold τ increases, the feasible region is larger (more of the actions are feasible),
which means the fixed comparator could be better but at the same time easier to avoid violating constraints (since more
actions are feasible in the first place when |D| is fixed), thus reduce the cumulative constraint violations (see Figure 5 (b), the
cumulative constraint violations are nearly 0 when τ = 0.86). On the other hand, when τ is small, i.e., |∆dt

(Xt)| ≥ τ almost
every round. The dual variable ϕt will increase as well, which renders the learner penalizes more on the counterfactual
fairness constraint (thus more conservative), therefore decrease the cumulative constraint violations (see Figure 5 (b), the
cumulative constraint violations are relative small when τ = 0.06).

(a) (b) (c)

Figure 4: Plots for the ϵ-CCLB (τ=0.16) algorithm when selecting different ϵ on (a) cumulative regret; (b) cumulative
constraint violations; (c) penalized cumulative regret.

(a) (b) (c)

Figure 5: Plots for CCLB algorithm when selecting different counterfactual fairness threshold τ on (a) Cumulative regret;
(b) Cumulative constraint violations; (c) Penalized cumulative regret.
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