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Abstract
Artificial intelligence will play a significant role
in decision making in numerous aspects of soci-
ety. Numerous fairness criteria have been pro-
posed in the machine learning community, but
there remains limited investigation into fairness
as defined through specified attributes in a sequen-
tial decision-making framework. In this paper, we
focus on causal logistic bandit problems where
the learner seeks to make fair decisions, under
a notion of fairness that accounts for counterfac-
tual reasoning. We propose and analyze an al-
gorithm by leveraging primal-dual optimization
for constrained causal logistic bandits where the
non-linear constraints are a priori unknown and
must be learned in time. We obtain sub-linear
regret guarantees with leading term similar to
that for unconstrained logistic bandits (Lee et al.,
2024) while guaranteeing sub-linear constraint
violations. We show how to achieve zero cumula-
tive constraint violations with a small increase in
the regret bound.

1. Introduction
Artificial intelligence (AI) models, using techniques from
statistics and machine learning, are increasingly being used
to make affect people’s lives. In light of this, a plethora
of formal fairness criteria have been proposed (Darlington,
1971; Dwork et al., 2012; Hardt et al., 2016; Zhang et al.,
2016; Kusner et al., 2017; Zafar et al., 2017; Nabi & Sh-
pitser, 2018; Chiappa, 2019; Chouldechova & Roth, 2020;
Imai & Jiang, 2023; Plecko & Bareinboim, 2024). There
has been growing interest in the sequential decision-making
community for accounting for fairness, including in set-
tings such as classic and contextual bandits (Joseph et al.,
2018), combinatorial bandits (Xu et al., 2020), bandits with
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long-term constraints (Liu et al., 2022), and reinforcement
learning (Jabbari et al., 2017), just to name a few. Notably,
rather than addressing fairness through the lens of specified
attributes, these studies typically operationalize fairness in
a different manner by defining it with respect to one-step
rewards and introducing a notion of meritocratic fairness
(Joseph et al., 2018). An algorithm should never assign a
higher selection probability to a less qualified decision than
to a more qualified one, i.e., arms with higher empirical
rewards should be picked more frequently than those with
lower empirical rewards, which is distinguishable from the
fairness criteria based on specified attribute.

In this paper, we focus on a problem structure wherein
arms arrive in a sequential and stochastic manner from an
underlying fixed distribution and decisions are made in an
online fashion by the agent. The objective of the agent is
to optimize cumulative rewards while achieving fairness
counterfactually with respect to specified attributes, i.e. the
outcome would not have been substantially different if the
specified attributes had different values. In general, this type
of task belongs to the setting of dynamic treatment regimes
(Murphy, 2003; Lavori & Dawson, 2008; Zhang, 2020) for
finding a sequence of decisions over a finite set of treatments
which appears across a broad range of applications.

1.1. Our Contributions

In light of the above, the goal of this paper is to analyze the
foundations of online causal fair decision-making. More
specially, our contributions are as follows:

• We formulate a constrained causal logistic bandits prob-
lem where the online decision-making processes are
characterized within a causal structure. We formalize a
(non-linear) fairness constraint based on the counterfac-
tual outcome effect that is a priori unknown and must
be learned in time. To the best of our knowledge, this
is the first work to study constrained logistic bandits
without a known safe decision subset (see Footnote 1).

• We provide an unified analysis for the confidence set
construction, algorithm design, and performance guar-
antee, i.e., sublinear reward regret and sublinear cumu-
lative constraint violations by leveraging the regret-to-
confidence-set conversion and the primal-dual online
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Table 1: Comparison of reward model, constraint types, frequentist regret guarantees, and cumulative violations upper
bounds for select related works. Notation: horizon T , the dimension for arm feature vector n, bounded bandit parameter
S, truncated parameter ρ (see Section 3.2), Slater’s constant δ (see Assumption 3), decision-set-dependent term RZ(T ),
generalized linear model (GLM). Problem dependent constant κ∗,κZ ,κ, where

√
1/κ∗ < 1≪ κZ ≪ κ when compared

within the same decision and parameter spaces. † Requires prior knowledge (see Footnote 1) of a safe action/policy (i.e.
satisfies the constraint ∆π0

≤ τ ) (per-round zero constraint violations with high probability).

Algorithm Model Constraint Regret Violation
Safe UCB-GLM

(Amani et al., 2020) GLM GLM Õ
(
κn
√
T
)

0 †

OFULog-r
(Abeille et al., 2021) Logistic No Õ

(
nS

5
2

√
T

κ∗(T )
+min{n2S4κZ , RZ(T )}

)
–

F-UCB
(Huang et al., 2022b)

Causal
MAB Linear O

(
1

τ−∆π0

√
|W |T

)
0 †

OFULog+
(Lee et al., 2024) Logistic No Õ

(
nS

√
T

κ∗(T )
+min{n2S2κZ , RZ(T )}

)
–

CCLB
Theorem 1

Causal
logistic

Mixture
logistics

Õ
(
ρnS

√
T + ρn2S2κZ + ρ

√
T
)

Õ
(
nS

√
T + n2S2κZ +

√
T
)

Zero CCLB
Proposition 4

Causal
logistic

Mixture
logistics

Õ
(
ρnS

√
T + ρn2S2κZ + ρ

√
T (1 + δ)2

)
0

optimization. We show that the leading term of our
regret, Õ(ρnS

√
T ), is significantly better than regret

bounds for related works handling constraints and is
similar to the bound for the unconstrained problem
(Lee et al., 2024) (see Remark 2). Furthermore, by in-
troducing an user-chosen parameter, one can trade off
the regret slightly to achieve zero cumulative constraint
violations.

1.2. Related Work

We next briefly discuss two lines of literature closely re-
lated to our work. See Appendix B for more discussion on
additional works.

Firstly, in terms of formulating causal fairness within a
multi-armed bandit setting, the closest related work is
(Huang et al., 2022b). Like us, they considered a stochastic,
contextual MAB problem with a (known) causal graph gov-
erning relationships between the stochastic contexts (seen
by the learner before making decisions) and the rewards.
They assume all variables are discrete. Like us, they pro-
posed characterizing fairness with counterfactual fairness
(Kusner et al., 2017; Wu et al., 2019; Chiappa, 2019) w.r.t.
specified attributes in the context (e.g. specified user fea-
tures in an online recommendation system). They make an
assumption1 about a fair policy; they provide high probabil-

1 Pacchiano et al. (2021) (which Huang et al. (2022b)’s analy-
sis is based on) requires explicit a priori knowledge of a feasible
action/policy (Assumption 5) and states that it is “absolutely neces-
sary” to do so for the problem they study (Remark 1). Huang et al.
(2022b)’s Assumption 3 only requires the existence of a safe policy
π0; π0 is not explicitly used in estimating rewards or estimating a

ity guarantees that all actions are fair. We model fairness as
a long-term constraint, for which we seek to bound cumula-
tive violations, as it is unclear whether it is possible to certify
policies as fair (feasible) before collecting data to estimate
the reward parameter upon which the (non-linear) constraint
depends. Unlike our work, they considered that all variables
except the reward are discrete-valued with non-parametric
(thus more flexible) distributions. They proposed simpler
empirical estimation methods for rewards, for which the
counterfactual constraints became linear. While the struc-
tural causal model was discrete-valued but non-parametric,
their regret bound in turn depended on |W |, the number
of realizations of the set of parent variables of the reward,
which is exponential in the size of the parent set (see Ta-
ble 1). In contrast, we model rewards parametrically (using
a logistic model), depending on feature maps of the con-
text and decision variables. This dramatically improves the
dimensional dependence, though the fairness constraint be-
comes a mixture of logistic functions for which estimating
confidence bounds (to estimate region of fair actions) is
more challenging.

Among works on MAB with parametric rewards and un-
known (stochastic) constraints, there are numerous works
on logistic rewards without constraints and linear rewards
with linear constraints (see Appendix B for discussion on
those works). The only prior work that like us considered
a non-linear (parametric) reward model with non-linear un-

set of feasible policies in the main paper. However, to the best of
our knowledge it is unclear how the conservatively estimated sets
of policies Φ̄t (shown w.h.p. to be feasible for all rounds) that are
used to select actions could be guaranteed to be non-empty in early
rounds without a known safe policy π0 or additional assumptions.
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known (stochastic) constraints is (Amani et al., 2020). They
considered generalized linear rewards where the generalized
function is assumed to be twice-differentiable and Lipschitz
constant of which logistic rewards is a sub-class. We note
that in terms of regret bound alone, their bound specialized
to logistic rewards is linearly dependent on the worst case
parameter κ (see Table 1), which can be arbitrarily large.
They considered generalized linear constraints; like in our
work, the constraints depend on the unknown parameter
vector θ∗ in the reward function. However, they consider a
priori knowledge of some feasible actions. At a high level,
they explore the environment (improving their estimate of
θ∗) using those feasible actions and are able to get high
probability guarantees of per-round feasibility. We do not
assume such prior knowledge. We instead bound long-term
constraint violations.

1.3. Preliminaries

In this section, we introduce the basic notations and defini-
tions used throughout the paper. We use capital letters to
denote variables (e.g., Y ), lowercase letters (e.g., y) repre-
sent scalar values, bold lowercase letters (e.g., y) indicate
vectors, and bold uppercase letters (e.g., Y) represent ma-
trices. For a twice-differentiable function g, the notation ġ
and g̈ denote the first and second derivative of function g
respectively. For a random variable Z, let Z represent the
domain of Z and |Z| the latter’s dimension. For two real-
valued symmetric matrices A and B, the notation A ⪰ B
indicates that A − B is positive semi-definite, and when
A is positive definite, we denote A-norm for a vector z as
∥z∥A =

√
z⊺Az. Finally, for two univariate real-valued

functions f and g, we denote f = Õ(g) to indicate that
g dominates f up to logarithmic factors; and for an event
E ∈ Ω, we write 1{E} the indicator function of E.

We adopt the language of Structural Causal Models (SCMs)
(Pearl, 2009, Ch. 7). An SCM M is a tuple ⟨U, V,F ,P(u)⟩,
where U is a set of exogenous (unobserved or latent) vari-
ables, V is a set of endogenous (observed) variables, F is
a set of structural functions, and P(u) is a distribution over
the latent variables. For the set of structural functions F ,
fVi
∈ F decides values of an endogenous variable Vi ∈ V

taking as argument a combination of other variables. That is,
Vi ← fVi

(PaVi
, UVi

), PaVi
⊆ V,UVi

⊆ U , where PaVi

denotes the parent set (explained below) of Vi. Realizations
of the set of latent variables U ∼ P(u) induce an obser-
vational distribution P(v) over V . An intervention on a
variable V1 ∈ V , denoted by do(V1 = c)2 is an operation
where value of V1 is set to a constant c regardless of the
structural function {fV1

: V1 ∈ V }. Each SCM is associated
with a directed acyclic graph (DAG) G (e.g., see Figure 1),

2When the variable being intervened on is clear from context,
we write do(c) for short notation.

called the causal diagram, where nodes correspond to en-
dogenous variables V, solid arrows represent arguments of
each function fV . A bi-directed arrow between nodes Vi

and Vj indicates an unobserved confounder affecting both
Vi and Vj , i.e., UVi

∩ UVj
̸= ∅. We will use the graph-

theoretic family abbreviations, e.g., Pa(V )G stand for the
set of parents of V in G. Two nodes X and Y are said to
be d-separated by a third set Z in a DAG G denoted by
(X ⊥⊥ Y |Z)G if and only if Z blocks all paths from every
node in X to every node in Y . The criterion of blockage
follows (Pearl, 2009, Def. 1.2.3), included in Appendix A
with formal definitions for completeness.

2. A Theoretical Framework for Constrained
Causal Logistic Bandits

In this section, we formalize the constrained causal logistic
bandits theoretical framework in the semantics of SCMs and
MABs. We start by considering a recruitment example (see
Appendix D.1 for more motivating examples), where the
decision-making process is characterized by the extended
Standard Fairness Model (SFM) (Zhang & Bareinboim,
2018; Plecko & Bareinboim, 2024). See Figure 1 for a
graphical model of the SFM. Variable A represents the spec-
ified attribute, W is a set of confounded features, and M
is a set of intermediate features, D and Y represent the
decision and outcome reward. The contextual information
{wt,mt,at} is accessible by the learner before making
decisions.

2.1. Logistic bandits with structural causal model

At every round t, the learner observes the contextual features
{wt,mt,at}, which are drawn from a stochastic distribu-
tion and then is presented a set of decisions Dt that depend
on the candidate’s context. The learner chooses a decision
dt ∈ Dt and receives an outcome reward yt+1 ∈ {0, 1}.
The learner’s decision is based on previous round knowl-
edge Ft = (F0, {wt,mt,at,dt, yt+1}t−1

t=1) and causal in-
formation, where F0 represents any prior knowledge. In
our problem, we assume that the outcome variable Y has a
generalized linear relationship (Filippi et al., 2010; Li et al.,
2017) with the features Z, specifically,

E[Y |Z] = g(f(Z)⊺θ∗), (1)

where the fixed but unknown parameters θ∗ belongs to Rn,
g(x) = (1 + e−x)−1 is the standard logistic function, f is
the mapping function that is known ahead of time to the
learner, and the encoded feature vector f(Z) is in Rn. Then
the interventional distribution for the expected reward of
do(dt) and do(at) given the observed contextual features
mt and wt is represented as (Plecko & Bareinboim, 2024):

E[Y |do(dt), do(at),wt,mt] = g(f(Zt)
⊺θ∗), (2)
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where Zt is the feature consisting of the decision dt and
the contexts {wt,mt,at}, In this paper, we consider one
specified attribute variable A, which in general is a parent of
the decision and outcome variable in the causal graph (see
Figure 1). Note that the specified attribute value at round t
is at and we denote the counterfactual value as a′t. Both the
decision and (hypothetical) counterfactual intervention on
the specified attribute value are atomic interventions (Correa
& Bareinboim, 2020). Thus, the expected reward for the
counterfactual feature a′t for any decision d ∈ Dt is

E[Y |do(d), do(a′t),wt,mt] = g(f(Za′
t
)⊺θ∗), (3)

where Za′
t

is the counterfactual feature for the interventions
do(a′t) and do(d). Notice that for this problem, we consider
that the factual feature Zt and counterfactual feature Za′

t
are

both in the feature space Z . The derivation of Equation (2)
and Equation (3) follows by the do-calculus rule (Pearl,
1995); readers can refer Appendix D.2 for a more detailed
analysis. Therefore, the counterfactual fairness effect for
decision dt is represented as:

∆(dt) = g(f(Zt)
⊺θ∗)− g(f(Za′

t
)⊺θ∗). (4)

2.2. Counterfactual fairness modeling via soft constraint

In this section, we discuss modeling fairness as part of the
learner’s decision making problem. Consider a stochastic
bandit optimization with a soft constraint for our decision-
making problem. In particular, at every round t ∈ [T ],
the learner selects a decision dt to maximize the expected
reward E[Y |do(dt), do(at),wt,mt] subject to a constraint
on (violations to) counterfactual fairness (Equation (4)),

|∆(dt) | ≤ τ, (5)

where τ is a predefined fairness threshold. In this work,
the counterfactual fairness constraint by Equation (5) re-
quires that the expected reward is similar regardless if the
value of the specified attribute had been different. In addi-
tion, the learner only receives bandit feedback (the reward).
The learner does not not observe feedback on constraint
violations.

Huang et al. (2022b) were the first to propose a counterfac-
tual fairness constraint in a bandit framework. We note that
their setting confines the learner to decisions from a safe
action set (see Footnote 1). To the best of our knowledge,
that setting requires strong assumptions on prior knowledge
of a subset of safe actions that can be used even before
rewards are estimated (the constraint (4) depends on the
unknown reward parameter vector θ∗). Prior knowledge of
safe actions can be mild in some settings, though we argue
counterfactual fairness (a convex combination of logistic
functions that depend on the unknown reward parameter
vector θ∗) is more complex, thereby it is less obvious for

Figure 1: Extended Standard Fairness Model (SFM). A
denotes the specified attribute, W is a set of confounded fea-
tures, M is a set of intermediate features, D is the decision,
and Y is the outcome. Let {W,M,A} denote contextual
information the learner has available to make the decision,
and let Z = {W,M,A,D} denote variables the reward dis-
tribution may depend on.

us to construct a prior safe decision without knowing any
information about the reward distribution. Therefore, for
the setting we consider, since no safe actions might known
a priori, we allow for instantaneous violations but bound the
cumulative violations.

The goal of the learner is to maximize the cumulative ex-
pected outcome reward while minimizing the cumulative ex-
pected counterfactual fairness constraint violations through-
out the learning process. Define the cumulative expected
regret and cumulative expected counterfactual fairness con-
straint violations as

R(T ) =

T∑
t=1

[
E[Y |do(d∗

t ), do(at),wt,mt]

− E[Y |do(dt), do(at),wt,mt]
]
, (6)

V(T ) =

T∑
t=1

[
|∆(dt)| − τ

]
+
, (7)

where d∗
t = argmax{d∈Dt:|∆(d)|≤τ} E[Y |do(dt), do(at),

wt,mt] and [·]+ = max{·, 0}. In this paper, we es-
tablish a stronger version of regret (Liu et al., 2021;
Zhou & Ji, 2022), specifically, let πt be a probabil-
ity distribution over the set of actions Dt at round
t, and let Eπt

E[Y |do(d), do(at),wt,mt] =
∑

d∈Dt

E[Y |do(d), do(at),wt,mt]πt(d) and Eπt
[ |∆(d)| − τ ] =∑

d∈Dt
[|∆(d)| − τ ]πt(d). We compare the received

outcome reward with the following baseline optimiza-
tion problem: maxπt

{Eπt
E[Y |do(d), do(at),wt,mt] :

Eπt
[|∆(d)| − τ ] ≤ 0} and π∗

t is the optimal solution at
step t. Thus, the stronger regret is defined as:

R+(T ) =

T∑
t=1

[
Eπ∗

t
E[Y |do(d), do(at),wt,mt]

4



Causal Logistic Bandits with Counterfactual Fairness Constraint

− E[Y |do(dt), do(at),wt,mt]
]
.

Note that the probability distribution πt could include some
decisions that violate the constraint but on average the con-
straint is satisfied, while for a single action it must be a
feasible one, therefore,R+(T ) ≥ R(T ).

2.3. Model assumptions and definition

To study our constrained causal logistic bandits problem,
we make the following standard assumptions (Yu et al.,
2017; Efroni et al., 2020; Zhou & Ji, 2022). Let Θ denote a
compact set in Rn. Let Z denote the feature space domain.

Assumption 1 (Bounded Bandit Parameter). There is a
known bound S on the norm of the (unknown) reward pa-
rameter vector θ, ∥θ∥2 ≤ S, ∀ θ ∈ Θ.

Assumption 2. The feature mapping function f : Z 7→ Rn

is in a reproducing kernel Hilbert space (RKHS) with a
bounded norm (i.e., a measure of smoothness), such that
∥f(Z)∥2 ≤ 1, ∀ Z ∈ Z .

Assumption 3 (Slater’s Constraint Qualification). There
is a constant δ > 0 such that there exists a feasible prob-
ability distribution πt,0 over decision set Dt that satisfies
Eπt,0

[|∆(d)| − τ ] ≤ −δ, ∀ t ∈ [T ]. Without loss of gener-
ality, we assume δ ≤ 1.

Notice that this is a mild assumption since it only requires
that one could find a stochastic policy πt,0 under which the
expected constraint violations will be strictly less than a
negative value. Whereas for hard constraints (Amani et al.,
2019; Khezeli & Bitar, 2020; Pacchiano et al., 2021), they
typically assume that the non-empty initial safe decision
set which is stronger than the assumption of existence for a
Slater’s constant δ about the learner’s knowledge.

We next define a problem dependent quantity that impacts
learnability.

Definition 1 (Problem Dependent Constant3).

κZ(θ∗) = max
Z∈Z

1/ġ(f(Z)⊺θ∗). (8)

We recall the other problem dependent constants dis-
cussed in Table 1: κ∗ = 1/ġ(f(Z∗)

⊺θ∗), κZ =
maxZ∈Z g(f(Z)⊺θ∗), and κ = maxZ∈Z,θ∈Θ1/ġ(f(Z)

⊺θ),
clearly,

√
1/κ∗ < 1≪ κZ ≪ κ. Notice that such problem

dependent constants are defined through the first order of
logistic function, which quantifies the level of non-linearity
of plausible expected reward signals with different scales. In
particular, κ can be significantly large even for reasonable
logistic bandits problems. Readers can refer Section 2 of
(Faury et al., 2020) for a detailed discussion on the impor-
tance of this quantity.

3We will drop the dependency on θ∗ when there is no ambigu-
ity.

3. Methods for Constrained Causal Logistic
Bandits

We next design an online algorithm for the constrained
causal logistic bandits problem. We will then develop a uni-
fied analysis of regret and constraint violations with rigorous
performance guarantees for our decision making strategy.
Before proposing the algorithm, we first construct a convex
confidence set for the reward parameter θ∗ using a regret-to-
confidence set conversion (Lee et al., 2024).

3.1. Convex confidence set

For logistic bandit problems, a natural way to estimate the
reward parameter θ∗ given Ft is to use maximum-likelihood
estimation. We build on the works for the unconstrained
problem (Abeille et al., 2021; Lee et al., 2024). At every
round t, a reward value yt+1 is sampled from a Bernoulli
distribution with expected value (or success probability)
g(f(Zt)

⊺θ∗). The unregularized cumulative logistic loss
can be written as:

Lt(θ) = −
t−1∑
τ=1

[
yτ+1 log g(f(Zτ )

⊺θ)

+ (1− yτ+1) log(1− g(f(Zτ )
⊺θ))

]
. (9)

The loss Lt(θ) is a strongly convex function of θ (Abeille
et al., 2021; Lee et al., 2024). The reward parameter is
estimated using maximum likelihood estimation (MLE),
defined as θ̂t = argmin||θ||2≤S Lt(θ). For α ∈ (0, 1], we
use the confidence set:

Ct(α) =
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(α)

2
}
, (10)

where βt(α) =
√

10n log( St
4n + e) + 2((e− 2) + S) log 1

α .
Then the following proposition ensures that Ct(α) is a
confidence set for θ∗ with high probability:
Proposition 1 (Theorem 1 in (Lee et al., 2024)).

P
(
∀t ≥ 1, θ∗ ∈ Ct(α)

)
≥ 1− α.

The proof is provided in Appendix E. The proof uses the ap-
proach from the online logistic regression regret guarantee
of (Foster et al., 2018) without running the online learning
algorithm explicitly. We notice that the radius of the convex
confidence set in (Abeille et al., 2021, Lemma 1) is around
O(

√
nS3 log(t)), while the above tightened loss-based con-

fidence set results in O(
√
(n+ S) log(t)), leading to an

overall improvement in the factor of S, especially when S
is large, e.g., S ≥ |Dt|.

3.2. Online learning algorithm

We consider a constrained stochastic causal logistic bandit
over horizon T as described in Section 2.2. The objec-
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tive for the learner is to maximize the cumulative rewards
while minimizing cumulative counterfactual fairness vio-
lations over time horizon T . To address the challenges on
the unknown reward and the unknown counterfactual fair-
ness constraint, we develop a Constrained Causal Logistic
Bandits (CCLB) algorithm by leveraging the primal-dual
optimization techniques.

The pseudo code for our CCLB algorithm is in Algo-
rithm 1. At every round t, let the Lagrangian of the
primal problem maxπt

{Eπt
[E[Y |do(d), do(at),wt,mt]] :

Eπt [|∆(d)| − τ ] ≤ 0} be LD(πt, ϕ) = EπtE[Y |do(d),
do(at),wt,mt] − ϕEπt [|∆(d)| − τ ] and then the associ-
ated dual function is defined as q(ϕ) = maxπt

LD(πt, ϕ).
Since both the reward and counterfactual fairness constraint
depend on the unknown parameter θ∗, we first estimate it
through maximal likelihood estimation and construct a con-
fidence set Ct(α) using the observed histories, i.e., feature
vectors and rewards. The greedy procedure is based on
the principle of optimism in the face of uncertainty (OFU)
(Auer et al., 2002; 2008; Osband & Van Roy, 2014), where
the optimistic estimate (θ̃t) is obtained by maximizing the
expected reward across the confidence set Ct(α), however,
we penalize the expected reward for the constraint violations
when the greedy action (dt) is picked by the learner over
the decision domain Dt. The dual update that minimizes
q(ϕ) with respect to ϕ is by taking a projected gradient de-
scent with 1/η being the step size. Note that the truncated
parameter ρ is chosen to be larger than the optimal dual
variable ϕ∗, where can be achieved since the optimal dual
variable is bounded under the Slater’s constraint qualifica-
tion, specifically, ϕ∗ ≤ (Eπ∗

t
E[Y |do(d), do(at),wt,mt]−

Eπt
0
E[Y |do(d), do(at),wt,mt])/δ from Theorem 8.42 in

(Beck, 2017).

Remark 1. We remark that the computational complexity
of Algorithm 1 is the same as standard algorithms for un-
constrained logistic bandits problems (Abeille et al., 2021;
Lee et al., 2024), since the dual update is executed via a
single-step projection, and the primal optimization retains
the character of the unconstrained case without construct-
ing a prior safe subset designed for hard constraints as in
(Amani et al., 2020). Additionally, the reward and counter-
factual fairness constraint in our algorithm share the same
unknown parameter θ∗.

3.3. Regret and constraint violations bounds

In this section, we provide the theoretic upper bounds for
both regret and constraint violations of Algorithm 1 and
explain the main idea behind the proof of Theorem 1.

Theorem 1. Suppose ρ ≥ 2/δ, and η =
√
T/ρ. For

0 ≤ τ < 1, under the Slater’s constraint qualification
in Assumption 3 and regularity assumptions in Assump-
tion 1 and 2, the CCLB algorithm achieves the following

Algorithm 1 CCLB Algorithm

1: Input: Horizon T , truncated parameter ρ, step size
η =
√
T/ρ, and the initial dual value ϕ1 = 0.

2: for t = 1, 2, 3, . . . , T do
3: Use MLE to estimate the reward parameter and build

a confidence set Ct(α) from Equation (10),

Ct(α) =
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(α)

2
}
.

4: Greedy procedure. Choose the optimistic reward
parameter θ̃t and select the greedy action dt:

θ̃t = argmax
θ∈Ct

max
d∈Dt

E[Y |do(d), do(at),wt,mt],

dt = argmax
d∈Dt

E[Y |do(dt), do(at),wt,mt]

− ϕt(|∆̂(d)| − τ).

5: Update the estimates of the dual variable:

ϕt+1 = Proj[0,ρ]
[
ϕt + 1/η(|∆̂(dt)| − τ)

]
.

6: Update the estimation and confidence set according
to the new received reward yt+1.

7: end for

bounds simultaneously with probability at least 1 − α for
any α ∈ (0, 1]:

R+(T ) = Õ
(
ρnS
√
T + ρn2S2κZ + ρ

√
T
)
,

V(T ) = Õ
(
nS
√
T + n2S2κZ +

√
T
)
.

Remark 2. We remark that: (1) the leading term of our
regret Õ(ρnS

√
T ) is similar to the bound Õ(nS

√
T/κ∗)

established in (Lee et al., 2024) as the logarithmic growth of
T , which improves upon (Abeille et al., 2021) (OFULog-r)
by a factor of S3/2 and improves upon (Zhang & Sugiyama,
2024) by at least a factor of

√
S. Though it acquires a mul-

tiplicative factor ρ, one could note that, at an extreme case,
when the Slater’s constant δ is optimized to 1/

√
log(T ), the

leading term scales as Õ(n
√
T ). (2) Compared to the un-

constrained case (Abeille et al., 2021; Zhang & Sugiyama,
2024; Lee et al., 2024), the regret boundR+(T ) exhibits an
additional term ρ

√
T , which roughly captures the impact of

the unknown counterfactual fairness constraint, i.e., a con-
vex combination of logistic functions, which is not logistic
function any more. More specifically, the non-convex nature
of the logistic mixture introduces a non-linear relationship
between the constraint and the reward parameter, thereby
resulting in a more complex estimated feasible region of safe
decisions at every round. (3) Compared to the constrained
generalized linear bandits (Amani et al., 2020), our regret

6
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bound shows a big improvement on the worst case constant
κ (see Table 1). (4) If τ ≥ 1, the constraint violations
bound V(T ) will be zero since the counterfactual fairness
constraint is satisfied for all the decisions (see Equation 5)
and our problem falls into the setting of logistic bandits
without constraint.

See Appendix G for the full proof. We next highlight a few
key parts of the proof.

Proof Sketch of Theorem 1. We first derive the following
key decomposition of total regret and constraint violations
that holds for any ϕ ∈ [0, ρ] : R+(T ) + ϕV(T ) ≤ R1 +
R2 +

√
Tρ, where4

R1 ≤
T∑

t=1

(ϕt − 1) Eπ∗
t

(
E[Ŷ |do(d), do(at),wt,mt]

− E[Y |do(d), do(at),wt,mt]
)
,

R2 ≤
T∑

t=1

(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt),

do(at),wt,mt]
)
+ ϕ

(
E[Ŷ |do(d), do(a′t),wt,mt]

− E[Y |do(d), do(a′t),wt,mt]
)
.

This is attained by employing a dual variable update and
necessary algebraic operations. Note that this bound will
serve as the cornerstone for the subsequent analysis of both
the regret and constraint violations. To further bound R1

and R2, we apply the following proposition for logistic
bandits regret:
Proposition 2. With probability at least 1 − α for any
α ∈ (0, 1], under the CCLB algorithm, we have:

T∑
t=1

g(f(Zt)θ̃t)− g(f(Zt)θ∗) = Õ
(
nS
√
T + n2S2κZ

)
The central idea to obtain the above regret (Proposition 2) is
by applying Taylor expansion which tightly link estimation
errors (e.g. between θ̃t and θ∗) to prediction errors (e.g.
between g(f(Zt)

⊺θ̃t) and g(f(Zt)
⊺θ∗)), readers can refer

Appendix F for more technical details. As for the logistic
bandits regret based on the counterfactual feature vectors,
i.e.,

∑T
t=1 g(f(Za′

t
)θ̃t)− g(f(Za′

t
)θ∗), we observe that the

counterfactual feature vector Za′
t

and the factual feature
vector Zt are both lie in the same feature space Z for our
problem. Thus,

∑T
t=1 g(f(Za′

t
)θ̃t)− g(f(Za′

t
)θ∗) exhibits

the same asymptotic upper bound up to logarithmic factors
as

∑T
t=1 g(f(Zt)θ̃t) − g(f(Zt)θ∗), thus R1 and R2 are

bounded.

Therefore, the regret upper bound R+(T ) can be ob-
tained by choosing ϕ = 0. Inspired by (Beck,

4E[Ŷ |do(d),Xt] is the estimated expected reward for decision
d and context Xt.

2017), we apply tools from constrained convex op-
timization to obtain the bound on constraint viola-
tions V(T ). First, we define the the probability
distribution π′

t by Eπ′
t
E[Y |do(d), do(at),wt,mt] =

E[Y |do(dt), do(at),wt,mt] and Eπ′
t
[|∆(d)| − τ ] =

[|∆(dt)| − τ ], where the policy π′
t only puts probability

mass (equal to 1) on decision dt chosen by the learner after
the observation of contextual information at every round t.
Then, we have,

R+(T ) + ϕV(T ) =
T∑

t=1

Eπ∗
t
E[Y |do(d), do(at),wt,mt]

− Eπ′
t
E[Y |do(d), do(at),wt,mt] + ϕEπ′

t
[|∆(d)| − τ ].

Since Eπ∗
t
E[Y |do(d), do(at),wt,mt] is convex over π∗

t ,
both Eπ′

t
E[Y |do(d), do(at),wt,mt] and Eπ′

t
[|∆(d)| − τ ]

are convex over π′
t, by utilizing (Beck, 2017, Theorem 3.60),

we obtain the upper bound on V(T ). ■

3.4. Improved regret and constraint violations bounds

In Section 3.3, our analysis demonstrates that the proposed
CCLB algorithm (Algorithm 1) achieves both sublinear re-
gret and sublinear constraint violations upper bounds. An-
other natural question to consider is whether the constraint
violations bound can be further improved. It turns out that
by introducing a tightness parameter ϵ in the dual update in
Algorithm 1, for ϵ < δ,

ϕt+1 = Proj[0,ρ]
[
ϕt + 1/η(|∆̂(dt)| − τ + ϵ)

]
, (11)

one can achieve a bounded and in some cases even zero
constraint violations by trading the regret slightly while still
preserving the same asymptotic order of regret as before. In-
tuitively, with a tightness parameter ϵ > 0 in the constraint,
the learner will be more cautious in selecting actions by
effectively working with a stricter constraint (e.g. with fair-
ness threshold τ−ϵ instead of τ ). Then, under this new hypo-
thetical pessimistic constraint function, the primal problem
is modified as: maxπt

{Eπt
[E[Y |do(d), do(at),wt,mt]] :

Eπt [|∆(d)| − τ + ϵ] ≤ 0}. Let π∗
t,ϵ be the optimal solution

to this new constrained optimization problem, then we have
the following relationship between policy π∗

t,ϵ and π∗
t :

Proposition 3. Let policies π∗
t and π∗

t,ϵ be the
optimal solutions for the constrained problem
maxπt

{Eπt
E[Y |do(d), do(at),wt,mt] : Eπt

[|∆(d)| −
τ ] ≤ 0} and maxπt,ϵ

{Eπt,ϵ
E[Y |do(d), do(at),wt,mt] :

Eπt,ϵ
[|∆(d)| − τ + ϵ] ≤ 0}. For ϵ < δ, we have,

T∑
t=1

Eπ∗
t
E[Y |do(d), do(at),wt,mt] −

T∑
t=1

Eπ∗
t,ϵ

E[Y |do(d), do(at),wt,mt] ≤
ϵT

δ
.

7
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To further investigate how the user-chosen parameter ϵ
will impact the regret and constraint violations upper
bounds, we define the regret associated with the policy π∗

t,ϵ

as: Rϵ
+(T ) =

∑T
t=1

[
Eπ∗

t,ϵ
E[Y |do(d), do(at),wt,mt] −

E[Y |do(dt), do(at),wt,mt]
]
, while the constraint viola-

tions remain defined by V(T ) =
∑T

t=1

[
|∆(dt)| − τ

]
+

.
We then state the following theoretical results for Rϵ

+(T )
and V(T ):
Theorem 2. Suppose ρ ≥ 2/δ, and η =

√
T/ρ. For

0 ≤ τ < 1 and the user-chosen parameter ϵ ∈ [0, δ), under
Slater’s constraint qualification in Assumption 3 and regu-
larity assumptions in Assumption 1 and 2, the CCLB algo-
rithm with refined constraint condition (see Equation (11))
attains the following theoretical upper bounds with proba-
bility at least 1− α for any α ∈ (0, 1] :

Rϵ
+(T ) = Õ

(
ρnS
√
T + ρn2S2κZ + ρ

√
T (1 + ϵ)2

)
,

V(T ) = Õ
(
nS
√
T + n2S2κZ + (1 + ϵ)2

√
T − ϵT

)
.

Remark 3. One could notice that (1) by introducing a tight-
ness parameter ϵ in the dual update, the associated regret
Rϵ

+(T ) still achieves a comparable asymptotic upper bound
asR+(T ) in Theorem 1; nevertheless, the constraint viola-
tions V(T ) upper bound exhibits an ϵT reduction compared
to the result in Theorem 1. Consequently, by selecting ϵ
appropriately, one can offset the other terms through the
subtraction of ϵT , thereby obtaining a constant upper bound
(with respect to the horizon T ) on the constraint violations.
(2) The difference in regret bounds between Theorem 2 with
a user selected ϵ ∈ [0, δ) and Theorem 1 is ρ

√
T (2ϵ+ ϵ2).

For a problem-dependent (fixed) Slater’s constraint qualifi-
cation constant δ > 0, increasing ϵ only worsens the regret
bound, as the learner is increasingly cautious (increasing in
ϵ), selecting from a smaller set of actions than the learner
would have with ϵ = 0. If δ is large, ρ shrinks towards 2 and
so for a fixed tightness ϵ the regret bound reduces. Larger δ
also allow for a bigger range of ϵ and thus more room for
caution (and regret).
Proposition 4. By conditions stated in Theo-
rem 2, for the user-selected parameter ϵ′ = (

√
T−√

T − 4C4(
√
T+C1n log(T )+(C2+C3κZ)n2((log(T ))2

√
1/T )

)
/2C4 − 1, where C1, C2, C3, C4 are the universal constants
independent of n, S, T,κZ , if n ≥ 2 and ϵ′ < δ for suffi-
ciently large T , then one could achieve a zero upper bound
on the constraint violations when selecting ϵ ∈ (ϵ′, δ).

Note that this user-chosen parameter ϵ trades off between
the upper bounds of the regret and constraint violations
(Jenatton et al., 2016). Minimizing regret often encour-
ages exploration and adaptability to changing environments,
which might lead to occasional violations of constraints.
Conversely, strictly adhering to constraints may limit the
algorithm’s ability to adapt, potentially increasing regret.

4. Numerical Experiments
We next evaluate the empirical performance of our proposed
methods on a synthetic data set. See Appendix H for ad-
ditional experiments for different values of the constraint
threshold τ and tightness parameter ϵ.

Data set description:5 We generated the synthetic dataset
from a structural causal model (modified an example from
(Plecko & Bareinboim, 2024)), i.e.,

F =



A← UAW ,

W ← N (0, 1− UAW

2 ),

M ←

{
N (0, |W |/2 + |UM |/3) if A = 1,

N (0, |W |/3 + |UM |/2) if A = 0,

Di ← N (0,max{|W |, |M |}) i = 1, ..., 20,

D ← {D1, D2, ..., D20},
Y ← 1(UY + 1

3MD − 1
5W > 0),

P(U) = {UAW ∼ Bern(0.5), UM , UY ∼ N (0, 1).}

As defined in Figure 1, A denotes the sensitive attribute
(binary valued), W is the confounded feature, M represents
the intermediate feature, D ∈ D is the agent’s decision, and
Y is the outcome. At every round, we generate a set of 20
feature vectors {[A,W,M,Di]}20i=1 along with their corre-
sponding counterfactual feature vectors. We use rejection
sampling over the sets to make sure that at least twelve of
the feature vectors are feasible.

Algorithms:6 We evaluate four different algorithms: GLM-
UCB (Filippi et al., 2010) (unconstrained generalized linear
bandits ), OFULog+ (Lee et al., 2024) (unconstrained lo-
gistic bandits ), CCLB (our method, causal logistic bandits
with counterfactual fairness constraints, Algorithm 1), and ϵ-
CCLB (our method with a user-chosen tightness parameter
ϵ, Algorithm 2).

Metrics: We evaluated the algorithms using cumulative
regret (6), cumulative constraint violations (7), and a penal-
ized form of cumulative regret for different horizons. For the
penalized cumulative regret, when the action picked by the
learner violates the counterfactual fairness constraint, the
learner still observes the reward value (i.e. the learner can
improve the reward parameter estimate θ̂), but we count the
reward earned as being 0. In this way, constraint violations
are allowed but are not (directly) profitable. This penalized
form combines the two primary metrics for simpler analysis.

Results: The results are plotted in Figure 2. Beginning with

5The source code is available at https://github.com/
jchen-research/CCLB.

6Another potential baseline is (Huang et al., 2022b), which also
studied counterfactual fairness in the causal bandits framework,
though for a different causal graph. Their code was not available
at the time of this work.
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(a) (b) (c)

Figure 2: Plots for different algorithms GLM-UCB, OFULog+, CCLB (τ = 0.16), and ϵ-CCLB (ϵ = 0.1, τ = 0.16) on (a)
cumulative regret; (b) cumulative constraint violations; (c) penalized cumulative regret.

penalized cumulative regret (Figure 2 (c)), where rewards
are only received for fair actions, there is a large gap be-
tween our method (CCLB) and the methods of OFULog+
and GLM-UCB, with the gap growing larger for longer hori-
zons. This is expected since GLM-UCB and OFULog+ do
not account for constraints. Both baselines have nearly lin-
ear penalized cumulative regret across horizons used. OFU-
Log+ does because it frequently violates constraints, and
thus large cumulative constraint violations, despite learning
good actions (for the unconstrained problem). For cumula-
tive regret (unpenalized), OFULog+ performs better than
our method (which seeks to satisfy the constraint).

GLM-UCB performs poorly at identifying good actions
within the horizons (Figure 2 (a)). GLM-UCB’s regret
bound has a linear dependence on the κ (see Table 1). GLM-
UCB is also designed for a more general class of reward
functions. Though ϵ-CCLB has a larger regret than CCLB
(but less than GLM-UCB), the cumulative constraint viola-
tions of ϵ-CCLB are much smaller than CCLB, especially,
its growth rate is nearly 0 from horizon T = 2, 000 to
horizon T = 10, 000, which rarely violates the constraints.

5. Conclusion
This paper introduced a framework for logistic bandits with
counterfactual fairness constraints built within a causal struc-
ture. The proposed approach attains satisfactory results,
demonstrating sublinear growth in both regret and constraint
violations by effectively balancing exploration and exploita-
tion within the environment via primal-dual optimization.
By introducing a user-chosen parameter, one can trade the
upper bounds between regret and constraint violations to
achieve zero cumulative constraint violations.

Several promising directions emerge for future research. (1)
One important direction is to extend our method to work
with unobserved confounders (i.e. W would be unobserved).
(2) Another interesting direction is to extend our model to

handle distribution shifts over time. (3) A third interesting
direction would be to extend our work to handle budget
constraints and consider a fairness notion defined by the
resource assignment, potentially building on existing work
in bandits with knapsacks (Tran-Thanh et al., 2012; Badani-
diyuru et al., 2018; Nie et al., 2024).
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Organization of the Appendix

• In Appendix A, we recall important notations and introduce some useful functions and results.

• In Appendix B, we provide additional related works for our problem.

• In Appendix C, we list some technical lemmas, needed for the analysis.

• In Appendix D, we provide motivation and proofs for the constrained causal logistic bandits framework.

• In Appendix E, we prove the convex confidence set.

• In Appendix F, we prove the logistic bandits regret upper bound.

• In Appendix G, we prove the total regret and constraint violations upper bounds, and the improved results.

• In Appendix H, we provide additional results for the numerical experiments.

A. Preliminaries
We first provide a formal definition for d-separation discussed in Section 1.3,

Definition 2 (d-separation (Pearl, 2009)). A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if
(1) p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z, (2) p contains an intervened
fork (or collider) i→ m← j such that the middle node m is not in Z.

We then detail below some useful notations that have been used throughout the paper. Below θ∗ ∈ Rn, f(Zt) ∈ Rn and
Y ∈ {0, 1},

θ∗ true reward parameter vector.
Y reward variable.
Xt context vector including the specified attribute, the confounded features, and the intermediate features.
f(Zt) mapping feature vector.
λt regularization parameter.
ϕt dual variable.
ρ truncated parameter.
ϵ user-chosen tightness parameter.
δ Slater’s constant.
α failure probability.
Ct(α) confidence set.
Bnp (1) n-dimensional ball of radius 1 under the ℓp norm.
|| · || ℓ2 norm.

We further recall and introduce the following functions and use it for the following analysis,

∆(d) = E[Y |do(dt), do(at),wt,mt]− E[Y |do(d), do(a′t),wt,mt]

= g(f(Zt)
⊺θ∗)− g(f(Za′

t
)⊺θ∗) (12)

Vt =

t−1∑
τ=1

f(Zτ ) f(Zτ )
⊺ + λtIn (13)

Ht(θ∗) =

t−1∑
τ=1

ġ(f(Zτ )
⊺θ∗)f(Zτ )f(Zτ )

⊺ + λtIn (14)

Gt(θ, θ∗) =

t−1∑
τ=1

∫ 1

v=0

(1− v)ġ
(
f(Zτ )

⊺θ + v f(Zτ )
⊺(θ − θ∗)

)
dv f(Zτ ) f(Zτ )

⊺ + λtIn (15)

α(f(Zτ ), θ̃t, θ∗) =

∫ 1

v=0

ġ
(
f(Zτ )

⊺θ̃t + v f(Zτ )
⊺(θ∗ − θ̃t)

)
dv (16)
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Where the regularized design matrices Vt, Ht(θ∗), Gt(θ, θ∗), and α(f(Zτ ), θ̃t, θ∗) are defined for the proof of logistic
bandits regret upper bound in Appendix F. In particular, Ht(θ∗) measures the local behavior of the logistic function through
ġ
(
f(Zτ )

⊺θ∗
)
.

B. Additional Related Works
Logistic bandits. The logistic bandits model represents a sequential decision-making framework that has attracted substantial
attention within the parametric bandits literature (Li et al., 2010; Filippi et al., 2010; Li et al., 2017; Dong et al., 2019). In a
recent work, Faury et al. (2020) proposed an optimistic algorithm based on a finer examination of the non-linearities of the
reward function to study the prohibitive linear dependencies introduced by κ in the regret upper bound. Abeille et al. (2021)
proved a minimax-optimal rate by deriving an Ω

(
n
√
T/κ∗(T )

)
problem-dependent lower-bound, which implies that the

non-linearity in logistic bandits can ease the exploration-exploitation trade-off in the long-term regime, i.e. κ∗(T ) > 1.
Faury et al. (2022) addressed the issue of computational tractability while preserving statistical efficiency by designing a new
convex confidence set. Additionally, another line of research is the multinomial logit contextual bandit problem (Agrawal
et al., 2017; Oh & Iyengar, 2019; Zhang & Sugiyama, 2024; Lee et al., 2024), which generalizes the binary logistic bandit
by allowing the learner to select a subset of arms. In particular, (Zhang & Sugiyama, 2024; Lee et al., 2024) also improve
the logistic bandits on the regret guarantee (with respect to S) and computational complexity, respectively.

Fairness. The body of research in fair machine learning is expanding and encompasses a variety of contexts. Within this
field, three distinct tasks can be identified: (1) the detection and quantification of biases in currently deployed policies; (2)
the development of fair predictive models for outcomes; and (3) the formulation of fair decision-making policies. Our work
falls under the setting of online outcome control (task (3)) that explores fairness through a causal lens (Huang et al., 2022a;b;
Plecko & Bareinboim, 2023; 2025). Unlike us, Plecko & Bareinboim (2023; 2025) explored the fairness through the
path-specific counterfactual effect in an offline setting along with budget constraint. As for the online setting, Hu & Zhang
(2022) studied achieving long-term fairness within a Markov Decision Process (MDP) framework, in which they quantified
long-term fairness by evaluating the path-specific effects in a causal graph under interventions on sensitive attributes and
predicted decisions. More recently, Hu et al. (2024) studied long-term fair decision-making through deep generative models.

Constrained MABs. There is a large body of work on bandits with different types of constraints, including knapsack
bandits (Wu et al., 2015; Agrawal & Devanur, 2016), submodular maximization (Krause & Guestrin, 2007; Nie et al.,
2023), bandits with hard safety constraints (Amani et al., 2019; Pacchiano et al., 2021), and bandits with cumulative soft
constraints (Liu et al., 2021; Zhou & Ji, 2022). Among them, the bandit setting with cumulative soft constraints is most
closely related to ours in that the goal is also to minimize the cumulative constraint violation. In particular, Zhou & Ji
(2022) considered a general unknown reward function and a general unknown constraint function in kernelized bandits via
primal-dual optimization. More broadly, this type of constrained problem has also been studied in the reinforcement learning
(RL) setting (Efroni et al., 2020; Ding et al., 2021) where constraints are managed through convex optimization methods.

C. Technical Lemmas
Lemma 1 ((Abeille et al., 2021) Lemma 11). Let {uτ}∞τ=1 be a sequence in Rn such that ||uτ || ≤ B for all τ ∈ N, and let
λ be a non-negative scalar. For t ≥ 1 define Vt =

∑t−1
τ=1 uτu

⊺
τ + λIn. The following inequality holds:

det(Vt) ≤
( tr(Vt)

n

)n

≤
(
λ+

(t− 1)B2

n

)n

.

Lemma 2 ((Abeille et al., 2021) Lemma 12). Let {uτ}∞τ=1 be a sequence in Rn such that ||uτ || ≤ B for all τ ∈ N. Further
let {λτ}∞τ=1 be an non-decreasing sequence in R+ s.t. λ1 = 1. For t ≥ 1 define Vt =

∑t−1
τ=1 uτu

⊺
τ + λtIn. Then:

T∑
t=1

||ut||2V−1
t
≤ 2n(1 +B2) log

(
λT +

TB2

n

)
.

Proof. By definition of Vt:

|Vt+1| = |
t−1∑
τ=1

uτu
⊺
τ + utu

⊺
t + λtIn|

14



Causal Logistic Bandits with Counterfactual Fairness Constraint

≥ |
t−1∑
τ=1

uτu
⊺
τ + utu

⊺
t + λt−1In|

= |Vt + utu
⊺
t |

≥ |Vt|
∣∣∣In + utV

−1
t u⊺

t

∣∣∣
= |Vt| (1 + ||ut||2V−1

t
).

Where the second inequality follows by λt ≥ λt−1; the forth inequality comes from Matrix Determinant Lemma. Taking
the log on both side of the equation and summing from t = 1 to T :

T∑
t=1

log(1 + ||ut||2V−1
t
) ≤

T∑
t=1

[
log|Vt+1| − log|Vt|

]
= log|VT+1| − log|λ1In|

= log
(

det(VT+1)
)

= n log
(
λT +

TB2

n

)
.

Where the second equality is by telescopic sum; and the last equality comes from Lemma 1. Therefore:

n log
(
λT +

TB2

n

)
≥

T∑
t=1

log(1 + ||ut||2V−1
t
)

≥
T∑

t=1

log(1 +
1

max(1, B2/λt)
||ut||2V−1

t
)

≥ 1

2max(1, B2/λ1)

T∑
t=1

||ut||2V−1
t

≥ 1

2(1 +B2)

T∑
t=1

||ut||2V−1
t
.

Where the second inequality comes from ||ut||2V−1
t

≤ B2/λt; and the third inequality follows by log(1 + x) > x/2, ∀x ∈
(0, 1]. ■

We then state some useful generalized self-concordance results from (Faury et al., 2020, Lemma 9) and (Abeille et al.,
2021, Lemma 7). We provide a proof for the sake of completeness (we also use the properties from (Abeille et al., 2021,
Lemma 8)).

Lemma 3 ((Faury et al., 2020) Lemma 9). Let g be a strictly increasing function such that |g̈| ≤ |ġ|, and let Z be any
bounded interval of R. Then, for all z1, z2 ∈ Z:∫ 1

v=0

ġ(z1 + v(z2 − z1)) dv ≥
ġ(z)

1 + |z1 − z2|
for z ∈ {z1, z2}.

Proof. Since function g is strictly increasing, we have ġ > 0 for any z ∈ Z . Therefore:

g̈

ġ
≥ −1 ⇒ −|z1 − z0| ≤

∫ max{z1,z0}

min{z1,z0}

g̈(z)

ġ(z)
dz

⇒ −|z1 − z0| ≤ log

(
ġ(max{z1, z0})
ġ(min{z1, z0})

)
⇒ ġ(min{z1, z0}) exp(−|z1 − z0|) ≤ ġ(max{z1, z0}),
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where the first line follows from z0 ∈ Z . Assume that z2 ≥ z1, let v ≥ 0, and set z0 = z1 + v(z2 − z1), we then could
easily get:

⇒ ġ(z1) exp
(
− v|z2 − z1|

)
≤ ġ

(
z1 + v(z2 − z1)

)
⇒ ġ(z1)

1− exp
(
− |z1 − z2|

)
|z1 − z2|

≤
∫ 1

v=0

ġ
(
z1 + v(z2 − z1)

)
dv

⇒ ġ(z1)
1

1 + |z1 − z2|
≤

∫ 1

v=0

ġ
(
z1 + v(z2 − z1)

)
dv.

Where the second line follows by taking integral of v from 0 to 1 for both sides; and the last line is obtained by using
exp(−x) ≤ (1 + x)−1 if x ≥ 0. We note that the same inequality can be proved when z2 < z1 by following the same
steps. ■

Lemma 4 (Polynomial Inequality; (Abeille et al., 2021) Lemma 7). Let b, c ∈ R+, and u ∈ R. The following implication
holds:

u2 ≤ bu+ c =⇒ u ≤ b+
√
c

Proof. Let function f(u) = u2 − bu− c. Then f is a strongly-convex function which roots are:

u1 =
1

2
(b+

√
b2 + 4c) u2 =

1

2
(b−

√
b2 + 4c)

If u2 ≤ bu+ c, then f(u) < 0 and by convexity of f we obtain:

u ≤ max {u1, u2}

≤ 1

2
(b+

√
b2 + 4c)

≤ b+
√
c.

Where the last inequality is because
√
x+ y ≤

√
x+
√
y, ∀x, y ≥ 0. ■

D. Causal Logistic Bandits Framework
D.1. Additional motivation example

Online Recommendation System (Huang et al., 2022b). Customers arrive sequentially according to an underlying
stochastic distribution, and an online decision-making model selects and recommends a specific item to each incoming
individual based on a predefined strategy. In this context, each arm represents a distinct item or content piece available for
recommendation to a user. The reward is determined by the user’s interaction with the recommended item, such as whether
the user clicks on it or not. The fairness constraint mandates that customers with similar profiles receive similar rewards,
irrespective of their specific attributes and the particular items being recommended.

D.2. Derivation for the factual and counterfactual expected reward

Here, we provide proofs for Equation (2) and Equation (3), which follow by the do-calculus rule (Pearl, 1995).

E[Y |do(dt), do(at),wt,mt] = E[Y |dt,at,wt,mt] (17)
= E[Y |Zt] (18)
= g(f(Zt)

⊺θ∗), (19)

where (17) follows by (D,A ⊥⊥ Y |W,M)GD,A
(see Figure 3b); (18) follows by denoting Zt as the features from dt,wt,mt

and at; and (19) follows by the logistic reward assumption (Equation (1)). As for Equation (3),

E[Y |do(dt), do(a
′
t),wt,mt] = E[Y |dt,a

′
t,wt,mt] (20)

= E[Y |Za′
t
] (21)
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= g(f(Za′
t
)⊺θ∗), (22)

where (20) follows by (D,A ⊥⊥ Y |W,M)GD,A
(see Figure 3b); (21) follows by denoting Za′

t
as the features from dt,wt,mt

and a′t; and (22) the last equality follows by the logistic reward assumption, similar as above. ■

(a) (b)

Figure 3: (a) A causal diagram representing GD; (b) another causal diagram representing GD,A.

E. Confidence Sets
In this section, we provide proofs for the construction of the improved convex confidence set for the estimated bandit
parameter presented in Section 3.1. We borrow the techniques from (Lee et al., 2024, Section 3) to obtain the results.

Recall the convex confidence set definition:

Ct(α) =
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(α)

2
}
,

where:

βt(α) =

√
10n log(

St

4n
+ e) + 2((e− 2) + S) log

1

α
.

Proposition 1. Let α ∈ (0, 1], then

P
(
∀t ≥ 1, θ∗ ∈ Ct(α)

)
≥ 1− α.

Proof. The proof unfolds through three principal technical components similar with (Lee et al., 2024). First, we invoke
decomposition identities for the logistic loss, expressing Lt(θ)− Lt(θ̂t) as the sum of (i) the regret of the online learning
algorithm, (ii) a martingale difference sequence, and (iii) a collection of KL-divergence terms. Second, in controlling the
martingale sum, we derive and apply an anytime variant of Freedman’s inequality tailored to martingales. Third, to bound
the KL-divergence contribution, we fuse the self-concordant analysis of Abeille et al. (2021) with an information-geometric
interpretation of the KL divergence.

Firstly, we denote ξτ as a real-valued martingale difference noise where ξτ = g(f(Zτ )
⊺θ∗)− yτ , thus for the logistic loss

ℓτ (θ) = −yτ log g(f(Zτ )
⊺θ)− (1− yτ ) log

(
1− g(f(Zτ )

⊺θ)
)
, we have that the following equality holds for any θ:

ℓτ (θ∗) = ℓτ (θ) + ξτ ⟨f(Zτ ), θ − θ∗⟩ −KL
(
Bern(g(f(Zτ )

⊺θ∗)),Bern(g(f(Zτ )
⊺θ))

)
.

The equality follows from the first order Taylor expansion with an integral remainder (see (Lee et al., 2024, Appendix C.4.1)
for more details). Setting θ to be the optimistic estimate θ̃τ and taking a sum over time steps τ :

0 =

t∑
τ=1

[
ℓτ (θ̃τ )− ℓτ (θ∗)−KL

(
Bern(g(f(Zτ )

⊺θ∗)),Bern(g(f(Zτ )
⊺θ)) + ξτ ⟨f(Zτ ), θ̃τ − θ∗⟩

]
17
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=

t∑
τ=1

[
ℓτ (θ̃τ )− ℓτ (θ̂t) + ℓτ (θ̂t)− ℓτ (θ∗)−KL

(
Bern(g(f(Zτ )

⊺θ∗)),Bern(g(f(Zτ )
⊺θ)) + ξτ ⟨f(Zτ ), θ̃τ − θ∗⟩

]
(23)

=

t∑
τ=1

[
ℓτ (θ̂t)− ℓτ (θ∗)−KL

(
Bern(g(f(Zτ )

⊺θ∗)),Bern(g(f(Zτ )
⊺θ)) + ξτ ⟨f(Zτ ), θ̃τ − θ∗⟩

]
+

t∑
τ=1

[
ℓτ (θ̃τ )− ℓτ (θ̂t)

]
(24)

where in (23) we add and subtract ℓτ (θ̂t) and in (24) we rearrange terms. We further define ζ1(t) =
∑t

τ=1 ξτ ⟨f(Zτ ), θ̃τ −
θ∗⟩, ζ2(t) =

∑t
τ=1 KL

(
Bern(g(f(Zτ )

⊺θ∗)),Bern(g(f(Zτ )
⊺θ)), and ζ3(t) =

∑t
τ=1

[
ℓτ (θ̃τ )− ℓτ (θ̂t)

]
. Using (24), we

then have

Lt(θ)− Lt(θ̂t) =

t∑
τ=1

[
ℓτ (θ∗)− ℓτ (θ̂t)

]
= ζ1(t)− ζ2(t) + ζ3(t) (25)

Upper Bounding ζ1(t). Recall that Fτ = σ
(
{f(Z1), y1, ..., f(Zτ ), yτ , f(Zτ+1)}

)
is the filtration for our bandit model,

f(Zτ ) and θ̃τ are Fs−1-measurable, and ξτ is a martingale difference sequence w.r.t. Fs−1. Thus, we have that,

E
[
ξ2τ ⟨f(Zτ ), θ̃τ − θ∗⟩2|Fs−1

]
= ġ(f(Zτ )

⊺θ∗)⟨f(Zτ ), θ̃τ − θ∗⟩2 and |ξτ ⟨f(Zτ ), θ̃τ − θ∗⟩| ≤ 2S.

From (Beygelzimer et al., 2011, Theorem 1), we could apply Freedman’s inequality to obtain the following result,

Lemma 5. (Lee et al., 2024, Lemma 3). Let f(Z1), ..., f(Zt) be martingale difference sequence satisfying maxτ |f(Zτ )| ≤
R a.s., and let Fτ be the σ−field generated by (f(Z1), ..., f(Zt). Then for any α ∈ (0, 1) and any η ∈ [0, 1/R], the
following holds with probability at least 1− α:

t∑
τ=1

f(Zτ ) ≤ (e− 2)η

t∑
τ=1

E[f(Zτ )
2
τ |Fτ−1] +

1

η
log

1

α
, ∀t ≥ 1.

Thus, for η ∈ [0, 1
2S ] to be chosen later, by invoking Lemma 5 for the martingale difference sequence f(Z1), ..., f(Zt), the

following holds with probability at least 1− α, ∀t ≥ 1:

ζ1(t) ≤ (e− 2)η

t∑
τ=1

ġ(f(Zτ )
⊺θ∗)⟨f(Zτ ), θ̃τ − θ∗⟩2 +

1

η
log

1

α
. (26)

Lower Bounding ζ2(t). From the standard result in information geometry (Amari, 2016; Brekelmans et al., 2020), we have
the following result:

Lemma 6. (Lee et al., 2024, Lemma 4). Let m(z) := log(1+ ez) be the log-partition function for the Bernoulli distribution
and g(z) = 1

1+e−z . Then, we have that

KL
(
Bern(g(z2)),Bern(g(z1))

)
= Dm(z1, z2),

where Dm(z1, z2) is the Bregman Divergence defined as Dm(z1, z2) =
∫ z1
z2

m̈(z)(z1 − z) dz.

Notice that

Dm(z1, z2) =

∫ z1

z2

m̈(z)(z1 − z) dz =

∫ z1

z2

(
log(1 + ez)

)′′
(z1 − z) dz =

∫ z1

z2

ġ(z)(z1 − z) dz. (27)

Thus, we have the following lower bound on ζ2(t),

ζ2(t) =

t∑
τ=1

KL
(
Bern(g(z2)),Bern(g(z1))

)
(28)
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=

t∑
τ=1

Dm

(
f(Zτ )

⊺θ̃τ , f(Zτ )
⊺θ∗

)
(29)

=

t∑
τ=1

∫ f(Zτ )
⊺θ̃τ

f(Zτ )⊺θ∗

ġ(z)(f(Zτ )
⊺θ̃τ − z) dz (30)

=

t∑
τ=1

⟨f(Zτ ), θ∗ − θ̃τ ⟩2
∫ 1

0

(1− v)ġ
(
f(Zτ )

⊺(vθ̃τ + (1− v)θ∗
)
dv (31)

≥
t∑

τ=1

⟨f(Zτ ), θ∗ − θ̃τ ⟩2
ġ(f(Zτ )

⊺θ∗)

2 + |f(Zτ )⊺(θ∗ − θ̃τ )|
(32)

≥
t∑

τ=1

⟨f(Zτ ), θ∗ − θ̃τ ⟩2
ġ(f(Zτ )

⊺θ∗)

2 + 2S
. (33)

Where (28) follows by definition of ζ2; (29) uses Lemma 6; (30) uses (27); (31) follows by change variables; (32) follows
by (Abeille et al., 2021, Lemma 8); and (33) follows by Assumption 1 and 2.

Upper Bounding ζ3(t) (Lee et al., 2024, Theorem 2). From (Foster et al., 2018, Theorem 3), there exists an (improper
learning) algorithm for online logistic regression with the following regret:

ζ3(t) ≤ 10n log
(
e+

St

4n

)
. (34)

Though our selected decisions are more conservative compared with (Lee et al., 2024) (add a penalty term when selecting
decisions to account for constraint violations), the estimation method to obtain θ̂t (i.e., MLE) and the way to compute the
optimistic estimate θ̃t (i.e., θ̃t = argmaxθ∈Ct

maxd∈Dt
E[Y |do(d),at,wt,mt]) are the same as (Lee et al., 2024). See the

justification for using the improper learning algorithm in (Lee et al., 2024, Appendix B.2).

Combining Equation (25), (26), (33), and (34), with η = 1
2(e−2)+2S < 1

2S ,

Lt(θ)− Lt(θ̂t) = ζ1(t)− ζ2(t) + ζ3(t)

≤ (e− 2)η

t∑
τ=1

ġ(f(Zτ )
⊺θ∗)⟨f(Zτ ), θ̃τ − θ∗⟩2 +

1

η
log

1

α
+

t∑
τ=1

⟨f(Zτ ), θ∗ − θ̃τ ⟩2
ġ(f(Zτ )

⊺θ∗)

2 + 2S

+ 10n log
(
e+

St

4n

)
≤ 10n log(

St

4n
+ e) + 2((e− 2) + S) log

1

α
,

which finishes the proof. ■

F. Logistic Regret Upper Bounds
In this section, we provide the proofs for logistic bandits regret upper bounds presented in Section 3.3. Some of the details
follow from (Faury et al., 2020, Appendix B) and (Abeille et al., 2021, Appendix C). We first define the regret of logistic
bandits, and use which to prove the regret and constraint violations upper bound in Appendix G for our problem:

Rlog =

T∑
t=1

[
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

]
=

T∑
t=1

[
g(f(Zt)

⊺θ̃t)− g(f(Zt)
⊺θ∗)

]
(35)

=

T∑
t=1

[
ġ(f(Zt)

⊺θ∗) f(Zt)
⊺(θ̃t − θ∗)

]
︸ ︷︷ ︸

Rlog1

+

T∑
t=1

[ ∫ f(Zt)
⊺θ̃t

f(Zt)⊺θ∗

g̈(u)(f(Zt)
⊺θ̃t − u) du

]
︸ ︷︷ ︸,

Rlog2

(36)
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where the (35) comes from the expected reward in (2); the (36) is by performing the Taylor Series Expansion of g(f(Zt)
⊺θ̃t)

on f(Zt)
⊺θ∗ with a first order integral remainder. Then we rewrite the logistic regretRlog asRlog1

andRlog2
, where,

Rlog1
=

T∑
t=1

[
ġ(f(Zt)

⊺θ∗) f(Zt)
⊺(θ̃t − θ∗)

]
Rlog2

=

T∑
t=1

[ ∫ f(Zt)
⊺θ̃t

f(Zt)⊺θ∗

g̈(u)(f(Zt)
⊺θ̃t − u) du

]
.

We separately upper bound both terms. Firstly, we prove the following Lemma used throughout this section.

Lemma 7. With λt =
1

4S2(2+2S) , for any θ ∈ Ct(α), the following holds with probability at least 1− α:

∥θ − θ∗∥2Ht(θ∗)
≤ γt(α)

2 = O
(
S2

(
n log

(
e+

St

4n

)
+ log

1

α

))
.

Proof. By proposition 1, we have that with probability at least 1− α, Lt(θ∗)− Lt(θ̂t) ≤ βt(α)
2, we assume this event is

true throughout this proof. Then, by second-order Taylor expansion of Lt(θ) around θ∗,

Lt(θ) = Lt(θ∗) +∇Lt(θ∗)
⊺(θ − θ∗) + ∥θ − θ∗∥2Gt(θ,θ∗)−λtI

.

= Lt(θ∗) +∇Lt(θ∗)
⊺(θ − θ∗) + ∥θ − θ∗∥2Gt(θ,θ∗)

− λt∥θ − θ∗∥22.

As for the relationship between Gt(θ, θ∗) and Ht(θ∗), we have the following result:

Gt(θ, θ∗) =

t−1∑
τ=1

∫ 1

v=0

(1− v)ġ
(
f(Zτ )

⊺θ + v f(Zτ )
⊺(θ∗ − θ)

)
dv f(Zτ ) f(Zτ )

⊺ + λtIn

⪰
t−1∑
τ=1

ġ
(
f(Zτ )

⊺θ∗

)
2 + |f(Zτ )⊺θ − f(Zτ )⊺θ∗|

f(Zτ ) f(Zτ )
⊺ + λtIn

⪰ 1

2 + 2S

t−1∑
τ=1

ġ
(
f(Zτ )

⊺θ∗

)
f(Zτ ) f(Zτ )

⊺ + λtIn

⪰ 1

2 + 2S
Ht(θ∗),

Thus, we have that,

∥θ − θ∗∥2Ht(θ∗)
≤ (2 + 2S)∥θ − θ∗∥2Gt(θ,θ∗)

= (2 + 2S)
(
Lt(θ)− Lt(θ∗) +∇Lt(θ∗)

⊺(θ∗ − θ) + λt∥θ − θ∗∥22
)

≤ (2 + 2S)
(
Lt(θ)− Lt(θ̂t) +∇Lt(θ∗)

⊺(θ∗ − θ) + λt∥θ − θ∗∥22
)

≤ 1 + (2 + 2S)βt(α)
2 + (2 + 2S)∇Lt(θ∗)

⊺(θ∗ − θ). (37)

Where (37) follows by λt =
1

4S2(2+2S) . The next is to bound∇Lt(θ∗)
⊺(θ∗−θ), which is done via a new concentration-type

argument. Let Bn(2S) be a n ball of radius 2S and v ∈ Bn(2S). Since

∇Lt(θ∗)
⊺v =

t∑
τ=1

(
g(f(Zτ )

⊺θ∗)− yτ
)
f(Zτ )

⊺v =

t∑
τ=1

ζτf(Zτ )
⊺v.

As |ζτf(Zτ )
⊺v| < 2S and E[(ζτf(Zτ )

⊺v)2|Fτ−1] = ġ(f(Zτ )
⊺θ∗)(f(Zτ )

⊺v)2, by Freedman’s inequality (26), for any
η ∈ [0, 1

2BS ], the following holds:

P
[ t∑
τ=1

ζτf(Zτ )
⊺v ≤ (e− 2)η

t∑
τ=1

ġ(f(Zτ )
⊺θ∗)(f(Zτ )

⊺v)2 +
1

η
log

1

α

]
≥ 1− α
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By (Vershynin, Corollary 4.2.13) and (Lee et al., 2024, Appendix C.4.4) the following holds with probability at least 1− α:

∇Lt(θ∗)
⊺(θ∗ − θ) ≤ (e− 2)η||θ∗ − θ||2Ht(θ∗)

+
1

η
log

1

α
+

n

η
log

5S

ϵt
+
( (e− 2)

4

(
4Sη + ηϵt

)
+ 1

)
ϵtt.

Choose η = 1
2(e−2)(2+2S) <

1
2S , ϵt = n

t , and with Equation (37), we finally have:

||θ − θ∗||2Ht(θ∗)
= O

(
nS2 log

(
e+

St

4n

)
+ S2 log

1

α

)
.

Which finishes the proof. ■

F.1. The regret upper bound ofRlog1
.

We start by examiningRlog1
and show the following upper bounds:

Rlog1
=

T∑
t=1

[
ġ(f(Zt)

⊺θ∗) f(Zt)
⊺(θ̃t − θ∗)

]
(38)

≤
T∑

t=1

ġ(f(Zt)
⊺θ∗) ||f(Zt)||H−1

t (θ∗)
∥θ̃t − θ∗∥Ht(θ∗) (39)

≤
T∑

t=1

ġ(f(Zt)
⊺θ∗) ||f(Zt)||H−1

t (θ∗)
γt(α) (40)

≤ γT (α)

T∑
t=1

ġ(f(Zt)
⊺θ∗) ||f(Zt)||H−1

t (θ∗)
(41)

≤ γT (α)

√√√√ T∑
t=1

ġ(f(Zt)⊺θ∗)

√√√√ T∑
t=1

ġ(f(Zt)⊺θ∗) ||f(Zt)||2H−1
t (θ∗)

(42)

≤ γT (α)

√√√√ T∑
t=1

ġ(f(Zt)⊺θ∗)

√√√√ T∑
t=1

||ut||2Ṽ−1
t

(43)

≤ 2γT (α)

√√√√ T∑
t=1

ġ(f(Zt)⊺θ∗)

√
n log

(
λT +

T

n

)
. (44)

Where (39) and (42) is by Cauchy-Schwarz inequality (ġ
(
f(Zt)

⊺θ∗
)

is non-negative); (40) comes from Lemma 7 and
(41) is because γT (α) = maxt∈[T ] γt(α); in (43), we define vector ut =

√
ġ(f(Zt)⊺θ∗) f(Zt) and matrix Ṽt =∑t−1

τ=1 ut u
⊺
t + λtIn, and obtain:

ġ(f(Zt)
⊺θ∗) ||f(Zt)||2H−1

t (θ∗)
= ||

√
ġ(f(Zt)⊺θ∗) f(Zt)||2H−1

t (θ∗)

= ||ut||2Ṽ−1
t
;

and (44) follows by Lemma 2.

We then take a look at the first order of the logistic function ġ(f(Zt)
⊺θ∗) and derive a upper bound for it by a first-order

Taylor expansion:

T∑
t=1

ġ(f(Zt)
⊺θ∗) =

T∑
t=1

ġ(f(Zt)
⊺θ̃t) +

T∑
t=1

∫ f(Zt)
⊺θ∗

f(Zt)⊺θ̃t

g̈(u) du (45)

=

T∑
t=1

ġ(f(Zt)
⊺θ̃t) +

T∑
t=1

[ ∫ 1

v=0

g̈
(
f(Zt)

⊺θ̃t + vf(Zt)
⊺(θ∗ − θ̃t)

)
dv

]
f(Zt)

⊺(θ∗ − θ̃t) (46)
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≤
T∑

t=1

ġ(f(Zt)
⊺θ̃t) +

T∑
t=1

∣∣∣∣[ ∫ 1

v=0

g̈
(
f(Zt)

⊺θ̃t + vf(Zt)
⊺(θ∗ − θ̃t)

)
dv

]
f(Zt)

⊺(θ∗ − θ̃t)

∣∣∣∣ (47)

≤
T∑

t=1

ġ(f(Zt)
⊺θ̃t) +

T∑
t=1

∣∣∣∣[ ∫ 1

v=0

g̈
(
f(Zt)

⊺θ̃t + vf(Zt)
⊺(θ∗ − θ̃t)

)
dv

]∣∣∣∣f(Zt)
⊺(θ̃t − θ∗) (48)

=

T∑
t=1

ġ(f(Zt)
⊺θ̃t) +

T∑
t=1

[ ∫ 1

v=0

∣∣∣∣g̈(f(Zt)
⊺θ̃t + vf(Zt)

⊺(θ∗ − θ̃t)
)∣∣∣∣ dv]f(Zt)

⊺(θ̃t − θ∗) (49)

≤
T∑

t=1

ġ(f(Zt)
⊺θ̃t) +

T∑
t=1

[ ∫ 1

v=0

ġ
(
f(Zt)

⊺θ̃t + vf(Zt)
⊺(θ∗ − θ̃t)

)
dv

]
f(Zt)

⊺(θ̃t − θ∗) (50)

=

T∑
t=1

ġ(f(Zt)
⊺θ̃t) +

T∑
t=1

α(f(Zt), θ̃t, θ∗)f(Zt)
⊺(θ̃t − θ∗) (51)

=

T∑
t=1

ġ(f(Zt)
⊺θ̃t) +

T∑
t=1

[
g
(
f(Zt)

⊺θ̃t

)
− g

(
f(Zt)

⊺θ∗

)]
(52)

=

T∑
t=1

ġ(f(Zt)
⊺θ̃t) +Rlog (53)

≤ T +Rlog. (54)

Where (45) comes from the Taylor Expansion; (46) follows by changing variables; (47) is by taking the absolute value; (48)
is because the optimistic estimate at step t, hence, f(Zt)

⊺θ̃t ≥ f(Zt)
⊺θ∗; (50) follows by the self-concordance property of

logistic function |ġ| ≥ |g̈| and ġ > 0; (51) follows by (16) and (52) is from the fundamental theorem of calculus; and (54)
follows by ġ(f(Zt)

⊺θ̃t) ≤ 1.

Therefore, by (44) and (54), we intermediately obtain the following upper bound onRlog1
:

Rlog1
≤ 2γT (α)

√
n log

(
λT +

T

n

)√
T +Rlog

≤ 2γT (α)

√
n log

(
λT +

T

n

)(√
T +

√
Rlog

)
, (55)

where (55) is because
√
T +Rlog ≤

√
T +

√
Rlog for T > 0, Rlog > 0.

F.2. The regret upper bounds ofRlog2
.

In order to upper bound the logistic bandits regretRlog in (36), we still need to upper boundRlog2
that includes the second

order of logistic function:

Rlog2
=

T∑
t=1

[ ∫ f(Zt)
⊺θ̃t

f(Zt)⊺θ∗

g̈(u)(f(Zt)
⊺θ̃t − u) du

]
(56)

=

T∑
t=1

[ ∫ 1

v=0

(1− v)g̈
(
f(Zt)

⊺θ∗ + v f(Zt)
⊺(θ̃t − θ∗)

)
dv

](
f(Zt)

⊺(θ̃t − θ∗)
)2

(57)

≤
T∑

t=1

1

2

(
f(Zt)

⊺(θ̃t − θ∗)
)2

(58)

≤
T∑

t=1

1

2
∥f(Zt)∥2H−1

t (θ∗)
∥θ̃t − θ∗∥2Ht(θ∗)

(59)

≤
T∑

t=1

1

2
∥f(Zt)∥2H−1

t (θ∗)
γ2
t (α) (60)
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≤ 1

2
γ2
T (α)

T∑
t=1

∥f(Zt)∥2H−1
t (θ∗)

(61)

≤ 1

2
γ2
T (α) κZ

T∑
t=1

∥f(Zt)∥2V−1
t (θ∗)

(62)

≤ 2n γ2
T (α) κZ log

(
λT +

T

n

)
. (63)

Where (57) follows by changing variables; (58) is because g̈ ≤ 1; (59) follows by Cauchy-Schwarz inequality; (60) comes
from Lemma 7; (61) is by CT (α) = maxt∈[T ] Ct(α); as for (62), we note that

Ht(θ∗) =

t−1∑
τ=1

ġ
(
f(Zτ )

⊺θ∗

)
f(Zτ ) f(Zτ )

⊺ + λtIn

⪰ 1

κZ

[ t−1∑
τ=1

f(Zτ ) f(Zτ )
⊺ + λtIn

]
=

1

κZ
Vt(θ∗),

where the second line comes from Definition 1. Thus,

H−1
t (θ∗) ⪯

√
κZV

−1
t (θ∗);

and (63)follows by Lemma 2.

Then by the upper bounds onRlog1
in Equation (55) andRlog2

in Equation (63), we then finally upper bound the logistic
bandits regretRlog in Equation (36):

Rlog = Rlog1
+Rlog2

(64)

≤ 2γT (α)

√
n log

(
λT +

T

n

)(√
T +

√
Rlog

)
+ 2n γ2

T (α) κZ log
(
λT +

T

n

)
(65)

≤
[
2γT (α)

√
n log

(
λT +

T

n

)
+

√
2γT (α)

√
n log

(
λT +

T

n

)√
T + 2n γ2

T (α) κZ log
(
λT +

T

n

)]2
(66)

≤ 8nγ2
T (α) log

(
λT +

T

n

)
+ 4γT (α)

√
n log

(
λT +

T

n

)√
T + 4nγ2

T (α) κZ log
(
λT +

T

n

)
, (67)

where (66) follows by Lemma 4; and (67) comes from (x+ y)2 ≤ 2x2 + 2y2. To further simplify the logistic bandits regret
Rlog, we write γt(α) as:

γt(α) = O
(
S

√(
n log

(
e+

St

4n

)
+ log

1

α

))
.

To get an intuitive understanding on how γt(α) behaves when t grows, we write γT (α) as an asymptotic notation of T , i.e.,
γT (α) = O(S

√
n log(T )). Therefore, as for theRlog, we obtain the following bounds:

Rlog ≤ 8nγ2
T (α) log

(
λT +

T

n

)
+ 4γT (α)

√
n log

(
λT +

T

n

)√
T + 4nγ2

T (α) κZ log
(
λT +

T

n

)
= O

(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
, (68)

which finishes the proof. ■

G. Regret guarantee and constraint violations
In this section, we provide proofs for upper bounds of both reward regret and constraint violations. Our proofs build on the
greedy procedure in Algorithm 1 and standard convex optimization analysis.
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G.1. Proof of Theorem 1

We first prove the regret upper bound. Under Slater’s constraint qualification in Assumption 3, we have the boundedness of
the optimal dual solution by standard convex optimization analysis from (Beck, 2017, Theorem 8.42), where,

0 ≤ ϕ∗ ≤
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− Eπt,0E[Y |do(d), do(at),wt,mt]

δ
≤ 1

δ
,

the r.h.s. is because the logistic function is less than 1. Now, we turn to establish a bound overR+(T ) + ϕV(T ). First, note
that,

R+(T ) + ϕV(T )

=

T∑
t=1

[
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt] + ϕ(|∆(dt)| − τ)

]
(69)

≤
T∑

t=1

[
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt] + ϕ(|∆(dt)| − τ)− ϕtEπ∗

t
(|∆(d)| − τ)

]
(70)

=

T∑
t=1

(
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− ϕtEπ∗

t
(|∆(d)| − τ)

)
−

(
E[Ŷ |do(dt), do(at),wt,mt]− ϕt(|∆̂(dt)| − τ)

)
︸ ︷︷ ︸

R1

+

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
(|∆(dt)| − τ)− (|∆̂(dt)| − τ)

)]
︸ ︷︷ ︸

R2

+

T∑
t=1

[
ϕ(|∆̂(dt)| − τ)− ϕt(|∆̂(dt)| − τ)

]
.︸ ︷︷ ︸

R3

(71)

≤

T∑
t=1

(
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− ϕtEπ∗

t
(|∆(d)| − τ)

)
−

(
E[Ŷ |do(dt), do(at),wt,mt]− ϕt(|∆̂(dt)| − τ)

)
︸ ︷︷ ︸

R1

+

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
(|∆(dt)| − τ)− (|∆̂(dt)| − τ)

)]
︸ ︷︷ ︸

R2

+
√
Tρ.

(72)

Where (69) holds since ϕt ≥ 0 and Eπ∗
t
(|∆(dt)| − τ) ≤ 0; (71) holds by adding and subtracting∑T

t=1 E[Ŷ |do(dt), do(at),wt,mt],
∑T

t=1 ϕt(|∆̂(dt)| − τ),
∑T

t=1 ϕ(|∆̂(dt)| − τ); and (72) comes from Lemma 8.

We are then going to boundR1:

R1 =

T∑
t=1

(
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− ϕtEπ∗

t
(|∆(d)| − τ)

)
−

(
E[Ŷ |do(dt), do(at),wt,mt]− ϕt(|∆̂(dt)| − τ)

)
=

T∑
t=1

Eπ∗
t

(
E[Y |do(d), do(at),wt,mt]− E[Ŷ |do(d), do(at),wt,mt]

)
+ ϕt · Eπ∗

t

(
(|∆̂(d)| − τ)− (|∆(d)| − τ)

)
+

Eπ∗
t

(
E[Ŷ |do(d), do(at),wt,mt]− ϕt · (|∆̂(d)| − τ)

)
−

(
E[Ŷ |do(dt), do(at),wt,mt]− ϕt · (|∆̂(dt)| − τ)

)
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≤
T∑

t=1

Eπ∗
t

(
E[Y |do(d), do(at),wt,mt]− E[Ŷ |do(d), do(at),wt,mt]

)
+

T∑
t=1

ϕtEπ∗
t

(
(|∆̂(d)| − τ)− (|∆(d)| − τ)

)
≤

T∑
t=1

ϕt · Eπ∗
t

(
(|∆̂(d)| − τ)− (|∆(d)| − τ)

)
≤ ρ ·

T∑
t=1

Eπ∗
t

(
(|∆̂(d)| − τ)− (|∆(d)| − τ)

)
= ρ · O

(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
. (73)

Where the second equality follows by adding and subtracting terms; the third inequality comes from the greedy action
dt chosen at step t in Algorithm 1; the forth inequality comes from the optimistic estimate θ̃t in Algorithm 1; and the
fifth inequality is because ϕt ≤ ρ; as for the result in the last line, we note that if ∆̂(d) ≥ 0 then ∆(d) ≥ 0, and by the
counterfactual fairness effect (see Equation (4)), we have,

(|∆̂(d)| − τ)− (|∆(d)| − τ) = E[Ŷ |do(d), do(at),wt,mt]− E[Ŷ |do(d), do(a′t),wt,mt]

− E[Y |do(d), do(at),wt,mt] + E[Y |do(d), do(a′t),wt,mt]

≤ E[Ŷ |do(d), do(at),wt,mt]− E[Y |do(d), do(at),wt,mt]

= g(f(Zt)θ̃t)− g(f(Zt)θ∗),

where the second line follows by optimistic estimation. On the another hand, if ∆̂(d) < 0 then ∆(d) < 0,

(|∆̂(d)| − τ)− (|∆(d)| − τ) = E[Ŷ |do(d), do(a′t),wt,mt]− E[Ŷ |do(d), do(at),wt,mt]

+ E[Y |do(d), do(at),wt,mt]− E[Y |do(d), do(a′t),wt,mt]

≤ E[Ŷ |do(d), do(a′t),wt,mt]− E[Y |do(d), do(a′t),wt,mt]

= g(f(Za′
t
)θ̃t)− g(f(Za′

t
)θ∗),

similarly, the second line follows by the optimistic estimate, here, we notice that, the factual feature Zt and the counterfactual
feature Za′

t
reside within the feature space Z , in which the boundness assumption (Assumption 1) and problem dependent

constant (Definition 1) are defined by. Therefore, the logistic bandits regret of g(f(Zt)θ̃t) − g(f(Zt)θ∗) has the same
asymptotic upper bound up to logarithmic factors as g(f(Za′

t
)θ̃t)− g(f(Za′

t
)θ∗) (see Equation (68)).

We further boundR2. When ∆̂(d) ≥ 0:

R2 =

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
(|∆(dt)| − τ)− (|∆̂(dt)| − τ)

)]
=

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
E[Y |do(dt), do(at),wt,mt] −

E[Y |do(dt), do(a
′
t),wt,mt]

)
− ϕ

(
E[Ŷ |do(dt), do(at),wt,mt] − E[Ŷ |do(dt), do(a

′
t),wt,mt]

)]
=

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
E[Y |do(dt), do(at),wt,mt] −

E[Ŷ |do(dt), do(at),wt,mt]
)

+ ϕ
(
E[Ŷ |do(dt), do(a

′
t),wt,mt] − E[Y |do(dt), do(a

′
t),wt,mt]

)]
≤

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
E[Ŷ |do(dt), do(a

′
t),wt,mt] −

E[Y |do(dt), do(a
′
t),wt,mt]

)]
.
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Where the second equality follows by the counterfactual fairness effect (see Equation (4)); the forth inequality follows by
the optimistic estimate.

When ∆̂(d) < 0, we have that:

R2 =

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
(|∆(dt)| − τ)− (|∆̂(dt)| − τ)

)]
=

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
− E[Y |do(dt), do(at),wt,mt] +

E[Y |do(dt), do(a
′
t),wt,mt]

)
− ϕ

(
− E[Ŷ |do(dt), do(at),wt,mt] + E[Ŷ |do(dt), do(a

′
t),wt,mt]

)]
≤

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
E[Ŷ |do(dt), do(at),wt,mt]−

E[Y |do(dt), do(at),wt,mt]
)]

.

Since the logistic bandits regret of g(f(Zt)θ̃t)− g(f(Zt)θ∗) has the same asymptotic upper bound up to logarithmic factors
as g(f(Za′

t
)θ̃t)− g(f(Za′

t
)θ∗) (see discussions on Equation (73)), thus

R2 ≤ (1 + ϕ) · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
. (74)

Thus, by Equation (73) and Equation (74), the upper bound onR+(T ) + ϕV(T ) for any ϕ ∈ [0, ρ] is the following:

R+(T ) + ϕV(T ) = (1 + ϕ) · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+

ρ · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+O(ρ

√
T ).

RegretR+(T ). By setting ϕ = 0, then we obtain the upper bounds on the total regret guarantee with high probability:

R+(T ) = (ρ+ 1) · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+O(ρ

√
T )

= O
(
ρ
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+ ρ
√
T

)
.

= Õ
(
ρ(nS

√
T + n2S2)κZ + ρ

√
T
)
, (75)

where the second line is because the truncated parameter ρ ≥ 2/δ; and the last line is to write the regret upper bound in a
logarithmic asymptotic notation.

Constraint violations. Next, to obtain a bound on V(T ), we employ tools from constrained convex optimization. First, we
define probability distribution π′

t by

Eπ′
t
E[Y |do(d), do(at),wt,mt] = E[Y |do(dt), do(at),wt,mt]; Eπ′

t
(|∆(d)| − τ) = (|∆(dt)| − τ),

Thus,

R+(T ) + ϕV(T ) =

T∑
t=1

[
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− Eπ′

t
E[Y |do(d), do(at),wt,mt] + ϕEπ′

t
(|∆(d)| − τ)

]
.

(76)

Then we apply the following theorem from Theorem 3.60 in (Beck, 2017).
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Theorem 3. Consider the following convex constrained problem f(π∗) = maxπ∈Π {f(π) : g(π) ≤ 0}, where both f and
g are convex over the convex set Π in a vector space. Suppose f(π∗) is finite and there exists a slater point π0 such that
g(π0) ≤ −δ, and a constant ρ ≥ 2ϕ∗ where ϕ∗ is the optimal dual variable, i.e., ϕ∗ = argminϕ≥0(maxπ f(π)− ϕg(π)).
Assume that π′ ∈ Π satisfies

f(π∗)− f(π′) + ρ[g(π′)]+ ≤ ϵ,

for some ϵ > 0, then we have [g(π′)]+ ≤ 2ϵ
ρ .

Since
∑T

t=1 Eπ∗
t
E[Y |do(d), do(at),wt,mt] is convex over {π∗

t }Tt=1,
∑T

t=1 Eπ′
t
E[Y |do(d), do(at),wt,mt] and∑T

t=1 Eπ′
t
(|∆(dt)| − τ) are convex over {π′

t}Tt=1. Then Equation (76) satisfies the conditions in Theorem 3 and we
have that:

V(T ) =

T∑
t=1

(|∆(dt)| − τ)

= O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2 +
√
T
)
.

= Õ
(
nS
√
T + n2S2κZ +

√
T
)
.

Where the second line follows by ϕ ∈ [0, ρ] and 1/ρ < 1. ■

Lemma 8. Under the dual update of ϕt in Algorithm 1, we have the following for any ϕ ∈ [0, ρ]:

T∑
t=1

(ϕ− ϕt)(|∆̂(dt)| − τ) ≤ 1

2η
(ϕ1 − ϕ)2 +

T∑
t=1

η

2
((|∆̂(dt)| − τ))2

Proof. By the dual update of ϕt in Algorithm 1:

(ϕt+1 − ϕ)2 = (ϕt +
1

η
(|∆̂(dt)| − τ)− ϕ)2

= (ϕt − ϕ)2 + (
1

η
(|∆̂(dt)| − τ))2 + 2(ϕt − ϕ)(

1

η
[|∆̂(dt)| − τ ])

= (ϕt − ϕ)2 +
2

η
(ϕt − ϕ)(|∆̂(dt)| − τ) + (

1

η
(|∆̂(dt)| − τ))2.

Summing over T steps and multiplying both sides by η
2 :

T∑
t=1

η

2
(ϕt+1 − ϕ)2 =

T∑
t=1

η

2
(ϕt − ϕ)2 +

T∑
t=1

(ϕt − ϕ)(|∆̂(dt)| − τ) +

T∑
t=1

1

2η
((|∆̂(dt)| − τ))2.

Therefore:

T∑
t=1

(ϕ− ϕt)(|∆̂(dt)| − τ) =

T∑
t=1

η

2
(ϕt − ϕ)2 −

T∑
t=1

η

2
(ϕt+1 − ϕ)2 +

T∑
t=1

1

2η
((|∆̂(dt)| − τ))2

=
η

2
(ϕ1 − ϕ)2 − η

2
(ϕT+1 − ϕ)2 +

T∑
t=1

1

2η
((|∆̂(dt)| − τ))2

≤ η

2
(ϕ1 − ϕ)2 +

T∑
t=1

1

2η
((|∆̂(dt)| − τ))2

=

√
T

2ρ
ϕ2 +

ρ
√
T

2
((|∆̂(dt)| − τ))2
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≤
√
Tρ

2
+

ρ
√
T

2

= O(
√
Tρ),

where the second equality comes from telescopic sum; and the forth equality follows by ϕ1 = 0 and η =
√
T/ρ initialized

in Algorithm 1; and the fifth inequality is because |∆̂(dt)| ∈ [0, 1], ϕ ∈ [0, ρ], and 0 ≤ τ ≤ 1. ■

G.2. Proof of Proposition 3

Proposition 3 states the relationship between policy π∗
t and π∗

t,ϵ for the regret upper bounds, we provide a proof in the
following.
Proposition 3. Let policies π∗

t and π∗
t,ϵ be the optimal solution for constrained problem

maxπt{EπtE[Y |do(d), do(at),wt,mt] : Eπt [∆(d) − τ ] ≤ 0} and maxπt{EπtE[Y |do(d), do(at),wt,mt] :
Eπt

[∆(d)− τ + ϵ] ≤ 0}, we have,

T∑
t=1

Eπ∗
t
E[Y |do(d), do(at),wt,mt]−

T∑
t=1

Eπ∗
t,ϵ
E[Y |do(d), do(at),wt,mt] ≤

ϵT

δ

Proof. The policies π∗
t and π∗

t,ϵ are defined as:

π∗
t = max

πt

{Eπt [E[Y |do(d), do(at),wt,mt]] : Eπt [|∆(d)| − τ ] ≤ 0}

π∗
t,ϵ = max

πt,ϵ

{Eπt,ϵ
[E[Y |do(d), do(at),wt,mt]] : Eπt,ϵ

[|∆(d)| − τ ] + ϵ ≤ 0}.

Let one policy πt,ϵ = (1 − ϵ
δ )π

∗
t + ϵ

δπt,0, where πt,0 is the policy satisfies the Slater’s constrained qualification, i.e.,
Eπt,0

[|∆(d)| − τ ] ≤ −δ, ∀ t ∈ [T ]. Note that

Eπt,ϵ
[|∆(d)| − τ ] = (1− ϵ

δ
)Eπ∗

t
[|∆(d)| − τ ] +

ϵ

δ
Eπt,0

[|∆(d)| − τ ]

≤ 0 +
ϵ

δ
(−δ) ≤ −ϵ.

Therefore, πt,ϵ is a feasible solution of the baseline problem Eπt,ϵ
[E[Y |do(d), do(at),wt,mt]] : Eπt,ϵ

[|∆(d)|− τ ]+ ϵ ≤ 0.
Thus,

T∑
t=1

Eπ∗
t
E[Y |do(d), do(at),wt,mt]−

T∑
t=1

Eπ∗
t,ϵ
E[Y |do(d), do(at),wt,mt]

≤
T∑

t=1

Eπ∗
t
E[Y |do(d), do(at),wt,mt]−

T∑
t=1

Eπt,ϵE[Y |do(d), do(at),wt,mt]

≤
T∑

t=1

(
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− (1− ϵ

δ
)Eπ∗

t
E[Y |do(d), do(at),wt,mt] −

ϵ

δ
Eπt,0

E[Y |do(d), do(at),wt,mt]
)

=

T∑
t=1

ϵ

δ

(
Eπ∗

t
E[Y |do(d), do(at),wt,mt]− Eπt,0E[Y |do(d), do(at),wt,mt]

)
≤ ϵT

δ
.

Where the first inequality follows by that π∗
t,ϵ is the optimal solution while πt,ϵ is a feasible solution

to Eπt,ϵ [E[Y |do(d), do(at),wt,mt]] : Eπt,ϵ [|∆(d)| − τ ] + ϵ ≤ 0; and the last inequality comes from
E[Y |do(d), do(at),wt,mt] ∈ [0, 1]. ■

G.3. Proof of Theorem 2

In this section, we establish upper bounds on both regret and constraint violation for the revised constraint condition (see
Algorithm 2). This is achieved by introducing a slackness variable ϵ, which serves to tighten the constraint. First, we
decomposeRϵ

+(T ) + ϕVϵ(T ) as follows, where Vϵ(T ) =
∑T

t=1 |∆(dt)| − τ + ϵ.

Rϵ
+(T ) + ϕVϵ(T )
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=

T∑
t=1

[
Eπ∗

t,ϵ
E[Y |do(d), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt] + ϕ[|∆(dt)| − τ + ϵ]

]
≤

T∑
t=1

Eπ∗
t,ϵ
E[Y |do(d), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt] + ϕ[|∆(dt)| − τ + ϵ]− ϕtEπ∗

t,ϵ
[|∆(d)| − τ + ϵ]

=

T∑
t=1

Eπ∗
t,ϵ
E[Y |do(d), do(at),wt,mt]− ϕtEπ∗

t,ϵ
[|∆(d)| − τ + ϵ]− E[Ŷ |do(dt), do(at),wt,mt] + ϕt[|∆̂(dt)| − τ + ϵ]︸ ︷︷ ︸

Rϵ
1

+

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
[|∆(dt)| − τ + ϵ]− [|∆̂(dt)| − τ + ϵ]

)]
︸ ︷︷ ︸

Rϵ
2

+

T∑
t=1

[
ϕ[|∆̂(dt)| − τ + ϵ]− ϕt[|∆̂(dt)| − τ + ϵ]

]
.︸ ︷︷ ︸

Rϵ
3

Similar to the techniques in Section G.1, we can upper boundRϵ
1,Rϵ

2,Rϵ
3 as follows:

Rϵ
1 =

T∑
t=1

Eπ∗
t,ϵ
E[Y |do(d), do(at),wt,mt]− ϕtEπ∗

t,ϵ
[|∆(d)| − τ + ϵ]− E[Ŷ |do(dt), do(at),wt,mt] + ϕt[|∆̂(dt)| − τ + ϵ]

= ρ · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
,

Rϵ
2 =

T∑
t=1

[(
E[Ŷ |do(dt), do(at),wt,mt]− E[Y |do(dt), do(at),wt,mt]

)
+ ϕ

(
[|∆(dt)| − τ + ϵ]− [|∆̂(dt)| − τ + ϵ]

)]
= (1 + ϕ) · O

(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
,

Rϵ
3 =

T∑
t=1

[
ϕ[|∆̂(dt)| − τ + ϵ]− ϕt[|∆̂(dt)| − τ + ϵ]

]
= O(ρ(1 + ϵ)2

√
T ).

Thus,

R+(T ) + ϕV(T ) = (ρ+ ϕ) · O
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
)
+O(ρ(1 + ϵ)2

√
T ).

RegretRϵ
+(T ). By setting ϕ = 0, we have:

R+(T ) = O
(
ρ
(
nS log(T )

√
T + n2S2(log(T ))2 + n2S2κZ(log(T ))

2
))

= Õ
(
ρnS
√
T + ρn2S2κZ + ρ

√
T (1 + ϵ)2

)
,

Constraint violations. By applying (Beck, 2017, Theorem 3.60), we have:

Vϵ(T ) = Õ
(
nS
√
T + n2S2κZ + (1 + ϵ)2

√
T
)
.

To obtain a bound V(T ), we notice that:

V(T ) = Vϵ(T )−
T∑

t=1

ϵ

= Õ
(
nS
√
T + n2S2κZ + (1 + ϵ)2

√
T − ϵT

)
.

Which finishes the proof. ■
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Algorithm 2 ϵ−CCLB Algorithm

1: Input: Horizon T , truncated interval ρ, step size η =
√
T/ρ, and the initial dual value ϕ1 = 0, user-select parameter

ϵ ∈ [0, δ).
2: for t = 1, 2, 3, . . . , T do
3: Use MLE to estimate the reward parameter and build a confidence set Ct(α) from Equation (10),

Ct(α) =
{
θ ∈ Θ : Lt(θ)− Lt(θ̂t) ≤ βt(α)

2
}
.

4: Greedy procedure. Choose the optimistic reward parameter and select the greedy action:

θ̃t = argmaxθ∈Ct
maxd∈Dt

E[Y |do(d), do(at),wt,mt],

dt = argmaxd∈Dt
E[Ŷ |do(d), do(at),wt,mt]− ϕt(|∆̂(d)| − τ + ϵ).

5: Update the dual variable:
ϕt+1 = Proj[0,ρ]

[
ϕt + 1/η(|∆̂(d)| − τ + ϵ)

]
.

6: Update the estimation and confidence set according to the new received reward yt+1.
7: end for

G.4. Proof of Proposition 4

Proposition 4. By conditions stated in Theorem 2, for the user-selected parameter ϵ′ =
(√

T −√
T − 4C4

(√
T + C1n log(T ) + (C2 + C3κZ)n2((log(T ))2

√
1/T

) )
/2C4 − 1, where C1, C2, C3, C4 are the universal con-

stants independent of n, S, T,κZ , if n ≥ 2 and ϵ′ < δ for sufficiently large T , then one could achieve a zero upper bound
on the constraint violations when select ϵ ∈ [ϵ′, δ).

Proof. To show the result in cumulative zero constraint violations, we write it as the following where C1, C2, C3, C4 are the
universal constants which is independent of n, S, T,κZ , and ϵ ∈ [0, δ):

V(T ) ≤ C1nS log(T )
√
T + C2n2S2(log(T ))2 + C3κZ n2S2(log(T ))2 + C4(1 + ϵ)2

√
T − ϵT,

we solve it when the right-hand-side is less than 0:

T − 2C4
√
T −

√
(T − 2C4

√
T )2 − 4C4

√
TΓ

2C4
√
T

≤ ϵ ≤
T − 2C4

√
T +

√
(T − 2C4

√
T )2 − 4C4

√
TΓ

2C4
√
T

,

where Γ = C1nS log(T )
√
T + C2n2S2((log(T )))2 + C3κZ n2S2(log(T ))2 + C4

√
T . First, when T is large, the upper

bound of ϵ have the following inequality:

δ ≤ 1 ≤
√
T

2C4
− 1 ≤

T − 2C4
√
T +

√
(T − 2C4

√
T )2 − 4C4

√
TΓ

2C4
√
T

.

Since it is larger than the Slater’s constant, therefore ϵ < δ. Now we look at the lower bound of ϵ,

ϵ′ =

T − 2C4
√
T −

√
(T − 2C4

√
T )2 − 4C4

√
T
(
C1nS log(T )

√
T + C2n2S2((log(T ))2 + C3κZ n2S2(log(T ))2 + C4

√
T
)

2C4
√
T

=

T − 2C4
√
T −

√
T 2 − 4C4

(
T
√
T + C1nS log(T )T + C2n2S2((log(T ))2

√
T + C3κZ n2S2(log(T ))2

√
T
)

2C4
√
T

.

=

√
T −

√
T − 4C4

(√
T + C1nS log(T ) + (C2 + C3κZ)n2S2((log(T ))2

√
1/T

)
2C4

− 1.
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If the lower bound ϵ′ is less than the Slater’s constant, then when the learner choose ϵ ∈ [ϵ′, δ), we could achieve zero
cumulative constraint violations. ■

H. Additional Experiments
In this section, we provide additional evaluations for the ϵ-CCLB and CCLB algorithms when selecting different tightness
parameter ϵ (Figure 4) and counterfactual fairness threshold τ (Figure 5), respectively.

Figure 4. Increasing the user-chosen tightness parameter ϵ, the cumulative regret increases as well, but the cumulative
constraint violations decreases (the learner becomes more conservative). When we pick the ϵ equals τ (both are 0.16), we
observe that it incurs a high cumulative constraint violations (Figure 4 (b)) since Eπt

[|∆(d,Xt)| − τ + ϵ] > 0 therefore
there does not exist feasible decisions (notice that ϵ < δ ≤ τ).

Figure 5. As the counterfactual fairness threshold τ increases, the feasible region is larger (more of the actions are feasible),
which means the fixed comparator could be better but at the same time easier to avoid violating constraints (since more
actions are feasible in the first place when |D| is fixed), thus reduce the cumulative constraint violations (see Figure 5 (b),
the cumulative constraint violations are nearly 0 when τ = 0.86). On the other hand, when τ is small, i.e., |∆(d,Xt)| ≥ τ
almost every round. The dual variable ϕt will increase as well, which renders the learner penalizes more on the counterfactual
fairness constraint (thus more conservative), therefore decrease the cumulative constraint violations (see Figure 5 (b), the
cumulative constraint violations are relative small when τ = 0.06).

(a) (b) (c)

Figure 4: Plots for the ϵ-CCLB (τ=0.16) algorithm when selecting different ϵ on (a) cumulative regret; (b) cumulative
constraint violations; (c) penalized cumulative regret.

(a) (b) (c)

Figure 5: Plots for CCLB algorithm when selecting different counterfactual fairness threshold τ on (a) Cumulative regret;
(b) Cumulative constraint violations; (c) Penalized cumulative regret.
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