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ABSTRACT

Consider gradient descent iterations xk+1 = xk − αk∇f(xk). Suppose gradient
exists and ∇f(xk) ̸= 0. We propose the following closed-form stepsize choice:

α⋆
k =
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, (theoretical)

where ηk is the angle between vectors x⋆ − xk and −∇f(xk). It is universally
applicable and admits an exact linear convergence rate with factor sin2 ηk.
Moreover, if f is convex and L-smooth, then α⋆

k ≥ 1/L.
For practical use, we approximate (can be exact) the above via

α†
k = γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

, (practical use)

where γ0 is a tunable parameter; f̄0 is a guess on the smallest objective value (can
be auto. updated). Suppose f is convex and f̄0 = f(x⋆), then any choice from
γ0 ∈ (0, 2] guarantees an exact linear-rate convergence to the optimal point.
We consider a few examples. (i) An R2 quadratic program, where a well-known
ill-conditioning bottleneck is addressed, with a rate strictly better than O(1/2k).
(ii) A geometric program, where an inaccurate guess f̄0 remains powerful. (iii) A
non-convex MNIST classification problem via neural networks, where preliminary
tests show that ours admits better performance than the state-of-the-art algorithms,
particularly a tune-free version is available in some settings.

1 INTRODUCTION

The gradient descent (GD) algorithm, dated back to Cauchy in 1847, is arguably the most popular
iterative algorithm. It is often treated as the default optimizer for neural networks Rumelhart et al.
(1986); Ruder (2016); Goodfellow et al. (2016). GD’s procedure is remarkably simple: repeatedly
subtract the current iterate with its gradient. However, such a raw version suffers from a serious issue
— it almost always overshoots the minimum. To guarantee convergence, damping the gradient by a
stepsize α is necessary. How to properly choose such a stepsize is one of the most headache issues,
since a large choice would overshoot and a small one leads to slow convergence. In practice, the
stepsize (a.k.a. learning rate) is “often the single most important hyper-parameter” Bengio (2012).

To our best knowledge, in the current literature, a general convergence guarantee for GD only exists
in the convex case, and requires at least one strong assumption, the L-smoothness. Specifically, if
one can access the Lipschitz constant L, then any choice from α ∈ (0, 2/L) guarantees convergence,
with 1/L the default choice, see e.g. (Ryu & Yin, 2022, Sec. 2.4.3). Despite such a guarantee being
available, it is rarely used directly in large-scale problems, due to L is either not computable or simply
too expensive. There does exist some work that allow estimation of L, see e.g., Anil et al. (2019);
Fazlyab et al. (2019); Combettes & Pesquet (2020). However, their focus is often not regarding the
stepsize selection issue, appears related to the complication of the estimation scheme and that the
estimation error in L will propagate to the GD algorithm. In this manuscript, such an issue will be
avoided, since our result does not rely on L.

One critique of the above classical theory is that the stepsize is fixed throughout all iterations of
GD. This eliminates the possibility of some large feasible stepsize choices in the middle steps and
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consequently slows down the algorithm. A better strategy should be adaptively adjusting the stepsize
according to the current progress. Such an idea is old, at least traced back to Almeida et al. (1999).
The real issue is how to adjust the stepsize adaptively? In the literature, several outstanding heuristic
methods have been proposed, e.g., AdaGrad Duchi et al. (2011), RMSProp Tieleman & Hinton.
(2012), Adam Kingma & Ba (2015). However, an adaptive stepsize theory has not been established.
This manuscript will fill in this blank space. In the convex case, we show the feasible stepsize selection
range that guarantees convergence being (0, 2α⋆

k), with α⋆
k the optimal k-th choice. Moreover, α⋆

k is
lower bounded by 1/L, implying the new range enlarges the aforementioned classical one (0, 2/L).
Also, our optimal stepsize yields an exact linear rate with factor sin2 ηk. Let us note that if sin ηk = 0,
then GD will converge instantly, see an example in Section 4.1.2.

Remarkably, our theory also applies to a non-convex function. A notable difference is that the optimal
choice α⋆

k can be negative now, and the feasible range becomes either (2α⋆
k, 0) or (0, 2α⋆

k), depending
on the sign of α⋆

k. The negative sign is not too surprising, since if the function is locally concave, we
do need an ascent direction to pass the hill, otherwise stuck at the local minimum. This aspect shares
a similar flavour to the so-called ‘gradient descent ascent’ method for solving min-max problems, see
e.g. Lin et al. (2020); Zheng et al. (2024).

Despite our non-convex applicability, the situation is highly challenging. Unlike the convex case
where α⋆

k is lower bounded, here it can take an arbitrary value. The worst case is when α⋆
k = 0,

implying an empty selection range. This arises when x⋆ − xk ⊥ ∇f(xk), and a stepsize that
can improve the current iterate xk does not exist. On the other hand, if one can exclude such an
orthogonal case, then convergence to the global optimal point is guaranteed, see Theorem 2.1.

While our theory is powerful, it is not instantly useful in practice, due to quantity ⟨x⋆−xk,−∇f(xk)⟩
is not a priori knowledge. Experts may instantly realize that, by Taylor expansion, it is an upper
bound for f(xk)− f(x⋆) in the convex case, and the only concern is regarding f(x⋆). We show that,

(i) when f(x⋆) = 0, the simplest tune-free stepsize f(xk)/∥∇f(xk)∥2 is applicable. It is at least
1/(2L) large, see Proposition 3.2. In a special case, its two-times scaled version is optimal, see
Section 3.1.3.

(ii) when f(x⋆) not known in advance, a parameter f̄0 is introduced as an initial guess for f(x⋆). It
will be updated if some criteria violated, see details in Algorithm 1. Moreover, such a guess can be
easily picked, for example, let f̄0 = 0.1 · f(x0), where f(x0) is the initial objective value.

An outstanding benefit of our scheme is regarding the ill-conditioning issue, which is a well-known
bottleneck for the GD algorithm. This aspect has been nicely illustrated in (Boyd & Vandenberghe,
2004, Sec. 9.3.2) through an R2 example, where an exact linear rate with factor (γ − 1)2/(γ + 1)2 is
given, using an exact line search stepsize. A large γ (ill-conditioning) causes such a factor close to 1,
implying the error has almost no change as GD iterating. Ours yields a factor of (γ − 1)2/(2γ2 + 2),
which is strictly smaller than 1/2, i.e., the error is at least halved each iteration, see more details in
Section 4.1.

For notations, ∥ · ∥ denotes the Euclidean norm, induced by the inner product ⟨·, ·⟩. The uppercase
bold, lowercase bold, and not bold letters are used for matrices, vectors, and scalars, respectively.

1.1 LITERATURE: ADAPTIVE STEPSIZE

Here, we briefly discuss some developments of the stepsize adaption technique in the machine
learning field. The most popular family includes AdaGrad Duchi et al. (2011), RMSProp Tieleman &
Hinton. (2012), and Adam Kingma & Ba (2015). These approaches are strongly related to each other
and are heuristic methods that typically require tuning multiple parameters. Recently, Baydin et al.
(2018) propose to adaptively update the stepsize via a so-called ‘hyper-gradient’, which computes a
derivative over the stepsize parameter. The good news is that doing so adds very limited cost owing
to an element-wise product. The bad news is that the ‘hyper-gradient’ introduces a ‘hyper-stepsize’
which still needs tuning (but tends to be easier). Also, a theoretical convergence guarantee is not yet
available. A follow-up work by Chandra et al. (2022) addresses the tuning issue by computing an
additional ‘hyper-gradient’ on the original ‘hyper-stepsize’. This would introduce another ‘hyper-
stepsize’, and they apply the same procedure again, and so on, ad infinitum. The good news is that
each additionally introduced ‘hyper-gradient’ reduces the stepsize sensitivity, and eventually they can
easily pick an initial hyper-stepsize.
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In view of these methods, we note that there is always an initial stepsize tuning issue, also referred to
as ‘the global learning rate’ selection. This issue is avoided in our approach, since all of our choices,
including the initial one, are mathematically computed.

1.2 KEY RESULTS

Below, we summarize 3 versions of our adaptive stepsize choices.

• (i) Theoretically, the k-th optimal choice

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, k = 0, 1, . . . , (1.1)

where ηk = arccos ⟨x⋆−xk,−∇f(xk)⟩
∥x⋆−xk∥∥∇f(xk)∥ . It admits an exact linear rate, with or without convexity:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 sin
2 ηt
)
∥x0 − x⋆∥2. (1.2)

• (ii) The k-th practical-use choice (general version)

α†
k = γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

, (1.3)

which admits the following exact linear rate, with or without convexity:
∥xk+1 − x⋆∥2 =

(
Πk

t=0 δt
)
∥x0 − x⋆∥2, k = 0, 1, . . . , (1.4)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f̄0

. (1.5)

• (iii) The simplest practical-use choice (tune-free)

α̃k =
f(xk)

∥∇f(xk)∥2
, (1.6)

which guarantees convergence if f is convex and f(x⋆) = 0. Empirically, it also works nicely for the
non-convex MNIST problem in some settings.

2 ADAPTIVE STEPSIZE THEORY

Consider the following problem:
minimize

x∈Rn
f(x), (2.1)

where function f : Rn → R is assumed to be everywhere differentiable. The associated gradient
descent (GD) iterates are

xk+1 = xk − αk∇f(xk), k = 0, 1, . . . . (2.2)
Throughout the rest of the paper, we assume∇f(xk) ̸= 0, unless GD already converged xk = x⋆.
This assumption is necessary, since otherwise GD yields xk+1 = xk − αk · 0 = xk, and the stepsize
selection issue becomes trivial.

2.1 SELECTION RANGE

First, we show a feasible selection range for stepsize α to guarantee convergence.
Proposition 2.1 (range). Consider GD in equation 2.2. While iterates not converged, let stepsize

αk ∈
(
2⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
, 0

)⋃(
0,

2⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2

)
, k = 0, 1, . . . (2.3)

If such αk exists ∀k. Then, convergence to the global optimal point is guaranteed.
Corollary 2.1. αk as in equation 2.3 does not exist if and only if

⟨x⋆ − xk,−∇f(xk)⟩ = 0. (2.4)
Remarks 2.1 (interpretation). In view of Corollary 2.1, it says that a feasible stepsize does not exist,
if vectors x⋆ − xk and −∇f(xk) are orthogonal (zero vector case omitted by assumption). This
is not surprising, since when orthogonality arises, by changing stepsize αk alone, the future iterate
xk+1 = xk − αk∇f(xk) cannot be any closer to x⋆ than that of xk.
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2.2 OPTIMAL CHOICE

Here, we present the optimal stepsize choice from the above feasible range. It turns out to be its
central point.
Theorem 2.1 (optimal choice). Consider GD in equation 2.2. The optimal k-th choice is given by

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, (2.5)

where ηk
def
= arccos ⟨x⋆−xk,−∇f(xk)⟩

∥x⋆−xk∥∥∇f(xk)∥ . It admits the following exact adaptive linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 sin
2 ηt
)
∥x0 − x⋆∥2, k = 0, 1, . . . . (2.6)

Remarks 2.2 (scaling invariance). GD equipped with α⋆
k in equation 2.5 is invariant under a linearly

transformed function, g(·) = ρf(·),∀ρ ̸= 0, since

xk+1 = xk − ⟨x
⋆ − xk,−ρ∇f(xk)⟩
∥ρ∇f(xk)∥2

ρ∇f(xk) = xk − α⋆
k∇f(xk). (2.7)

2.3 CONVEXITY

Suppose function f is convex. Then, much stronger guarantees and simplifications are available.
Corollary 2.2. Consider GD in equation 2.2. Suppose function f is convex. While iterates not
converged, let stepsize

αk ∈
(
0,

2⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2

)
= (0, 2α⋆

k), k = 0, 1, . . . . (2.8)

Then, the GD iterations are guaranteed to converge to the optimal point.
Remarks 2.3. Given a convex function f , relation ⟨x⋆ − xk,−∇f(xk)⟩ > 0 always holds, unless
xk = x⋆.

2.3.1 L-SMOOTH

Here, we provide some characterizations via the L-smoothness assumption.
Definition 2.1. A differentiable convex function f : Rn → R is said to be L-smooth if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rn. (2.9)
Proposition 2.2. Suppose function f : Rn → R is L-smooth. Then,

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
≥ 1

L
, k = 0, 1.... (2.10)

Corollary 2.3. The fixed stepsize selection range is a subset of our adaptive one, i.e.,(
0,

2

L

)
⊆ (0, 2α⋆

k) , k = 0, 1.... (2.11)

3 PRACTICAL USE

The above theory involves optimal point x⋆, hence not instantly useful in practice. Here, we address
it via approximation.
Theorem 3.1. Consider GD in equation 2.2. While iterates not converged, we propose stepsize

α†
k = γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

, (3.1)

where γ0 is a tunable parameter; f̄0 is a guessed smallest objective value. It admits the following
exact linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 δt
)
∥x0 − x⋆∥2, (3.2)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f̄0

, (3.3)

and where ηt = arccos ⟨x⋆−xt,−∇f(xt)⟩
∥x⋆−xt∥∥∇f(xt)∥ .
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Corollary 3.1 (convergence). While GD iterates not converged, let
γ0 ∈ (2σk, 0) ∪ (0, 2σk) , k = 0, 1, . . . . (3.4)

If such γ0 exists ∀k, then

δk = 1− γ0
σk

(
2− γ0

σk

)
cos2 ηk ∈ (0, 1), ∀k, (3.5)

which guarantees convergence to the global optimal point.
Corollary 3.2. The optimal k-th choice of the tunable parameter γ0 is

γ⋆
0 = argmax

γ0

γ0
σk

(
2− γ0

σk

)
= σk. (3.6)

In this case, the rate factor

δ⋆k = 1− γ⋆
0

σk

(
2− γ⋆

0

σk

)
cos2 ηk = sin2 ηk, (3.7)

implying optimality attained (recall Theorem 2.1), i.e., exact approximation.
Remarks 3.1. In view of Corollary 3.2, the approximation is exact if one can adaptively select
γ0 = σk, ∀k. There does exist a special case where σk is a known constant, see Section 3.1.3.
However, in general, we do not know σk in advance, and our approximation hence not exact. Also,
for ease of use, we typically fix γ0 to be a constant, which is theoretically sub-optimal.

3.1 CONVEXITY

Suppose function f is convex. Then, we have stronger guarantees and a tune-free stepsize selection
scheme.
Corollary 3.3 (convergence). Suppose function f is convex. While GD iterates not converged, let

γ0 ∈ (0, 2σk) , ∀k, (3.8)

where σk =
⟨x⋆−xk,−∇f(xk)⟩

f(xk)−f̄0
. Then, the rate factor satisfies

δk = 1− γ0
σk

(
2− γ0

σk

)
cos2 ηk ∈ (0, 1), ∀k, (3.9)

which guarantees convergence.

3.1.1 TUNE-FREE CASE

Here, we require full knowledge of f(x⋆).
Proposition 3.1. Consider GD in equation 2.2. Suppose function f is convex, with optimal objective
value f(x⋆) known in advance. Then, stepsize

α̃k = γ0 ·
f(xk)− f(x⋆)

∥∇f(xk)∥2
, γ0 ∈ (0, 2], (3.10)

guarantees convergence, with an exact linear rate:
∥xk+1 − x⋆∥2 =

(
Πk

t=0 δt
)
∥x0 − x⋆∥2, (3.11)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f(x⋆)

, (3.12)

where ηt = arccos ⟨x⋆−xt,−∇f(xt)⟩
∥x⋆−xt∥∥∇f(xt)∥ .

Remarks 3.2. The above tune-free case can happen in practice. A typical example is when f(x⋆) = 0,
arising in (i) solving a huge-scale linear system Ax = b, where A−1 is too expensive to calculate
directly; (ii) f is a loss function with zero-loss at the optimal point, as in many classification problems.
Corollary 3.4. Suppose f is a non-linear convex function. Then, when xk ̸= x⋆, we have

γ⋆
0 = σk =

〈
x⋆ − xk,−∇f(xk)

〉
f(xk)− f(x⋆)

> 1, ∀k. (3.13)

Remarks 3.3. equation 3.13 follows instantly from Taylor expansion. It implies that we should choose
γ0 > 1 in our convex tune-free case. However, it does not tell exactly how much larger than 1, our
default choice is therefore conservatively set to γ0 = 1. Additionally, we assume f being non-linear,
since minimizing a linear or affine function is trivial (unbounded below).

5
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3.1.2 L-SMOOTH

Here, we provide some characterizations via the L-smooth assumption.
Proposition 3.2. Suppose function f : Rn → R is L-smooth. Then,

f(xk)− f(x⋆)

∥∇f(xk)∥2
≥ 1

2L
, (3.14)

Proposition 3.3 (optimality gap). Let function f : Rn → R be L-smooth. Then,

⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2︸ ︷︷ ︸

optimal

− f(xk)− f(x⋆)

∥∇f(xk)∥2︸ ︷︷ ︸
estimated (γ0=1)

≥ 1

2L
. (3.15)

Remarks 3.4. The positive gap from Proposition 3.3 with γ0 = 1 is not surprising, since we already
seen from Corollary 3.4 that the optimal parameter γ⋆

0 is strictly larger than 1 (and γ⋆
0 attains optimality

by Corollary 3.2). The result here is strengthened, with the gap characterized by L, instead of only
being positive.

3.1.3 PRACTICAL EXACT APPROXIMATION

Here, we show special cases that our practical-use stepsize choice attains the theoretical optimum, by
simply selecting γ0 = 2. Consider

minimize
x∈Rn

1

2
∥Ax− b∥2. (3.16)

where x ∈ Rn, b ∈ Rm, A ∈ Rm×n.

(i) Suppose A is a full-rank square matrix. We have x⋆ = A−1b. It follows that,

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
⟨A−1b− xk,−AT (Axk − b)⟩

∥∇f(xk)∥2
=
∥Axk − b∥2

∥∇f(xk)∥2
=

2 · f(xk)

∥∇f(xk)∥2
,

(3.17)
corresponding to our practical-use stepsize with γ0 = 2 and f(x⋆) = 0, recall equation 3.10.

(ii) Suppose b = 0. We have x⋆ = 0. It follows that,

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
⟨0− xk,−AT (Axk − 0)⟩

∥∇f(xk)∥2
=
∥Axk∥2

∥∇f(xk)∥2
=

2 · f(xk)

∥∇f(xk)∥2
,

(3.18)
which is similar to the above case.

3.2 GENERAL PRACTICAL USE ALGORITHM

Here, we consider f̄0 being an inaccurate guess. It will be updated if certain criteria violated.

Algorithm 1 Linear-rate gradient decent (auto correction version)

Input: initialization x0; iteration number counter k = 0;
Input: guessed f̄0, tunable parameter γ0;
Input: shrinking factors τ1, τ2 ∈ (0, 1), threshold T .

1: while iterates not converged do
2: k ← k + 1

3: αk ← γ0 · f(xk)−f̄0
∥∇f(xk)∥2 ,

4: xk+1 ← xk − αk∇f(xk)
5: Correction:

If f(xk+1) > T · f(xk), set γ0 ← τ1 · γ0 and xk+1 ← xk.
If αk ≤ 0, set f̄0 ← τ2 · f̄0.

6: end while
Output: xk+1

6
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4 EXAMPLES

In this section, through some specific examples, we demonstrate the power of our adaptive stepsize.

4.1 R2 QUADRATIC PROGRAM

Here, we consider a simple example from (Boyd & Vandenberghe, 2004, Sec. 9.3.2):

minimize
x1,x2

1

2

(
x2
1 + γx2

2

)
, (4.1)

where γ > 0, x = [x1, x2]
T . We employ initialization x0 = [γ, 1]T . For this problem, the Lipschitz

constant L and the condition number both equal to γ, and the conditioning state is fully tractable.

Below, we compare our approach with the exact line search method, which finds a stepsize choice via

αk = argmin
αk>0

f(xk − αk∇f(xk)). (4.2)

• Following from (Boyd & Vandenberghe, 2004, Sec. 9.3.2), the k-th iterate with an exact line search
stepsize is given by

xk
1 = γ

(
γ − 1

γ + 1

)k

, xk
2 =

(
−γ − 1

γ + 1

)k

, (4.3)

with an exact convergence rate

∥xk − x⋆∥2

∥x0 − x⋆∥2
=

(
γ − 1

γ + 1

)2k

. (4.4)

If γ is large (ill-conditioning), the above factor is close to 1, i.e., ∥xk−x⋆∥2 is similar to ∥x0−x⋆∥2.
That said, the ground-truth error has little changes after k iterations.

• Our optimal choice α⋆
k yields

xk
1 = γk2−k1+1

(
γ − 1

2

)k1
(

γ − 1

γ2 + 1

)k2

,

xk
2 = (−1)k1+k2

(
γ − 1

2

)k1
(

γ − 1

γ2 + 1

)k2

, (4.5)

where k1
def
= ⌊k+1

2 ⌋, k2
def
= ⌊k2 ⌋, and where ⌊·⌋ denotes the floor operation (the closest smaller integer).

Ours admits the following convergence rate factor:

∥xk − x⋆∥2

∥x0 − x⋆∥2
=

γ2(k2−k1+1) + 1

γ2 + 1

(
γ − 1

2

)2k1
(

γ − 1

γ2 + 1

)2k2

=

(
1

2

)k
(

γ − 1√
γ2 + 1

)2k

. (4.6)

Since γ > 0, we have (γ − 1)/
√
γ2 + 1 < 1. Our factor is therefore strictly smaller than 1/2k.

-10 -5 0 5 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

exact line search

ours

x
(2)x

(2)
x

(0)

x
(1)

x
(1)

(a) trajectory, γ = 10.
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(b) convergence rate, γ = 10.
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(c) convergence rate, γ = 100.

Figure 1: exact line search vs. our stepsize, with conditioning controlled by γ.
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4.1.1 STRICT BETTER PERFORMANCE

Here, we show that our rate is strictly better than the one for exact line search, except when γ = 1
both methods converge in exactly one iteration.

To this end, suppose γ ̸= 1. Divide our rate factor by that of the exact line search, we arrive at

δ
(k)
ours

δ
(k)
line-search

=

(
1

2

)k
(

γ − 1√
γ2 + 1

)2k (
γ + 1

γ − 1

)2k

=

(
γ2 + 2γ + 1

2γ2 + 2

)k

< 1, (4.7)

where the last inequality follows from the denominator being larger when γ ̸= 1, since
2γ2 + 2− (γ2 + 2γ + 1) = γ2 − 2γ + 1 = (γ − 1)2 > 0. (4.8)

4.1.2 INSTANT CONVERGENCE

Here, we perform an additional test on our rate factor sin2 ηk. An observation is that if sin ηk = 0, GD
must converge instantly. In the current example, we can easily verify it using a sparse initialization,
say (x0

1, x
0
2) = (50, 0). Indeed, 1-step instant convergence is observed.
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ours, 1 step

(a) 1-step convergence.
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0

1
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4

5

stepsize 1/L

(b) many-steps convergence.

Figure 2: zero angle case, γ = 10.

4.2 GEOMETRIC PROGRAM

Here, we consider an unconstrained geometric program from (Boyd & Vandenberghe, 2004, Sec.
9.3), and our Algorithm 1 will apply. Consider

minimize
x

log

(
m∑
i=1

exp
(
aT
i Tx+ bi

))
, (4.9)

where x ∈ Rn, ai ∈ Rn, bi ∈ R, and T = diag
([

1, γ
1
n , γ

2
n , ..., γ

n−1
n

])
is a diagonal matrix that

promotes ill-conditioning.

Below, we compare our Algorithm 1 with (i) a fine-tuned fixed stepsize; (ii) a fine-tuned Nesterov’s
accelerated gradient descent (N-AGD) Nesterov (1983). The tuning is performed on a fine grid with
a fixed random number generator, hence shows roughly their best performances. Our parameters are
very roughly picked as γ0 = 1, τ1 = τ2 = 0.5, T = 1, f̄0 = 0.1 · f(x0) and no further tuning.

50 100 150 200 250 300 350 400 450 500
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(a) ill-conditioning, γ = 10.
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(b) ill-conditioning, γ = 100.

Figure 3: Convergence rate comparison, data size m = 50, n = 10.
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Remarks 4.1 (worst-case acceleration). We observe that N-AGD provides almost no acceleration in
the ill-conditioning setting here. Let us note that its well-known O(1/k2) rate is only guaranteed in
a worst-case sense and does not necessarily accelerate in practice, see a discussion in (Ryu & Yin,
2022, Sec. 12.3).
Remarks 4.2. Due to rough choice of parameters, our guessed f̄0 = 0.1 · f(x0) admits a significant
performance gap compared to an ideal tune-free case f̄0 = f(x⋆) (not a priori knowledge). How to
improve such a gap is left for future work.

4.3 NON-CONVEX MNIST

Here, we consider the MNIST classification problem via a 2-layer neural network, with ReLu
activation, 200 hidden units, and softmax loss function. Following the literature, we consider a
mini-batch setting. We compare ours with the state-of-the-art algorithms, Nesterov’s accelerated
gradient descent (N-AGD) Nesterov (1983) and Adaptive moment estimation (Adam) Kingma & Ba
(2015).

4.3.1 TUNE-FREE CASE

We start with a special case that stepsize αk = f(xk)/∥∇f(xk)∥2 alone works nicely. We consider
minimizing the softmax loss only (no regularization) under a relatively large mini-batch size.

2 4 6 8 10 12 14
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0.85

0.9

0.95

ours

Adam

N-AGD

(a) Training accuracy.

2 4 6 8 10 12 14

0.75

0.8

0.85

0.9

0.95

ours

Adam

N-AGD

(b) Validation accuracy.

Figure 4: Our tune-free case, with mini-batch size 1024.

Remarks 4.3. Fig 4a and Fig 4b record the training and validation accuracies, respectively. We
observe that they share a highly similar trend (but not the same). Ours exhibits consistent advantages
over the others.
Remarks 4.4 (parameter details). N-AGD’s stepsize is fined-tuned to 1.5 × 10−5. Adam has too
many hyper-parameters, and is only roughly tuned, with α = 10−3, β1 = 0.8, β2 = 0.899, ϵ = 10−8

(the suggested default has a worse performance in our setting).

4.3.2 GENERAL CASE

Here, we consider a general case, minimizing softmax loss function with l2-norm regularization (on
the weights). We adopt a commonly used mini-batch size of 128. Our Algorithm 1 is applied, with
roughly picked parameters f̄0 = 0, γ0 = 1, T = 5, τ1 = 0.25 (τ2 omitted).
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(a) Training accuracy.
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(b) Validation accuracy.

Figure 5: General case with l2-norm regularization; mini-batch size 128.
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Remarks 4.5. Ours only has advantage in the validation stage, where consistently higher accuracy
is observed. Luckily, the validation accuracy is all we need, hence ours remains a better choice.
Additionally, we suspect our advantage can be enlarged if more careful parameter choices are
employed, which is left for future research.

5 CONCLUSION

In this work, we established a general theory on the adaptive stepsize selection issue, including
feasible selection range, convergence rate, and optimal choice. Specifically, in the convex case, we
show an adaptive range (0, 2α⋆

k) that guarantees convergence, which enlarges the classical fixed
one (0, 2/L). Its centre α⋆

k is the optimal choice, admitting an exact linear rate with factor sin2 ηk.
Our theory also applies to a non-convex function, except the situation is much more challenging.
The optimal stepsize can now be negative, and the feasible range set could be empty when some
orthogonality arises. On the other hand, if a feasible stepsize choice always exists, then convergence
to the global optimal point is guaranteed.

Despite the great power of our theory, it involves some optimal point information. To enable its
practical use, we propose an approximation strategy. Such an approximation can be exact in a special
practical scenario but in general sub-optimal. It also admits an exact linear convergence rate, and we
numerically test its power through several examples. Outstandingly, a tune-free version works nicely
for the non-convex MNIST problem via neural networks.

6 REPRODUCIBILITY STATEMENT

All figures in this manuscript can be reproduced via the MATLAB codes submitted as supplementary
material.
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A APPENDIX

The gradient descent (GD) iterates are

xk+1 = xk − αk∇f(xk), k = 0, 1, . . . . (A.1)

We assume ∇f(xk) ̸= 0, unless xk = x⋆. This assumption is necessary, since otherwise stepsize
selection becomes trivial.

A.1 PROOF OF PROPOSITION 2.1

Our Proposition 2.1, restated here as
Proposition A.1 (range). Consider GD in equation A.1. While iterates not converged, let stepsize

αk ∈
(
2⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
, 0

)⋃(
0,

2⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2

)
, k = 0, 1, . . . (A.2)

If such αk exists ∀k. Then, convergence to the global optimal point is guaranteed.

Proof. Let us note that

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 = −
∥∥xk+1 − xk

∥∥2 − 2⟨x⋆ − xk+1,xk+1 − xk⟩,
= − (αk)

2∥∇f(xk)∥2 − 2
〈
x⋆ − xk + αk∇f(xk),−αk∇f(xk)

〉
,

= α2
k

∥∥∇f(xk)
∥∥2 − 2

〈
x⋆ − xk,−αk∇f(xk)

〉
,

= αk

(
αk

∥∥∇f(xk)
∥∥2 + 2

〈
x⋆ − xk,−∇f(xk)

〉)
. (A.3)

All we need is the above right-hand side being negative, implying the ground-truth error is strictly
decreasing, hence guarantees convergence. This yields equation A.2, which involves one empty set,
depends on the sign of the term ⟨x⋆ − xk,−∇f(xk)⟩. The proof is now concluded.

A.2 PROOF OF THEOREM 2.1

Our Theorem 2.1, restated here as
Theorem A.1 (optimal choice). Consider GD in equation A.1. The optimal k-th choice is given by

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, (A.4)

where ηk = arccos ⟨x⋆−xk,−∇f(xk)⟩
∥x⋆−xk∥∥∇f(xk)∥ . It admits the following exact adaptive linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 sin
2 ηt
)
∥x0 − x⋆∥2, k = 0, 1, . . . . (A.5)

Proof. Following from equation A.3, we would like its right-hand side term as negative as possible,
which leads to

minimize
αk

(αk)
2
∥∥∇f(xk)

∥∥2 − 2αk

〈
x⋆ − xk,−∇f(xk)

〉
. (A.6)

Its solution is

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, (A.7)

where ηk = arccos ⟨x⋆−xk,−∇f(xk)⟩
∥x⋆−xk∥∥∇f(xk)∥ . Substituting it back to equation A.6, we obtain the minimal

objective value being

(α⋆
k)

2
∥∥∇f(xk)

∥∥2 − 2α⋆
k

〈
x⋆ − xk,−∇f(xk)

〉
= −∥x⋆ − xk∥2 cos2 ηk. (A.8)

At last, by equation A.3, we obtain

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 = −∥x⋆ − xk∥2 cos2 ηk,
⇐⇒ ∥xk+1 − x⋆∥2 = sin2 ηk∥x⋆ − xk∥2. (A.9)

The proof is concluded by considering all iterations, from 0 to the current k-th one.
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A.3 PROOF OF PROPOSITION 2.2

Lemma A.1 (Baillon-Haddad Theorem). Let function f : Rn → R be L-smooth. The following
holds:

1

L
∥∇f(x)−∇f(y)∥2 ≤ ⟨x− y,∇f(x)−∇f(y)⟩, ∀x,y ∈ Rn. (A.10)

Our Proposition 2.2, restated here as

Proposition A.2. Suppose function f : Rn → R is L-smooth. Then,

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
≥ 1

L
, k = 0, 1.... (A.11)

Proof. By Lemma A.1, we have

1

L
∥∇f(x⋆)−∇f(xk)∥2 ≤ ⟨x⋆ − xk,∇f(x⋆)−∇f(xk)⟩. (A.12)

Rearranging the terms concludes the proof.

A.4 PROOF OF THEOREM 3.1

Our Theorem 3.1, restated here as

Theorem A.2. Consider GD in equation A.1. While iterates not converged, we propose stepsize

α†
k = γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

, (A.13)

where γ0 is a tunable parameter; f̄0 is a guessed smallest objective value. It admits the following
exact linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 δt
)
∥x0 − x⋆∥2, (A.14)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f̄0

, (A.15)

and where ηt = arccos ⟨x⋆−xt,−∇f(xt)⟩
∥x⋆−xt∥∥∇f(xt)∥ .

Proof. Recall error characterization from equation A.3

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 = (αk)
2
∥∥∇f(xk)

∥∥2 − 2αk

〈
x⋆ − xk,−∇f(xk)

〉
. (A.16)

Substituting α†
k in equation A.13 to the right-hand side above, yields

r.h.s. =

(
γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

)2 ∥∥∇f(xk)
∥∥2 − 2γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

〈
x⋆ − xk,−∇f(xk)

〉
,

=

(
γ0 ·

f(xk)− f̄0
∥∇f(xk)∥

)2

− 2γ0 ·
f(xk)− f̄0
∥∇f(xk)∥2

〈
x⋆ − xk,−∇f(xk)

〉
,

=

(〈
x⋆ − xk,−∇f(xk)

〉
∥∇f(xk)∥

)2((
γ0 ·

f(xk)− f̄0
⟨x⋆ − xk,−∇f(xk)⟩

)2

−

2γ0 ·
f(xk)− f̄0

⟨x⋆ − xk,−∇f(xk)⟩

)
, (A.17)
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Let σk =
⟨x⋆−xk,−∇f(xk)⟩

f(xk)−f̄0
. Invoke the l.h.s. of equation A.16, we arrive at

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 =

(〈
x⋆ − xk,−∇f(xk)

〉
∥∇f(xk)∥

)2((
γ0
σk

)2

− 2 · γ0
σk

)
,

=

(〈
x⋆ − xk,−∇f(xk)

〉
∥∇f(xk)∥∥xk − x⋆∥

)2((
γ0
σk

)2

− 2 · γ0
σk

)
∥xk − x⋆∥2,

= cos2 ηk ·
((

γ0
σk

)2

− 2 · γ0
σk

)
∥xk − x⋆∥2, (A.18)

where ηk = arccos ⟨x⋆−xk,−∇f(xk)⟩
∥x⋆−xk∥∥∇f(xk)∥ . It follows that

∥xk+1 − x⋆∥2 =

(
1− γ0

σk

(
2− γ0

σk

)
cos2 ηk

)
∥xk − x⋆∥2. (A.19)

Considering all iterations t = 0, 1, 2...k gives equation A.14. The proof is now concluded.

A.5 PROOF OF PROPOSITION 3.1

Our Proposition 3.1, restated here as
Proposition A.3 (tune-free stepsize). Consider GD in equation 2.2. Suppose function f is convex,
with optimal objective value f(x⋆) known in advance. Then, any choice from below

α̃k = γ0 ·
f(xk)− f(x⋆)

∥∇f(xk)∥2
, γ0 ∈ (0, 2]. (A.20)

guarantees convergence, with an exact linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 δt
)
∥x0 − x⋆∥2, (A.21)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f(x⋆)

, (A.22)

where ηt = arccos ⟨x⋆−xt,−∇f(xt)⟩
∥x⋆−xt∥∥∇f(xt)∥ .

Proof. Given xk ̸= x⋆, the following holds:

f(x⋆) > f(xk) + ⟨x⋆ − xk,∇f(xk)⟩, (A.23)

where we exclude the case of a linear function, since it is unbounded below and is therefore trivial to
minimize. Rearranging the terms, yields

f(xk)− f(x⋆) <
〈
x⋆ − xk,−∇f(xk)

〉
(A.24)

Suppose γ0 ∈ (0, 2]. Then,

γ0 ·
f(xk)− f(x⋆)

∥∇f(xk)∥2
<

2⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2

. (A.25)

It says that the left-hand side above always lies within the feasible range, recall equation A.2. Its
convergence rate follows directly from Theorem A.2. The proof is now concluded.

A.6 PROOF OF PROPOSITION 3.2

Our Proposition 3.2, restated here as
Proposition A.4. Suppose function f : Rn → R is L-smooth. Then,

f(xk)− f(x⋆)

∥∇f(xk)∥2
≥ 1

2L
, (A.26)
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Proof. The L-smoothness assumption implies

f(y) ≤ f(x) + ⟨y − x,∇f(x)⟩+ L

2
∥y − x∥2, ∀x,y ∈ Rn. (A.27)

We may perform the following minimization:

minimize
y

f(x) + ⟨y − x,∇f(x)⟩+ L

2
∥y − x∥2, (A.28)

and obtain a minimizer
ŷ = x− 1

L
∇f(x) (A.29)

Substituting it back, yields

f(ŷ) ≤ f(x)− 1

2L
∥∇f(x)∥2, ∀x ∈ Rn. (A.30)

It follows that
f(x⋆) ≤ f(ŷ) ≤ f(xk)− 1

2L
∥∇f(xk)∥2. (A.31)

Rearranging the terms concludes the proof.

A.7 PROOF OF PROPOSITION 3.3

Our Proposition 3.3, restated here as
Proposition A.5 (optimality gap). Let function f : Rn → R be L-smooth. Then,

⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2︸ ︷︷ ︸

optimal

− f(xk)− f(x⋆)

∥∇f(xk)∥2︸ ︷︷ ︸
estimated (γ0=1)

≥ 1

2L
. (A.32)

Proof. The proof follows instantly from (Nesterov, 2018, Theorem 2.1.5)

f(x⋆) ≥ f(xk) + ⟨x⋆ − xk,∇f(xk)⟩+ 1

2L
∥∇f(x⋆)−∇f(xk)∥2. (A.33)

Dividing both sides with ∥∇f(xk)∥2 (non-zero by assumption) concludes the proof.
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