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Abstract

With the rapid progress of large language models (LLMs) and multi-agent systems,
there is an increasing demand for fair and comprehensive evaluation of their capac-
ity to address complex tasks in specialized scientific domains. Drug metabolism
and pharmacokinetics (DMPK) constitutes a critical stage in drug discovery, re-
quiring interdisciplinary reasoning and integration of diverse knowledge. Thus, we
constructed DMPKBench, a comprehansive benchmark designed to evaluate LLMs
and multi-agent performance in DMPK-related tasks. Grounded in real-world
drug development pipeline, DMPKBench covers five core competencies essen-
tial to domain experts: experimental design and troubleshooting, interpretation
of experimental results, ADMET multi-parameter optimization, pharmacokinetic
(PK) modeling and simulation, and preclinical-to-clinical PK translation to the
human body. The DMPKBench offers over 120k question-answer pairs, with
four dimensions quality-controlled by specialists and one validated through ex-
perimental evidence. We comprehensively evaluated five models across major
DMPKBench modules, revealing accuracy ranges from 11% to 89%. A Signif-
icant performance gap is observed, with models excelling in knowledge-driven
benchmarks but struggling in multi-modal tasks like drug structure understanding,
real-world DMPK data table and PK curve analysis, and multi-step quantitative
reasoning. Overall, DMPKBench offers a high-quality, domain-specific foundation
for advancing LLMs and multi-agent systems in drug discovery and is publicly
available at: https://github.com/GHDDI-AILab/DMPKBench.

1 Introduction

The rapid advancements in LLMs and multi-agent systems have revolutionized the capabilities of
artificial intelligence (Al), enabling unprecedented progress across diverse scientific fields. These
developments hold significant potential for improving data analysis, automating complex reasoning,
and accelerating scientific discovery. However, there remains a critical need for specialized, quantita-
tive benchmarks to evaluate LLLMs within vertical, scientific domains, particularly those that demand
high levels of domain expertise and multi-modal reasoning. A recent LLM benchmark indicates that
while significant efforts have been made in the medical (1)), the field of drug discovery remains vastly
under-explored. Specifically, the creation of LLM benchmarks for the DMPK domain is essential for
assessing the real-world applicability of LLMs and utility in this complex area. Such benchmarks
are vital not only for supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT) of LLMs
but also for optimizing multi-agent systems that can be used to simulate, predict, and recommend in
the context of pharmaceutical research. These benchmarks will provide the foundational datasets
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necessary for the development, validation, and continuous improvement of models and systems (2)
(3). Therefore, the establishment of robust benchmarks in the drug discovery domain is an urgent
priority for enabling Al systems to operate effectively and reliably.

In the context of drug discovery, DMPK represents a critical bottleneck, as it encompasses a complex
range of tasks that require high-dimensional reasoning and the integration of diverse data types.
DMPK studies involve not only traditional PK modeling but also the interpretation of experimental
data, often drawn from a variety of sources, including in vitro and in vivo testing, animal studies,
and clinical trials. The complexity of this field arises from the necessity to model the absorption,
distribution, metabolism, and excretion (ADME) of compounds in humans, requiring a deep under-
standing of biological systems and computational modeling techniques. Moreover, DMPK tasks are
inherently multi-modal, as they often involve the application of multi-step formulas, the interpretation
of experimental tables, the analysis of PK curves, and the integration of graphical data, all of which
demand a high level of expertise and reasoning across multiple domains (3). Additionally, these tasks
frequently require the extrapolation of animal data to human predictions, involving sophisticated
statistical and computational models that account for both temporal variations and inter-individual
differences in PK. The challenge of DMPK is magnified by the high-dimensional nature of the data
and the intricate relationships between various biological systems and drug interactions, making it a
prime candidate for the application of advanced Al methodologies.

Furthermore, the need for accurate predictions in DMPK studies extends beyond basic PK to encom-
pass broader aspects of drug development, including toxicology, efficacy and safety profiling (4). Al
and machine learning methods, including LLMs and multi-agent, offer a promising approach to inte-
grating and analyzing these complex datasets, providing a means to automate time-consuming tasks,
predict potential outcomes, and identify key trends in large volumes of experimental data. However,
to ensure that these models are truly effective and reliable in this domain, comprehensive benchmarks
are needed. These benchmarks would facilitate the comparison of different LLM architectures and
multi-agent systems, guiding the optimization of models for more accurate predictions and better
decision-making in drug development. The DMPK domain, with its combination of multi-step
reasoning, multi-modal data analysis, and the need for highly specialized domain knowledge, serves
as an ideal testing ground for the application of LLMs in drug discovery.

In this study, we proposed the DMPKBench (Figure [I). The creation of dedicated benchmark
will support the development of more efficient and accurate Al models and help to establish a
clear framework for evaluating the performance of these systems in solving complex real-world
drug discovery problems. By providing a consistent set of evaluation criteria and standardized
datasets, such a benchmark would enhance the reproducibility of research, facilitate cross-disciplinary
collaboration, and contribute to the wider acceptance of Al-based solutions in pharmaceutical research.
With the potential to revolutionize the way drugs are developed and tested, the establishment of
DMPKBench would mark a significant step forward in leveraging Al for scientific discovery (3) (6).

2 Related work

In recent years, several benchmarking efforts have emerged to evaluate the capabilities of LLMs
within biomedical and healthcare domains, each contributing uniquely to the advancement of Al in
scientific discovery.

2.1 PubmedQA

PubMedQA is a benchmark dataset introduced in 2019 for biomedical question answering that
requires reasoning over research abstracts (7). It contains 273.5K instances across three subsets:
expert-annotated PQA-L (1k), artificially generated PQA-A (211.3K), and unlabeled PQA-U (61.2K).
Each instance presents a yes/no/maybe question derived from paper titles, context from PubMed
abstracts, and labels based on conclusion paragraphs. PubMedQA addresses critical limitations in
biomedical QA by necessitating scientific reasoning. Its expert-validated subset (PQA-L) serves
as a high-quality evaluation benchmark, while the synthetic PQA-A enables scalable training. The
dataset has significantly advanced biomedical language models and is widely adopted in medical
Al benchmarks. However, several limitations persist: its information extraction relies primarily on
rule-based matching, which offers limited flexibility.
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Figure 1: Overview of DMPKBench

2.2 LAB-Bench

To assess LLM capacity in practical biological tasks beyond textbook-style science questions, Laurent
et al. (2024) introduced the Language Agent Biology Benchmark (LAB-Bench) (8)). This benchmark
is designed to evaluate LLM performance on tasks essential for scientific research, comprising 2,457
question-answer pairs. LAB-Bench assesses capabilities including literature recall and reasoning,
figure interpretation, database access and navigation, and comprehension and manipulation of DNA
and protein sequences.

2.3 BioProBench

Introduced in 2025, BioProBench is a benchmark dataset designed for biological protocol under-
standing and reasoning (9). It encompasses five core tasks: protocol question answering, step
ordering, error correction, protocol generation, and protocol reasoning. Built upon 26,933 original
protocols, BioProBench provides 556,171 high-quality structured instances. This benchmark reveals
fundamental challenges in current LLMs, including: procedural knowledge comprehension, deep
domain adaptation, reliability of structured reasoning, and handling of complex precision and safety
constraints.

2.4 HealthBench

To evaluate the performance and safety of large language models (LLMs), OpenAl recently developed
HealthBench, a benchmark comprising 5,000 multi-turn conversations between a model and either
an individual user or a healthcare professional. LLM responses were assessed using conversation-
specific rubrics established by 262 physicians, encompassing 48,562 rubric criteria. The benchmark
result of LLM in HealthBench indicates recent models have improved rapidly in human health across
performance, cost, and reliability. HealthBench features two variants:

* HealthBench Consensus comprises 3,671 examples featuring exclusively consensus-based
criteria. HealthBench Consensus can be thought of as a version with a higher level of
physician validation.

» HealthBench Hard, a curated subset of 1,000 particularly challenging examples from Health-
Bench remains notably difficult for current state-of-the-art models, with no evaluated model
achieving scores exceeding 32%.



Despite these notable contributions, a comprehensive benchmark for drug discovery remains largely
absent, especially for critical domains like DMPK. While there are efforts like ChemBERTa (10),
which addresses chemical structure prediction, and MolBench (11}, focused on molecular property
prediction, they do not specifically cater to the complex, multi-modal, and multi-step reasoning
inherent in DMPK. Moreover, BioGPT (12), designed for biomedicine, is another relevant effort
but is not tailored to drug discovery or DMPK-related tasks. These existing benchmarks primarily
focus on isolated aspects of drug development, yet they fail to provide a holistic, multi-faceted
evaluation for a comprehensive field like DMPK, which requires multi-dimensional reasoning,
complex data integration, and expert-level domain knowledge. This gap highlights the critical need
for DMPKBench, a specialized benchmark that can address the unique challenges and complexities
within the DMPK domain, which remains unexplored in the context of LLM benchmarking.

3 DMPKBench Construction

DMPKBench is designed based on extensive testing experience within the pharmaceutical industry,
focusing on common scientific challenges in pharmaceutical research. By translating real-world drug
pipeline tasks into generalized drug discovery problems, it avoids the use of proprietary industrial
data while ensuring that the benchmark remains closely aligned with the needs of the industry,
providing valuable insights for model development and performance evaluation in the context of
actual pharmaceutical pipelines.

DMPKBench encompasses five critical competencies that are central to the expertise required
in DMPK: 1) experimental design and troubleshooting, 2) interpretation of experimental results,
3) ADMET multi-parameter optimization, 4) pharmacokinetic (PK) modeling and simulation, 5)
and preclinical-to-clinical PK translation to the human body. Benchmark data were derived from
textbooks, peer-reviewed journal articles, historical research datasets, expert-level examinations,
and internal drug pipeline review discussions. All data were standardized into an LLM-compatible
JSONL format, with multi-modal inputs (tables, figures, PK curves) stored in Markdown for enhanced
accessibility. Rigorous quality control was ensured through multi-round expert validation, formula
verification, and inter-rater agreement checks.

3.1 DMPK Experimental Design and Troubleshooting

The dimension of DMPK experimental design and troubleshooting primarily involves fundamental
competencies in the DMPK domain knowledge. In the context of actual drug discovery pipelines,
DMPK is tasked with identifying issues within the DMPK profile and designing experiments for
in-depth exploration of these concerns. In this domain, we utilize two primary sources: ABT
(American Board of Toxicology, https://www.abtox.org/) exams and CoT-driven question-answer pairs
derived from PubMed abstracts, along with high-quality full-text articles. The types of benchmark
included multiple-choice questions (MCQs), true/false assessments, fill-in-the-blank and short-answer
questions, ensuring a comprehensive evaluation of both theoretical and practical DMPK knowledge.

ABT Certification Examination The ABT (American Board of Toxicology) certification exami-
nation serves as an expert-level certification, primarily assessing competencies in toxicology. The
benchmark dataset is sourced from preparatory question banks, specifically from textbooks, with the
content initially in PDF format being converted into markdown format and subsequently transformed
into an LLM-compatible JSON format for ease of use. Beyond the standard question-answer pairs,
the dataset includes additional metadata such as question IDs, resource tags, and detailed explanations
and conceptual clarifications. In total, the dataset comprises 3190 MCQs and 751 fill-in-the-blank
questions. This collection includes closed-ended and open-ended QAs, covering a broad range
of query types. It includes both knowledge-driven questions that test factual understanding and
reasoning questions that require advanced problem-solving and critical thinking.

CoT-enhanced QAs from DMPK Related Journal This portion of the benchmark includes both a
CoT-enhanced question bank derived from the last five years of scientific literature. In our earlier
research, DrugBench (13)), we established a fully automated pipeline for clustering PubMed abstracts,
extracting key scientific concepts, and generating chain-of-thought (CoT) reasoning questions and
answers. We now apply this workflow to create a CoT-enhanced question answer pairs in the DMPK
domain, resulting in 701 multiple-choice QAs and 401 short-answer QAs.



3.2 Interpretation of Experimental Result

In real-world drug pipelines, the interpretation of DMPK data and PK curves represents a core task
for domain experts, particularly when addressing multi-modal inputs such as tables and graphical
profiles with abnormal signal values. These tasks require routine data interpretation, multifactorial
analysis and causal reasoning to uncover underlying mechanisms. To emulate this complexity, we
first validated our methodology on internal pipeline data before extending it to case studies from
published journals, e.g. Drug Metabolism and Disposition (DMD) and the Journal of Medicinal
Chemistry (JMC). Special emphasis was placed on atypical cases where PK curves deviated from
standard expectations, as these provide valuable challenges for model evaluation. From these cases,
question—answer pairs were systematically constructed and standardized into JSON format. To
preserve confidentiality, compounds were anonymized into generic placeholders (e.g., Drug A).
Multi-modal content, including tables and PK curves, was stored in markdown format, with QA pairs
designed to remain interpretable independently of the embedded figures and tables.

3.3 ADMET MPO

One of the major tasks for DMPK experts involves multi-parameter optimization (MPO) of absorption,
distribution, metabolism, excretion and toxicity (ADMET) properties to achieve the desired safety
window. Using an internally standardized knowledge-graph dataset (PharmNet) and our developed
ADMET prediction Al platform (Eight Formutions of AI KongMing, https://datascience!
ghddi.org), we extracted ADMET-specific data comprising both binary classification and regression
tasks, which were reformulated into LLM-compatible question-answer pairs in JSON format to assess
model performance in ADMET evaluation. To ensure reliability, all distractors were supported by
experimentally validated values rather than artificially constructed entries. The classification dataset
generated 127,600 MCQs. Molecular structures were represented using SMILES notation. Given the
limitations of some LLMs in processing SMILES and SMARTS, conversion to IUPAC names was
also performed to facilitate a fairer evaluation.

3.4 PK Modeling and Simulation

Another critical task for DMPK experts in real-world drug pipelines is multi-step mathematical
derivation for PK modeling and simulation. Given recent advances in LLMs’ mathematical reasoning
capabilities, such calculations provide an effective testbed for evaluating formula derivation and
numerical computation. In this component, datasets were constructed from published drug case
studies, which were then generalized to anonymized examples (e.g., Drug A). Each question was
designed to provide the necessary parameter values while requiring the model to identify and derive
the relevant formulas, rather than supplying them directly. To ensure sufficient complexity, only
problems involving at least three computational steps were retained. Explanations included the
explicit formulas and calculation processes, while answers were manually verified for correctness.
Instances in which discrepancies arose between the provided derivation and the final answer were
manually corrected to guarantee accuracy.

3.5 Preclinical-to-clinical PK Translation

The final component of DMPKBench focuses on preclinical-to-clinical PK translation to the human
body, including tasks like in vitro-in vivo extrapolation (IVIVE), first-in-human (FIH) dose prediction,
and human drug—drug interaction (DDI) inference. The tasks require integration of preclinical and
clincial data, interspecies scaling, and physiological reasoning. All datasets were curated from the
public domain and restricted to cases with complete experimental values required for quantitative
extrapolation. Drug identities were anonymized (e.g., Drug A).

For FIH dose prediction, each case included molecular weight, potency, plasma protein binding
(PPB), microsomal and hepatocyte clearance across humans and at least three preclinical species,
together with animal in vivo PK data. Given the high dimensionality and integrity requirements of the
dataset, a total of 10 case studies were collected. Human data were used as ground truth, with error
tolerances in 2-fold, distractor options were designed to deviate by larger than 3-fold. All entries
were converted into standardized JSON format with markdown support for multi-modal tables and
schematics, allowing consistent benchmarking of LLMs in this domain.
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Human translation requires the application of advanced PK principles, including one-compartment
linear PK models, allometric scaling and Oie-Tozer model. These settings go beyond simple numeric
prediction, encompassing formula derivation, stepwise reasoning, and tool/software application.
Given this multi-dimensional complexity, the human translation benchmark is particularly suited for
multi-agent frameworks that can integrate mathematical reasoning with domain knowledge.

4 Experiment

4.1 DMPKBench Overview

Grounded in practical drug discovery requirements, DMPKBench encompasses five core compe-
tencies: experimental design and troubleshooting, interpretation of experimental results, ADMET
multi-parameter optimization, PK modeling and simulation, and preclinical-to-clinical PK translation
to the human body. Following systematic construction and quality-control optimization. The bench-
mark provides a balanced and comprehensive coverage of tasks, with data statistics summarized in
Table[Il

Table 1: Dataset Composition

Domain Resource MCQ  Open-ended QA Quality

Experiment Design ABT Test 3,190 751 Expert QC
DrugBench! 701 401 LLM QC

Result Interpretation  Public case 100 - Expert QC

PK Modeling Public case 200 - Expert QC

ADMET MPO SPR data 127,600 - Experimental Evidence

Human Translation Public case - 10 Expert QC

"Derived from PubMed (13)

The benchmark integrates multiple sources of difficulty, including expert-level certification exams
and questions derived from the last five years of scientific literature, thereby capturing both founda-
tional and frontier knowledge. Real-world case studies from the public domain are incorporated to
benchmark the interpretation of experimental results, such as PK curves and DMPK parameter tables.
Multi-step quantitative problems challenge the mathematical reasoning and formula derivation skills
required for PK modeling and simulation. In addition, complex translational tasks, e.g. FIH dose
prediction, challenge integration of diverse experimental inputs and advanced modeling approaches.

The benchmark spans both close-ended QAs (e.g., multiple-choice and true/false questions) and
open-ended QAs (e.g., fill-in-the-blank and short-answer questions), ensuring that model evaluation
is not restricted to narrow knowledge retrieval but extends to reasoning, interpretation, and synthesis.
Taken together, DMPKBench represents a high-quality, multi-modal, domain-specific benchmark for
systematically evaluating the performance of LLMs and multi-agent systems in drug discovery and
development.

4.2 Benchmark Performance

We conducted a comparative performance analysis of several state-of-the-art LLMs, including OpenAl
03 and DeepSeek R1 (Table[2). We found that LLMs consistently excel in knowledge-based tasks
(such as the ABT Test and PubMed), yet their performance varies significantly across other tasks.
In particular, they demonstrate particularly poor performance in result interpretation, with accuracy
approximately 23%.

Benchmark of Close-ended Questions In DMPKBench, close-ended questions include MCQs and
true/false items. Evaluation was restricted to MCQs. All MCQ subsets were fully evaluated, except
for ADMET multi-parameter optimization, where stratified random sampling was applied with 10
representative questions per property. The performance of five models across five dimensions is shown



Table 2: Performance of Different Models

Result ADMET PK
ABT Test PubMed
Model Interpretation MPO Modeling
(Acc %)  (Acc %)
(Acc %) (Acc %)  (Acc %)
OpenAl 03 89.47 85.73 31.65 42.09 53.25
OpenAl GPT-4.1 82.15 85.59 27.80 37.50 38.96
Claude 4 Sonnet 86.03 84.31 11.39 43.51 40.26
Deepseek R1 87.69 80.46 17.72 38.13 40.26
Deepseek V3 84.59 85.16 29.11 37.50 54.55
Average 85.99 84.25 23.53 39.75 47.46

Note: The number of evaluated questions is smaller than the full dataset for some tasks because certain LLM
outputs contained system errors that prevented scoring.

in2] Overall, all models achieve strong performance on knowledge-driven benchmarks (ABT Test
and PubMed), with accuracy consistently above 80%, indicating robust domain knowledge retrieval.
In contrast, performance drops substantially when tasks extended beyond purely knowledge-driven or
text-centric reasoning. Result interpretation remains the most challenging module, with accuracy
below 32% for all models. ADMET multi-parameter optimization shows moderate performance,
where Claude 4 Sonnet achieves the highest accuracy (43.51%). Deepseek-V3 displays the best
performance (54.55%) in PK modeling, suggesting relative strengths in multi-step formula calculation
and reasoning. These results highlight a clear gap between factual knowledge proficiency and complex
multi-modal DMPK reasoning, underscoring the need for benchmarks that reflect real-world drug
discovery challenges.

Benchmark of Open-ended Questions Open-ended benchmark evaluation in DMPKBench in-
cludes fill-in-the-blank and short-answer questions. For fill-in-the-blank items, model-generated
answers are assessed by a secondary LLM to determine semantic equivalence with the reference an-
swers, accounting for synonyms and paraphrased expressions. For example, responses such as “Metal-
lothionein (MT), CAMT” are correctly judged as equivalent to “metallothionein, Cd-metallothionein”.
For the 751 fill-in-the-blank items, OpenAl 03-mini model was used both to generate the answers
and to assess semantic equivalence between the generated answers and the ground-truth solutions.
Under this setting, 418 items were judged correct, corresponding to an accuracy of 55.66%. Since
LLM-based adjudication does not fully ensure correctness and no standardized evaluation protocol
exists for open-ended questions, performance metrics are not reported here.

Short-answer questions pose greater challenges due to their inherent subjectivity and sensitivity
to linguistic style. We tried two approaches. Expert judgment provides high-quality and reliable
assessment but is time-consuming, not scalable and subjective. Automated evaluation is an alternative
approach. Reference answers are decomposed into key points, and models are required to generate
both narrative responses and explicit key points. A secondary LLM is applied to evaluate semantic
alignment and coverage to approximate answer accuracy.

Benchmark of Agent Performance DMPKBench also provides a framework for evaluating agent
performance in DMPK tasks. It includes knowledge-driven questions from ABT tests and PubMed-
extracted CoTs, as well as multi-modal tasks such as PK graph and table interpretation, formula
calculation and derivation. The benchmark enables the assessment of whether domain-optimized
agents extend the general LLMs’ reasoning capabilities and improve performance across multiple
levels. It also incorporates complex multi-step reasoning challenges. These include ADMET
multi-property optimization, which involves up to tens of simultaneous property predictions, and
preclinical-to-clinical translation, which requires sequential inference.

Conventional LLMs often struggle with intricate tasks such as human dose prediction. Such tasks
typically demand more than ten reasoning steps and prolonged computational effort. Multi-agent



frameworks equipped with modular tools and collaborative task decomposition can enhance overall
performance. These frameworks are capable of predicting human dose from preclinical data within a
two-fold error margin the accepted gold standard for accuracy in human dose prediction.

4.3 Unresolved challenge subset

DMPKBench further defines an unresolved challenge subset, comprising questions that were answered
incorrectly by all evaluated models (OpenAl 03, GPT-4.1, Claude 4 Sonnet, DeepSeek-R1, and
DeepSeek-V3). These results are based on a single run and may vary across runs. The prevalence
of unresolved questions differs markedly by task type: knowledge-driven tasks (e.g., ABT test and
DrugBench from PubMed CoT) account for only 4.8% of all questions, whereas multi-modal QA
constitutes 28.26%. This indicates that multi-modal tasks remain a major limitation for current
LLMs, particularly in PK curve interpretation, multi-step PK modeling and ADMET multi-parameter
optimization. A breakdown analysis of these question-answer pairs indicates that the models can
correctly parse numerical values from figures and tables but fail on complex reasoning, which likely
drives the observed errors. The unresolved challenge subset is also publicly released on GitHub to
support further study of LLM performance on multi-modal DMPK benchmark.

5 Conclusion

To address the lack of domain-specific benchmarks for rapidly evolving LLMs and multi-agent
systems in drug discovery, we developed DMPKBench, a multidisciplinary reasoning benchmark
grounded in the real-world drug pipeline requirements. DMPKBench encompasses five expert-level
competencies essential to DMPK specialists: experimental design and troubleshooting, interpretation
of experimental results, ADMET multi-parameter optimization, PK modeling and simulation, and
preclinical-to-clinical PK translation to the human body. It is inherently multimodal, integrating
tasks such as SMILES interpretation, PK curve analysis, parameter table comprehension, and multi-
step mathematical derivations. With over 120,000 question—answer pairs, DMPKBench combines
scale with rigor: four dimensions are QC-verified by domain experts, and one is supported by
experimental evidence. Interestingly, we observed that the LLMs demonstrated strong performance
on knowledge-driven tasks, while their performance declined significantly on the multi-modal
tasks. This may be attributed to the models’ currently limited thinking and reasoning capabilities,
or to the relatively scarce availability of multi-modal training data. In summary, DMPKBench
provides a robust, comprehensive, and high-quality foundation for evaluating and advancing Al in
pharmaceutical research. To ensure reproducibility and reduce prompt-related variability, relevant
datasets as well as validation prompts used in this study are available and regularly updated at
https://github.com/GHDDI-AILab/DMPKBenchl

DMPKBench addresses a critical gap by providing an industry-relevant benchmark for evaluating
large language models and Al agents. However, several challenges remain. Firstly, a disconnect
persists between academic benchmark design and real-world industrial applications, meaning that
conventional performance metrics may not fully capture practical utility. Secondly, evaluating
open-ended responses remains challenging due to subjectivity in evaluation. Moreover, complex
multi-agent tasks, such as ADMET MPO and first-in-human dose prediction, involve multistep
reasoning and iterative validation, further complicating consistent and automated evaluation. Finally,
discrepancies can arise between benchmark design and downstream applications in supervised or
reinforcement fine-tuning and agent development. To address these limitations, DMPKBench will be
continuously refined to keep pace with advances in Al and the evolving demands of real-world drug
discovery.

References

[1] Zhang, M., Shen, Y., Li, Z., Sha, H., Hu, B., Wang, Y, ... & Huang, X. (2025). LLMEval-Med:
A Real-world Clinical Benchmark for Medical LLMs with Physician Validation. arXiv preprint
arXiv:2506.04078

[2] Cai, H., Cai, X., Chang, J., Li, S., Yao, L., Wang, C., ... & Ke, G. (2024). Sciassess: Bench-
marking llm proficiency in scientific literature analysis. arXiv preprint arXiv:2403.01976.


https://github.com/GHDDI-AILab/DMPKBench

[3] Arora, R. K., Wei, J., Hicks, R. S., Bowman, P., Quifionero-Candela, J., Tsimpourlas, F,, ... &
Singhal, K. (2025). Healthbench: Evaluating large language models towards improved human
health. arXiv preprint arXiv:2505.08775.

[4] Baillie, T. A. (2008). Metabolism and toxicity of drugs. Two decades of progress in industrial
drug metabolism. Chemical research in toxicology, 21(1), 129-137.

[5] Blanco-Gonzalez, A., Cabezon, A., Seco-Gonzalez, A., Conde-Torres, D., Antelo-Riveiro,
P., Pineiro, A., & Garcia-Fandino, R. (2023). The role of Al in drug discovery: challenges,
opportunities, and strategies. Pharmaceuticals, 16(6), 891.

[6] Chou, W. C., & Lin, Z. (2023). Machine learning and artificial intelligence in physiologically
based pharmacokinetic modeling. Toxicological Sciences, 191(1), 1-14.

[7] Jin, Q., Dhingra, B., Liu, Z., Cohen, W. W., & Lu, X. (2019). Pubmedqa: A dataset for
biomedical research question answering. arXiv preprint arXiv:1909.06146.

[8] Laurent, J. M., Janizek, J. D., Ruzo, M., Hinks, M. M., Hammerling, M. J., Narayanan, S., ... &
Rodriques, S. G. (2024). Lab-bench: Measuring capabilities of language models for biology
research. arXiv preprint arXiv:2407.10362.

[9] Liu, Y., Lv, L., Zhang, X., Yuan, L., & Tian, Y. (2025). BioProBench: Comprehensive
Dataset and Benchmark in Biological Protocol Understanding and Reasoning. arXiv preprint
arXiv:2505.07889.

[10] Chithrananda, S., Grand, G., & Ramsundar, B. (2020). ChemBERTa: large-scale self-supervised
pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885.

[11] Jiang, X., Tan, L., Cen, J., & Zou, Q. (2023). Molbench: A benchmark of ai models for
molecular property prediction. In International Symposium on Benchmarking, Measuring and
Optimization (pp. 53-70). Singapore: Springer Nature Singapore.

[12] Luo, R., Sun, L., Xia, Y., Qin, T., Zhang, S., Poon, H., & Liu, T. Y. (2022). BioGPT: generative
pre-trained transformer for biomedical text generation and mining. Briefings in bioinformatics,
23(6), bbac409.

[13] Li, J., Chen, B., Liu, R., Zou, Z., & Guo, J.(2025). DrugBench: A Data-Mining Pipeline for
Generating CoT-driven LLM Benchmark in Drug Discovery [Manuscript in preparation].



	Introduction
	Related work
	PubmedQA
	LAB-Bench
	BioProBench
	HealthBench

	DMPKBench Construction
	DMPK Experimental Design and Troubleshooting
	Interpretation of Experimental Result
	ADMET MPO
	PK Modeling and Simulation
	Preclinical-to-clinical PK Translation

	Experiment
	DMPKBench Overview
	Benchmark Performance
	Unresolved challenge subset

	Conclusion

