Under review as a conference paper at ICLR 2025

EXACT LINEAR-RATE GRADIENT DESCENT: OPTIMAL
ADAPTIVE STEPSIZE THEORY AND PRACTICAL USE

Anonymous authors
Paper under double-blind review

ABSTRACT

Consider gradient descent iterations ¥+ = ¥ — a;, V f(x*). Suppose gradient
exists and V f(x*) # 0. We propose the following closed-form stepsize choice:
k
o _ Nl =" ,
o = =+ COS N, (theoretical)
IV ()]l ’

where 7, is the angle between vectors * — x* and —V f(x*). It is universally
applicable and admits an exact linear convergence rate with factor sin? 1.
Moreover, if f is convex and L-smooth, then o, > 1 /L.
For practical use, we approximate (can be exact) the above via

T f(=*) — fo
RN ATV ER

where 7 is a tunable parameter; f; is a guess on the smallest objective value (can
be auto. updated). Suppose f is convex and fo = f(x*), then any choice from
7o € (0, 2] guarantees an exact linear-rate convergence to the optimal point.

We consider a few examples. (i) An R? quadratic program, where a well-known
ill-conditioning bottleneck is addressed, with a rate strictly better than O(1/2F).
(ii) A geometric program, where an inaccurate guess fy remains powerful. (iii) A
non-convex MNIST classification problem via neural networks, where preliminary
tests show that ours admits better performance than the state-of-the-art algorithms,
particularly a tune-free version is available in some settings.

(practical use)

1 INTRODUCTION

The gradient descent (GD) algorithm, dated back to Cauchy in 1847, is arguably the most popular
iterative algorithm. It is often treated as the default optimizer for neural networks Rumelhart et al.
(1986); Ruder (2016); Goodfellow et al. (2016). GD’s procedure is remarkably simple: repeatedly
subtract the current iterate with its gradient. However, such a raw version suffers from a serious issue
— it almost always overshoots the minimum. To guarantee convergence, damping the gradient by a
stepsize « is necessary. How to properly choose such a stepsize is one of the most headache issues,
since a large choice would overshoot and a small one leads to slow convergence. In practice, the
stepsize (a.k.a. learning rate) is “often the single most important hyper-parameter” Bengio (2012).

To our best knowledge, in the current literature, a general convergence guarantee for GD only exists
in the convex case, and requires at least one strong assumption, the L-smoothness. Specifically, if
one can access the Lipschitz constant L, then any choice from o € (0,2/L) guarantees convergence,
with 1/L the default choice, see e.g. (Ryu & Yin, 2022, Sec. 2.4.3). Despite such a guarantee being
available, it is rarely used directly in large-scale problems, due to L is either not computable or simply
too expensive. There does exist some work that allow estimation of L, see e.g., Anil et al. (2019);
Fazlyab et al. (2019); Combettes & Pesquet (2020). However, their focus is often not regarding the
stepsize selection issue, appears related to the complication of the estimation scheme and that the
estimation error in L will propagate to the GD algorithm. In this manuscript, such an issue will be
avoided, since our result does not rely on L.

One critique of the above classical theory is that the stepsize is fixed throughout all iterations of
GD. This eliminates the possibility of some large feasible stepsize choices in the middle steps and

Under review as a conference paper at ICLR 2025

consequently slows down the algorithm. A better strategy should be adaptively adjusting the stepsize
according to the current progress. Such an idea is old, at least traced back to Almeida et al. (1999).
The real issue is how to adjust the stepsize adaptively? In the literature, several outstanding heuristic
methods have been proposed, e.g., AdaGrad Duchi et al. (2011), RMSProp Tieleman & Hinton.
(2012), Adam Kingma & Ba (2015). However, an adaptive stepsize theory has not been established.
This manuscript will fill in this blank space. In the convex case, we show the feasible stepsize selection
range that guarantees convergence being (0, 2), with o the optimal k-th choice. Moreover, o, is
lower bounded by 1/L, implying the new range enlarges the aforementioned classical one (0,2/L).
Also, our optimal stepsize yields an exact linear rate with factor sin® .. Let us note that if sin 7, = 0,
then GD will converge instantly, see an example in Section 4.1.2.

Remarkably, our theory also applies to a non-convex function. A notable difference is that the optimal
choice o can be negative now, and the feasible range becomes either (2a, 0) or (0, 2a}), depending
on the sign of o . The negative sign is not too surprising, since if the function is locally concave, we
do need an ascent direction to pass the hill, otherwise stuck at the local minimum. This aspect shares
a similar flavour to the so-called ‘gradient descent ascent’ method for solving min-max problems, see
e.g. Lin et al. (2020); Zheng et al. (2024).

Despite our non-convex applicability, the situation is highly challenging. Unlike the convex case
where a7 is lower bounded, here it can take an arbitrary value. The worst case is when of = 0,
implying an empty selection range. This arises when =* — ¥ | Vf(x*), and a stepsize that
can improve the current iterate % does not exist. On the other hand, if one can exclude such an
orthogonal case, then convergence to the global optimal point is guaranteed, see Theorem 2.1.

While our theory is powerful, it is not instantly useful in practice, due to quantity (z*—x*, —V f(z*))
is not a priori knowledge. Experts may instantly realize that, by Taylor expansion, it is an upper
bound for f(x*) — f(x*) in the convex case, and the only concern is regarding f(x*). We show that,

(i) when f(z*) = 0, the simplest tune-free stepsize f(x*)/||V f(z")||? is applicable. It is at least
1/(2L) large, see Proposition 3.2. In a special case, its two-times scaled version is optimal, see
Section 3.1.3.

(ii) when f(*) not known in advance, a parameter fy is introduced as an initial guess for f(x*). It
will be updated if some criteria violated, see details in Algorithm 1. Moreover, such a guess can be
easily picked, for example, let fo = 0.1 - f(x), where f(z°) is the initial objective value.

An outstanding benefit of our scheme is regarding the ill-conditioning issue, which is a well-known
bottleneck for the GD algorithm. This aspect has been nicely illustrated in (Boyd & Vandenberghe,
2004, Sec. 9.3.2) through an R? example, where an exact linear rate with factor (y — 1)2/(y +1)? is
given, using an exact line search stepsize. A large -y (ill-conditioning) causes such a factor close to 1,
implying the error has almost no change as GD iterating. Ours yields a factor of (y — 1)2/(2v2 + 2),
which is strictly smaller than 1/2, i.e., the error is at least halved each iteration, see more details in
Section 4.1.

For notations, || - || denotes the Euclidean norm, induced by the inner product (-, -). The uppercase
bold, lowercase bold, and not bold letters are used for matrices, vectors, and scalars, respectively.

1.1 LITERATURE: ADAPTIVE STEPSIZE

Here, we briefly discuss some developments of the stepsize adaption technique in the machine
learning field. The most popular family includes AdaGrad Duchi et al. (2011), RMSProp Tieleman &
Hinton. (2012), and Adam Kingma & Ba (2015). These approaches are strongly related to each other
and are heuristic methods that typically require tuning multiple parameters. Recently, Baydin et al.
(2018) propose to adaptively update the stepsize via a so-called ‘hyper-gradient’, which computes a
derivative over the stepsize parameter. The good news is that doing so adds very limited cost owing
to an element-wise product. The bad news is that the ‘hyper-gradient’ introduces a ‘hyper-stepsize’
which still needs tuning (but tends to be easier). Also, a theoretical convergence guarantee is not yet
available. A follow-up work by Chandra et al. (2022) addresses the tuning issue by computing an
additional ‘hyper-gradient’ on the original ‘hyper-stepsize’. This would introduce another ‘hyper-
stepsize’, and they apply the same procedure again, and so on, ad infinitum. The good news is that
each additionally introduced ‘hyper-gradient’ reduces the stepsize sensitivity, and eventually they can
easily pick an initial hyper-stepsize.

Under review as a conference paper at ICLR 2025

In view of these methods, we note that there is always an initial stepsize tuning issue, also referred to
as ‘the global learning rate’ selection. This issue is avoided in our approach, since all of our choices,
including the initial one, are mathematically computed.

1.2 KEY RESULTS

Below, we summarize 3 versions of our adaptive stepsize choices.

o (i) Theoretically, the k-th optimal choice

(@ —a*, —Vf(@")) _ |z -z
ar = = cosng, k=0,1,..., (1.1)
g IV f(2*)]|? [V f (@)l
(z" 2" V("))
ll* —a*[[IV f (z*)]|*

|2F ! —2*|? = (), sin®n;) |2° — =*|*. (1.2)

where 7, = arccos It admits an exact linear rate, with or without convexity:

o (ii) The k-th practical-use choice (general version)

f(f'?k) — fo

T
ol =0 - , (1.3)
F IV f(=F)]?
which admits the following exact linear rate, with or without convexity:
[2F ! —2*|? = (T, &) [|=° — =*|?, k=0,1,..., (1.4)
where . . .
— gt -V
5t:1—%<2—%> cos?n, op= (@* —2', ~Vf(2')) (1.5)
o oy f(@') = fo
o (iii) The simplest practical-use choice (tune-free)
~ f(aF)
A = v= 77 13> (1.6)
IV f(xF)]?

which guarantees convergence if f is convex and f(x*) = 0. Empirically, it also works nicely for the
non-convex MNIST problem in some settings.

2 ADAPTIVE STEPSIZE THEORY

Consider the following problem:
minimize f(x), 2.1
TzER™
where function f : R™ — R is assumed to be everywhere differentiable. The associated gradient
descent (GD) iterates are
"t = gF — q Vf(x"), k=0,1,.... (2.2)
Throughout the rest of the paper, we assume V f(x*) # 0, unless GD already converged ¥ = x*.

This assumption is necessary, since otherwise GD yields "' = x* — ay, - 0 = z*, and the stepsize
selection issue becomes trivial.

2.1 SELECTION RANGE

First, we show a feasible selection range for stepsize « to guarantee convergence.
Proposition 2.1 (range). Consider GD in equation 2.2. While iterates not converged, let stepsize
2Uxp* — k7_v k WUp* — k’_v k
o € (Skl i)>70)U(07 b A i)>)7 E=01,... @3
IV f ()] IV ()l
If such oy, exists Vk. Then, convergence to the global optimal point is guaranteed.
Corollary 2.1. «y, as in equation 2.3 does not exist if and only if
(x* — ¥ —V f(x")) = 0. (2.4)
Remarks 2.1 (interpretation). In view of Corollary 2.1, it says that a feasible stepsize does not exist,
if vectors * — z* and —V f(x*) are orthogonal (zero vector case omitted by assumption). This

is not surprising, since when orthogonality arises, by changing stepsize « alone, the future iterate
kbt = ¥ — o,V f(2") cannot be any closer to 2* than that of z*.

Under review as a conference paper at ICLR 2025

2.2 OPTIMAL CHOICE

Here, we present the optimal stepsize choice from the above feasible range. It turns out to be its
central point.

Theorem 2.1 (optimal choice). Consider GD in equation 2.2. The optimal k-th choice is given by
o (@ —ah —Vf@h) et —af|

ap = = COoS N, 2.5)
: ||Vf(93k)||2 [V f ()l
o (z*—a®,—V f(z")) ; ; oo T .
where 1, = arccos EEaiaTEalt It admits the following exact adaptive linear rate:
|F ! — |2 = (Hfbc o sin m) |x® —x*||?, k=0,1,.... (2.6)

Remarks 2.2 (scaling invariance). GD equipped with aj; in equation 2.5 is invariant under a linearly
transformed function, g(-) = pf(-), Vp = 0, since
k1 _ ok (& —zh, —pV[(zh))

T T v EN pVf(a") = 2" —apVf(z"). 2.7)

xr

2.3 CONVEXITY

Suppose function f is convex. Then, much stronger guarantees and simplifications are available.

Corollary 2.2. Consider GD in equation 2.2. Suppose function f is convex. While iterates not
converged, let stepsize

2(a* — a2k, —Vf(x)>>

ag € (O7 =(0,2af), k=0,1,.... (2.8)
IVf (w’“) 12 g

Then, the GD iterations are guaranteed to converge to the optimal point.

Remarks 2.3. Given a convex function f, relation (z* — ¥, —V f(z*)) > 0 always holds, unless

ﬂ?kfib

2.3.1 L-SMOOTH

Here, we provide some characterizations via the L-smoothness assumption.
Definition 2.1. A differentiable convex function f : R™ — R is said to be L-smooth if
IVf(x) = Vi)l < Llle—yll, ve,yeR" 2.9
Proposition 2.2. Suppose function f : R" — R is L-smooth. Then,
(@ —ab -Vf@Eh) 1

oy = > =, k=0,1.. (2.10)
g IVf (fL"“)II2 L
Corollary 2.3. The fixed stepsize selection range is a subset of our adaptive one, i.e.,
2
(0, L) c(0,2a3), k=0,1.. (2.11)

3 PRACTICAL USE

The above theory involves optimal point *, hence not instantly useful in practice. Here, we address
it via approximation.

Theorem 3.1. Consider GD in equation 2.2. While iterates not converged, we propose stepsize
f(&®) = fo
IV f ()]
where 7 is a tunable parameter; fy is a guessed smallest objective value. It admits the following
exact linear rate:

al =70 - (.1)

”wk t— *HQ (Ilf 0 5t) ||$ *”2’ (32)
W/’ZEI’E < f()>
_ 19 _ 1Y 2 _\Z z', —¥
o =1 y <2 t) cos” N, or = (t) A , 3.3)

_ (22’ —Vi(="))
and where 1; = arccos Iz ==t IV F (@) °

Under review as a conference paper at ICLR 2025

Corollary 3.1 (convergence). While GD iterates not converged, let

Y € (204,0) U (0,20), k=0,1,.... 34
If such ~yq exists Vk, then
Gp=1-12 <2 - 70) cos?ny, € (0,1), Vk, (3.5)
Ok Ok

which guarantees convergence to the global optimal point.
Corollary 3.2. The optimal k-th choice of the tunable parameter g is

Yy = argmax i <2 — 70) = 0} (3.6)
Yo O Ok
In this case, the rate factor
op=1-— Jo (2 — %) cos? ny, = sin’ ny, 3.7
Ok Ok

implying optimality attained (recall Theorem 2.1), i.e., exact approximation.

Remarks 3.1. In view of Corollary 3.2, the approximation is exact if one can adaptively select
Yo = ok, Vk. There does exist a special case where oy, is a known constant, see Section 3.1.3.
However, in general, we do not know o, in advance, and our approximation hence not exact. Also,
for ease of use, we typically fix 7 to be a constant, which is theoretically sub-optimal.

3.1 CONVEXITY

Suppose function f is convex. Then, we have stronger guarantees and a tune-free stepsize selection
scheme.

Corollary 3.3 (convergence). Suppose function f is convex. While GD iterates not converged, let
Yo € (05 20k> , VEk, (3.8)
<a:*—a:’“,—Vf(wk)>
f(@*)—fo
§p=1-1 (2 - VO) cos?ng € (0,1), Vi, (3.9)

Ok Ok

where o), = . Then, the rate factor satisfies

which guarantees convergence.

3.1.1 TUNE-FREE CASE

Here, we require full knowledge of f(x*).

Proposition 3.1. Consider GD in equation 2.2. Suppose function f is convex, with optimal objective
value f(x*) known in advance. Then, stepsize

f(ah) — f(x*)

ar = o —ms—> 0 € (0,2], (3.10)
IV f(xF)]2
guarantees convergence, with an exact linear rate:
||zlc]€+1 — w*H2 = (Hfzo 5t) ||:130 — az*||2, (3.11)
where (. i t)>
Yo Yo 9 x* —x', —Vf(x
6=1— " (9= = 3.12
=13, (ot> O 0= TR~ fa) G2

gt v t

where 1; = arccos W

Remarks 3.2. The above tune-free case can happen in practice. A typical example is when f(x*) = 0,

arising in (i) solving a huge-scale linear system Ax = b, where A~ is too expensive to calculate

directly; (ii) f is a loss function with zero-loss at the optimal point, as in many classification problems.

Corollary 3.4. Suppose f is a non-linear convex function. Then, when x* # x*, we have

<m* —xF, fo(a:k)>
f@h) = f(@*)

Remarks 3.3. equation 3.13 follows instantly from Taylor expansion. It implies that we should choose

7o > 1 in our convex tune-free case. However, it does not tell exactly how much larger than 1, our

default choice is therefore conservatively set to v = 1. Additionally, we assume f being non-linear,

since minimizing a linear or affine function is trivial (unbounded below).

Y=oy = >1, Vk. (3.13)

Under review as a conference paper at ICLR 2025

3.1.2 L-SMOOTH

Here, we provide some characterizations via the L-smooth assumption.
Proposition 3.2. Suppose function f : R™ — R is L-smooth. Then,

fah) ~ fa) 1

> —, (3.14)
IVi@h)|* — 2L
Proposition 3.3 (optimality gap). Let function f : R™ — R be L-smooth. Then,
*_ gk Yy k ky _ * 1
@ 2t V@) fah) g 1 a1s)
V()] V()] 2L
optimal estimated (yo=1)

Remarks 3.4. The positive gap from Proposition 3.3 with g = 1 is not surprising, since we already
seen from Corollary 3.4 that the optimal parameter ~j is strictly larger than 1 (and ~{ attains optimality
by Corollary 3.2). The result here is strengthened, with the gap characterized by L, instead of only
being positive.

3.1.3 PRACTICAL EXACT APPROXIMATION

Here, we show special cases that our practical-use stepsize choice attains the theoretical optimum, by
simply selecting 7o = 2. Consider

1
minimize §||Aa: —b|>. (3.16)

z€Rn
where x € R, b € R™, A € R™*",
(i) Suppose A is a full-rank square matrix. We have * = A~ !b. It follows that,
(@ —a*, ~V/(@) _(A'b-at —AT(Ack b)) _ [Aat b2 _ 2 f(ah)

a* = = = = ,
; IV f ()2 IV f ()| IV f (*)]|> IIVf(fB’(“3)||127)
corresponding to our practical-use stepsize with g = 2 and f(x*) = 0, recall equation 3.10. '
(ii) Suppose b = 0. We have =* = 0. It follows that,
o = (@ =2 =Vf(@h) _ (0-af —AT(Az" —0)) AP _ 2-f(a")
g IV f(x*)|? IV f (a*)[|2 IV f (*)]|2 HVf(w’“)llé’IS

which is similar to the above case.

3.2 GENERAL PRACTICAL USE ALGORITHM

Here, we consider f, being an inaccurate guess. It will be updated if certain criteria violated.

Algorithm 1 Linear-rate gradient decent (auto correction version)

Input: initialization aY; iteration number counter k = 0;
Input: guessed fj, tunable parameter y;
Input: shrinking factors 7, 72 € (0, 1), threshold T'.

1: while iterates not converged do

2: k «— k+1 o

¥ a0 gren

4 Pl 2k -, Vf(zF)

5. Correction:
If f(z"*1) > T - f(x*), set yo < 71 - Y0 and ¥ ! « .
If ap <0, set fo — To - fQ.

6: end while

Output: xF+!

Under review as a conference paper at ICLR 2025

4 EXAMPLES

In this section, through some specific examples, we demonstrate the power of our adaptive stepsize.

4.1 R? QUADRATIC PROGRAM

Here, we consider a simple example from (Boyd & Vandenberghe, 2004, Sec. 9.3.2):

1
minimize 5 (a:f + vxg) , “.1)
ZT1,T2

where vy > 0, = [21, J;Q]T. We employ initialization z° = [, l]T. For this problem, the Lipschitz
constant L and the condition number both equal to ~, and the conditioning state is fully tractable.

Below, we compare our approach with the exact line search method, which finds a stepsize choice via

ay = argmin f(z* — ap Vf(xb)). 4.2)
ap>0

e Following from (Boyd & Vandenberghe, 2004, Sec. 9.3.2), the k-th iterate with an exact line search

stepsize is given by
k k
b=y (12 o= (21 43)
1 y +1 ’ 2 v 1)

with an exact convergence rate

2" — 22 (y—1\"
= : (4.4)
[0 — | v+1

If 7y is large (ill-conditioning), the above factor is close to 1, i.e., |2* — x*||? is similar to ||2° — z*||%.
That said, the ground-truth error has little changes after k iterations.

o Our optimal choice o, yields

k k
gk = yke—kitl e AR
! 2 72 +1 ’

k1 ko
kitks (V1 -1
(_1) 1+k2 (5) (72 n 1) , (45)
@ | kgl

where k1 = [%= |, k2 = Lg], and where |- | denotes the floor operation (the closest smaller integer).
Ours admits the following convergence rate factor:

2k
lzF — 2| PRkt 4 (7—1>2k1 <v—l>2k2_ <1>k v-1 (4.6)
(e 72+ 1 2 72 +1 2 NZZES W A

Since v > 0, we have (y — 1)/1/92 + 1 < 1. Our factor is therefore strictly smaller than 1/2.

k
)

wEN —exact line search BN
i N — -ours S —exact line search
° o ~ |~ -ours

2t — 2*|?
|z — a*)?
7

0 s e 70 & 20 % 4 0 6 70
Iteration number k Iteration number k

(a) trajectory, v = 10. (b) convergence rate, Y = 10. (c) convergence rate, v = 100.

Figure 1: exact line search vs. our stepsize, with conditioning controlled by ~.

Under review as a conference paper at ICLR 2025

4.1.1 STRICT BETTER PERFORMANCE

Here, we show that our rate is strictly better than the one for exact line search, except when v = 1
both methods converge in exactly one iteration.

To this end, suppose v # 1. Divide our rate factor by that of the exact line search, we arrive at

: 2k k

o (1)’“ y=1 <v+1>2k(72+27+1) o -

k - o 1 — - s .
51(in2—search 2 72 +1 v 1

292 42
where the last inequality follows from the denominator being larger when v # 1, since
27242 - (V429 +1) =92 —29+1=(y-1)2>0.
4.1.2 INSTANT CONVERGENCE
Here, we perform an additional test on our rate factor sin? 7. An observation is that if sinn;, = 0, GD

must converge instantly. In the current example, we can easily verify it using a sparse initialization,
say (29,29) = (50,0). Indeed, 1-step instant convergence is observed.

AN [Fstepsizs 11

1
2
3

4

5

o 5 10 15 2 25
z)

5 10 15 2 25 30
z)

(a) 1-step convergence. (b) many-steps convergence.

Figure 2: zero angle case, v = 10.

4.2 GEOMETRIC PROGRAM

Here, we consider an unconstrained geometric program from (Boyd & Vandenberghe, 2004, Sec
9.3), and our Algorithm 1 will apply. Consider

m

minimize log E exp (a,ZTT:J: +b;) |, 4.9)
x
i=1

where x € R”, a; € R", b; € R, and T = diag ([1,7%,7%, ,W%D is a diagonal matrix that
promotes ill-conditioning.

Below, we compare our Algorithm 1 with (i) a fine-tuned fixed stepsize; (ii) a fine-tuned Nesterov’s
accelerated gradient descent (N-AGD) Nesterov (1983). The tuning is performed on a fine grid with
a fixed random number generator, hence shows roughly their best performances. Our parameters are
very roughly picked as 7o = 1,71 = 72 = 0.5, 7 = 1, fo = 0.1 - f(x°) and no further tuning.

- - fine-tuned fixed stepsize 10?
fine-tuned N-AGD

——ours: guessed fo

--—-ours: assume fy = f(z*)

o T
= 00 e
b s T
‘ \
“ | i
£y — b
. + o 10® \
N oY
S 8 i - - -
N = ! - - fine-tuned fixed stepsize
10 !
N [y fine-tuned N-AGD
N 4 ~
\ \".v\ y ——ours: guessed fy .
10 \‘ » 10 ! ----ours: assume fy = f(z*)
50

100 150 200 250 300 350 400 450 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration number k lteration number k

(a) ill-conditioning, v = 10. (b) ill-conditioning, v = 100.

Figure 3: Convergence rate comparison, data size m = 50,n = 10

(4.8)

Under review as a conference paper at ICLR 2025

Remarks 4.1 (worst-case acceleration). We observe that N-AGD provides almost no acceleration in
the ill-conditioning setting here. Let us note that its well-known O(1/k?) rate is only guaranteed in
a worst-case sense and does not necessarily accelerate in practice, see a discussion in (Ryu & Yin,
2022, Sec. 12.3).

Remarks 4.2. Due to rough choice of parameters, our guessed fo = 0.1 - f(x°) admits a significant
performance gap compared to an ideal tune-free case fo = f(a*) (not a priori knowledge). How to
improve such a gap is left for future work.

4.3 NON-CONVEX MNIST

Here, we consider the MNIST classification problem via a 2-layer neural network, with ReLu
activation, 200 hidden units, and softmax loss function. Following the literature, we consider a
mini-batch setting. We compare ours with the state-of-the-art algorithms, Nesterov’s accelerated
gradient descent (N-AGD) Nesterov (1983) and Adaptive moment estimation (Adam) Kingma & Ba
(2015).

4.3.1 TUNE-FREE CASE

We start with a special case that stepsize a = f(z*)/||V f(x*)||? alone works nicely. We consider
minimizing the softmax loss only (no regularization) under a relatively large mini-batch size.

085

Train accuracy
Validation accuracy

- ours ; ---ours
o7 -- Adam ot -- Adam
B --N-AGD ~N-AGD
P R T P T
epoch /iterations over all data epoch /iterations over all data
(a) Training accuracy. (b) Validation accuracy.

Figure 4: Our tune-free case, with mini-batch size 1024.

Remarks 4.3. Fig 4a and Fig 4b record the training and validation accuracies, respectively. We
observe that they share a highly similar trend (but not the same). Ours exhibits consistent advantages
over the others.

Remarks 4.4 (parameter details). N-AGD’s stepsize is fined-tuned to 1.5 x 10~5. Adam has too
many hyper-parameters, and is only roughly tuned, with o« = 1073, 8; = 0.8, 8 = 0.899,¢ = 1078
(the suggested default has a worse performance in our setting).

4.3.2 GENERAL CASE

Here, we consider a general case, minimizing softmax loss function with /5-norm regularization (on
the weights). We adopt a commonly used mini-batch size of 128. Our Algorithm 1 is applied, with
roughly picked parameters fo = 0,7 = 1,7 = 5,71 = 0.25 (72 omitted).

. g
g 5
E g
R o
il £
%‘ 00 4’—5 0.92
& --ours = o --ours
vot -- Adam = -- Adam
- N-AGD - N-AGD
epoch/iterations over all data epoch/iterations over all data
(a) Training accuracy. (b) Validation accuracy.

Figure 5: General case with [s-norm regularization; mini-batch size 128.

Under review as a conference paper at ICLR 2025

Remarks 4.5. Ours only has advantage in the validation stage, where consistently higher accuracy
is observed. Luckily, the validation accuracy is all we need, hence ours remains a better choice.
Additionally, we suspect our advantage can be enlarged if more careful parameter choices are
employed, which is left for future research.

5 CONCLUSION

In this work, we established a general theory on the adaptive stepsize selection issue, including
feasible selection range, convergence rate, and optimal choice. Specifically, in the convex case, we
show an adaptive range (0,2}) that guarantees convergence, which enlarges the classical fixed
one (0,2/L). Its centre v}, is the optimal choice, admitting an exact linear rate with factor sin® 7.
Our theory also applies to a non-convex function, except the situation is much more challenging.
The optimal stepsize can now be negative, and the feasible range set could be empty when some
orthogonality arises. On the other hand, if a feasible stepsize choice always exists, then convergence
to the global optimal point is guaranteed.

Despite the great power of our theory, it involves some optimal point information. To enable its
practical use, we propose an approximation strategy. Such an approximation can be exact in a special
practical scenario but in general sub-optimal. It also admits an exact linear convergence rate, and we
numerically test its power through several examples. Outstandingly, a tune-free version works nicely
for the non-convex MNIST problem via neural networks.

6 REPRODUCIBILITY STATEMENT

All figures in this manuscript can be reproduced via the MATLAB codes submitted as supplementary
material.

REFERENCES

Luis B. Almeida, Thibault Langlois, José D. Amaral, and Alexander Plakhov. Parameter adaptation in
stochastic optimization, pp. 111-134. Cambridge University Press, USA, 1999. ISBN 0521652634.

Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In
Proceedings of the 36th International Conference on Machine Learning, pp. 291-301, 2019.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank D. Wood.
Online learning rate adaptation with hypergradient descent. In Sixth International Conference on
Learning Representations, ICLR, 2018.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural Networks: Tricks of the Trade: Second Edition, pp. 437-478. Springer, 2012.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and ERIK MEIJER. Gradient descent: The
ultimate optimizer. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 8214-8225. Curran
Associates, Inc., 2022.

Patrick L. Combettes and Jean-Christophe Pesquet. Lipschitz certificates for layered network
structures driven by averaged activation operators, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121-2159, 2011.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

10

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 2015.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
6083-6093. PMLR, 13-18 Jul 2020.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k?). Proceedings of the USSR Academy of Sciences, 269:543-547, 1983.

Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd
edition, 2018. ISBN 3319915770.

Sebastian Ruder. An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747,
2016.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. In Nature, 1986.

Ernest K Ryu and Wotao Yin. Large-scale convex optimization: algorithms & analyses via monotone
operators. Cambridge University Press, 2022.

T. Tieleman and G. Hinton. Lecture 6.5 —- RMSProp: Divide the gradient by a running average of its
recent magnitude. In COURSERA: Neural Networks for Machine Learning, 2012.

Taoli Zheng, Linglingzhi Zhu, Anthony Man-Cho So, José Blanchet, and Jiajin Li. Universal gradient
descent ascent method for nonconvex-nonconcave minimax optimization. In Proceedings of the
37th International Conference on Neural Information Processing Systems, 2024.

11

Under review as a conference paper at ICLR 2025

A APPENDIX

The gradient descent (GD) iterates are
Pt = 2 — o Vih), k=0,1,.... (A.1)

We assume V f(x*) # 0, unless =¥ = x*. This assumption is necessary, since otherwise stepsize
selection becomes trivial.

A.1 PROOF OF PROPOSITION 2.1

Our Proposition 2.1, restated here as
Proposition A.1 (range). Consider GD in equation A.1. While iterates not converged, let stepsize
2(x* —a*, —V f(z"))) (2(a* —a*, —V f(a"))
ak€< , 0 0, , k=0,1,... (A2
I\Vf(wk)\lz’ U IV f(2*)]|?

If such oy, exists Vk. Then, convergence to the global optimal point is guaranteed.

Proof. Let us note that

k :I?*HQ k+1

a2 @

e _ kaﬂ _ mkHQ _ k+1 mk:>’

= — (@)?IVf(@")|® -2 (2" — 2" + arVf(2"), —auVf(z")),
o} [Vi@h)|’ -2 (2" - 2", ~axV f(a")),
= ap (o |[VS ") + 2 (2 — &~V (@h))). (A3)

All we need is the above right-hand side being negative, implying the ground-truth error is strictly
decreasing, hence guarantees convergence This ylelds equation A.2, which involves one empty set,
depends on the sign of the term (x* — =¥, —V f(x*)). The proof is now concluded.

2x* —x

A.2 PROOF OF THEOREM 2.1

Our Theorem 2.1, restated here as
Theorem A.1 (optimal choice). Consider GD in equation A.l. The optimal k-th choice is given by

_ * _ mk

IIVf(w’“)II2 IVf (@)

(@ —a",—Vf(x")
lz*—a* [V f ()]

e — | = (g sin® n)]2 —@* 2, k=0,1,.... (A5)

where 1y = arccos It admits the following exact adaptive linear rate:

Proof. Following from equation A.3, we would like its right-hand side term as negative as possible,

which leads to)
I

minoi‘mize (au)? HVf(:ck) — 2ay, (z* — ¥ —Vf(zx)> (A.6)

Its solution is
(@ — 2t ~Vi(@") _ o — 2t
[V f(2F)]? [V £ (")l

* k k
where 7, = arccos %. Substituting it back to equation A.6, we obtain the minimal

objective value being

2
(ozZ)2 HVf(ack)H — 20 <$* — k. —Vf(a:k)> =—|lx* — SCkHQ cos? M. (A.8)
At last, by equation A.3, we obtain

CoS N, (A7)

af =

2t — 2 — fla* — 2*|* = 2" — " cos® i,
= [l — 2*)? = sin? gz — 22 (A9)
The proof is concluded by considering all iterations, from O to the current k-th one. O

12

Under review as a conference paper at ICLR 2025

A.3 PROOF OF PROPOSITION 2.2

Lemma A.1 (Baillon-Haddad Theorem). Let function f : R™ — R be L-smooth. The following
holds:

LIVH@) - VW) < (@~ . V(@) - Vi), YeycR. (A0

Our Proposition 2.2, restated here as

Proposition A.2. Suppose function f : R™ — R is L-smooth. Then,

. -2 -VfEh) 1
G = IV f(xF)|2 2 A kE=0,1... (A.11)

Proof. By Lemma A.1, we have

%IIVf(w*) = V@h|? < (@* — 2", V(") - V(")) (A.12)

Rearranging the terms concludes the proof. O

A.4 PROOF OF THEOREM 3.1

Our Theorem 3.1, restated here as
Theorem A.2. Consider GD in equation A.1. While iterates not converged, we propose stepsize

+ f(wk)—fo

% =0 @) A1)

where g is a tunable parameter; fq is a guessed smallest objective value. It admits the following
exact linear rate:

[t —a*||? = (T, &) [|a° — 2*|%, (A.14)
where
Yo Yo (x* —z', -V f(z"))
b=1——1{(2- cos® ny, o = - , A.15
' ot < Ut) " ' f(@') = fo (A1)

_ (" —a,—V f(z"))
and where 1; = arccos el

Proof. Recall error characterization from equation A.3
||3r:kJr1 fm*||27 ||:ckfa:*H2: (ak)2HVf(:ck || — 2ay, <m — —Vf(x)> (A.16)

Substituting az in equation A.13 to the right-hand side above, yields

r.hs. = — f() fo ¥ —xF — zF
_) fo I Jo
- (”0 V7@ ||) ~ 20 e 2 VIED),
(@ —at, i) R CORS! 2
- (=) (G <w*—wk,—w<wk>>>
v e) (A0

13

Under review as a conference paper at ICLR 2025

<m*—mk,—Vf(mk)>
f(@*)—fo

k+1 _ k 2 _ <m*—mk,—Vf(mk)> ’ Yo : Yo
e e e < NiCal ((32) 2 3)

- (<?f?mf§i|_§“?ﬁ) ((Z) 2 et -

Let o, = . Invoke the L.h.s. of equation A.16, we arrive at

2
= cos®ny, - ((%> -2 70) |z — x*||?, (A.18)
Ok Ok
— (" 2"~V f(x"))

where 7, = arccos CEAINICIIE It follows that

lzh+! — z*|? = (1 0 (2 - 70) cos? m) z* —). (A.19)
O Ok

Considering all iterations ¢ = 0, 1, 2...k gives equation A.14. The proof is now concluded. O

A.5 PROOF OF PROPOSITION 3.1

Our Proposition 3.1, restated here as

Proposition A.3 (tune-free stepsize). Consider GD in equation 2.2. Suppose function f is convex,
with optimal objective value f(x*) known in advance. Then, any choice from below

fz*) — f(=")

=0 TgpEhp 0 0O (.20
guarantees convergence, with an exact linear rate:
e — 2| = (g) [|l=° — 2*[|?, (A21)
where . . .
—xt, i v t
oy =1-— J0 (2 — 70) cos? N, Op= (@ :f (=)>, (A.22)
¢ (o f(xt) — f(z*)

B (" —a' —V (')
where 1)y = arccos oA N

Proof. Given z* # x*, the following holds:
f@*) > f(&h) + (& — 2", Vf(F)), (A.23)

where we exclude the case of a linear function, since it is unbounded below and is therefore trivial to
minimize. Rearranging the terms, yields

fla®) = f(@*) < (2" —a*, -V f(z")) (A.24)
Suppose o € (0, 2]. Then,
f(@*) - f&*) _ 2@ —at, —Vf(@"))

o - < (A.25)
IV (2*)[]? IV f(2*)[]?
It says that the left-hand side above always lies within the feasible range, recall equation A.2. Its
convergence rate follows directly from Theorem A.2. The proof is now concluded. O
A.6 PROOF OF PROPOSITION 3.2
Our Proposition 3.2, restated here as
Proposition A.4. Suppose function f : R™ — R is L-smooth. Then,
kY _ * 1

Vf@)[Z = 3L’

14

Under review as a conference paper at ICLR 2025

Proof. The L-smoothness assumption implies

f(¥) < @)+ (y 2, Vf@) + 2y~ o, Yo,y R

We may perform the following minimization:

. L
minimize fl@) +{y —z, V@) + Sy - x|,
and obtain a minimizer)

Yy=x— va(w)

Substituting it back, yields
. 1 n
1@) < f@) - IV @2, Vo e R
It follows that L
f@) < f@) < f(=") = 7 V)]

Rearranging the terms concludes the proof.

A.7 PROOF OF PROPOSITION 3.3

Our Proposition 3.3, restated here as
Proposition A.5 (optimality gap). Let function f : R" — R be L-smooth. Then,

(@ —a*, -Vf@")) f") - f) 1

[V f (") IVf(h)|> = 2L

optimal estimated (yo=1)

Proof. The proof follows instantly from (Nesterov, 2018, Theorem 2.1.5)

fla*) > f(&") + (& — 2", Vf(=")) + %Ilvf(w*) - V")

Dividing both sides with ||V f(z*)||? (non-zero by assumption) concludes the proof.

15

(A.27)

(A.28)

(A.29)

(A.30)

(A31)

(A.32)

(A.33)

	Introduction
	literature: adaptive stepsize
	key results

	Adaptive stepsize theory
	selection range
	optimal choice
	convexity
	L-smooth

	Practical use
	convexity
	tune-free case
	 L -smooth
	practical exact approximation

	general practical use algorithm

	Examples
	 R2 quadratic program
	strict better performance
	instant convergence

	geometric program
	Non-convex MNIST
	tune-free case
	general case

	Conclusion
	Reproducibility Statement
	Appendix
	proof of Proposition 2.1
	proof of Theorem 2.1
	proof of Proposition 2.2
	proof of Theorem 3.1
	proof of Proposition 3.1
	proof of Proposition 3.2
	proof of Proposition 3.3

