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ABSTRACT

Planning, the ability to analyze the structure of a problem in the large and decom-
pose it into interrelated subproblems, is a hallmark of human intelligence. While
deep reinforcement learning (RL) has shown great promise for solving relatively
straightforward control tasks, it remains an open problem how to best incorporate
planning into existing deep RL paradigms to handle increasingly complex environ-
ments. One prominent framework, Model-Based RL, learns a world model and
plans using step-by-step virtual rollouts. This type of world model quickly diverges
from reality when the planning horizon increases, thus struggling at long-horizon
planning. How can we learn world models that endow agents with the ability to do
temporally extended reasoning? In this work, we propose to learn graph-structured
world models composed of sparse, multi-step transitions. We devise a novel algo-
rithm to learn latent landmarks that are scattered (in terms of reachability) across
the goal space as the nodes on the graph. In this same graph, the edges are the
reachability estimates distilled from Q-functions. On a variety of high-dimensional
continuous control tasks ranging from robotic manipulation to navigation, we
demonstrate that our method, named L3 P, significantly outperforms prior work,
and is oftentimes the only method capable of leveraging both the robustness of
model-free RL and generalization of graph-search algorithms. We believe our work
is an important step towards scalable planning in reinforcement learning.

1 INTRODUCTION

An intelligent agent should be able to solve difficult problems by breaking them down into sequences
of simpler problems. Classically, planning algorithms have been the tool of choice for endowing Al
agents with the ability to reason over complex long-horizon problems (Doran & Michiel (1966} Hart
et al.,[1968)). Recent years have seen an uptick in monographs examining the intersection of classical
planning techniques — which excel at temporal abstraction — with deep reinforcement learning (RL)
algorithms — which excel at state abstraction. Perhaps the ripest fruit born of this relationship is the
AlphaGo algorithm, wherein a model free policy is combined with a MCTS (Coulom) 2006) planning
algorithm to achieve superhuman performance on the game of Go (Silver et al., 2016a)).

In the field of robotics, progress on combining planning and reinforcement learning has been
somewhat less rapid, although still resolute. Indeed, the laws of physics in the real world are
infinitely more complex than the simple rules of Go. Unlike board games such as chess and Go,
which have deterministic and known dynamics and discrete action space, robots have to deal with a
probabilistic and unpredictable world, and the action space for robots is oftentimes continuous. As a
result, planning in robotics presents a much harder problem. One general class of methods (Sutton,
1991)) seeks to combine model-based planning and deep RL. These methods can be thought of as
an extension of model-predictive control (MPC) algorithms, with the key difference being that the
agent is trained over hypothetical experience in addition to the actually collected experience. The
primary shortcoming of this class of methods is that, like MCTS in AlphaGo, they resort to planning
with action sequences — forcing the robot to plan for each action at every hundred milliseconds.
Planning on the level of action sequences is fundamentally bottlenecked by the accuracy of the
learned dynamics model and the horizon of a task, as the learned world model quickly diverges over
a long horizon. This limitation shows that world models in the traditional Model-based RL (MBRL)
setting often fail to deliver the promise of planning.
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Figure 1: MBRL versus L3P (World Model as a Graph). MBRL does step-by-step virtual rollouts
with the world model and quickly diverges from reality when the planning horizon increases. L3P
models the world as a graph of sparse multi-step transitions, where the nodes are learned latent
landmarks and the edges are reachability estimates. L3 P succeeds at temporally extended reasoning.

Another general class of methods, Hierarchical RL (HRL), introduces a higher-level learner to address
the problem of planning (Dayan & Hintonl [1993];|Vezhnevets et al., 2017;|Nachum et al., 2018)). In
this scenario, a goal-based RL agent serves as the worker, and a manager learns what sequences of
goals it must set for the worker to achieve a complex task. While this is apparently a sound solution
to the problem of planning, hierarchical learners neither explicitly learn a higher-level model of the
world nor take advantage of the graph structure inherent to the problem of search.

To better combine classical planning and reinforcement learning, we propose to learn graph-structured
world models composed of sparse multi-step transitions. To model the world as a graph, we borrow a
concept from the navigation literature — the idea of landmarks (Wang et al., 2008). Landmarks are
essentially states that an agent can navigate between in order to complete tasks. However, rather than
simply using previously seen states as landmarks, as is traditionally done, we will instead develop
a novel algorithm to learn the landmarks used for planning. Our key insight is that by mapping
previously achieved goals into a latent space that captures the temporal distance between goals, we
can perform clustering in the latent space to group together goals that are easily reachable from one
another. Subsequently, we can then decode the latent centroids to obtain a set of goals scattered (in
terms of reachability) across the goal space. Since our learned landmarks are obtained from latent
clustering, we call them latent landmarks. The chief algorithmic contribution of this paper is a new
method for planning over learned latent landmarks for high-dimensional continuous control domains,
which we name Learning Latent Landmarks for Planning (L3 P).

The idea of reducing planning in RL to a graph search problem has enjoyed some attention recently
(Savinov et al., 2018a;; [Eysenbach et al., [2019; Huang et al.l 2019; Liu et al., |2019; Yang et al.,
2020; [Laskin et al., [2020). A key difference between those works and L°P is that our use of
latent landmarks allows us to substantially reduce the size of the search space. What’s more, we
make improvements to the graph search module and the online planning algorithm to improve the
robustness and sample efficiency of our method. As a result of those decisions, our algorithm is
able to achieve superior performance on a variety of robotics domains involving both navigation
and manipulation. In addition to the results presented in Section [5] videos of our algorithm’s
performance, and an analysis of the sub-tasks discovered by the latent landmarks, may be found at
https://sites.google.com/view/latent—landmarks/.

2 RELATED WORKS

The problem of learning landmarks to aid in robotics problems has a long and rich history (Gillner
& Mallot, [1998; |Wang & Spelkel 2002; |Wang et al., 2008)). Prior art has been deeply rooted in the
classical planning literature. For example, traditional methods would utilize Dijkstra et al|(1959) to
plan over generated waypoints, SLAM (Durrant-Whyte & Bailey, [2006) to simultaneously integrate
mapping, or the RRT algorithm (LaVallel [1998)) for explicit path planning. The A* algorithm (Hart
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et al.,[1968)) further improved the computational efficiency of Dijkstra. Those types of methods often
heavily rely on a hand-crafted configuration space that provides prior knowledge.

Planning is intimately related to model-based RL (MBRL), as the core ideas underlying learned
models and planners can enjoy considerable overlap. Perhaps the most clear instance of this overlap
is Model Predictive Control (MPC), and the related Dyna algorithm (Sutton, |[1991)). When combined
with modern techniques (Kurutach et al., 2018; Luo et al., 2018} Nagabandi et al.| [2018}; [Ha &
Schmidhuber, 2018} [Hafner et al., [2019; Wang & Ba,|2019; Janner et al.,2019), MBRL is able to
achieve some level of success. |Corneil et al. (2018)) and [Hafner et al.| (2020) also learn a discrete
latent representation of the environment in the MBRL framework. As discussed in the introduction,
planning on action sequences will fundamentally struggle to scale in robotics.

Our method will make extensive use of a parametric goal-based RL agent to accomplish low-level
navigation between states. This area has seen rapid progress recently, largely stemming from the
success of Hindsight Experience Replay (HER) (Andrychowicz et al.,[2017). Several improvements
to HER augment the goal relabeling and sampling strategies to improve performance (Nair et al.,
2018}, |Pong et al.| |2018; 2019; Zhao et al.| 2019; Pitis et al.,[2020). There have also been attempts at
incorporating search as inductive biases within the value function (Silver et al., 2016b; Tamar et al.,
2016; Farquhar et al., 2017; Racaniere et al.,|2017; [Lee et al., 2018 |Srinivas et al., 2018)). The focus
of this line of work is to improve the low-level policy and is thus orthogonal to our work.

Recent work in Hierarchical RL (HRL) builds upon goal-based RL by learning a high-level parametric
manager that feeds goals to the low-level goal-based agent (Dayan & Hinton, |1993; |Vezhnevets et al.|
2017;|Nachum et al.|[2018). This can be viewed as a parametric alternative to classical planning, as
discussed in the introduction. Recently, Jurgenson et al.|(2020); [Pertsch et al.| (2020) have derived
HRL methods that are intimately tied to tree search algorithms. These papers are further connected
to a recent trend in the literature wherein classical search methods are combined with parametric
control (Savinov et al., 2018a; |[Eysenbach et al.,2019; [Huang et al., [2019; |Liu et al., 2019; Yang et al.,
2020; Laskin et al., [2020). Several of these articles will be discussed throughout this paper. LEAP
(Nasiriany et al., 2019) also considers the problem of proposing sub-goals for a goal-conditioned
agent: it uses a VAE (Kingma & Welling, 2013)) and does CEM on the prior distribution to form
the landmarks. Our method constrains the latent space with temporal reachability between goals, a
concept previously explored in Savinov et al.|(2018b), and uses latent clustering and graph search
rather than sampling-based methods to learn and propose sub-goals.

3 BACKGROUND

We consider the problem of Multi-Goal RL under a Markov Decision Process (MDP) that is parameter-
ized by (S, A,P,G, ¥, R, pg). S and A are the state and action space. The probability distribution of
the initial states is given by po(s), and P(s|s, a) is the transition probability. ¥ : S +— G is a mapping
from the state space to the goal space, which assumes that every state s can be mapped to a corre-
sponding achieved goal g. The reward function R can be defined as R(s,a, s’,g) = —1{¥(s) # g}.
We further assume that each episode has a fixed horizon T'.

The goal-conditioned policy is a probability distribution 7w : S x G x A — R . The policy gives
rise to trajectory samples of the form 7 = {sg, ag, g, 81, - - s7}. The purpose of the policy 7 is
to learn how to reach the goals drawn from the goal distribution p,, which means maximizing
the cumulative rewards. Together with a discount factor v € (0, 1), the objective is to maximize
J(7) = Egup, . rrn(y) [ZZ:(Jl v* - R(s¢, at, St+1, 9)]. Q-learning provides a sample-efficient way
to optimize the above objective by utilizing off-policy data stored in a replay buffer B. Q(s,a, g)
estimates the reward-to-go under the current policy 7 conditioned upon the given goal. An additional
technique, called Hindsight Experience Replay, or HER (Andrychowicz et al.,|2017)), uses hindsight
relabelling to drastically speed up training. This relabeling crucially relies upon the mapping
¥ : S +— G in the multi-goal MDP setting. We can write the the joint objective of multi-goal
Q-learning with HER as minimizing:

2
ménIE T Bt~ {0 T—1} (Q(staatag) - (R(St, at, St+1,9) +7 - Q(Se41, a’,g)>> (1
(8¢,at,8t+1)~T
kw{t+1---T}+,g:\Il(sk)
o/~ (-[5151.9)
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Figure 2: An overview of L3P, which learns a small number of latent landmarks for planning. The
main components of our method are: learning reachability estimates (via Q-learning and regression),
learning a latent space (via an auto-encoder with reachability constraints), learning latent landmarks
(via clustering in the latent space), graph search on the world model and online planning.

4 THE L*P ALGORITHM

Our overall objective in this section is to derive an algorithm that learns a small number of landmarks
scattered across goal space in terms of reachability and use those learned landmarks for planning.
There are three chief difficulties we must overcome when considering such an algorithm. First, how
can we group together goals that are easily reachable from one another? The answer is to embed
goals into a latent space, where the latent representation captures some notion of temporal distance
between goals — in the sense that goals that would take many timesteps to navigate between are
further apart in latent space. Second, we need to find a way to learn a sparse set of landmarks used for
planning. Our method performs clustering on the constrained latent space, and decodes the learned
centroids as the landmarks we seek. Finally, we need to develop a non-parametric planning algorithm
responsible for selecting sequences of landmarks the agent must traverse to accomplish its high-level
goal. The proposed online planning algorithm is simple, scalable, and robust.

4.1 LEARNING A LATENT SPACE

Let us consider the following question: “How should we go about learning a latent space of goals
where the metric reflects reachability?” Suppose we have an auto-encoder (AE) in the agent’s goal
space, with deterministic encoder fr and decoder fp. As usual, the reconstruction loss is given by

2
Lrec(g) = HfD (fE(g)) — gH . We want to make sure that the distance between two latent codes
2

would roughly correspond to the number of steps it would take the policy to go from one goal to
another. Concretely, for any pair of goals (g1, g2), we optimize the following loss:

2
1
Liatent (91, g2) = (HfE g1) fE(QQ)H; -3 (V(gl,gz) + V(Qmﬂl))) (2)

Where V : G x G — R is a mapping that estimates how many steps it would take the policy 7 to go
from one goal to another goal on average. By adding this constraint and solving a joint optimization
Lrec + A+ Ligtent, the encoding-decoding mapping can no longer be arbitrary, giving more structure
to the latent space. Goals that are close by in terms of reachability will be naturally clustered in the
latent space, and interpolations between latent codes will lead to meaningful results.

Of course, the constraint in Equation [2]is quite meaningless if we do not have a way to estimate the
mapping V. We will proceed towards this objective by noting the following interesting connection
between multi-goal Q-functions and reachability. In the multi-goal RL framework considered in the
background section, the reward is binary in nature. The agent receives a reward of —1 until it reaches
the goal, and then 0 when it reaches the desired goal. In this setting, the Q-function is implicitly
estimating the number of steps it takes to reach the goal g from the current state s after the action a is
taken. Denote this quantity as D(s, a, g), the Q-function can be re-written as:

D(s,a,g)—1 T-1 1— ,YD(s,a,g)
Qa9 = > A (D+ D> A 0=——F—— ©)

t=0 t=D(s,a,g) 1- v

Choosing to parameterize Q-functions in this way disentangles the effect of v on multi-goal Q-
learning. It also provides us with access the direct distance estimation function D(s, a, g). We note



Under review as a conference paper at ICLR 2021

that this distance is not a mathematical distance in the sense of a metric. Instead, we use the word
distance to refer to the number of steps the policy 7 needs to take in the environment.

Given our tractable estimate of D, it is now a straightforward matter to estimate the desired quantity
V', which approximates how many steps it takes the policy to transition between goals. To get the
desired estimate, we regress V' towards D as follows

2
min E < B i~nf0.-T7-1} (D (51,01, ¥(s1)) = V(¥ (s141), ‘I’(Sk))> 4)
(8¢,a¢,8t41)~T
E~{t+1.--T}
where U is given by the environment to map the states to the goal space. One crucial detail is the use
of W(s¢41) rather than W(s;) in the inputs to V. This is due to the factthat D : S x A x G — R
outputs the number of steps to go affer an action is taken, when the state has transitioned into s;.
The objective above provides an unbiased estimate of the average number of steps between two goals.

The estimates D and V' will prove useful beyond helping to optimize the auto-encoder in Equation 2}
They will prove essential in weighting and planning over latent landmark nodes in Section 4.3.

4.2 LEARNING LATENT LANDMARKS

Planning on a graph can be expensive, as the number of edges can grow quadratically with the number
of nodes. To battle this issue in scalability, we use the constrained latent space to learn a sparse set of
landmarks. A landmark can be thought of as a waypoint that the agent can pass through enroute to
achieve a desired goal. Ideally, goals that are easily reachable from one another should be grouped to
form one single landmark. Since our latent representation captures the temporal reachability between
goals, this can be achieved by doing clustering in the latent space. The cluster centroids, when
decoded from the decoder, will be precisely the latent landmarks we are seeking.

Clustering proceeds as follows. For N clusters to be learned, we define a mixture of Gaussians in the
latent space with N trainable latent centroids, {¢; - - - ¢ }, and a shared trainable variance vector o.
We maximize the evidence lower bound (ELBO) with a uniform prior p(c):

logp(= = fu(9)) = Eyqep) | logp(= | ©)] = Dicz (ale | 2) [ p(e)) 5)

Ideally, we would like each batch of data given to the latent clustering model to be representative
of the whole replay buffer, such that the centroids will quickly learn to scatter out. To this end, we
propose to use the Greedy Latent Sparsification (GLS) algorithm (Algorithm 2]in the Appendix) on
each batch of data sampled from the replay before taking a gradient step with the batch. GLS is
inspired by kmeans++ (Arthur & Vassilvitskii, 2007), with several key differences: this sparsification
process is used for both training and initialization, it uses a neural metric for determining the distance
between data points, and that it is compatible with mini-batch-style gradient-based training.

4.3 PLANNING WITH LATENT LANDMARKS

Having derived a latent encoding algorithm and an algorithm for learning latent landmarks, we at last
turn our attention to planning. While prior works simply solve for the shortest path, we employ a
soft version of the Floyd algorithm, where the soft relaxation operations can be seen as a soft value
iteration procedure (see Equation|/|in the Appendix).

To construct a weight matrix that at first provides a raw distance estimate between latent land-
marks, we begin by decoding the learned centroids in the latent space into the nodes in the graph
{fp(e1) - fp(en)}. To build the graph, we add two edges directed in reverse orders for every pair
of latent landmarks. For instance, for an edge going from fp(c;) to fp(c;), the weight on that edge is
—V(fp(e;), fp(e;)). Notice that the distances are negated to be negative. At the start of an episode,
the agent receives a goal g, and we construct the following matrix of size (N + 1) x (N + 1):

0 . =V(fpler), folen)) =V(fp(er),9)
W = : (©6)
=V (fp(en), foler)) .. 0 —V(fDéCN)»g)
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Figure 3: For both Point and Ant, during training, the initialization state distribution and the goal
proposal distribution are uniform around the maze. During test time, the agent is asked to traverse
the longest path in the maze. The success rate on the test environment is reported in Figure [d] This
environment demonstrates L3 P’s ability to generalize to longer horizon goals during test time.

For online planning, when the agent receives

Algorithm 1 Online Planning in L3P .
- i _° a goal at the start of an episode, we use graph
Given: Environment env, initial state s, goal g.  gearch to solve for d._, 4 (which is fixed through-

1: Cnt =0. SubG = None. out an episode). For an observation state s, the

2: Solve for d._, 4 with graph search. algorithm calculates d_,:

3: fort=1to T do > One episode

4 ifcnt > 1.0 then =D(s,7(s, fo(c1)), fp(e1))

5 Cnt =Cnt —1 d :

- s—cCc
3. elsecalfcggtg(zt not re-plan at every step _D (S, (s, folen)), fo (CN))
. s—e-

8: d dy e+ desg —D(s,7(s,9),9)

9 if SubG # None then The chosen landmark is subgoal <«
10: C?[SUbG} — -0 . arg max(ds_,c+dc_ ). To further provide tem-
11  endif  >Remove the immediate  ora] abstraction and robustness, the agent will

previous landmark be asked to consistently pursue subgoal for
12: SubG, Cnt < arg max d, —maxd —d;_,c[subgoal] number of steps, which is
13: end if how many steps it thinks it will need. The pro-
i;‘i dafN 7(s,SubG); s <- env.step(a).  posed goal does not change during this period.
: end for

The algorithm makes sure that the agent does not re-plan at every step, and this mechanism for
temporal abstraction is crucial to its robustness. After this many steps, the agent will decide on the
next landmark to pursue by re-calculating ds_, ., but the immediate previous landmark will not be
considered as a candidate landmark. The reason is that, if the agent has failed to reach a self-proposed
landmark within the reachability limit it has set for itself, then the agent should try something new
for the immediate next goal rather than stick to the immediate previous landmark for another round.
We have found that this simple algorithm helps the agent avoid getting stuck and improves the overall
robustness of the agent.

In summary, we have derived an algorithm that learns a sparse set of latent landmarks scattered across
goal space in terms of reachability, and uses those learned landmarks for robust planning.

5 EXPERIMENTS AND EVALUATION

We investigate the impact of L3P in a variety of robotic manipulation and navigation envi-
ronments. These include standard benchmarks such as Fetch-PickAndPlace, and more diffi-
cult environments such as AntMaze-Hard and Place-Inside-Box that have been engineered to
require test-time generalization. Videos of our algorithm in action are available here: https:
//sites.google.com/view/latent—-landmarks/.

5.1 BASELINES

We compare our method with a variety of baselines. HER (Andrychowicz et al.; 2017) is a model-free
RL algorithm. SORB (Eysenbach et al.,[2019) is a method that combines RL and graph search by
using the entire replay buffer. Mapping State Space (MSS Huang et al.|2019) reduces the number
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Figure 4: Test time success rate vs. total number of timesteps, on maze and robotic manipulation
environments. During test time, new more difficult goals are selected. L3P shows more robust
generalization much more quickly than other methods. For every environment except PointmMaze,
L3P is the only algorithm that consistently solves the task.
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Figure 5: Visualizing planning on AntMaze at test time. Read images from upper left to bottom right.
The blue dots are the learned latent landmarks decoded from the latent centroids. The orange dot
represents the ant’s present location in the maze. The red dot is the final goal that the agent needs to
reach. At each step, the blue star indicates the landmark chosen by our planning algorithm. Whereas
MSS and SORB sample 400 and hundreds of thousands of landmarks (respectively), our method
obtains a lean graph that only contain 50 landmarks. L?P is the only method capable of achieving
over 80% test success rate on AntMaze-Hard within 3M timesteps.

Figure 6: We consider two environments involving a fetch robot, a block, and a box. In Box-aside-
PickAndPlace, the fetch must learn to pick and place the block while avoiding collision with the box.
In Place-Inside-Box, the fetch must pick the block and place it inside the box. We visualize the fetch
states corresponding to learned landmarks in the second row of images.
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of vertices by sub-sampling the replay buffer. L2P, SORB, and MSS all use the same hindsight
relabelling strategy proposed in HER. All of the domains are continuous control tasks, so we adopt
DDPG (Lillicrap et al.| [2015) as the learning algorithm for the low-level actor.

5.2 GENERALIZATION TO LONGER HORIZONS

The PointMaze-Hard and AntMaze-Hard environments introduced in Figure [5)are designed to test an
agent’s ability to generalize to longer horizons. While PointMaze and AntMaze have been previously
used in Duan et al.|(2016); Huang et al.| (2019); |Pitis et al.[|(2020), we make slight changes to those
environments in order to increase their difficulty. We use a short, 200-timestep time horizon during
training and a pg that is uniform in the maze. At test time, we always initialize the agent on one
end of the maze, and set the goal on the other end. The horizon of the test environment is 500 steps.
Crucially, no prior knowledge on the shape of the maze is given to the agent. We also set a much
stricter threshold for determining whether an agent has reached the goal. In Figure@ we see L3P is
the only algorithm capable of solving AntMaze-Hard consistently.

We observe an interesting trend where the success rates for other graph search methods crash and then
slowly recover after making some initial progress. We postulate this occurs because methods that are
based on using the entire replay or sub-sampling the replay for landmark selection will struggle as the
buffer size increases. In contrast to these methods, L3 P does not exhibit such undesirable instability.
The online planning algorithm in L3P, which effectively leverages temporal abstraction to improve
robustness, also contributes to the asymptotic success rate. The result convincingly shows that, at
least on the navigation tasks considered, L? P is most effective at taking advantage of the problem’s
inherent graph structure, and that learning latent landmarks is significantly more sample efficient and
scalable than directly using or sub-sampling the replay buffer to build the graph.

5.3 ROBOTIC MANIPULATION TASKS

We also benchmark challenging robotic manipulations tasks with a Fetch robot introduced in [Plappert;
et al. (2018));/Andrychowicz et al.[(2017). In Figure@ we introduce two pick and place tasks involving
a box on a table. In the Place-Inside-Box environment, we design a simple curriculum to cope with
the difficulty of the task. During training, the goal distribution has 80% regular pick-and-place goals,
enabling the agent to first learn how to fetch in general. Meanwhile, only 20% of the goals are
inside the box, which is the harder part of the task. During testing, we evaluate the ability of the
agent to pick the object from the table and place it inside the box. Our method achieves dominant
performance in both learning speed and test-time generalization. We note that on those manipulation
tasks considered, many prior planning methods hurt the performance of the model-free agent. Our
method is the only one that is able to help the model-free agent learn faster and generalize better.

5.4 UNDERSTANDING MODEL CHOICES IN L3P

We investigate L3 P’s sensitivity to different hyper-parameters and design choices via a set of ablation
studies. More specifically, we study how the following factors affect the performance of L3 P: number
of latent landmarks, the choice of (online) planning algorithms, the choice of graph search algorithms,
and edge cutoff threshold in graph search (a key hyper-parameter in the search module).

The first question we try to understand is

whether L3P is robust to the number of latent Ablation: Number of Landmarks

landmarks. In contrast to prior methods, L3P . AntMaze-Hard

is able to learn the landmarks used for graph N=100
search from the agent’s own experience. We “" z:;g

vary the number of learned landmarks in the
challenging AntMaze-Hard environment, and
we find that L3 P is robust against a decreasing
number of landmarks. This is expected, because
the landmarks in the latent space of L3P will W A
try to be equally scattered across the goal space Millions of timesteps
according to the reachability metric. As the

number of landmarks decreases, the learning

procedure will automatically push the landmarks to be further away from one another.

Test Success Rate
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Ablation: Choice of Planners A key component in L3P is the online planning

o AntMaze-Hard algorithm described in Algorithm [T} We find
. pemeriNave  this algorithm to bear special importance to the
good performance of L2 P. Our planning algo-

rithm in L3P can take advantage of the tempo-
o ral abstraction provided by the graph-structured
o world model. It does not re-plan at every step,
but instead uses the reachability estimates to
dynamically decide when to re-plan, striking a
balance between adaptability and consistency in
planning. This planner is also more tolerant of
errors: it removes the immediate previous landmark when it re-plans, so that the agent will be less
prone to getting stuck. A naive planner, on the other hand, simply re-calculates the shortest path at
every step. The curve on the left shows that this planning algorithm is crucial to the success of L3P.

Success Rate

000 025 050 o075 100 125 150 175 200

Millions of timesteps

The particular choice of graph search seems to

have a small effect on the stability of learning. Ablation: Graph Search Algorithms
As explained Section and Appendix PointMaze-Hard
we find that while employing the Floyd algo- Floyd

o8 L3p
(soft Floyd)

rithm for graph search, a soft operation for relax-
ation leads to better stability during training. On
the right, we show that a hard version of relax-
ation helps the agent take off faster but suffers
from greater instability during policy improve-
ment. The likely reason is that neural distance @ o W o o w B %
estimates are not entirely accurate, and in the Millions of timesteps

presence of occasional bad edges, softmax in

Equation 7|improves robustness. We therefore use soft relaxation in our graph search module.

Test Success Rate

One of the most important hyper-parameters

Ablation: d_max in Graph Search when combining RL with graph search is

AntMaze-Hard d-mazx, the clipping threshold for the edges

B }:::ig on the graph (Savinov et al., 2018a; Eysenbach

amaxeio €t all2019; |[Huang et al., 2019} [Laskin et al.,

o0 B 2020). The motivation for introducing this com-

0 monly used hyper-parameter is two-fold. Firstly,

we only trust distance estimates when they are

local. Secondly, we want the graph search mod-

R ule to produce sub-goals that are nearby. The

Millions of timesteps d_maz value determines the maximum distance

for each edge on the graph and masks out longer

edges. One weakness of our current approach is that it is still quite sensitive to this hyper-parameter;

a small change to d_max can have considerable impacts on learning. As this weakness is common to

this class of approaches, we believe that further research is required to find other ways of encouraging
search to be local. See Appendix for more details on implementing this clipping threshold.

Test Success Rate

6 CLOSING REMARKS

In this work, we introduce a way of learning graph-structured world models that endow agents with
the ability to do temporally extended reasoning. The algorithm, L2 P, learns a set of latent landmarks
scattered across the goal space to enable scalable planning. We demonstrate that L3P achieves
significantly better sample efficiency, higher asymptotic performance, and better generalization on
a range of challenging robotic navigation and manipulation tasks. We hope that this work inspires
more research in the direction of combining deep RL with classical planning.
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A APPENDIX

A.1 GREEDY LATENT SPARSIFICATION

Algorithm 2 Greedy Latent Sparsification (GLS) for Latent Cluster Training

Given: Replay Buffer B, Encoder fg.
Initialize: LatentEmbeds = {}. > Set of embeddings selected.

1: Sample K achieved goals from B.

2: Sample k ~ {0--- K — 1}.

3 dist = [|[fe(91) — fe(gr)l3, -, Ifel9x) — fe(gr)lI3]

4: fori=1to M do > Sub-sampling
5: k < argmax dist[k]

6: Add fg(gx) to LatentEmbeds.

7. NEWdist = [[|fe(91) = fe(gp)ll3, - [ fe(gx) — fr(gn)ll3]
8: dist = ElementwiseMin(dist,NEWdist)

9: end for

0

Ju—

: Optimize equation[Sjon LatentEmbeds.

The Greedy Latent Sparsification (GLS) algorithm sub-samples a large batch by sparsification.
GLS first randomly selects a latent embedding from the batch, and then greedily chooses the next
embedding that is furthest away from already selected embeddings. After collecting some warm-up
trajectories before planning starts (see during training, we first use GLS to initialize the
latent centroids, and then continue to use it to sample the batches used to train the latent clusters. As
mentioned in Section[d.2] GLS is strongly inspired by [Arthur & Vassilvitskiil (2007), and this type of
approach is known to improve clustering.

A.2 GRAPH SEARCH VIA SOFT VALUE ITERATIONS

In this paper, we employ a soft version of Floyd algorithm, which we find to empirically work well.
Rather than simply using the min operation to do relaxation, the soft value iteration procedure uses a
soft min operation when doing an update (note that, since we negated the distances to be negative
in the weight matrix of the graph, which is the operations we use are actually max and
softmax). The reason is that neural distances can be inconsistent and inaccurate at times, and using a
soft operation makes the whole procedure more robust. More concretely, we repeat the following
update on the weight matrix for S steps with temperature 5:

1
N+1 exp — (w; k + wg ;)

8
wi’j <_ Z N+1 ].
k=1 D o2y exp — (Wi + Wi j)

B

Wi+ ) )

Following the practice in|Eysenbach et al.|(2019); Huang et al.|(2019)), we do the following initial-
ization to the matrix in[Equation 6} for entries smaller than the negative of d_mazx, we penalize the
entry by adding —oo to it (in this paper, we use —10° as the —co value). The essential idea is that
we only trust a neural estimate when it is local, and we rely on graph search to solve for global,
longer-horizon distances. The —oo penalty effectively masks out those entries with large negative
values in the softmax operation above. If we replace softmax with a hard max, we recover the
original update in Floyd algorithm; we can interpolate between a hard Floyd and a soft Floyd by
tuning the temperature .

A.3 HYPER-PARAMETERS

[Table T]lists the common hyper-parameters across all environments. [Table 2]lists the hyper-parameters
that differ across the environments.
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Table 1: Hyper-parameters in Common

Parameter | Value
DDPG
optimizer Adam (Kingma & Ba, [2014)

number of hidden layers (all networks) | 3

number of hidden units per layer
nonlinearity

polyak for target network (7)
target update interval

256
RelLU
0.995
10

ratio between env vs optimization steps | 2

Random action probability 0.2

Initial random trajs per worker 100

Hindsight relabelling ratio 0.85
Latent Landmarks & Auto-encoder

number of hidden layers 2

number of hidden units per layer 128

nonlinearity ReLU

embedding size 16

A for reachability constraint loss 1.0

learning rate 3e-4

Graph Search

probability of using search during train | 0.5

S (number of soft value iterations)

B (temperature)

20
1.1

Table 2: Hyper-parameters for Each Environment

Point-Maze | Ant-Maze | Fetch tasks
DDPG
Learning rate 2e-4 2e-4 le-3
Number of workers 1 3 12
Batch size 512 1024 1024
Action L2 0.5 0.05 0.01
Gamma 0.98 0.98 0.99
Action noise 0.2 0.2 0.1
Hindsight relabelling range 80 100 50
Latent Landmarks & Auto-encoder
Number of latent landmarks 50 50 80
Number of warm-up trajectories 500 500 6000
Batch size 256 256 150
Graph Search
d_max (clipping threshold for distances) | 20.0 20.0 15.0
Random landmarks added during train 150 150 20
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* We find that having a centralized replay for all parallel workers is significantly more sample
efficient than having separate replays for each worker and simply averaging the gradients
across workers.

* For Ant-Maze environment, we do grad norm clipping by a value of 15.0 for all networks.
For Fetch tasks, we normalize the inputs by running means and standard deviations per input
dimensions.

+ Since L3P is able to decompose a long-horizon goal into many short-horizon goals, we
shorten the range of future steps where we do hindsight relabelling; as a result, the agent
can focus its optimization effort on more immediate goals. This corresponds to the hyper-
parameter: Hindsight relabelling range.

* During training, we collect 50% of the data without the planning module, and the other 50%
of the data with planning. This corresponds to the hyper-parameter: probability of using
search during train.

* At train time, to encourage exploration during planning, we temporarily add a small number
of random landmarks from GLS (Algorithm [2)) to the existing latent landmarks. A new set
of random landmarks is selected for each episode before graph search starts (Algorithm T).
This corresponds to the hyper-parameter: Random landmarks added during train.

» We find that collecting a certain number of warm-up trajectories for every worker before
the planning procedure starts (during training) and before GLS (Algorithm [2) is used for
initialization to help improve the planning results. This corresponds to the hyper-parameter:
Number of warm-up trajectories.
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