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Abstract

The rapidly increasing size of deep-learning models has caused renewed and grow-1

ing interest in alternatives to digital computers to dramatically reduce the energy2

cost of running state-of-the-art neural networks. Optical matrix-vector multipliers3

are best suited to performing computations with very large operands, which leads4

us to hypothesize that large Transformer models might achieve asymptotic energy5

advantages with optics over running digitally. To test this idea, we performed6

small-scale optical experiments with a prototype accelerator to demonstrate that7

Transformer operations can run on optical hardware despite noise and errors. Using8

experiment-calibrated simulations of our hardware, we studied the behavior of9

running Transformers optically, identifying scaling laws for model performance10

with respect to optical energy usage and estimating total system power consump-11

tion. We found that the optical energy per multiply-accumulate (MAC) scales as12
1
d where d is the Transformer width, an asymptotic advantage over digital sys-13

tems. Should well-engineered, large-scale optical hardware be developed, it might14

achieve a 100× energy-efficiency advantage for running some of the largest current15

Transformer models, and if both the models and the optical hardware are scaled16

to the quadrillion-parameter regime, optical computers could have a > 8, 000×17

energy-efficiency advantage over state-of-the-art digital-electronic processors (30018

fJ/MAC). We discussed how these results motivate and inform the construction of19

future optical accelerators and optics-amenable deep-learning approaches. With20

assumptions about future improvements to electronics and Transformer quantiza-21

tion techniques (5× cheaper memory access, double the digital–analog conversion22

efficiency, and 4-bit precision), we estimated that optical computers’ advantage23

against these digital processors could grow to > 100, 000×.24

1 Introduction25

Deep learning models’ exponentially increasing scale is both a key driver in advancing the state-of-26

the-art and a cause of growing concern about their energy usage, speed, and practicality. This has led27

to the development of hardware accelerators and model training/compression/design techniques for28

efficient and fast inference on them.29

While digital-electronic accelerators [47, 16, 8, 1, 17] can improve performance by some constant30

factor, alternative analog computing platforms using optics have been proposed as a new paradigm31

for better scalability [49, 7, 62, 41, 56, 24, 51]. Ideally, the scaling is asymptotically better than32

digital systems in energy per MAC [18, 61, 53, 41]. But these optical neural networks (ONNs) have33

additional complexities and limitations of their own such as low precision, noise, and analog/digital34

data conversion overheads which depend on the access patterns of the model running (Figure 1).35

Thus, advantageously accelerating any neural network architecture with ONNs is hard. Here, we36

hope to answer whether Transformers’ efficient data-access patterns (wide layers, parallel/batched37
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Figure 1: Can Transformers Benefit From Running on Optical Hardware? Optical Neural Net-
works (ONNs) have been proposed as an alternative computing platform that can achieve asymptotic
energy-efficiency advantages over digital computers running neural networks. This is not a guarantee;
their behavior is affected by model architecture, statistics, and resilience to the noise/imprecision
of analog hardware. Thus, while there are many implementations of general-purpose optical matrix
accelerators (such as those depicted in the inset), there are still model-dependent challenges/tradeoffs
in realizing their purported advantages. We seek here to answer the question of how much today’s
enormous Transformer models can benefit from this technology, if at all. Our hypothesis is that
Transformers’ architecture and unique behaviors allow for ONN-enabled benefits that scale.

token processing, etc.), trends in methods for scaling them, and sufficient effort to train them for38

ONNs afford them the asymptotic energy-efficiency advantages of running optically.39

Here we demonstrate how the popular Transformer architecture is able to run on ONN systems,40

and estimate the potential benefits of doing so. To first verify that Transformers may run on these41

systems despite their imprecision, we sampled operations from a Transformer and ran them on a real42

spatial light modulator (SLM) based experimental system, and used the results to create a calibrated43

simulation of the optical hardware, with the systematic error, noise, and imprecision of weights/inputs44

we observed. Transformers running on the simulated hardware could perform nearly as well as those45

running digitally, and could be far more efficient. We summarize our key contributions as follows:46

• We demonstrated linear Transformer operations (the bulk of a Transformer’s computation)47

running with sufficient accuracy on real optical hardware and in a matching simulation,48

despite errors and noise.49

• Via simulation, we established scaling laws for optical Transformer performance versus50

optical energy usage, and optical energy usage versus model size.51

• Based on our simulations and experiments we estimated an orders-of-magnitude energy52

consumption advantage of full ONN accelerators versus state-of-the-art GPUs.53

• We discussed Transformers’ suitability for optical acceleration, and more generally how54

specific elements of DNN architecture affect the function of ONN systems running them.55

• We identified the hardware and systems design challenges that future work on building ONN56

accelerators should target.57

While our experiments and simulations were based on specific hardware as a representative example,58

our scope here is more general. We are interested in understanding how uniquely optical energy59

scaling and noise relate to Transformer performance and architecture. As such nearly all our findings60

apply broadly to linear optical processors (and hopefully future ones), irrespective of their underlying61

hardware implementation details.62

2 Background and Related Work63

2.1 Transformer Models64

Transformers are models for processing sequential data based on multi-head attention. Transformers65

consist of two-layer feed-forward blocks and multi-head attention (Figure 2) operations. Multi-66
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head attention computes relationships between sequence elements by deriving query, key, and67

value sequences Q,K, V and computing dot products with a softmax nonlinearity in-between [60].68

Transformers also leverage modern design elements such as additive residual skip connections [20]69

and normalization layers [3]. A defining feature of Transformers is that entire sequences may be70

processed in matrix-matrix products in parallel (instead of one token/input at a time).71

2.2 Large-Scale Deep Learning72

In the past few years, it has been found in particular that Transformer [60] architectures significantly73

improve when sized up to billions or even trillions of parameters [6, 28, 10, 22, 59, 66], causing an74

exponential growth of deep learning compute usage [48, 50]. These large-scale Transformers achieve75

ever more impressive results in not only natural language processing, but also in other domains such76

as computer vision [14, 36], graphs [30], and in multi-modal settings [27, 26, 44, 45, 65, 46], making77

them a popular but expensive solution for many tasks—digital hardware’s energy efficiency (ie.78

per-flop or per-inference cost) has not kept up with the growing FLOP requirements of state-of-the-art79

deep learning models [50]. They also have transfer learning capabilities [42, 13, 43, 6, 37, 14],80

allowing them to easily generalize to specific tasks, in some cases in a zero-shot setting where no81

further training is necessary [6, 45, 33].82

2.3 Optical Accelerators83

Researchers have explored a wide variety of controllable optical systems which manipulate different84

types of optical modes to effectively implement arbitrary matrix-vector multiplications, vector-vector85

dot products [52, 2, 18, 55, 4, 61, 19, 39, 57], or convolutions [63, 15, 40, 64]. In this work, we adopt86

the free-space multiplier [61, 55, 19] (Figure 2, top left) to demonstrate Transformer operations in87

optical experiments and for our simulations. We selected this system because it has many of the same88

behaviors as other ONN implementations, and aim to draw conclusions that could generally be useful89

for those working with other ONN designs. Many ONN systems, including ours, share the following90

typical traits:91

Device Imprecision and Optical Shot Noise Optical systems are subject to errors in both the92

actual hardware and from photon detection. Detection of optical intensity in particular is subject to a93

phenomenon known as shot noise where the detected value is Poisson distributed: given vectors x94

and w, with the elements of x encoded as optical intensity, the output Y is distributed as:95

Y ∼ Poisson(w · x) (1)

For other encoding schemes such as amplitude or phase encoding, equation 1 should be modified, but96

the detection is still subject to shot noise.97

Efficient Photon Usage Shot noise, and therefore an optical dot product’s signal-to-noise ratio98

(SNR, which serves as an effective bit precision) is related to the mean number of photons at the99

output. The efficiency of photon usage can therefore grow with increasing multiply-accumulate100

operations (MACs): the SNR for the product w · x is101

SNR(Y ) =
E[Y ]√
Var[Y ]

=
√
w · x =

√
E[Y ], (2)

which explains this behavior; if the desired output precision does not change, constant photons are102

required regardless of dot product size. Work on ONNs has studied this behavior in a variety of103

scenarios [18, 41, 61, 53]. This efficient scaling is not a guarantee—the required number of photons104

may be influenced by a model architecture’s activation/weight distributions, encoding schemes,105

precision requirements, etc.106

Optical Neural Network Energy Costs The energy cost of optical neural networks is broken down107

into the optical costs of performing MACs and the electrical costs of loading/detecting data, which108

are usually dominant. Consider a product between two matrices, A ∈ Rn×d, B ∈ Rd×k. Such a109

product results in loading (detecting) nd+ dk (nk) scalars, and performing ndk MACs. If the energy110
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to electrically load (detect) a scalar is Eload (Edet), and to perform a MAC optically is Eoptical, then111

the total energy is:112

E = (nd+ dk)Eload + nkEdet + ndkEoptical (3)

This illustrates how ONNs may have asymptotic energy advantages over digital computers. Notice113

that regardless of the number of reuses, all data is only loaded once in Equation 3. This is because114

copying a vector’s data and transporting it is free optically. Meanwhile, Eoptical ideally scales as 1/d.115

These properties make energy cost disproportional to the number of MACs, ndk. In other words,116
Edigital

EONN
∼ min(n, d).117

Streaming Weights Versus Weights-In-Place There are two approaches for loading118

weights.Weights-in-place schemes involve loading them once, and re-using them for many inputs.119

Alternatively, systems can employ streaming weights where at every computation the required weight120

matrix is loaded. Our experimental system is a weights-in-place scheme. For weights-in-place121

operations, the energy advantage scales as just Edigital

EONN
∼ d.122

2.4 Previous Optical Neural Network Architectures123

Previous work has considered deep learning models such as MLPs and convolutional networks124

on benchmark tasks like MNIST [40, 61], and simulations of larger convolutional models such as125

AlexNet [32] on more difficult datasets such as ImageNet [18]. This begs the question of how well126

newer, larger models perform on optical systems.127

2.5 Scalable Compression and Quantization of Large Language Models (LLMs)128

Optical hardware’s low precision raises the question of whether scaled-up models could be quantized129

sufficiently to run. Thankfully, continual research in LLM compression has progressively shown that130

larger models do not have increasing precision requirements. For example, [34] found that larger131

Transformers can be compressed more easily, to the degree that it is more worthwhile to train large132

ones and compress them over training smaller ones of the target size. Furthermore, [5] and [12]133

demonstrated running Transformers at scale with int8 precision, and the recent work of [11] proposes134

that 4-bit is optimal for nearly all model scales, except for the largest tested (175B parameters) where135

3-bit was sometimes found to work better.136

3 Optical Transformers137

We designed models that are intentionally similar to other Transformers, with the goal of simulating138

their behavior (informed by some experimental measurements) and energy consumption on optical139

hardware. A summary of our approach and model is in Figure 2.140

3.1 Architecture and Task141

We created optical Transformer models with a GPT2-like [43] architecture that replaces the GELU142

[21] activation with ReLU6, which is known to improve low-precision model performance [31, 23, 29].143

For language modelling, we used the raw Wikitext-103 dataset [38]. The models we simulated have144

12 layers (consisting of multi-head attention and feed-forward blocks), operate on a context length145

of 1024 tokens, use 12 attention heads, and have embedding dimension d varying from 192 to 1536.146

The full details of the training technique, architecture, and hyperparameters are in Appendix A.147

3.2 Transformer Computations on Optical Hardware148

We ran experiments using a real Transformer’s (we used the base-sized model with d = 768) weights149

in order to characterize the behavior of an ONN system. We adopted as a representative example of150

an optical accelerator a spatial light modulator (SLM) based system which computes vector-vector151

dot products [61]. Vectors are encoded on a display, and copies are shone through the SLM which152

has varying transmission corresponding to some data (ie. a weight matrix). The outputs of this153
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Figure 2: Optical Transformer evaluation: prototype hardware; simulator model; Transformer
architecture. Bottom: typical Transformer architecture, but with ReLU6 activation. Top Left:
experimental spatial light modulator (SLM)-based accelerator setup. From some layers—marked
with a laser icon—we sampled dot products to run on real hardware. Top Middle: Linear operations,
in light blue, run on a simulated accelerator with noise/error. Lookup tables (LUT) allow simulation
using our setup’s supported weight/activation values. Top right: our model of energy consumption
for optical accelerators, based on assumptions and results from our experiment/simulations. The
model accelerator system consists of random-access memory (RAM), a analog/digital conversion
(DAC/ADC), light modulation (MOD), amplification (AMP).

operation—element-wise products—are collected at detectors as the resultant dot products (Figure 2,154

top left). We collected lookup tables (LUTs)—mappings of the available discrete levels in both the155

display and SLM devices—and used them to train a “LUT-aware” optical Transformer model to run156

on the setup. We then collected calibration curves, mappings from the detected output light intensity157

to the actual neuron floating-point values. To do this, we ran many random dot products on the158

hardware and collected pairs of detected values and digitally-computed ground-truth values. We then159

fit the relationship linearly. We used high photon counts to eliminate shot noise, so deviation from160

the linear fit was considered the hardware’s systematic error. Full details of experimental procedures161

and calibration are in Appendix B.162

3.3 Simulation of Optical Hardware163

Table 1: Summary of simulation configurations for different eval-
uation and training scenarios. For simulating optical hardware
we included all behaviors. For determining optical resource scal-
ing, we focused on shot noise, and ran a plain 8-bit model for
comparison.

Setting Op. Shot Noise Sys. Err. LUT 4-Pass

Hardware
Simulation

QAT ✗ ✗ ✓ ✗
Eval ✓ ✓ ✓ ✓

Optical
Scaling
Simulation

QAT ✗ ✗ ✗ ✗
Eval ✓ ✗ ✗ ✓
Int8 ✗ ✗ ✗ ✗

Informed by our experiments, we164

constructed a simulation of the165

optical hardware. By simulat-166

ing the hardware behavior di-167

rectly we model how any arbi-168

trary operation would behave if169

run on the physical setup. This170

allows us to avoid the computa-171

tionally demanding task of sim-172

ulating much larger Transform-173

ers to verify that our simulation174

method works. We aimed to em-175

ulate the noise, error, and preci-176

sion that we observed in order to understand how well full Transformers would perform when running177

on optical hardware. The configurations for different scenarios are summarized in Table 1. We also178

evaluated the digital, 8-bit-QAT-trained model for comparison purposes.179

Hybrid Scheme Pure optical systems cannot easily compute activation or normalization functions.180

Thus we assumed LayerNorm, ReLU activations, and residual skip connections are performed digitally181

at full precision. Thankfully, even in smaller models, linear computations are the overwhelming182

majority (Section 4.3).183
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Non-Negative Weights and Inputs (“4-Pass” Multiplication) An important limitation is that our184

display and SLM only support non-negative values. The constraint of having all-positive data is185

present in many but not all optical neural network systems.We worked around this by decomposing186

products into sums/differences of products with non-negative operands. Consider a product between187

matrices W and X . If we let W+ (X+) and W− (X−) be matrices with only the positive and negative188

elements of W (X) respectively, then:189

WX = W+X+ − |W−|X+ −W+|X−|+W−X− (4)

Data Scaling On the real system, we define a maximum activation/weight value as 1.0 and minimum190

as 0.0. To simulate operation, the inputs and weights of every simulated NN layer are scaled to this191

range, and then rescaled back afterwards.192

Device Quantization Real hardware may only have certain number of representable levels. To193

emulate this behavior, we fine-tuned pretrained models using quantization-aware training [25](QAT)194

and applied the following in simulation (hyperparameters in Appendix A):195

• For optics-simulated layers, we emulated quantization to int8 (256 levels). Then, instead of196

dequantizing, we used the integer values directly as indices into the LUTs that we gathered197

from experiment.198

• We also quantized weights, but with the SLM LUT. We clamped smaller values to 0.02 in the199

simulation, as our SLM does not have a high extinction ratio, and the smallest transmission200

is 0.02.201

• Accumulation can be high precision, but we used int8 quantization for outputs, since202

analog-digital conversion (ADC) is expensive in practice.203

• We used both deterministic and stochastic rounding when quantizing, with similar results.204

Systematic Errors Issues like cross-talk, misalignment, defects in ONNs give rise to systematic205

errors. We simulated such a constraint by adding Gaussian noise to simulated model outputs206

(Figure 2), scaled relative to the mean sizes of the outputs, as this was the noise behavior we observed207

experimentally (it is related to the rescaling of data between 0 and 1).208

Optical Encoding and Shot Noise We modeled optical encoding by subjecting layer outputs209

to simulated shot noise (Figure 2), which differs from the systematic error model. Outputs were210

scaled by a number such that the average photon number per feature (photons/MAC) was some211

target value. Each of these features was used as the mean of a Poisson distribution, which we212

sampled. These outputs were then scaled back down to represent neuron values. In the simulations213

for optical scaling we used vanilla 8-bit QAT (no LUTs or systematic error, which can overwhelm214

shot noise) to cleanly demonstrate the optical scaling properties—which are model-dependent and215

not hardware-dependent—of Transformers.216

4 Results217

4.1 Transformer Error Tolerance and Hardware-Simulation Accuracy218

We determined experimentally that Transformer operations are able to run on real hardware without219

severely degraded performance from systematic errors. The bottom four panels of Figure 3 are220

histograms of the experimental differences from correct values. The simulated noise distributions221

(dotted lines) match well with the experimental data, which confirms that they are an accurate222

representation of the real systematic error behavior. Figure 3 (top) is a map of the performance of the223

simulated model over different configurations of the mean-relative (in percent) noise at every layer of224

feed-forward and attention blocks. The model performs well with significant noise (experimental225

noise levels marked with stars), within 1 perplexity from noise-free performance unless the noise is226

very high. These results show that our digital model of the system is a plausible approximation of227

how a real one might behave.228
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Figure 3: Comparison of experimental and simulated
noise models and simulated Optical Transformer noise
tolerance. Top: Simulated performance (Wikitext-103 vali-
dation perplexity (PPL)) versus percent mean-relative simu-
lated noise in feed-forward (FF) and attention (Attn) layers.
Systematic errors from experimental data marked with a star.
Bottom: comparison of simulated noise model to error from
experimental data. The Gaussian shape of the simulated error
behavior matches experiment accurately.

While 8-bit precision was used for229

QAT, the optical Transformer can per-230

form inference at lower precision, as231

implied by its error tolerance. To232

study this further we conducted a sim-233

ple ablation on the input and output234

precisions used at inference, on the 8-235

bit-QAT base-sized model with LUT236

in Appendix C.237

4.2 Optical Scaling Laws238

Optical Transformers achieve lan-239

guage modelling performance close240

to their digital counterparts’ when241

shot-noise-limited at modest photon242

budgets. The perplexities on the243

Wikitext-103 validation set of vari-244

ous optical Transformer models sim-245

ulated with different total photon us-246

age (amount used for input data) are247

shown in Figure 4 (left). The curves248

illustrate a tradeoff: larger models249

need larger photon totals to function250

well, and there are different optimal251

model choices based on the photon252

budget. We define photons/MAC as253

the total photon budget (amount at254

input) divided by total MACs. The255

percentage difference from the per-256

formance at 10K photons/MAC (Fig-257

ure 4, middle)—chosen to represent258

an ideal high-precision scenario—is259

roughly power-law scaled in pho-260

tons/MAC for all models with trunca-261

tion near 10K; better performance can262

be had with more photons, but with263

diminishing returns, and the perfor-264

mance matches or exceeds that of the265

8-bit digital models’ when the photon266

budget is not too low (∼ 102).267

The models use fewer photons/MAC268

as they scale, achieving the theoretical efficient scaling where the total per-dot-product photons269

needed is constant. To study how photon usage scales, we determined how many photons it takes270

to reach the performance of 8-bit digital models. These values, in Figure 4 (right), decrease nearly271

as 1
d—the total photons needed per dot product is constant (bottom dashed line). The Transformer272

architecture clearly takes advantage of efficient optical scaling with larger model sizes. In fact,273

smaller per-dot-product totals are required for the largest model, suggesting that larger Transformers274

may require less output precision. This is consistent with other work which found that precision275

requirements are constant or reduced with scale [34]. Meanwhile, the already low photon usage276

of the largest model suggests that models larger than our simulations (>10B parameters) may use277

<1 photon/MAC. This sub-photon operation works in optical systems [61, 53] and is in essence no278

different at all from operation at higher photon counts (since the number summed at detection is still279

high).280

These empirical scaling results are tied to our specific configurations and training strategies. Depend-281

ing on the scales and dynamic ranges of inputs and weights, different amounts of photons may be282

transmitted to the output; the statistics of a model affect its efficiency. In Appendix H we explore a283

different scheme, but the effects of different methods remains an interesting topic for future work.284
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Constant photons/MAC 

Constant dot-product total

8-bit PPL

Figure 4: Simulations of Optical Transformer behavior with varying photon usage. Left:
Wikitext-103 validation-set perplexity (PPL) versus embedding dimension d and total photons used
for a single forward pass/inference. 8-bit digital model performance is shown with dashed lines.
Middle: perplexity degrades from ideal with fewer photons-per-MAC; the plot exhibits truncated
power-law scaling. Right: Scaling of number of photons needed for an Optical Transformer to
achieve the same perplexity as an 8-bit digital-electronic processor, versus model size.

Figure 5: Estimated energy usage of Transformer models on optical hardware for a single
forward pass/inference. Hypothetical future model designs are labelled FUTURE-*. Estimated
energy/MAC for digital systems is based on [47]. Trend for energy usage in optical systems (blue)
computed based on real models only. Inset: energy advantage of running on optics over estimated
NVIDIA A100 usage. The advantage grows with the model compute. M = 106, G = 109, T = 1012,
q = 1015 parameters.

4.3 Estimated Energy Usage285

The efficient photon scaling trend we observed in Section 4.2 suggests that Transformers running286

on optical hardware could achieve significant energy efficiency advantages over running on digital287

hardware. To understand the efficiency of Transformers on optical hardware, we designed an ONN288

system based on current hardware that is like our experimental setup, with our measured precision289

and photon scaling. It is an inference system with in-place weights which are loaded once and reused290

forever, activations read from and written to SRAM for every layer, a 10 GHz light modulator array,291

and an optical “core” which can perform 10M multiplications per cycle (this can be thought of as a292

10 megapixel SLM). The photon-per-MAC scaling versus model dimension is taken to be the 1/d293

scaling which we found was possible in our simulations, and we assumed that the model operates294

with 5-bit input precision, 8-bit weight precision, and 7-bit output precision, as determined by our295

study of low precision performance in Appendix C. We then calculated according to the approach296

in Section 2.3. For electrical energy we assumed in-place weights and did not include the energy297

for loading them. In Appendix D we explain all assumed energy quantities based on contemporary298

hardware.299
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As models grow, running Transformers on optical hardware has a large and asymptotic efficiency300

advantage over running on digital hardware. In Figure 5 we chart estimates of the forward pass energy301

required for various models1, including a hypothetical family of large, dense Transformer models302

designed in a similar fashion, which we label FUTURE-*. For comparison, we also chart various303

digital systems [47] in different performance regimes, and a hypothetical “next generation” GPU304

that can use ∼10 fJ/MAC. For small models, the optics-based system uses about the same energy,305

but eventually gains an advantage that scales asymptotically with the number of MACs. For the306

larger models, MT-NLG-530B and FUTURE-4q, the optics-based approach would have ∼140× and307

∼8500× energy advantages over the current state-of-the-art GPU (NVIDIA A100) respectively.308

The breakdown of compute and energy costs by source is in Appendix E. In summary we found that309

as models get larger the feed-forward layers require most of the computation, but that the energy of310

data access in attention is still very expensive due to the many heads. This is because of the parallel311

operation of the Transformer, where the linear layer weights can be re-used for many tokens at a time312

(weights-in-place is not possible for attention, and there are h n× n attention maps to store). 2313

5 Discussion314

The results given in Section 4.3 on optical Transformers’ efficiency have implications for the design315

of future ONN hardware/software systems.316

In Appendix G we discuss in detail the specifications for an ONN system to run large Transformers, as317

a target for future work in their design. In summary, we found: once matrix-matrix product operands318

exceed 104×104 in size the advantage is significant, and therefore a future ONN should implement at319

least this level of parallelism to achieve >100× efficiency improvements over current state-of-the-art320

GPUs (NVIDIA A100). Given the assumptions we made about weight-maintenance costs in making321

our estimates (5.6 µW per weight; see Appendix D), an Optical Transformer would need to operate in322

the regime where a single matrix-vector multiplication is performed every 0.1 nanoseconds. Current323

ONN prototypes either operate at low clock rate or at small scale. Thus building a full ONN system324

that realizes the potential benefit is still an open challenge.325

Future improvements in CMOS technology will be greatly beneficial. In Appendix F we estimate326

that future optics-based systems might achieve energy advantages of >100, 000× running models327

the size of FUTURE-4q (over 300 fJ/MAC).328

Our studies on Transformers illustrates more broadly the relationships between model design and329

ONN efficiency. Transformers sought to make large models run efficiently by exploiting hardware’s330

strengths in performing large, parallel, dense calculations, and improved in this aspect as they scaled.331

As a consequence, as Transformers continue to be optimized for parallel digital electronic hardware,332

they will continue to become even more efficient on optical hardware. More generally, architectures333

that perform more computations per data access (such as those focusing strongly on linear operations334

[58, 35]) will be most promising for optical implementation.335

Conclusion We have demonstrated the ability of Transformer models to run accurately and effi-336

ciently on optical hardware through optical experiments and an experiment-informed simulation of337

the hardware. We examined Transformers’ scaling behavior with optics and used our findings to338

show that optical systems could have a large and asymptotic energy advantage over digital ones that339

grows with the model size. For example, we showed that optical hardware may achieve an over 100×340

energy advantage when running the largest Transformer models today (∼500 billion parameters) and341

that larger, future Transformers (∼4 quadrillion parameters) may be realized with an >8000× optical342

energy advantage. We believe our findings about the potential energy-efficiency of optical accelerator343

hardware strongly motivate the development of optical processors for large-scale deep learning with344

Transformers.345

1The recent PaLM [9] models used a modified architecture. For simpler comparison, we make our estimates
using a model with GPT-like architecture but with the PaLM model dimensions, which we call PaLM-Like.

2Trends in the design of real models have increasingly favored optics over time. Specifically, attention
loads/stores a n× n attention matrix for each of the h attention heads. Models with more MLP compute per
attention head have a larger overall ratio of computation to energy usage; larger d

h
is more efficient. The largest

GPT2 [43] uses d
h
= 64; GPT3 [6], 128; MT-NLG-530b [54], 160; and PaLM [9], 384.
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