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ABSTRACT

Aligning the behavior of large language models (LLMs) with human values and
preferences is a critical challenge for their safe and effective deployment. Direct
Preference Optimization (DPO; Rafailov et al. (2023)) has emerged as a widely
adopted approach for incorporating human feedback into LLM training. However,
its objective frequently induces reward hacking: the model reduces the probabili-
ties of both the preferred response (yw) and the dispreferred response (yl), while
only maintaining a higher ratio between them. This behavior undermines the abil-
ity to faithfully represent human preferences, as both responses are effectively
treated as undesirable. Subsequent methods attempt to alleviate this limitation but
introduce new trade-offs. Kahneman–Tversky Optimization (KTO; Ethayarajh
et al. (2024)) emphasizes imitating the preferred response (yw), yet does so at
the expense of enlarging the margin between yw and yl. Similarly, the symmet-
ric squared loss in Identity Policy Optimization (IPO; Azar et al. (2023)) fails to
distinguish between a large positive log-probability difference (indicating a cor-
rectly learned preference) and a large negative one (indicating a pathologically
inverted preference), penalizing both extremes equally.To address this cascade
of challenges, we propose Stable Preference Optimization (SPO). At its core is
a novel loss function designed to: 1) prevent reward hacking by establishing a
stable, finite optimization target; 2) focus on the preference margin rather than
preferred response (yw) imitation; and 3) corrects IPO’s loss imbalance with an
asymmetric design by using the function f(z) = −ze−z . For this loss, when the
positive log-probability difference is higher than an initial point, the loss is lower
than at the initial point; when the positive log-probability difference is lower than
the initial point, the loss is higher than at the initial point, while simultaneously
being a convex function that possesses a unique minimum.Our method provides
a unified solution to the core drawbacks of DPO, KTO, and IPO. Experimental
results demonstrate significant improvements in both alignment performance and
training stability.

1 INTRODUCTION

A central component in building state-of-the-art large language models (LLMs) is Reinforcement
Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ziegler et al., 2019). RLHF aligns
pretrained LLMs with human preferences by leveraging human evaluation data, thereby making the
models more helpful, truthful, and harmless (Ouyang et al., 2022; Casper et al., 2023).

Without RLHF, pretrained LLMs are prone to undesirable behaviors such as generating offensive or
toxic content, amplifying social biases, or leaking sensitive information from training data (Gehman
et al., 2020; Carlini et al., 2021; Ganguli et al., 2022).

The RLHF pipeline typically consists of two stages: (i) training a reward model from pairwise com-
parisons of model outputs to quantify human preferences, and (ii) fine-tuning the base LLM with
reinforcement learning to maximize the learned reward. We model RLHF as an offline contextual
bandit (Ouyang et al., 2022), and attribute reward overoptimization to distributional shift and uncer-
tainty in reward estimation.

Intuitively, during fine-tuning, the response distribution of the updated LLM may deviate from that
of the training data. For out-of-distribution responses—those insufficiently represented in the prefer-
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ence dataset—the high intrinsic uncertainty of human preference labels can cause the reward model
to produce misleading estimates. In such cases, reward overoptimization arises when the LLM is
pushed to maximize a reward model that provides unreliable signals on out-of-distribution responses.

For the out-of-distribution responses, which are dissimilar with (or not well covered by) the re-
sponses in the data, the high inherent uncertainty of underlying human preferences could make the
learned reward model misleading for out-of-distribution responses. In this situation, reward overop-
timization can occur because the LLM is fine-tuned towards maximizing a reward model with de-
fective out-of-distribution prediction, giving a potential consequence that the LLM responses are
favored by the learned reward but less preferred by a human (Zhu et al., 2024). The goal of RLHF
is to optimize a language model policy πθ to align with human preferences. This is typically formu-
lated as maximizing a reward function r(x, y), learned from a preference dataset Dp = {(x, yw, yl)},
where yw is preferred over yl for a prompt x. The standard RLHF objective is:

max
πθ

Ex∼D,y∼πθ
[r(x, y)]− β KL[πθ(y|x) ∥πref(y|x)], (1)

where the KL-divergence term, scaled by β, regularizes the policy to remain close to a reference
model πref.

Rafailov et al. (2023) introduced Direct Preference Optimization (DPO) as a more direct approach
to optimizing this objective. They established a theoretical link between the optimal policy π∗ and
the underlying reward function:

r(x, y) = β log
π∗(y|x)
πref(y|x)

+ Z(x), (2)

where Z(x) is a normalization term dependent only on x. This insight allows DPO to bypass the
explicit training of a reward model.

However, we identify a fundamental limitation of the DPO objective. While its theoretical derivation
implies a specific relationship between the optimal policy and the reward, its loss function promotes
the unbounded maximization of the log-probability ratio between the preferred response yw and
the dispreferred response yl. This maximization is only consistent with the theory in the edge case
where the reward difference between responses is infinite. For any finite reward, the objective be-
comes misaligned. Moreover, this formulation can lead to pathologically large gradients, especially
when the probability of the dispreferred response πθ(yl|x) becomes very small—a phenomenon that
induces training instability and reward hacking.

To address these shortcomings, we introduce a new loss function. Our approach stems directly from
the optimality condition of Equation 8. Instead of maximizing the log-probability ratio, our loss
function optimizes the policy toward a specific target value for this ratio, determined by the reward
difference. This principled objective leads to a more stable optimization landscape. In particular, our
loss naturally dampens gradients when the logit difference is large, thereby preventing the instability
observed in DPO and mitigating the risk of reward hacking.

2 RELATED WORK

Our proposed Stable Preference Optimization (SPO) builds on and addresses key limitations in the
rapidly evolving field of language model alignment. We position our contribution in relation to three
areas: (i) the foundational paradigm of Reinforcement Learning from Human Feedback (RLHF),
(ii) the development of direct preference optimization algorithms, and (iii) alternative approaches to
alignment.

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

RLHF has been central to aligning LLMs with complex human values (Ouyang et al., 2022; Bai
et al., 2022; ?). The standard RLHF pipeline involves three stages: (1) supervised fine-tuning
(SFT) on high-quality data, (2) training a reward model from human preference annotations, and (3)
optimizing the policy with reinforcement learning, typically Proximal Policy Optimization (PPO)
(Schulman et al., 2017), under a KL-constraint to control divergence from the SFT model.

2
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While effective, this pipeline is also complex and unstable (Gao et al., 2023). The joint training
of both policy and value networks, together with the requirement to maintain multiple copies of
large models, renders RLHF computationally expensive and challenging to stabilize. SPO, like the
direct methods discussed next, aims to preserve the alignment benefits of RLHF while mitigating its
inherent complexity.

2.2 DIRECT PREFERENCE OPTIMIZATION

To circumvent the challenges of RL-based fine-tuning, Rafailov et al. (2023) introduced Direct Pref-
erence Optimization (DPO). DPO derives a closed-form mapping between the optimal policy and
the reward function (Eq. 7), allowing for the direct optimization of a policy on preference data using
a simple binary cross-entropy loss. Its simplicity and effectiveness have made it a popular choice for
alignment. However, as we critically analyze in this paper, DPO’s objective leads to an unbounded
maximization of the log-likelihood ratio between preferred and dispreferred responses. This often
results in reward hacking and model degeneration, as the model over-optimizes the reward signal
by driving the probability of the dispreferred response to zero, thereby harming general capabilities
(Gao et al., 2023). Our work directly addresses this core instability in DPO.

Several recent methods have been proposed to improve upon DPO. Identity Policy Optimization
(IPO) (Azar et al., 2023) introduces a regularization term to theoretically prevent the overfitting en-
countered in DPO. IPO’s loss function employs a symmetric squared loss around a target margin.
While this ensures a finite solution, we argue that its symmetric penalty is a weakness: it equally
penalizes both a correctly large positive log-ratio and a pathologically large negative one, failing to
properly guide the optimization. Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024)
departs from the need for paired preference data, instead relying on a value function inspired by
prospect theory. While computationally efficient, KTO’s objective overly focuses on maximizing
the likelihood of positive examples (”imitation”) and may fail to adequately learn the relative mar-
gin between chosen and rejected responses. SPO is designed to synthesize the strengths of these ap-
proaches—providing a finite target like IPO and effectively learning the preference margin—while
avoiding their respective pitfalls through a novel asymmetric loss function.

2.3 SUMMARY

In summary, SPO distinguishes itself by directly tackling the reward hacking and instability prob-
lems of DPO. It improves upon IPO’s symmetric loss with an asymmetric design that better reflects
the directionality of preferences, and it maintains a focus on learning the preference margin, ad-
dressing a potential shortcoming of KTO. By providing a stable, principled, and effective objective,
SPO offers a unified solution to the core challenges faced by current state-of-the-art preference op-
timization methods.

3 METHODOLOGY

3.1 FROM OPTIMALITY CONDITION TO A NEW OBJECTIVE

From the relationship in Equation 7, we can express the difference in rewards between a winning
(yw) and losing (yl) completion for a given prompt x under the optimal policy π∗ as:

r(x, yw)− r(x, yl) = β

(
log

π∗(yw|x)
πref(yw|x)

− log
π∗(yl|x)
πref(yl|x)

)
. (3)

This equation defines the condition for an optimal policy. The goal of training should be to steer the
current policy πθ to satisfy this condition. Let us define the policy-dependent logits difference as:

logits(πθ) = log
πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

. (4)

The optimality condition is therefore met when:

logits(πθ) =
r(x, yw)− r(x, yl)

β
. (5)

3
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This reveals that the optimal policy does not require maximizing the logits, but rather driving
them towards a finite target value. The DPO loss, which is equivalent to a log-sigmoid loss on
β · logits(πθ), encourages making logits(πθ) infinitely large, contradicting the theoretical founda-
tion.

3.2 THE PROPOSED STABLE PREFERENCE LOSS

We require a loss function that reaches its minimum when the optimality condition in Equation 5 is
met. Althoughugh a squared error loss, (logits − rw−rl

β )2,

We propose a more robust loss function whose structure inherently guides the logits to a stable point.
Consider the function f(z) = −ze−z , which has a unique global maximum at z = 1. For this loss,
when the positive log-probability difference is higher than an initial point, the loss is lower than
at the initial point; when the positive log-probability difference is lower than the initial point, the
loss is higher than at the initial point, while simultaneously being a convex function that possesses
a unique minimum.We can leverage this property. Let z = c · logits, where c is a scaling constant.
We want the loss to be minimized when logits = 1/c. From Equation 5, this implies c ≈ β

rw−rl
.

By absorbing the unknown reward difference into the hyperparameter β, we formulate our loss for
Stable Preference Optimization (SPO) as follows:

LSPO = −(β · logits(πθ)) exp(−β · logits(πθ))

−
(
α · log πref(yl|x)

πθ(yl|x)

)
exp

(
−α · log πref(yl|x)

πθ(yl|x)

)
(6)

This loss is minimized when the arguments to its two core components, β · logits(πθ) and α ·
log πθ(yl|x)

πref(yl|x) , both equal 1 . This holds for both πw and πl that satisfy

r(x, y) = β log
π∗(y|x)
πref(y|x)

+ Z(x). (7)

The loss function is minimized when the policy π satisfies:

• For the preferred response yw: 1
β − 1

α = log π(yw|x)
πref(yw|x) .

• For the dispreferred response yl: 1
α = log π(yl|x)

πref(yl|x) .

This formulation has several advantages:

1. Principled Target: It optimizes towards a finite, stable point consistent with RLHF theory.
2. Robustness to Over-Optimization: As logits(πθ) → ∞, the loss gracefully decays to

zero. This prevents the model from being penalized for being ”too confident,” avoiding
unstable gradients for well-distinguished pairs.

3. Asymmetric Penalty: The loss function heavily penalizes logits values less than the target
1/β, while applying a vanishing penalty for values greater than the target.

4. Stable Preference Learning: While it is difficult to precisely estimate the magnitude of
πθ(yw|x)
πref(yw|x) , we know that as long as πθ(yl|x)

πref(yl|x)decreases and the difference between the two
ratios remains within a certain range, the model will effectively learn human preferences.
This approach prevents simultaneous sharp declines in the probabilities of both positive
and negative examples, and avoids overfitting on positive examples.

4 THEORETICAL ANALYSIS: COMPARISON WITH DPO, IPO, AND KTO

1. Comparison with DPO: Solving Gradient Explosion and Reward Hacking Our method sat-
isfies the optimal solution for this objective, whereas DPO contradicts this optimal solution.

max
πθ

Ex∼D,y∼πθ
[r(x, y)]− βKL[πθ(y|x)∥πref(y|x)] (8)

4
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The DPO loss is given by:

LDPO = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
.

The DPO method contradicts the optimal solution of the RLHF objective in Equation equation 8.
The DPO loss optimizes towards maximizing:

log
πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

.

However, from the relationship:

r(x, yw)− r(x, yl) = β

(
log

π∗(yw|x)
πref(yw|x)

− log
π∗(yl|x)
πref(yl|x)

)
,

it is clear that this difference should be bounded in practice. Since the reward difference r(x, yw)−
r(x, yl) in the training data is finite, pushing the log-ratio difference to infinity (as encouraged by
DPO) leads to reward hacking. This occurs when both πθ(yw|x) and πθ(yl|x) decrease significantly,
but their ratio increases to minimize the loss. As a result, the model deviates substantially from
the reference model πref, and may generate responses that are unrelated to either the winning or
losing responses.Although several studies have attempted to mitigate this phenomenon, such as RPO
Zhihan Liu (2024), we argue that the constraint on the reward function r(x, y), defined as

r(x, y) = β log
π(y | x)
πref(y | x)

+ Z(x), (9)

should be applied specifically to the preferred responses (yw) and dispreferred responses (yl) based
on necessity, rather than being uniformly enforced regardless of whether reward hacking occurs.
Indiscriminate application of this constraint can adversely affect overall performance.We revise the
conventional assumption that the difference in rewards, r(x, yw) − r(x, yl), is constant across the
dataset D. Instead, we propose that the normalized rewards for both the preferred and dispreferred
responses relative to a baseline are constant. Formally, our new hypothesis is:

r(x, yw)− Z(x) = Cw and r(x, yl)− Z(x) = Cl for all (x, yw, yl) ∈ D, (10)

where Cw and Cl are constants specific to the response type, and Z(x) is the input-dependent base-
line function.

2. Comparison with IPO: Introducing Asymmetric Constraints for a Better Optimum The IPO
(Identity Policy Optimization) loss is designed to address the limitations of DPO by preventing re-
ward hacking and ensuring proper regularization against the reference policy. The IPO loss function
is given by:

LIPO = E(x,yw,yl)∼D

[(
log

(
πθ(yw|x)
πref(yw|x)

)
− log

(
πθ(yl|x)
πref(yl|x)

)
− 1

2β

)2
]

A key limitation of the IPO loss is that it primarily constrains the log-ratio difference log πθ(yw|x)
πref(yw|x) −

log πθ(yl|x)
πref(yl|x) , rather than constraining both πθ(yw|x) and πθ(yl|x) individually. This leads to a sym-

metry in the loss function: when log πθ(yw|x)
πref(yw|x) → −∞ and log πθ(yl|x)

πref(yl|x) → −∞, the loss approaches
the same value as when both terms tend to +∞. However, these two cases are fundamentally differ-
ent:

- When both terms tend to −∞, it implies πθ(yw|x) → 0 and πθ(yl|x) → 0, which contradicts
the preference signal (as the preferred response yw is assigned near-zero probability). - When both
terms tend to +∞, it implies πθ(yw|x) → +∞ and πθ(yl|x) → +∞, which is also undesirable but
can be regularized to a reasonable range.

5
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This symmetry means the loss function does not distinguish between these two pathological cases,
even though the first case (both probabilities tending to zero) is entirely contrary to the preference
data.

To address this, we propose using a modified loss function f(z) = −ze−z instead of the quadratic
loss f(z) = (z − c)2 used in IPO. This function breaks the symmetry and assigns lower loss to
the case where the log-ratios are large and positive (which can be regularized) compared to the case
where they are large and negative (which contradicts preferences). However, since the loss also
becomes small when the log-ratios are very positive, this could still lead to reward hacking (similar
to DPO), where the model excessively increases πθ(yw|x) without bound.

Therefore, we introduce an additional constraint on the negative example yl to prevent reward hack-
ing. The full loss function becomes:

LSPO = −(β · logits(πθ)) exp(−β · logits(πθ))

−
(
α · log πref(yl|x)

πθ(yl|x)

)
exp

(
−α · log πref(yl|x)

πθ(yl|x)

)
(11)

3. Comparison with KTO: Achieving Stable Convergence and Avoiding Overfitting and Col-
lapse The KTO loss function is defined as:

LKTO(πθ, πref) = Ex,y∼D [λy − v(x, y)]

where rθ(x, y) = log
πθ(y | x)
πref(y | x)

z0 = KL (πθ(y
′ | x) ∥ πref(y

′ | x))

v(x, y) =

{
λD σ (β(rθ(x, y)− z0)) if y ∼ ydesirable | x
λU σ (β(z0 − rθ(x, y))) if y ∼ yundesirable | x

A key limitation of KTO is that increasing πθ(yw|x) does not necessarily correlate positively with
model performance.When the dataset contains suboptimal preferred yw, learning the preferences
embodied in both yw and yl is more important than merely imitating the yw. When πθ(yw|x) lies
within a certain range, model performance is often determined by the relative preference between
πθ(yw|x) and πθ(yl|x), rather than the absolute value of πθ(yw|x).
Excessive emphasis on maximizing πθ(yw|x) can lead to: - Reduced generative diversity due to
over-concentration on winning responses - Increased susceptibility to noise in the preference data -
Potential degradation of overall model performance despite higher likelihood of preferred responses

Thus, a more balanced approach that focuses on learning the preference ratio rather than pushing
πθ(yw|x) to extreme values is desirable.

Our Method: Our loss ensures the model converges to a dataset-dependent fixed probability ra-
tio determined by the reward magnitude, rather than extreme values. This implies: * Avoids Over-
fitting: For low-quality dispreferred responses, their probability does not need to be excessively
reduced; for preferred responses, their probability does not need to be excessively increased. *
Maintains Entropy: It maintains an appropriate probability distribution, preserving a degree of
generative diversity in the model. * Built-in Stability: By design, it directly constrains the proba-
bility ratio relative to the reference model, eliminating the need for an additional KL-divergence
constraint to prevent training collapse, making the training process more concise and robust.

In summary, through theoretical gradient analysis and comparison, our SPO loss demonstrates sig-
nificant advantages over DPO, IPO, and KTO in terms of avoiding reward hacking, ensuring training
stability, guiding the model towards the correct optimum, and preventing overfitting.

5 EXPERIMENTS

In this section, we provide a detailed empirical analysis of SPO to highlight the following two key
points:

1. Flexibility and Plug-and-Play Nature: SPO is a flexible plug-in module that can be ap-
plied to different reference models. More importantly, its hyperparameters offer significant

6
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adaptability to various training scenarios. Specifically, a higher α value mitigates overopti-
mization during training by increasing the trust in the chosen responses from the preference
dataset. Conversely, a lower β value directs the model to focus more on learning the un-
derlying preference rather than merely imitating the preferred response yw. This flexibility
allows SPO to effectively handle a wide range of training conditions.

2. Superior In-Distribution Alignment: Justifying our theoretical analysis, SPO achieves
better alignment performance than DPO, IPO, and KTO on in-distribution data.

5.1 EXPERIMENTAL SETUP

To validate the effectiveness of our proposed SPO loss, we conduct a comprehensive set of ex-
periments on two leading base models: Qwen2.5-7B-Instruct (Team, 2024)and Llama-3.1-8B-
Instruct (Llama Core & Meta, 2024). Our fine-tuning process consists of two stages:

1. Supervised Fine-Tuning (SFT): We first fine-tune the base models on the
HuggingFaceH4/ultrachat 200k (Ding et al., 2023) dataset to enhance their gen-
eral instruction-following capabilities. This results in our SFT baseline models.

2. Preference Alignment: Following SFT, the models are further aligned using preference
data. We compare our SPO method against the standard DPO baseline ,KTO and IPO
using the HuggingFaceH4/ultrafeedback binarized (Cui et al., 2023) dataset.
All alignment runs start from the same SFT checkpoint for a fair comparison.To ensure a
fair comparison between SPO and IPO, we configure their hyperparameters such that their
respective optimal solutions coincide.

We evaluated the final models by conducting pairwise, head-to-head comparisons and using GPT-
4o (OpenAI, 2024) as the judge to determine a win rate. We report the win rates for all model
versions (SFT, DPO,KTO,IPO and our SPO) against each other. For the in-data distribution evalu-
ation, we select the 200 prompts in the test split of the training dataset to let the SFT model, DPO,
IPO,KTO and SPO generate the response respectively. We choose GPT-4o to annotate the prefer-
ence in the response pairs. we instruct GPT-4 to give an annotation among win, lose, and tie . For
tie results, we assign half a win to each model when calculating the win rate. We select the better-
performing variant between the TRL (von Werra et al., 2020)-implemented sigmoid formulation
and the classical DPO loss (as described in the original paper). In our experiments, we set the label
smoothing coefficient to label smoothing = 0.1. The resulting objective is defined as

losses = − (1− 0.1) · log(σ(β · logits))− 0.1 · log(σ(−β · logits)) , (12)

where σ(·) denotes the sigmoid function. This formulation can be seen as a smoothed variant of
the DPO loss, where label smoothing mitigates overconfidence and improves stability during RLHF
fine-tuning.

5.2 RESULTS

The experimental results, presented in Table 1 and Table 2, unequivocally demonstrate the superi-
ority of our proposed SPO loss. In the tables, each cell shows the win rate of the model in the row
against the model in the column.

For the Qwen2.5-7B model (Table 1), we observe a clear hierarchy of performance. The DPO
model vastly outperforms the SFT baseline with a 91.70% win rate. More importantly, our SPO
model achieves a significant improvement over DPO, securing a 56.50% win rate in a direct head-
to-head matchup. Against the SFT baseline, our SPO model’s superiority is even more pronounced,
with a staggering 95.15% win rate.

We confirmed this trend by repeating the experiment on the Llama-3.1-8B model, with the results
shown in Table 2. The pattern of improvement is remarkably consistent. DPO shows a strong gain
over SFT (91.46% win rate). Once again, our SPO method delivers a clear performance boost over
DPO, winning the head-to-head comparison with a 53.73% win rate.

Across both model architectures, the results are unambiguous: SFT provides a solid foundation,
DPO offers a substantial improvement through preference alignment, and our SPO method consis-
tently and significantly outperforms DPOKTO and IPO. This validates that the benefits of SPO’s
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Table 1: Win rates for Qwen2.5-7B-instruct fine-tuning methods. Each cell shows the win percent-
age of the row model against the column model.

Win Rate (%) of Row vs. Column SFT DPO KTO IPO SPO (Ours)
SFT – 8.30 15.66 10.50 4.85
DPO 91.70 – 52.28 51.15 43.50
KTO 84.34 47.72 – 46.80 38.38
IPO 89.50 48.85 53.20 – 41.20
SPO (Ours) 95.15 56.50 61.62 58.80 –

Table 2: Win rates for Llama-3.1-8B fine-tuning methods. Each cell shows the win percentage of
the row model against the column model.

Win Rate (%) of Row vs. Column SFT DPO KTO IPO SPO (Ours)
SFT – 8.54 13.95 9.45 6.32
DPO 91.46 – 53.95 51.85 46.27
KTO 86.05 46.05 – 47.55 43.95
IPO 90.55 48.15 52.45 – 45.33
SPO (Ours) 93.68 53.73 56.05 54.67 –

stable and principled loss function generalize across different models, leading to a more effective
and robust alignment with human preferences.

6 CONCLUSION

In this work, we present Stable Preference Optimization (SPO), a novel and principled approach
for language model alignment. Our method addresses a key theoretical limitation shared by sev-
eral existing methods, including DPO, IPO, and KTO, which can lead to unbounded optimization
of the logit difference and potential training instability. SPO resolves this issue by explicitly op-
timizing towards a theoretically grounded, finite target derived from the RLHF optimality condi-
tion, thereby providing stronger convergence guarantees. Furthermore, SPO introduces additional
flexibility through a carefully designed parameterization, allowing it to adapt to a wider range of
preference modeling scenarios beyond the constraints of previous algorithms. Extensive empirical
results demonstrate that SPO not only achieves significant performance improvements over strong
baselines but does so with enhanced training stability. We believe SPO offers a more robust, flexible,
and theoretically sound foundation for future research in preference-based alignment. We believe
that SPO provides a more stable, principled, and effective path for future research in language model
alignment.

ETHICS STATEMENT

This work presents a new method for aligning large language models (LLMs) with human prefer-
ences. The datasets used for training and evaluation in this study are derived from publicly available
and widely used sources in the alignment literature. We have conducted analyses to mitigate the
risk of reward hacking, a known failure mode in alignment that can lead to degraded model perfor-
mance. We strongly urge that any application of this technology includes rigorous red-teaming and
harm mitigation strategies, and is guided by a framework of human oversight and well-being.
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To ensure the reproducibility of our work, we commit to releasing the full source code and hyperpa-
rameters for our Stable Preference Optimization (SPO) method.
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7 APPENDIX

We employed large language models (LLMs), including Gemini 2.5 Pro, ChatGPT, and DeepSeek,
to polish the writing and improve the readability and fluency of this article.
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