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Abstract

To what extent do large language models learn001
abstract representations as opposed to more su-002
perficial aspects of their very large training cor-003
pora? We examine this question in the context004
of binomial ordering preferences involving two005
conjoined nouns in English. When choosing a006
binomial ordering (radio and television vs tele-007
vision and radio), humans rely on more than008
simply the observed frequency of each option.009
Humans also rely on abstract ordering pref-010
erences (e.g., preferences for short words be-011
fore long words). We investigate whether large012
language models simply rely on the observed013
preference in their training data, or whether014
they are capable of learning the abstract order-015
ing preferences (i.e., abstract representations)016
that humans rely on. Our results suggest that017
both smaller and larger models’ ordering pref-018
erences are driven exclusively by their experi-019
ence with that item in the training data. Our020
study provides further insights into differences021
between how large language models represent022
and use language and how humans do it, partic-023
ularly with respect to the use of abstract repre-024
sentations versus observed preferences.025

1 Introduction026

Large language models have progressed at an in-027

credible rate in the last few years. Their rise in028

popularity and sometimes surprising capabilities029

have raised many questions about what exactly030

these models learn and how they represent lin-031

guistic knowledge. One interesting question that032

has been examined is whether certain capabilities033

emerge once models reach a certain size. Although034

models of different sizes appear to generate flu-035

ent language, it is unclear to what extent different036

models rely on superficial characteristics of their037

immense training corpora, such as word frequency038

and co-occurrences, and to what extent they learn039

abstract representations that generalize in ways that040

are similar to what humans do with far less linguis-041

tic input. For example, in addition to learning that 042

some binomial orderings are more frequent than 043

others (e.g., bread and butter is more frequent than 044

butter and bread), humans also learn abstract ab- 045

stract ordering preferences (e.g., short words before 046

long words; Morgan and Levy, 2016a). 047

In the present study we examine binomial order- 048

ing preferences in English in eight large language 049

models with number of parameters ranging from 050

124M to 70B. Specifically, we ask whether ordering 051

preferences in these models are determined entirely 052

by the observed preferences of binomials in corpus 053

data, or whether the language models also learn 054

abstract ordering preferences. Further, we examine 055

whether large language models, similar to humans, 056

show stronger effects of observed ordering prefer- 057

ences in high frequency items. If large language 058

models are just reproducing superficial characteris- 059

tics of the training data, we should see no effects of 060

abstract ordering preferences, and only see effects 061

of observed ordering preferences. On the other 062

hand, if language models are doing more than just 063

memorization, then we may see effects of abstract 064

ordering preferences in addition to effects of ob- 065

served ordering preferences, and these may change 066

as a function of the binomial’s frequency. 067

Our specific contribution is an investigation of 068

how large language models use abstract knowledge 069

vs. observed preferences through a binomial or- 070

dering preference task, along with a discussion 071

about how this differs from language use by hu- 072

mans. We show that language models rely more 073

on the surface-level statistics of their input (e.g, 074

n-gram frequency) than humans do, adding to our 075

understanding of how large language models repre- 076

sent and generate language. 077

1.1 Evidence for Abstractions in LLMs 078

Large language models have demonstrated incred- 079

ible breakthroughs in the last few years, showing 080

impressive capabilities across a wide variety of 081
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tasks. Despite this, previous research has demon-082

strated mixed results with respect to their abilities083

to learn abstract representations (e.g., McCoy et al.,084

2023; LeBrun et al., 2022). Specifically, it remains085

unclear to what extent large language models are086

simply copying their training data as opposed to087

learning something more abstract. For example,088

Haley (2020) demonstrated that many of the BERT089

models are not able to reliably determine the plu-090

rality of novel words at the same level as humans.091

On the other hand, Wei et al. (2021) demon-092

strated that BERT can generalize well to novel093

subject-verb pairs. Specifically, they tested BERT’s094

subject-verb agreement ability on novel sentences095

that it’s never seen before and found that BERT096

seems to learn abstract representations of subject-097

verb agreement (as evidenced by the fact that it098

performs well on items it wasn’t trained on).099

In order to investigate large language models’100

ability to learn abstract representations, it is useful101

to compare them to human Psycholinguistic data.102

Unlike large language models, humans don’t have103

access to corpora with trillions of tokens. Despite104

this, humans’ capacity for language is unparalleled,105

in part due to our incredible ability to learn abstract106

representations (Berko, 1958; Kapatsinski, 2018).107

1.2 Evidence for Abstractions in Humans108

Humans are remarkable in our ability to learn and109

produce language, often producing and process-110

ing sentences that we’ve never encountered before.111

This is largely enabled by our unique ability to112

not simply memorize language, but to learn more113

abstract generalizations. For example, humans de-114

velop abstract ordering preferences for how to lin-115

earize the message we want to convey (i.e., decid-116

ing on which order to say the words that convey the117

meaning we want to express). One illustration of118

this comes from the literature on binomial construc-119

tions, where there are two conjoined nouns (e.g.,120

cats and dogs, Morgan and Levy, 2015, 2016a,b;121

Benor and Levy, 2006). Binomial constructions122

often convey the same meaning regardless of the123

order (e.g., radio and television vs television and124

radio). Despite this, however, humans sometimes125

have very strong preferences for one order over126

the other (e.g., bread and butter overwhelmingly127

preferred over butter and bread).128

While these preferences are driven in part by129

experience with the binomial (i.e., which binomial130

ordering is encountered more often), there are also131

other factors, such as phonological or semantic con-132

straints, that affect ordering preferences. In other 133

words, human ordering preferences are driven in 134

part by observed preferences in corpus data (i.e., 135

the observed preference in their previous language 136

experience, Morgan and Levy, 2016a) and in part 137

driven by abstract ordering preferences based 138

on abstract constraints (e.g., a preference for short 139

words before long words, or a preference for male- 140

coded words before female-coded words, Benor 141

and Levy, 2006). 142

In order to capture the abstract ordering pref- 143

erences of humans across binomial constructions, 144

Morgan and Levy (2016a) developed a model to 145

quantify the abstract ordering preference of a given 146

binomial in English. They demonstrated that the 147

model’s predicted abstract ordering preferences are 148

not the same as the observed preferences in cor- 149

pus data. They further demonstrated that human 150

ordering preferences for low-frequency items are 151

primarily driven by abstract ordering preferences, 152

and their preferences for high-frequency items are 153

driven primarily by the observed preferences in 154

corpus data. They operationalized frequency us- 155

ing the overall frequency of a binomial, i.e. the 156

total frequency in both possible orders. This pro- 157

vides a measure of expression frequency that is not 158

confounded with the frequency of a specific order. 159

Since human ordering preferences deviate from 160

the observed preferences (i.e., humans aren’t sim- 161

ply reproducing binomials in the same order that 162

they heard them; Morgan and Levy, In press), order- 163

ing preferences thus present a useful test case for 164

large language models. If large language models 165

learn representations beyond simply memorizing 166

the training dataset or superficially reproducing 167

word co-occurrences, they may learn abstract or- 168

dering preferences similar to humans, and this may 169

be reflected in their binomial ordering preferences. 170

2 Methods 171

2.1 Dataset 172

In order to examine the ordering preferences of 173

binomial constructions in large language models, 174

we use a corpus of binomials from Morgan and 175

Levy (2015). The corpus contains 594 binomial 176

expressions which have been annotated for various 177

phonological, semantic, and lexical constraints that 178

are known to affect binomial ordering preferences. 179

The corpus also includes: 180

1. The estimated generative preferences for each 181

binomial representing the ordering preference 182
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for the alphabetical ordering (a relatively un-183

biased reference form), estimated from the184

above constraints (independent of frequency).185

The generative preferences take a value be-186

tween 0 and 1, with 0 being a stronger pref-187

erence for the nonalphabetical form, and 1188

being a stronger preference for the alphabet-189

ical form. The generative constraints were190

calculated using Morgan and Levy (2015)’s191

model.192

2. The observed binomial orderings which are193

the proportion of binomial orderings that are194

in alphabetical order for a given binomial,195

gathered from the Google n-grams corpus196

(Lin et al., 2012). The Google n-grams cor-197

pus is magnitudes larger than the language198

experience of an individual speaker and thus199

provides reliable frequency estimates.200

3. The overall frequency of a binomial expres-201

sion (the number of times the binomial occurs202

in either alphabetical or non-alphabetical or-203

der). Overall frequencies were also obtained204

from the Google n-grams corpus (Lin et al.,205

2012).206

2.2 Language Model Predictions207

In order to derive predictions for large language208

models, we used the following models from the209

GPT-2 (Radford et al., 2019) family, the Llama-210

2 (Touvron et al., 2023) family, Llama-3 fam-211

ily (https://github.com/meta-llama/llama3), and the212

Olmo (Groeneveld et al., 2024) family. From small-213

est to largest in number of parameters: GPT-2214

(124M paramters), Olmo 1B (1B parameters), GPT-215

2 XL (1.5B parameters), Llama-2 7B (7B parame-216

ters), OlmO 7B (7B parameters), Llama-3 8B (8B217

parameters), Llama-2 13B (13B parameters), and218

Llama-3 70B (70B parameters). For each model,219

we calculated the ordering preferences of the alpha-220

betical form for each binomial in the dataset. The221

predicted probability of the alphabetical form was222

calculated as the product of the model’s predicted223

probability of each word in the binomial. In order224

to accurately calculate the probability of the first225

word in the binomial, each binomial was prepended226

with the prefix "Next item: ". Thus the probability227

of the alphabetical form, A and B is:228

Palphabetical = P (A|Next item :)

× P (and|Next item : A)

× P (B|Next item : A and)

(1)229

where A is the alphabetically first word in the bi- 230

nomial and B is the other word. Additionally, the 231

probability of the nonalphabetical form, B and A 232

is: 233

Pnonalphabetical = P (B|Next item :)

× P (and|Next item : B)

× P (A|Next item : B and)
(2) 234

Finally, to get an overall ordering preference for 235

the alphabetical form, we calculated the (log) odds 236

ratio of the probability of the alphabetical form to 237

the probability of the nonalphabetical form: 238

LogOdds(AandB) = log(
Palphabetical

Pnonalphabetical
) (3) 239

2.3 Analysis 240

The data was analyzed using Bayesian linear re- 241

gression models, implemented in brms (Bürkner, 242

2017) with weak, uninformative priors. For each 243

model, the dependent variable was the log odds of 244

the alphabetical form to the nonalphabetical form. 245

The fixed-effects were abstract ordering preference 246

(represented as AbsPref below), observed prefer- 247

ence (ObservedPref ), overall frequency (Freq), an 248

interaction between overall frequency and abstract 249

ordering preference (Freq:AbsPref ), and an interac- 250

tion between overall frequency and observed pref- 251

erence (Freq:ObservedPref ). The model equation 252

is presented below: 253

LogOdds(AandB) ∼ AbsPref

+ObservedPref

+ Freq

+ Freq : AbsPref

+ Freq : ObservedPref
(4) 254

Frequency was logged and centered, and abstract 255

ordering preference and observed preference were 256

centered such that they ranged from -0.5 to 0.5 257

(instead of from 0 to 1). Note that since abstract 258

ordering preference and observed preference are on 259

the same scale, we can directly draw comparisons 260

between the coefficient estimates for these fixed- 261

effects in our regression model. 262

3 Results 263

Our full model results are presented in the appendix 264

(Table 1) and visualized in Figure 1. For each 265

model, the figure shows the values for each of the 266
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Figure 1: Results for each beta coefficient estimate from each model. Models are arranged from smallest to largest
from left to right. The x-axis contains each coefficient and the y-axis contains the predicted beta coefficient of the
respective model. Error bars indicate 95% credible intervals.

coefficients from the model in Equation 4, repre-267

senting how strongly each language model relies268

on observed preference, abstract ordering prefer-269

ence, overall frequency, the interaction between270

abstract ordering preference and overall frequency,271

and the interaction between observed preference272

and overall frequency.273

Our results are similar across all the large lan-274

guage models we tested. Specifically, we find no275

effect of abstract ordering preferences and no inter-276

action effect between abstract ordering preference277

and overall frequency. We do find an effect of ob-278

served preference suggesting that the models are279

mostly reproducing the ordering preferences found280

in their training. We also find an interaction effect281

between observed preference and overall frequency,282

suggesting that the effect of observed frequency is283

stronger for high-frequency items.284

4 Conclusion285

In the present study we examined the extent to286

which abstract ordering preferences and observed287

preferences drive binomial ordering preferences in288

large language models. We find that their ordering289

preferences are driven primarily by the observed290

preferences. Further, they rely more on observed291

preferences for higher frequency items than lower 292

frequency items. Finally, they don’t seem to be 293

using abstract ordering preferences at all in their 294

ordering of binomials. 295

Our results give us insight into the differences 296

between humans and large language models with 297

respect to the ways in which they trade off be- 298

tween abstract and observed preferences. For exam- 299

ple, our dataset contains low-frequency binomials 300

(e.g. alibis and excuses), including binomials that 301

a college-age speaker would have heard only once 302

in their life. Due to their low frequency, humans 303

rely substantially on abstract ordering preferences 304

to process these lower frequency items (Morgan 305

and Levy, In press). This is not the case, however, 306

for large language models, which rely exclusively 307

on observed preferences for these items. This is 308

true even for the smallest models we tested, such as 309

GPT-2. We conclude that, although large language 310

models can produce human-like language, they ac- 311

complish this in a quantitatively different way than 312

humans do: they rely on observed statistics from 313

the input in at least some cases when humans would 314

rely on abstract representations. 315
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5 Limitations316

There are a few important limitations in our study.317

The first limitation is that we don’t know exactly318

how many times each of the large language models319

has seen each binomial tested. We can approximate320

the binomial’s frequency using corpus data, which321

gives us an indication of the frequency of the bi-322

nomial in a language model’s training set, but it323

is possible that the large language models saw the324

binomials more than we expect. Thus, the current325

study can’t differentiate between a model that has326

learned abstract ordering preferences but doesn’t327

use it for binomials that it has seen, and a model328

that simply hasn’t learned abstract ordering pref-329

erences. Although, there is some hope with the330

recent development of open access large language331

models, such as OlmO (Groeneveld et al., 2024),332

where the training data is publicly available. We333

have future plans to examine the ordering prefer-334

ences of novel binomials in the OlmO series of335

models to determine whether LLMs have learned336

ordering preferences at all.337

Additionally, the binomials tested here are only338

3 words and relatively fixed in the sense that vari-339

ations such as bread and also butter are not very340

common. Thus these are potentially easier for the341

large language models to memorize compared to342

longer or less-fixed strings, which could be tested343

in future work.344

Further, while we examined language models of345

various sizes and determined that the number of346

parameters does not seem to play a role in whether347

these models employ abstract ordering preferences348

for binomials, our analysis was not designed to349

investigate the effect of training set size.350

Finally, our experiments deal only with binomi-351

als in English.352
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GPT-2 GPT-2XL
Est. Err. 2.5 97.5 Est. Err. 2.5 97.5

Intercept -0.10 0.10 -0.30 0.10 0.05 0.09 -0.13 0.23
AbsPref -0.52 0.64 -1.81 0.69 -0.89 0.63 -2.17 0.29
Observed 4.62 0.50 3.66 5.59 5.34 0.46 4.45 6.25
Freq -0.04 0.06 -0.15 0.07 -0.01 0.05 -0.11 0.09
AbsPref:Freq 0.10 0.39 -0.66 0.86 -0.17 0.36 -0.87 0.53
Observed:Freq 0.96 0.24 0.49 1.43 1.01 0.21 0.59 1.43
Llama-2 7B Llama-2 13B

Est. Err. 2.5 97.5 Est. Err. 2.5 97.5
Intercept 0.22 0.13 -0.03 0.47 0.12 0.08 -0.04 0.27
AbsPref 1.11 0.84 -0.40 2.91 0.32 0.54 -0.72 1.38
Observed 3.07 0.64 1.81 4.31 5.25 0.40 4.46 6.05
Freq 0.04 0.07 -0.10 0.17 -0.08 0.04 -0.16 0.01
AbsPref:Freq -0.32 0.47 -1.24 0.59 -0.02 0.32 -0.64 0.60
Observed:Freq 0.23 0.28 -0.33 0.78 0.72 0.19 0.34 1.09
Llama-3 8B Llama-3 70B

Est. Err. 2.5 97.5 Est. Err. 2.5 97.5
Intercept 0.15 0.09 -0.03 0.33 0.04 0.05 -0.06 0.14
AbsPref 0.23 0.59 -0.92 1.42 0.10 0.38 -0.63 0.85
Observed 5.64 0.46 4.75 6.54 5.00 0.27 4.49 5.52
Freq -0.07 0.05 -0.17 0.03 -0.05 0.03 -0.11 0.00
AbsPref:Freq 0.07 0.36 -0.63 0.78 -0.11 0.21 -0.52 0.30
Observed:Freq 0.60 0.22 0.18 1.03 0.65 0.12 0.41 0.89
OlmO 1B OlmO 7B

Est. Err. 2.5 97.5 Est. Err. 2.5 97.5
Intercept 0.06 0.08 -0.09 0.22 0.04 0.07 -0.10 0.18
AbsPref 0.69 0.54 -0.33 1.79 -0.86 0.51 -1.88 0.11
Observed 4.36 0.39 3.58 5.12 5.37 0.36 4.67 6.08
Freq 0.06 0.04 -0.02 0.14 0.01 0.04 -0.07 0.08
AbsPref:Freq -0.12 0.31 -0.73 0.47 0.10 0.28 -0.47 0.64
Observed:Freq 0.81 0.19 0.44 1.17 0.70 0.17 0.37 1.04

Table 1: Model results for each language model. The Estimate is given in the "Est." column, the standard deviation
of the posterior is given in the "Err." column. The columns labeled 2.5 and 97.5 represent the lower and upper
confidence interval boundaries. AbsPref is the abstract ordering preferences, Observed is the observed preference in
corpus data, and Freq is the overall frequency of the binomial.
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