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ABSTRACT

Humans are expert explorers and foragers. Understanding the computational cog-
nitive mechanisms that support this capability can advance the study of the human
mind and enable more efficient exploration algorithms. We hypothesize that hu-
mans explore new environments by inferring the structure of unobserved spaces
through re-use of spatial information collected from previously explored spaces.
Taking inspiration from the neuroscience of repeating map fragments and ideas
about program induction, we present a novel “Map Induction” framework, which
involves the generation of novel map proposals for unseen environments based on
compositions of already-seen spaces in a Hierarchical Bayesian framework. The
model thus explicitly reasons about unseen spaces through a distribution of strong
spatial priors. We introduce a new behavioral Map Induction Task (MIT) that in-
volves foraging for rewards to compare human performance with state-of-the-art
existing models and Map Induction. We show that Map Induction better predicts
human behavior than the non-inductive baselines. We also show that Map In-
duction, when used to augment state-of-the-art approximate planning algorithms,
improves their performance.

1 INTRODUCTION

Humans efficiently use spatial reasoning to explore and forage in new environments. We easily
find our way around new buildings and infer promising foraging locations. For instance, after some
experience of foraging on a cluster of hills and finding berries on the south-facing slopes, we could
anticipate that nearby hills may have a similar distribution of berries (see Figure 1).

Which neurally-informed computational cognitive mechanisms make this possible, and could they
be leveraged for better exploration in AI? We empirically study human exploration in novel spaces,
and propose a formal computational model, which we call Map Induction, that predicts human be-
haviour by leveraging Bayesian inference about the structure of unobserved space. We also show
that map induction can improve the performance of a Partially Observable Markov Decision Pro-
cess (POMDP) planner during foraging. We begin by reviewing the literature on human spatial
cognition involved in exploration and parallel developments of exploration algorithms, followed by
introducing our computational modeling and experimental results.

Distributed non-metric representations. Human exploration relies on constructing approximate
spatial representations (Wang & Brockmole, 2003; Warren et al., 2017; Wiener & Mallot, 2003) that
support near-optimal planning in daily life (Bongiorno et al., 2021) while sacrificing global metric
accuracy (Vuong et al., 2019; Newcombe et al., 1999; Zhu & Levinson, 2015). These representations
are acquired by combining redundant observations of local landmarks, such as views from multiple
perspectives (Gillner & Mallot, 1998; Foo et al., 2005). The use of distributed spatial representations
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Figure 1: Map induction: We propose how humans might infer the structure of unobserved spaces
based on priors constructed from observations of other environments or different parts of the same
spacee. Map induction can minimize exploration cost by filling in incomplete or missing observa-
tions from experience.

for cost-effective navigation also has a long history in AI. Examples include a computational theory
of wayfinding based on multiple locally unique but globally similar landmarks (Prescott, 1996),
which prioritized error recovery over accuracy. The Spatial Semantic Hierarchy model (Kuipers
& Levitt, 1988) used distributed spatial graphs as maps for navigation (Kuipers, 2000; Kuipers
et al., 2004). Simultaneous Localization and Mapping (SLAM) algorithms based on segmenting the
explored space circumvent scale limitations by dividing the world into manageable locally metric
submaps with topological relationships between submaps (Bosse et al., 2003; Fairfield et al., 2010).
By contrast, recent recurrent neural network models of navigation have focused more closely on the
metric structure of explored spaces and global map formation (Burak & Fiete, 2009), showing how
networks trained on path integration can take shortcuts (Banino et al., 2018).

Hierarchical organization. Humans minimize planning costs by representing spaces hierarchically
– based on visible spatial boundaries (Kosslyn et al., 1974), geography (Stevens & Coupe, 1978),
or otherwise interpreting spaces as composed of sub-regions (Hirtle & Jonides, 1985). Hierarchical
spatial organisation is evident in a tendency to plan paths between regions, before planning sub-
paths within each region (Bailenson et al., 2000; Newcombe et al., 1999; Wiener & Mallot, 2003;
Wang & Brockmole, 2003; Balaguer et al., 2016), and in increased reaction times when switching
between hierarchy levels during plan execution (Balaguer et al., 2016; Kryven et al., 2021). Hi-
erarchical state-spaces in non-spatial planning domains include drawing (Tian et al., 2020) inverse
inference (Shu et al., 2020), and reasoning about topology (Tomov et al., 2020).

Hierarchical representations in AI and specifically in Reinforcement Learning can be expressed as
options – a hierarchical grouping of actions frequently performed together (Sutton et al., 1999).
Assuming a novel Markov Decision Processes (MDP) is sampled from a family of similar MDPs,
its rewards can be learned as derived from a parent distribution shared by the MDP family (Wilson
et al., 2012). Singh et al. (2012) proposed a computational framework for learning efficient state-
space representations by recognizing which sequences of actions lead to identical observations – for
example, grouping together paths that lead to observing the same landmark. A principle of grouping
game-board states based on rotation and reflection symmetries has been used to optimize state-space
representations in the game of Go (Silver et al., 2017).

Shared reference frames. From young children to hunter-gatherers, humans spontaneously orga-
nize sensory precepts into patterns (Pitt et al., 2021), and use them to generalize between tasks (Tian
et al., 2020; Lake & Piantadosi, 2020; Schulz et al., 2018). Generalization and transfer learning
in spatial domains include mirror-invariant neural scene representations (Dilks et al., 2011), and
reusing of reference frames across similar environments (Marchette et al., 2014). Shared reference
frames may occur in other mammals as well, as suggested by evidence of rodents reusing grid-cell
maps between similar parts of an environments (Derdikman et al., 2009; Carpenter et al., 2015). A
recent computational framework for clustering space by fragmenting neural representations at loca-
tions of high surprisal during online exploration shows how such submaps might form (Klukas et al.,
2021). However, these studies have not considered how submaps may be recombined and reused to
efficiently forage in novel spaces.

Map Induction. We propose a Map Induction hypothesis – that humans optimize exploration of
new spaces by representing maps as composed of reusable reference frames – which can inferred
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Figure 2: An example of an MIT task. A. A 2-dimensional grid discretization showing the map
used for modeling exploration trajectory. The black cells indicate walls, and the red cells indicate
reward locations. B. The 3-dimensional world, in which subjects search for rewards (shown as blue
diamonds on a red platform), seen from an overhead perspective in the Unity Design system. C.
First-person views of the task, as seen by subjects at different times during the experiment.

by program induction to represent unseen space as composed of previously encountered regions.
Program induction generally refers to inferring a program that likely produced a given sequence of
observations (Stuhlmuller et al., 2010; Lake et al., 2015). For example, given a sequence of numbers,
the inferred program may be an arithmetic progression; given a natural texture the program may be a
reaction-diffusion equation (Camazine et al., 2020). Although Bayesian models of concept-learning
by program induction have been developed for many domains (Stuhlmuller et al., 2010; Lake et al.,
2015; Tian et al., 2020), its use to understand spatial structures and environments is unexplored. In
this work map induction refers to inferring program(s) that could generate the current environment,
given past observations. Given such a program, an agent can anticipate the structure of an unseen
environment and use this estimated structure to optimize exploration.

In this work we adopt a scientific and an engineering goal: (1) to empirically study how humans
learn spatial representations, and (2) describe a computational model that formalizes human-like
map induction that can potentially optimize exploration in AI. We show that a Partially Observed
Markov Decision Process (POMDP) planner augmented with Hierarchical Bayesian map induc-
tion predicts human exploration better than a naive, non-inductive, POMDP (Experiment 1). We
also show that human exploration relies on probabilistic distributions over likely map-generating
programs, as opposed to using only the most likely map (Experiment 2). In the next section, we
introduce the Map Induction Task. We then give a detailed description of computational models in
Section 3. In Section 4, we describe two human experiments, and compare behavioral metrics with
our models’ predictions.

2 MAP INDUCTION TASK

The Map Induction Task (MIT) is designed to present subjects with novel environments and provide
a context for learning novel spatial representations. We are especially interested in environments in
which certain parts of the environment can be predicted from incomplete observations. For example,
upon entering a unit in an apartment building a human will likely categorize it as a new region, but
after exploring several units, one should be able to anticipate the remaining floor-plan, or even
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consider several possibilities consistent with prior observations – such as, that the right and the left
wing of the building could mirror each other. In nature, predictable structures occur in patterns of
hills and valleys, branching riverbeds, and plants favoring certain features of the environment (see
Figure 1), which in theory can be probabilistic, rather than exactly structured repetitions.

The subjects’ task is to forage for rewards in novel partially observable 3-dimensional environments,
which contain multiple rewards. To keep each experiment duration under 45 minutes, in the current
experiments each environment consisted of repeated units – structural blocks repeated throughout
the environment (see Figure 2B). However, in theory the environment structure could be a proba-
bilistic mixture of different parts.

The subjects have no advance knowledge of the specific environment structure and are instructed to
collect all diamonds (see Figure 2 C). Subjects use a keyboard and mouse (or a trackpad) to navigate,
which are standard navigation controls in first-person games. The distribution of rewards is initially
unknown to the subjects, but is predictable from the layout of the environment – for example, the
rewards may be placed in the same part of a unit each time a the unit occurs. While the MIT task
can be completed without map induction, or even without an explicit map representation (e.g. by
following a wall) such a naive strategy would take longer than selectively exploring only the parts
likely to contain diamonds. Each trial continues either until all diamonds are collected or until a
timeout is reached, whichever comes first.
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Figure 3: Model architecture. A. Four steps required to solve the MIT task and the corresponding
computational modules in our framework. B. Extracting the candidate regions (submaps) from the
known map, and generating possible map completions by composing these regions and their simple
transformations (e.g., mirror reflections) as defined in the generative grammar of the Map Generator.
C. Uniform Model assumes a uniform distribution for the unobserved part of the map. D. Maximum
A Posteriori Model uses the most likely map completion for planning. E. Distributional Model uses
the entire distribution of map completions for planning.

3 COMPUTATIONAL MODELS

We now formalize the map induction hypothesis to quantitatively and computationally test its pre-
dictions. Optimizing performance in the MIT task requires the following computational steps: (1)
inferring that the environment is composed of repeating units (2) inferring the most likely struc-
ture(s) of the environment (3) inferring the distribution of rewards within the environment, and (4)
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planning the shortest route that collects all rewards. Here (1) and (2) refer to map induction, and
(3) may involve further program induction over the distribution of rewards (e.g. the rewards could
be placed in the top left corner of every unit, in every odd unit, etc.). Because of uncertainty in the
environment, this computational pipeline is executed in the context of a replanning loop. Finally,
step (4) involves solving a Partially Observed Markov Decision Process (POMDP) that uses a dis-
tribution of hypothetical environments to plan. While it is possible to do (4) without performing
the first three steps, this would entail assuming an uninformed prior that any unobserved cell could
equally likely be a wall, an empty space, or a reward – which would result in exploring exhaustively.

Formally, we can model this process by a Bayesian generative framework consisting of four com-
putational modules (see Figure 3A) corresponding to the four steps described above. Each module
can be independent of the others and can express different modeling assumptions. In the remainder
of this section, we discuss the function of each module in detail and define three specific combi-
nations of module implementations, to express three distinct computational hypotheses formalizing
the principle of map induction in different ways.

3.1 MAP INDUCTION THROUGH OBSERVED SPATIAL STRUCTURES

Steps (1) and (2) entail approximate inference of a posterior distribution p(M |D) over possible
maps. Here we formalize the computations that estimate this distribution (see Figure 3A).

Region Extraction: The region extractor extracts candidate regions (or submaps) Mp from known
parts of the map (see Figure 3B for a simple example). The second stage of the hierarchy in Figure
3B shows examples of regions extracted from the observed map, shown above. Note that the term
region refers to a hypothetical building block of the environment considered by the model, and is dif-
ferent from the term unit used in the previous section to describe repeating elements in environment
design. In theory multiple regions can represent a unit, or a region may comprise several units.

Map Generation: To develop a space of possible map completions, we use a probabilistic gener-
ative grammar that combines region primitives into a set of completed maps. If the current map
has dimensions sx, sy , and dx, dy are the dimensions of the extracted regions, then the generative
grammar for that map is described as shown in Table 1. The third level of the hierarchy in Figure

Production Rule Probability

Mp(dx, dy) → FLIPH(Mp(dx, dy)) 1
3

Mp(dx, dy) → FLIPV(Mp(dx, dy)) 1
3

Mp(dx, dy) → ROTATE90(Mp(dy, dx)) 1
3

Mp(dx1
+ dx2

, dy1
) → HCAT(Mp(dx1

, dy1
),Mp(dx2

, dy1
)) 1

2

Mp(dx1 , dy1 + dy2) → VCAT(Mp(dx1 , dy1),Mp(dx1 , dy2)) 1
2

M → Mp(sx, sy) 1

Table 1: Probabilistic context-free grammar used to generate a distribution of map hypotheses.

3B shows examples of map completions generated this way. The probabilities assigned to the rules
in the generative grammar encode priors on coverage and consistency of the generated maps.

Map Inference: We use this probabilistic generative grammar along with the following likelihood
over generated maps to form the posterior p(M |D):

l(M ;D) ∝
[
1− β

sx × sy

]
×
[
1− γ

sx × sy

]
where γ/sx × sy is the fraction of the map not predicted by a given map completion and β/sx × sy
is the fraction of mismatched reward locations relative to the history of observations. At a high level,
this likelihood function encodes two simple assumptions: (1) map completions that are maximally
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descriptive of unseen portions of the environment are more likely; (2) map hypotheses that are min-
imally contradictory with previous observations are more likely. The posterior distribution p(M |D)
is computed using the above likelihood function, and an initial prior on the map hypotheses p(M)
derived from the probabilities assigned to the production rules in the generative grammar listed in
Table 1.1 For simplicity, here we assume a uniform prior over the map hypotheses generated by the
Map Generator since the space of possible hypotheses is small.

p(M |D) = l(M ;D)p(M) = p(D|M)p(M)

3.1.1 PLANNER

We model the exploration problem as a Partially Observable Markov Decision Process (POMDP).
In a POMDP, the state is not directly observable by the agent and can only be inferred
through sequences of observations in the environment. A POMDP can be described as a tuple
〈S,A, T,R,Ω,O, γ〉 where S is the set of possible states in the world, A is a finite set of actions,
T : S×A → Π(S) is a stochastic transition function which maps a state action pair to a distribution
over possible next states, R : S×A → R is a reward function that maps state action pairs to a scalar
reward, Ω is a set of observations that an agent can experience in the world, O : S × A → Π(Ω) is
an observation function which maps a state and action pair to a distribution of possible observations
after taking the action, and γ is a discount factor such that 0 < γ < 1. An optimal agent in this
formulation acts to maximize the expected discounted reward from the environment.

π∗(s) = arg max
a

(
E
[ ∞∑
k=0

γkR(s, a)
])

For our task, the state space is defined as S = H× [0, 1]|H|×Sa whereH is the set of possible map
hypotheses from p(M |D), [0, 1]|H| is the probability associated with each hypothesis, and Sa is a
3-tuple (ax, ay, ar) with dimensions (sx, sy, 4) indicating the index into the grid world state where
the agent is positioned and the current direction the agent is facing. The action space is discrete with
size 3 for bidirectional rotation and forward movement. We use a reward function R defined by an
indicator function over the state space 1(Sg[ax, ay] = reward). The transition function T (s′|s, a)
is a stochastic function that maps the given action and the previous state to a new state. There is
no closed-form expression for T , but it can be expressed using a generative probabilistic sampler
that takes in s, samples a grid from the hypothesis distribution in s, deterministically simulates
action a in the sampled grid, and returns a new position, orientation of the agent and an updated
hypothesis distribution consistent with the new observations. The observation space Ω(s, a;D) is
defined by a surjective line-of-sight (LOS) observation function O that maps from state and action
to a deterministic observation. This function casts rays within a 90-degree field of view in the
direction of the agent’s orientation. Lastly, we define γ = 0.90 for all of our experiments. Since
finding an exact solution is intractable due to the size of the problem (Kaelbling et al., 1998), we
search through belief space using an approximate online Partially Observable Monte Carlo Planner
(POMCP) (Silver & Veness, 2010).

3.2 COMPUTATIONAL HYPOTHESES

We compare human performance to three hypotheses (variants of POMCP) to evaluate whether and
how human exploration implements the computational steps described in Figure 3A:

1. Uniform Model (Uniform-POMCP): The Uniform model doesn’t use map induction, i.e.,
it doesn’t learn any inductive priors about spatial structures during exploration outlined in
steps (1)-(3). Instead, it assumes a uniform distribution over possible settings for each grid
cell (reward, empty, etc.) and uses that for planning as shown in Figure 3C.

2. Maximum A Posteriori Model (MAP-POMCP): The MAP model uses the most likely
map from the distribution of induced maps p(M |D) to plan (see Figure 3D).

1Given the relatively small environments, we are able to compute the posterior exactly. However, larger and
more complex environments (where enumerating all possible map completions is not feasible) would likely
require approximate Bayesian inference methods such as Markov Chain Monte Carlo.
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3. Full Distributional Model (D-POMPC): The Distributional model uses the entire set of
induced maps in the distribution p(M |D) to plan (see Figure 3E).

Both second and third hypotheses are consistent with the previous studies discussed in Section 1.
They both use the map induction framework based on compositionality of space. i.e., combining
local regions to form the global map instead of learning a global metric representation.. On the other
hand, the first hypothesis is inconsistent with this literature, since it makes no prior assumptions
about the organization of space (neither hierarchical organization, nor the use of shared reference
frames). Furthermore, it assumes a uniform distribution over the unseen map space which is akin to
learning a global map.

4 BEHAVIORAL EXPERIMENTS

Below we describe two human behavioral experiments. Experiment 1 tests whether humans perform
map induction, as implemented by the MAP-POMCP and D-POMCP models, in contrast to naive
exploration implemented by Uniform-POMCP. The results show that humans indeed rely on map
induction and rule out the use of the Uniform model. Experiment 2 tests whether human exploration
is best explained by MAP-POMCP or D-POMCP models, and shows that humans plan according
to a distribution of hypothetical maps, explicitly gathering information to disambiguate those hy-
potheses. The number of subjects recruited for both experiments was determined through prior pilot
experiments, our goal was to recruit a sufficient number of responses to differentiate between the
Uniform-POMCP, MAP-POMCP and D-POMCP.

4.1 EXPERIMENT 1: USING MAP INDUCTION TO OPTIMIZE EXPLORATION
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Figure 4: Experiment 1 results. A. Exploration trajectories of a representative subject. B. Visitation
heatmaps of three example environments aggregated across subjects and pairs of reflected environ-
ments. The visited area was computed in a 2D grid projection, using a circular radius of five grid
cells around the agent. C. Fractions of environments observed by the models and humans. Error
bars show 95% confidence intervals. D. Log-likelihood that the model takes the same actions as
the human (details in Appendix section A.3). Each marker is a subject-environment pair, with each
color showing a single environment: Env1-Env6 (blue-yellow). Error bars show standard error along
each axis.

Method: The experiment was conducted in a web browser, using 3D virtual environments built-in
Unity WebGL. Each environment was composed of a corridor connecting five instances of a specific
unit. The rewards (diamonds) were placed at identical locations within each unit. An example
environment is shown in Figure 2. Each subject performed four practice trials, followed by an
instruction quiz and 12 test trials in order randomized between subjects. Subjects who failed the
instruction quiz repeated the instructions and practice until they answered the quiz correctly. The
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timer for the trial and the number of diamonds collected were shown on the upper right corner
of the screen (see Figure 2C). See Supplementary Materials for full experimental instructions and
screenshots.

Stimuli: The 12 test trials comprised six pairs of unique environments and their reflections. The
reflected environments increase the number of trials and control for possible left or right biases.

Subjects: We recruited 30 subjects via Amazon Mechanical Turk. Subjects were paid for 45 minutes
of work and received a monetary bonus for each collected diamond.

Results: Out of the 30 subjects, 4 subjects explored exhaustively, 2 did not complete the experiment,
and 24 subjects correctly inferred reward placement, indicative of map induction. Most subjects ex-
haustively explored the first two units in a new environment, followed by partial exploration through
the remainder of the trial. Throughout the experiment, the extent to which non-rewarding areas were
visited decreased, indicating that people were increasingly confident about the repeating layout.

Figure 4A shows examples of exploration trajectories of one subject. Subjects generally used iden-
tical trajectories to search the reflected pairs of environments, and so we aggregated results for each
of the six pairs. Figure 4B illustrates the extent to which three example environments were vis-
ited, aggregated across subjects, and across reflected pairs of environments. See the Appendix for a
complete plot of all exploration trajectories and heatmaps. Figure 4C shows the fractions of each en-
vironment observed by humans and models. The areas observed by MAP-POMCP and D-POMCP
were similar to humans’, while the area observed by Uniform-POMCP was significantly larger.
Figure 4D shows the fit of the three models to human behavior, indicating that the MAP-POMCP
and D-POMCP models, which implement map induction, explain human behavior better than the
Uniform-POMCP model, which makes no predictions about map structure.

4.2 EXPERIMENT 2: DISTRIBUTIONAL SUB-MAP REPRESENTATIONS

Experiment 2 differentiates between MAP-POMCP and D-POMCP models using color cues to in-
dicate the location of rewards within each unit. This was done by including a ‘cue room’ within
each unit – a small room containing information about the location of the reward. The environments
were designed so that MAP-POMCP would take a longer exploration path compared to D-POMCP.
A planner guided by the MAP-POMCP model ignores the cue rooms and heads toward the part of
a unit most likely to contain a diamond based on previous experience. In contrast, the D-POMCP
model visits the cue room to gather information about the location of the diamonds.

Method: Experiment 2 followed a procedure similar to Experiment 1, with a different set of environ-
ments. Each subject performed five practice trials, followed by an instruction quiz, 12 test trials in
order randomized between subjects, and a test of skills using navigation controls. The controls skill
test ensured that subjects could navigate in WebUnity without undue difficulty since Experiment 2
used larger environments. Subjects who failed the controls skill test were paid but excluded from
the analysis. The instructions were modified to prompt subjects to consider colors as cues to the
placement of the reward – see the Appendix for full details.

Stimuli: The 12 test environments comprised six unique environments and their reflections. The
color cues were randomized within each environment so that the reflected pairs of environments
were colored in different ways and contained rewards in different locations.

Subjects: We recruited 51 subjects via Amazon Mechanical Turk. Each was paid for 45 minutes of
work and received a monetary bonus for each collected diamond.

Results: Out of 51 subjects, 35 completed the controls skill test. Of the 35 subjects, all but nine were
able to successfully use color cues, as predicted by the D-POMCP model, indicating that the majority
took into account the entire distribution of possible maps in contrast to just the most likely map.
Example exploration trajectories of one subject and visitation heatmaps are shown in Figure 5 A and
B. See the Appendix for more results. Comparing the fractions of environments observed by humans
and models indicates that only the D-POMCP model was comparable to humans (see Figure 5C).
D-POMCP model was also best at explaining human behavioral data, as shown in Figure 5D.
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Figure 5: Experiment 2 results. A. Exploration trajectories of a representative subject. B. Visitation
heatmaps of three example environments aggregated across subjects. The visited area was computed
in a 2D grid projection, using a circular radius of five grid cells around the agent. C. Fractions of
environments observed by the models and humans. Error bars show 95% confidence intervals. D.
Log-likelihood that the model takes the same actions as the human (details in Appendix section
A.3). Each marker is a subject-environment pair, with each color showing a single environment:
Env1-Env6 (blue-yellow). Error bars show standard error along each axis.

5 DISCUSSION

In this work we proposed a novel Map Induction hypothesis – that humans use program induction
to infer maps of novel environments from partial observations and use the inferred map distribution
to optimize exploration for rewards. We formalize this hypothesis computationally, by combining
a Bayesian map induction model and an approximate belief-space planner. We present the results
of two behavioral experiments that support the map induction hypothesis by demonstrating that
our computational model predicts human exploration, and show that the performance of a Partially
Observable Monte Carlo Planner can be improved by adding map induction.

While we explored map induction in simple environments, it is likely to apply more widely – hu-
mans not only forage selectively but also tend to consider only plausible theories. This may indicate
that humans anticipate the structure of abstract search spaces by noticing repetitions and symmetries
to simplify hard computing problems in various domains. Using map induction for exploration may
not be unique to humans – the evidence of rodents reusing grid-cell maps in similar parts of environ-
ments suggests that grid-cell remapping may be a neural signature of map induction (Derdikman
et al., 2009; Carpenter et al., 2015). Hippocampal reuse of place-cell maps in composite environ-
ments (Paz-Villagrán et al., 2004), which are invariant to rotation and scaling (Muller & Kubie,
1987), suggests that animals use landmark cues to guide map induction as well.

In future work we intend to study map induction in larger, more naturalistic environments, where
more comprehensive generative models may be needed for map induction in order to optimally
induce the generative programs used to generate these environments. Map induction may also have
potential applications for fast and generalizable map learning in SLAM and in model-based RL
tasks.
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A APPENDIX

A.1 EXPERIMENT 1

Figure 6 shows the stimuli used in the experiment, with practice stimuli in panel A and test stimuli
in panel B. Each of the test stimuli is composed of a corridor connecting five instances of a specific
unit. The rewards (diamonds) are placed at identical locations within each unit. The task was to
navigate the environments and collect all the diamonds in the least amount of time. At the beginning
of each trial, the subject is spawned at a fixed starting location (marked by a red floor-mat) in all en-
vironments. The subjects can then use the keyboard and mouse controls to explore the environment
and find the diamonds. Note that there are six base test stimuli with the other six as their reflected
versions. We use reflected versions to counter-balance the left and right turns required across en-
vironments during the experiment and to increase the number of experimental trials while saving
effort on environment design. This experimental design can also be used to study how map induc-
tion generalizes to transformations of environments (these results are out of the scope of this paper
and are therefore not presented). For instance, we noticed that subjects were able to use program
induction across environments when they shared similar spatial structures.
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Figure 7 shows the scenes displayed during the progression of the experiment. Figure 7A is the
welcome scene that subjects see at the beginning of the experiment. Here, we confirm that the
subjects consent to participating in the experiment voluntarily, and collect their age and gender
information. Figure 7B is the next scene that provides instructions to the subjects about the task and
the keyboard/mouse controls that they can use to navigate during the task. Figure 7C shows the first
practice trial and is followed by three additional practice trials in the order shown in Figure 6A. At
the end of each trial, a “Level Complete” (Figure 7D) or “Out of Time” (Figure 7E) pop-up window
is displayed depending on whether the subject collected all the diamonds in the environment or ran
out of time before doing so. Both these pop-ups also specify the ratio of the number of diamonds
collected to the total diamonds embedded in the environment. This provides feedback to the subjects
about their performance in the trial before they continue to the next trial. At the end of the practice
trials, subjects are presented with an instruction quiz as shown in Figure 7F, to ensure that they
understand the task. If they answer the instruction quiz incorrectly, they are requested to re-read the
instructions and re-do the practice trials, and are sent back to the instructions scene in Figure 7B.

If the subjects answer the instruction quiz correctly, they are presented with the twelve test trials
(see Figure 6B) in succession. An example test trial is shown in Figure 7G. The test stimuli are
grouped into three blocks containing four stimuli each, according to their difficulty level. For each
subject, the order of stimulus presentation within blocks is randomized, while the blocks themselves
are presented in a fixed order e.g., block1 (simple environments - Env1, Env1R, Env2R, Env2R) is
presented first, followed by block2 (moderate complexity - Env3, Env3R, Env4, Env4R), followed
by block3 (high complexity - Env5, Env5R, Env6, Env6R). After the test stimuli, a final scene in
Figure 7H is shown to thank the subjects for their participation, to get their comments about the
strategies they used to solve the task, and their general feedback about the experiment.

Figure 8 shows the results from the experiment. Panel A shows the trajectories of a representative
subject on six base test trials (Env1-Env6), shown in the order presented to the subject (top - bot-
tom). Panel B shows the visitation heat-maps indicating the least to most visited regions in each
environment, averaged across subjects. The heat-maps are aggregated across the base environments
(Env1-Env3) and their reflected versions (Env1R-Env6R) shown in Figure 6B. Separate heat-maps
for the base environments and their reflected versions are also shown in Figure 13 for comparison
between the first and the second presentation (mirrored with respect to the first presentation).

A.2 EXPERIMENT 2

Figure 9 shows the stimuli used in this experiment, with practice stimuli in panel A and test stimuli
in panel B. The practice stimuli have color cues at the entrance indicating the location of diamonds.
Each of the test stimuli is composed of a corridor connecting five instances of a specific unit. Unlike
Experiment 1, the diamonds are placed at different locations within each unit determined by the
color cue in the cue room of the unit. Relative to the base test environments (Env1-Env6), the
reflected versions (Env1R - Env6R) have a reflected geometry, however unlike Experiment 1, they
have a different reward distribution. The task was to navigate the environments and collect all the
diamonds in the least amount of time. At the beginning of each trial, the subject is spawned at a
fixed starting location (marked by a red floor-mat) in all environments. The subjects can then use
the keyboard controls to explore the environment and find the diamonds.

Figure 10 shows the scenes displayed during the progression of the experiment. Figure 10A is the
welcome scene - same as in Experiment1. Figure 10B is the next scene that provides instructions
to the subjects about the task. The next scene is the instruction quiz shown in Figure 10C that
ensures that subjects have read the instructions. If they get the quiz wrong, they are sent back to
the instructions page, and requested to re-read them. This is followed by five practice trials in the
order shown in Figure 9A. As an example, the second practice trial is shown in Figure 10D. At
the end of each trial, a “Great Job” (Figure 10E) or “Out of Time” (Figure 10F) pop-up window is
displayed depending on whether the subject collected all the diamonds in the environment or ran
out of time before doing so. Both these pop-ups also specify the ratio of the number of diamonds
collected to the total diamonds embedded in the environment. This provides feedback to the subjects
about their performance in the trial before they continue to the next trial. At the end of the practice
trials, subjects are presented with another instruction quiz as shown in Figure 7G, to ensure that they
understand the task. If they answer the instruction quiz incorrectly, they are requested to re-read the
instructions and re-do the practice trials, and are sent back to the instructions scene in Figure 7B.
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Figure 6: Top-down views of the stimuli used in Experiment1. A. Practice stimuli. B. Test stimuli.
‘R’ indicates reflected. The red square is a floor mat indicating the starting location. The red
diamonds are the rewards.

If the subjects answer the instruction quiz correctly, they are shown additional instructions (Figure
10H) and another instruction quiz (Figure 10I) before moving onto the test trials. Next, the twelve
test trials (see Figure 9B) are presented in succession. An example test trial is shown in Figure 10J.
The test stimuli are grouped into two blocks containing six stimuli each, according to their difficulty
level. For each subject, the order of stimulus presentation within blocks is randomized, while the
blocks themselves are presented in a fixed order e.g., block1 (relatively simple environments - Env1,
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Figure 7: Screenshots from Experiment1. A. Welcome scene. B. Instructions. C. First practice trial.
D. Pop-up window displayed at the end of a successful trial. E. Pop-up window displayed when the
subject runs out of time before collecting all diamonds. F. Instruction Quiz. G. Sample first test
trial. H. Concluding scene at the end.

Env1R, Env3, Env3R, Env5, Env5R) is presented first, followed by block2 (high complexity - Env2,
Env2R, Env4, Env4R, Env6, Env6R).

After the test stimuli, subjects are subjected to a controls skill test unbeknownst to them, to test their
skills using navigation controls. This test is introduced to ensure that subjects are able to navigate in
WebUnity without undue difficulty, given the larger environments, and a relatively higher cognitive
load in this experiment. The test is introduced at the end rather than at the beginning to account for
the deterioration of control skills due to fatigue. Subjects are shown the scene in Figure 11A that
tells them that they are about to enter an environment with ten diamonds, one in every room. They
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Figure 8: Trajectories and heat-maps from Experiment 1. A. Exploration trajectories of a represen-
tative subject. Stimuli are shown in the order presented to the subject (top - bottom). B. Visitation
heat-maps aggregated across subjects. Each subject’s visited area was computed in a 2D represen-
tation of the environment, using a circular radius of five grid cells centered at the cells traversed by
the subject.

are instructed to visit every room to collect all the diamonds. Figure 11B shows the controls skill
test trial with the top-down view of the stimulus shown in Figure 11C. To pass the test, subjects must
collect all the diamonds in this trial. The test helps disqualify two types of subjects: i) subjects who
do not complete the experiment i.e., wait at the entrance without exploring the spatial environments,
in the hope of getting the base payment from the study; ii) subjects who have difficulty navigating
in WebUnity due to inexperience/fatigue or difficulty with controls since they may not have the
appropriately functioning control devices (mouse/keyboard). Subjects who failed the controls skill
test were paid, but excluded from the analysis. Figure 11D shows the trajectory of a representative
subject who failed the test. After the controls skill test trial, a final scene is shown to thank the
subjects for their participation, and to get their comments/feedback.

Figure 12 shows the results from the experiment on the six base test stimuli (Env1-Env6). Panel A
shows the trajectories of a representative subject. The stimuli are shown in the order presented to
the subject (top - bottom). Panel B shows the heat-maps indicating the least to most visited regions
in each of the base test environments, averaged across subjects. Separate heat-maps for when the
base environments are shown during the first and the second presentation (mirrored with respect to
the first presentation) are shown in Figure 14.

A.3 MODEL LIKELIHOOD COMPARISONS

Our model likelihood analysis aims to compare the similarity of human decisions to model deci-
sions. Specifically, we wanted to determine which models made the most human-like decisions.
Because action-level similarity was too granular, we decided to compare room visitation similarity.
We accomplished this by manually breaking each map into a set of convex rooms as shown in Fig-
ure 15. Using this map decomposition, we obtained an ordering of visited rooms for each human
on each map. For each point on the human trajectory, we provided each model with the current
human initial state and history of human observations. We queried the model to find an optimal plan
from this state. The result of such a query is a policy tree that branches on observations and actions.
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(v)

Figure 9: Top-down views of the stimuli used in Experiment 2. A. Practice stimuli. B. Test stimuli.
‘R’ indicates reflected. The red square is a floor mat indicating the starting location. The red
diamonds are the rewards.

The most significant statistic of a POMDP policy tree is visitation frequency of nodes on the tree.
To convert a policy tree to room visitation probabilities, we first flattened all the trajectories in the
policy that led to a different room. We then summed and normalized their state visitation frequency
in the policy tree. This process results in a distribution of rooms that the model is likely to visit given
the human’s experience. The model likelihood for a particular human is defined as the arithmetic
mean of the log probabilities of the human’s next room in the model’s room visitation distribution.
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Figure 10: Screenshots from Experiment 2. A. Welcome scene. B. Instructions. C. Instruction Quiz
1. D. Second practice trial. E. Pop-up window displayed at the end of a successful trial. F. Pop-up
window displayed when the subject runs out of time before collecting all diamonds. G. Instruction
Quiz 2. H. Instructions for test trials. I. Instruction quiz 3. J. Sample first test trial.

18



Published as a conference paper at ICLR 2022

A B

C D

Figure 11: Controls skill test in Experiment 2. A. Instructions about the Controls skill trial. B.
Controls skill trial. C. Top-down view of the stimulus used for the test. D. Exploration trajectory of
a subject who failed the test.
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Figure 12: Trajectories and heat-maps from Experiment 2. A. Exploration trajectories of a single
representative subject. Stimuli are shown in the order presented to the subject (top - bottom). B.
Visitation heat-maps aggregated across subjects. Each subject’s visited area was computed in a
2D representation of the environment, using a circular radius of five grid cells centered at the cells
traversed by the subject.
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Figure 13: Experiment 1 visitation heat-maps aggregated across subjects. A. Heat-maps for the
first presentation of environments. B. Heat-maps for the second presentation of environments. The
stimuli in the second presentation were reflected versions of the ones in the first presentation as
shown in Figure 6.
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Figure 14: Experiment 2 visitation heat-maps aggregated across subjects. A. Heat-maps for when
the base environments are shown during the first presentation. B. Heat-maps for when the base
environments are shown during the second presentation. The stimuli in the second presentation
were reflected versions of the ones in the first presentation as shown in Figure 9.
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A B

Figure 15: Illustration showing how the maps are qualitatively broken into convex rooms (discrete
areas) A. Env1 stimulus from Experiment 1. B. Set of convex rooms defined for Env1. Each color
indicates a separate convex room.
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Figure 16: Model visitation heatmaps from two sample environments in Experiment 1. A. Env1. B.
Env2. Top to bottom: top-down view of environment layouts; human visitation heatmaps aggregated
across subjects and pairs of reflected environments; visitation heatmap from the Uniform-POMCP
model; visitation heatmap from the MAP-POMCP model; visitation heatmap from the D-POMCP
model. The visited area was computed in a 2D grid projection, using a circular radius of five grid
cells around the agent.
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Figure 17: Model visitation heatmaps from two sample environments in Experiment 2. A. Env1.
B. Env5. Top to bottom: top-down view of environment layouts; human visitation heatmaps ag-
gregated across subjects; visitation heatmap from the Uniform-POMCP model; visitation heatmap
from the MAP-POMCP model; visitation heatmap from the D-POMCP model. The visited area was
computed in a 2D grid projection, using a circular radius of five grid cells around the agent.
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