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Abstract
We present Bencher, a modular benchmarking
framework for black-box optimization that funda-
mentally decouples benchmark execution from op-
timization logic. Unlike prior suites that focus on
combining many benchmarks in a single project,
Bencher introduces a clean abstraction bound-
ary: each benchmark is isolated in its own virtual
Python environment and accessed via a unified,
version-agnostic RPC interface. This design elim-
inates dependency conflicts and simplifies the inte-
gration of diverse, real-world benchmarks, which
often have complex and conflicting software re-
quirements. Bencher can be deployed locally or
remotely via Docker or on HPC clusters via Sin-
gularity, providing a containerized, reproducible
runtime for any benchmark. Its lightweight client
requires minimal setup and supports drop-in eval-
uation of 80 benchmarks across continuous, cate-
gorical, and binary domains.

1. Introduction
Black-box optimization refers to the problem of optimizing
a function

x∗ = argmax
x∈X

f(x),

of unknown form for which we can only observe the func-
tion value but no derivatives (Turner et al., 2021). In particu-
lar, f may be highly multimodal and/or noisy. Furthermore,
f often is expensive to evaluate, and we can only afford to
spend a limited number of function evaluations to find a
good solution.

Problems of this type have received considerably interest
due to their ubiquity in various field like chemical engineer-
ing (Hernández-Lobato et al., 2017; Burger et al., 2020),
materials science (Frazier & Wang, 2016; Hughes et al.,
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2021), engineering (Lam et al., 2018; Maathuis et al., 2024),
hyperparameter optimization (Snoek et al., 2012; Bergstra
et al., 2011), neural architecture search (Ru et al., 2021),
hardware design (Nardi et al., 2019; Ejjeh et al., 2022), drug
discovery (Negoescu et al., 2011; Svensson et al., 2022),
and life sciences (Tallorin et al., 2018; Cosenza et al., 2022).

The development of sample-efficient algorithms for black-
box optimization is a highly active research field. To give a
holistic picture of an algorithm’s performance, it is usually
evaluated on a wide range of benchmarks. Besides synthetic
benchmarks of known form, methods are usually evaluated
on various benchmarks reflecting real-world applications.
We call these benchmarks real-world benchmarks. Running
these benchmarks often requires significant effort for two
reasons. First, many benchmarks have very specific soft-
ware requirements and can have a complex setup, making
it hard to set them up even in isolation. For example, the
Mujoco benchmarks used in Wang et al. (2020) require sev-
eral scientific libraries to be installed, setting environment
variables, and the presence of the Mujoco executable in a
specific location. Second, running multiple benchmarks in
a single project can be time-consuming, as different bench-
marks can have different, conflicting requirements. For
instance, the benchmarks used by Wang et al. (2018) require
Python version 3.8, which has reached end-of-life in 2024,
conflicting with newer Python versions.

These difficulties in setting up benchmarks can lead to cases
where results on the same benchmark are not comparable, ar-
guably due to inconsistent setups. For example, the TuRBO
baseline (Eriksson et al., 2019) in Fan et al. (2024, Fig. 3,
Hopper benchmark) lies on a completely different scale than
the same baseline on the same benchmark in Nguyen et al.
(2022, Fig. 3, Hopper benchmark).

This paper introduces Bencher1, a benchmarking frame-
work that allows running benchmarks in a reproducible and
simple way. Bencher isolates every benchmark (or set of
compatible benchmarks) in a virtual Python environment.
This allows each benchmark to run with different versions
of Python and other external packages. To facilitate the
setup of a benchmark, Bencher can run in a Docker con-
tainer. We provide a simple package with minimal external
dependencies that is responsible for the communication with

1https://github.com/LeoIV/bencher
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the Bencher Docker container. Furthermore, we provide
a Singularity container that can be used to run Bencher
on a cluster and provide detailed instructions for doing so.

In summary, we make the following contributions

• We introduce Bencher, a benchmarking framework that
ensures reproducibility and simplicity by isolating each
benchmark in a dedicated virtual Python environment.

• We design a server-based architecture that handles re-
mote procedure calls (RPCs) and enables flexible, version-
independent execution of benchmarks.

• We provide containerized solutions (Docker and Singular-
ity) along with lightweight client packages to support easy
deployment on both local machines and high-performance
computing (HPC) clusters.

2. Related Work
Several benchmark suites for non-convex black-box opti-
mization have been proposed in the literature. A recent
survey by Sala & Müller (2020) provides a comprehensive
overview of the state of the art in black-box optimization
benchmarks.

Nevergrad (Bennet et al., 2021) is an open-source platform
for black-box optimization that offers a wide portfolio of
algorithms and benchmark problems, including synthetic,
combinatorial, and real-world tasks. It features automatic al-
gorithm selection, extensive parallelism, and a public leader-
board, but does not support environment isolation, limit-
ing the simultaneous use of conflicting benchmarks. Many
of the benchmarks in Nevergrad are undocumented, as ac-
knowledged by the authors2. For this reason, Nevergrad is
currently not included in Bencher but we aim to establish
a collaboration with the authors to add the benchmarks in
the future.

COCO (Hansen et al., 2019) is a long-standing and widely
used benchmarking platform for zero-order black-box
optimization, including noisy, multi-objective, and non-
continuous problems. The single-objective, continuous, and
noise-free benchmarks from the BBOB suite are especially
popular and have been used in many studies. These meth-
ods are included in Bencher, using the implementation
provided by de Nobel et al. (2024).

IOHexperimenter de Nobel et al. (2024) is the experimenta-
tion module of IOHprofiler Doerr et al. (2018), offering a
wide range of continuous and pseudo-boolean benchmarks.
Bencher implements most of the benchmarks from IOHex-
perimenter, including the BBOB, pseudo-boolean, W-model,
and submodular benchmarks.

2See https://facebookresearch.
github.io/nevergrad/benchmarks.html#
list-of-benchmarks
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Figure 1. The Bencher architecture. The server runs in a Docker
container and listens to RPCs from clients, which can be on the
same or on a different machine. The server is composed of multiple
Poetry environments, one for each benchmark.

While all of the aforementioned benchmark suites advance
the state of the art in black-box optimization, they differ
from Bencher in that they do not aim at decoupling the
benchmarks but instead focus on providing a comprehensive
set of benchmarks in a single package.

3. Bencher: Design and Implementation
Bencher follows a client-server architecture (see Figure 1).
The server is responsible for running the benchmarks and
listening to remote procedure calls (RPCs) from clients. It
can be run in a Docker container, which allows running
the server in an isolated environment with minimal setup.
Furthermore, a Singularity container can inherit the Docker
container to run Bencher on an HPC cluster.

The server is responsible for running the benchmarks and
listening to remote procedure calls (RPCs) from clients. It
is composed of multiple Poetry environments – one co-
ordinator and multiple environments for sets of compatible
benchmarks. The coordinator is responsible for listening
to RPCs and delegating them to the appropriate benchmark
environment. The client and the server, and the different
benchmark environments among themselves, communicate
via gRPC3, a high-performance, open-source universal RPC
framework. Each benchmark environment exposes a gRPC
service on a specific port that listens for incoming RPCs.
The clients exclusively communicate with the coordinator,
which forwards the RPCs to the appropriate benchmark en-
vironment. This structure has the advantage that the Docker
container only needs to expose a single port and that the
clients only need to speak to the coordinator.

3https://grpc.io/
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3.1. Client

The client is the interface to the server and the main entry
point for users. It establishes a connection to the coordina-
tion server (see Figure 1) and provides methods to evalu-
ate points on the benchmarks. The client is implemented
in Python and is available on PyPI (https://pypi.
org/project/bencherscaffold/). It is designed
to have minimal external dependencies (only grpcio and
protobuf are required) and can be installed by pip
install bencherscaffold. Once the client success-
fully connects to the server, it can be used to evaluate points
on the benchmarks as follows:

Listing 1. Exemplary client code for evaluating a benchmark (long
lines are broken).
from bencherscaffold.client import ⤦

BencherClient
from bencherscaffold.protoclasses.⤦

bencher_pb2 import Value, ValueType
client = BencherClient()
benchmark_name = ’mopta08’
values = [Value(type=ValueType.CONTINUOUS,⤦

value=0.5) for _ in range(124)]
result: float = client.evaluate_point(⤦

benchmark_name, point)

This code runs the 124-dimensional Mopta08 vehicle mass
optimization benchmark (Jones, 2008) in its soft-constrained
version (Eriksson et al., 2019). All 124 parameters of this
benchmark are continuous and normalized to the unit hyper-
cube [0,1]124. An exemplary implementation running all
available benchmarks is available on GitHub (https://
github.com/LeoIV/bencherclient). This reposi-
tory is also used during the testing of Bencher to ensure
that all benchmarks are working correctly.

3.2. Docker Container

The server can be run in a Docker container, which allows
running the server in an isolated environment with mini-
mal setup. The Docker container can be built from source
by cloning the repository and running docker build
in the root directory of the repository. It is also avail-
able on Docker Hub (https://hub.docker.com/r/
gaunab/bencher). Since all communication between
the different benchmark environments happens internally,
the Docker container only needs to expose a single port to
the outside world. The container can be pulled and run in
the background with the following command:
docker pull gaunab/bencher
docker run -d --name bencher -p 50051:50051

↪ gaunab/bencher

3.3. HPC Setup

Bencher can be run on an HPC cluster using Singular-
ity with minimal manual setup by inheriting the Docker

bencher
BencherServer

bencherserver
init .py

benchmark-registry.json
pyproject.toml

Benchmark 1
benchmark1

init .py
.python-version
pyproject.toml

...
Benchmark N

benchmarkN
init .py

pyproject.toml
Dockerfile
container.sdef
entrypoint.py

Figure 2. The Bencher directory structure.

container. One constraint is that the Singularity container
needs to be started as an instance in the background. To
isolate instances running on the same cluster node, we rec-
ommend using a unique instance name for each HPC job.
With slurm, this can be done by using the job ID as the
instance name, e.g.,
singularity instance start ‘INST_NAME’

where ‘INST NAME’ is replaced with
${SLURM ARRAY JOB ID} ${SLURM ARRAY TASK ID}.
A job can then be run with
singularity run instance://INST_NAME CMD

3.4. Project Structure

The Bencher implementation follows a prespecified struc-
ture that allows for easy extendability. The directory struc-
ture is shown in Figure 2. All benchmarks, the server,
and other relevant files are located in the bencher di-
rectory. We refer to each of these subdirectories as sub-
projects. Each subproject has its own pyproject.toml
file, which defines the dependencies for the subproject and
a starting script start-benchmark-service. The
entrypoint.py, which is the entry point for the Docker
container, goes into each subproject, activates the virtual
environment, and starts the server using this script.

The benchmark-registry.json file is used to define
the mapping between the benchmark names and the ports
on which the benchmarks are running:
... "lasso-dna": {

"port": 50053,
"dimensions": 180,
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"type": "purely_continuous"
}, ...

where lasso-dna is the name of the 180-dimensional
Lasso-DNA benchmark (Šehić et al., 2022b), port is the
port on which the benchmark is running, dimensions
is the number of dimensions of the benchmark, and
type is the type of the benchmark. For instance,
purely continuous means that all dimensions of the
benchmark are continuous and binary means that all di-
mensions of the benchmark are binary.

Some subprojects may have the .python-version file.
This file is used during the Docker installation of the project
to set the correct Python version for the subproject. Dif-
ferent Python versions are managed by pyenv4 and are
installed in the Docker container. Subprojects without this
file will use the default Python version of the Docker con-
tainer.

When using Docker, the entrypoint.py file is executed
when the container is started. When using Singularity, the
entrypoint.py file must be defined as the startscript
container definition file:
%startscript
bash -c "python3.11 /entrypoint.py"

An exemplary container definition file is provided in the
repository.

New benchmarks can be added by creating a new subproject
with the same structure as the existing ones. In particu-
lar, the project must define a pyproject.toml file, a
start-benchmark-service script, and, optionally, a
.python-version file.

3.5. Testing

Bencher is tested using integration testing. Triggered
by a commit or a daily cron job, the full Docker con-
tainer is built and started in the background. Then, the
bencherclient (see Section 3.1) is used to run all
benchmarks. If all benchmarks are running successfully,
the Docker container is pushed to Docker Hub, and the Sin-
gularity container is built, inheriting from the previously
pushed Docker image.

4. Benchmarks
Bencher currently supports 80 benchmarks, including 18
real-world benchmarks. We list all benchmarks in Ap-
pendix A and restrict this section to a general overview.
Bencher currently is limited to unconstrained, single-
objective optimization problems. Benchmarks can be contin-
uous, ordinal, binary, or categorical. All continuous bench-

4https://github.com/pyenv/pyenv

marks are normalized to the unit hypercube [0,1]d. Cat-
egorical benchmarks, such as pestcontrol, expect an
integer input for each dimension; the number of categories
is documented in the README.md file in the repository.

Most of the benchmarks implemented in Bencher are
well-known benchmarks from the literature. For in-
stance, the soft-constrained version of the Mopta08 bench-
mark (Jones, 2008) was originally introduced in Eriksson
et al. (2019) but has found widespread adoption in the
high-dimensional Bayesian optimization literature (Shen
& Kingsford, 2021; Eriksson & Jankowiak, 2021; Papen-
meier et al., 2022; 2023; Hellsten et al., 2023; Hvarfner
et al., 2024; Xu et al., 2024; Papenmeier et al., 2025). How-
ever, the original link to the executables of the benchmark
is dead, and they are currently only available since other
researchers uploaded them, as acknowledged by Xu et al.
(2024). Similarly, the Mujoco benchmarks used in vari-
ous papers, including Wang et al. (2020); Papenmeier et al.
(2022); Hvarfner et al. (2024), require installing additional
software, setting environment variables, and downloading
additional executables, potentially reducing adoption and
reproducibility.

5. Conclusion and Future Work
We present Bencher, a benchmarking framework for
black-box optimization that allows running benchmarks
in a reproducible and simple way. It mostly decouples the
benchmarking code from the optimization algorithm, allow-
ing for more freedom in the dependency specification of the
optimizer’s code. Bencher’s client only requires minimal
dependencies to communicate with the server and is easily
installable via pip.

The server can be run in a Docker container and abstracts
away the complexity of setting up the benchmarks for the
user. The benchmarks are isolated in their own virtual envi-
ronments, allowing for different versions of Python and
other external packages. Bencher further provides a Sin-
gularity container that can be used to run Bencher on a
cluster and provides detailed instructions for doing so.

We plan to extend Bencher in several ways. Currently,
Bencher supports unconstrained, single-objective opti-
mization problems. While this covers a wide range of
applications, we aim for a more general framework that
can also handle constrained, multi-fidelity, and multi-
objective optimization problems. In the future, we will
also support more diverse search domains, covering, for
instance, graph-based benchmarks. Furthermore, we plan
to gradually extend the set of benchmarks in Bencher,
adding benchmark suites like the one in Nevergrad (Ben-
net et al., 2021), CATBench (Tørring et al., 2024), and
HPOBench (Eggensperger et al., 2021) suite.
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Bäck, T. Iohexperimenter: Benchmarking platform for
iterative optimization heuristics. Evolutionary Computa-
tion, 32(3):205–210, 2024.

Deshwal, A., Ament, S., Balandat, M., Bakshy, E., Doppa,
J. R., and Eriksson, D. Bayesian Optimization over High-
Dimensional Combinatorial Spaces via Dictionary-based
Embeddings. In International Conference on Artificial
Intelligence and Statistics, pp. 7021–7039. PMLR, 2023.

Doerr, C., Wang, H., Ye, F., Van Rijn, S., and Bäck, T. Ioh-
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A. Benchmark Overview

Source Benchmarks

Šehić et al. (2022a) lasso-simple (d = 60, cont.), lasso-medium (d = 100, cont.),
lasso-high (d = 300, cont.), lasso-hard (d = 1000, cont.),
lasso-breastcancer (d = 10, cont.), lasso-diabetes (d = 8,
cont.), lasso-leukemia (d = 7129, cont.), lasso-dna (d = 180, cont.),
lasso-rcv1 (d = 19959, cont.)

Eriksson et al. (2019) mopta08 (d = 124, cont., see also Jones (2008)), rover (d = 60,
cont.), robotpushing (d = 14, cont., see also Wang et al. (2018)),
lunarlander (d = 12, cont.)

Deshwal et al. (2023) maxsat60 (d = 60, binary)
Papenmeier et al. (2023) maxsat125 (d = 125, binary)
Eriksson & Poloczek (2021) svm (d = 388, cont., this is an adapted version introduced in Papenmeier et al.

(2022))
Wang et al. (2020) mujoco-ant (d = 888, cont.), mujoco-hopper (d = 33, cont.),

mujoco-walker (d = 102, cont.), mujoco-halfcheetah (d = 102,
cont.), mujoco-swimmer (d = 16, cont.), mujoco-humanoid (d =
6392, cont.)

Oh et al. (2019) pestcontrol (d = 25, cat.)
Hansen et al. (2019); Doerr et al. (2018) bbob-sphere (cont.), bbob-ellipsoid (cont.), bbob-rastrigin

(cont.), bbob-buecherastrigin (cont.), bbob-linearslope
(cont.), bbob-attractivesector (cont.), bbob-stepellipsoid
(cont.), bbob-rosenbrock (cont.), bbob-rosenbrockrotated
(cont.), bbob-ellipsoidrotated (cont.), bbob-discus
(cont.), bbob-bentcigar (cont.), bbob-sharpridge (cont.),
bbob-differentpowers (cont.), bbob-rastriginrotated
(cont.), bbob-weierstrass (cont.), bbob-schaffers10 (cont.),
bbob-schaffers1000 (cont.), bbob-griewankrosenbrock
(cont.), bbob-schwefel (cont.), bbob-gallagher101
(cont.), bbob-gallagher21 (cont.), bbob-katsuura (cont.),
bbob-lunacekbirastrigin (cont.)

Doerr et al. (2018) pbo-onemax (binary), pbo-leadingones (binary),
pbo-linear (binary), pbo-onemaxdummy1 (binary),
pbo-onemaxdummy2 (binary), pbo-onemaxneutrality
(binary), pbo-onemaxepistasis (binary),
pbo-onemaxruggedness1 (binary), pbo-onemaxruggedness2
(binary), pbo-onemaxruggedness3 (binary),
pbo-leadingonesdummy1 (binary), pbo-leadingonesdummy2
(binary), pbo-leadingonesneutrality (bi-
nary), pbo-leadingonesepistasis (bi-
nary), pbo-leadingonesruggedness1 (bi-
nary), pbo-leadingonesruggedness2 (binary),
pbo-leadingonesruggedness3 (binary), pbo-labs (bi-
nary), pbo-isingring (binary), pbo-isingtorus (binary),
pbo-isingtriangular (binary), pbo-mis (binary), pbo-nqueens
(binary), pbo-concatenatedtrap (binary), pbo-nklandscapes
(binary)
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