
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXACT LINEAR-RATE GRADIENT DESCENT: OPTIMAL
ADAPTIVE STEPSIZE THEORY AND PRACTICAL USE

Anonymous authors
Paper under double-blind review

ABSTRACT

Consider gradient descent iterations xk+1 = xk − αk∇f(xk). Suppose gradient
exists and ∇f(xk) ̸= 0. We propose the following closed-form stepsize choice:

α⋆
k =
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, (theoretical)

where ηk is the angle between vectors x⋆ − xk and −∇f(xk). It is universally
applicable and admits an exact linear convergence rate with factor sin2 ηk.
Moreover, if f is convex and L-smooth, then α⋆

k ≥ 1/L.
For practical use, we approximate (can be exact) the above via

α†
k = γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

, (practical use)

where γ0 is a tunable parameter; f̄0 is a guess on the smallest objective value (can
be auto. updated). Suppose f is convex and f̄0 = f(x⋆), then any choice from
γ0 ∈ (0, 2] guarantees an exact linear-rate convergence to the optimal point.
We consider a few examples. (i) An R2 quadratic program, where a well-known
ill-conditioning bottleneck is addressed, with a rate strictly better than O(1/2k).
(ii) A geometric program, where an inaccurate guess f̄0 remains powerful. (iii) A
non-convex MNIST classification problem via neural networks, where preliminary
tests show that ours admits better performance than the state-of-the-art algorithms,
particularly a tune-free version is available in some settings.

1 INTRODUCTION

The gradient descent (GD) algorithm, dated back to Cauchy in 1847, is arguably the most popular
iterative algorithm. It is often treated as the default optimizer for neural networks Rumelhart et al.
(1986); Ruder (2016); Goodfellow et al. (2016). GD’s procedure is remarkably simple: repeatedly
subtract the current iterate with its gradient. However, such a raw version suffers from a serious issue
— it almost always overshoots the minimum. To guarantee convergence, damping the gradient by a
stepsize α is necessary. How to properly choose such a stepsize is one of the most headache issues,
since a large choice would overshoot and a small one leads to slow convergence. In practice, the
stepsize (a.k.a. learning rate) is “often the single most important hyper-parameter” Bengio (2012).

To our best knowledge, in the current literature, a general convergence guarantee for GD only exists
in the convex case, and requires at least one strong assumption, the L-smoothness. Specifically, if
one can access the Lipschitz constant L, then any choice from α ∈ (0, 2/L) guarantees convergence,
with 1/L the default choice, see e.g. (Ryu & Yin, 2022, Sec. 2.4.3). Despite such a guarantee being
available, it is rarely used directly in large-scale problems, due to L is either not computable or simply
too expensive. There does exist some work that allow estimation of L, see e.g., Anil et al. (2019);
Fazlyab et al. (2019); Combettes & Pesquet (2020). However, their focus is often not regarding the
stepsize selection issue, appears related to the complication of the estimation scheme and that the
estimation error in L will propagate to the GD algorithm. In this manuscript, such an issue will be
avoided, since our result does not rely on L.

One critique of the above classical theory is that the stepsize is fixed throughout all iterations of
GD. This eliminates the possibility of some large feasible stepsize choices in the middle steps and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

consequently slows down the algorithm. A better strategy should be adaptively adjusting the stepsize
according to the current progress. Such an idea is old, at least traced back to Almeida et al. (1999).
The real issue is how to adjust the stepsize adaptively? In the literature, several outstanding heuristic
methods have been proposed, e.g., AdaGrad Duchi et al. (2011), RMSProp Tieleman & Hinton.
(2012), Adam Kingma & Ba (2015). However, an adaptive stepsize theory has not been established.
This manuscript will fill in this blank space. In the convex case, we show the feasible stepsize selection
range that guarantees convergence being (0, 2α⋆

k), with α⋆
k the optimal k-th choice. Moreover, α⋆

k is
lower bounded by 1/L, implying the new range enlarges the aforementioned classical one (0, 2/L).
Also, our optimal stepsize yields an exact linear rate with factor sin2 ηk. Let us note that if sin ηk = 0,
then GD will converge instantly, see an example in Section 4.1.2.

Remarkably, our theory also applies to a non-convex function. A notable difference is that the optimal
choice α⋆

k can be negative now, and the feasible range becomes either (2α⋆
k, 0) or (0, 2α⋆

k), depending
on the sign of α⋆

k. The negative sign is not too surprising, since if the function is locally concave, we
do need an ascent direction to pass the hill, otherwise stuck at the local minimum. This aspect shares
a similar flavour to the so-called ‘gradient descent ascent’ method for solving min-max problems, see
e.g. Lin et al. (2020); Zheng et al. (2024).

Despite our non-convex applicability, the situation is highly challenging. Unlike the convex case
where α⋆

k is lower bounded, here it can take an arbitrary value. The worst case is when α⋆
k = 0,

implying an empty selection range. This arises when x⋆ − xk ⊥ ∇f(xk), and a stepsize that
can improve the current iterate xk does not exist. On the other hand, if one can exclude such an
orthogonal case, then convergence to the global optimal point is guaranteed, see Theorem 2.1.

While our theory is powerful, it is not instantly useful in practice, due to quantity ⟨x⋆−xk,−∇f(xk)⟩
is not a priori knowledge. Experts may instantly realize that, by Taylor expansion, it is an upper
bound for f(xk)− f(x⋆) in the convex case, and the only concern is regarding f(x⋆). We show that,

(i) when f(x⋆) = 0, the simplest tune-free stepsize f(xk)/∥∇f(xk)∥2 is applicable. It is at least
1/(2L) large, see Proposition 3.2. In a special case, its two-times scaled version is optimal, see
Section 3.1.3.

(ii) when f(x⋆) not known in advance, a parameter f̄0 is introduced as an initial guess for f(x⋆). It
will be updated if some criteria violated, see details in Algorithm 1. Moreover, such a guess can be
easily picked, for example, let f̄0 = 0.1 · f(x0), where f(x0) is the initial objective value.

An outstanding benefit of our scheme is regarding the ill-conditioning issue, which is a well-known
bottleneck for the GD algorithm. This aspect has been nicely illustrated in (Boyd & Vandenberghe,
2004, Sec. 9.3.2) through an R2 example, where an exact linear rate with factor (γ − 1)2/(γ + 1)2 is
given, using an exact line search stepsize. A large γ (ill-conditioning) causes such a factor close to 1,
implying the error has almost no change as GD iterating. Ours yields a factor of (γ − 1)2/(2γ2 + 2),
which is strictly smaller than 1/2, i.e., the error is at least halved each iteration, see more details in
Section 4.1.

For notations, ∥ · ∥ denotes the Euclidean norm, induced by the inner product ⟨·, ·⟩. The uppercase
bold, lowercase bold, and not bold letters are used for matrices, vectors, and scalars, respectively.

1.1 LITERATURE: ADAPTIVE STEPSIZE

Here, we briefly discuss some developments of the stepsize adaption technique in the machine
learning field. The most popular family includes AdaGrad Duchi et al. (2011), RMSProp Tieleman &
Hinton. (2012), and Adam Kingma & Ba (2015). These approaches are strongly related to each other
and are heuristic methods that typically require tuning multiple parameters. Recently, Baydin et al.
(2018) propose to adaptively update the stepsize via a so-called ‘hyper-gradient’, which computes a
derivative over the stepsize parameter. The good news is that doing so adds very limited cost owing
to an element-wise product. The bad news is that the ‘hyper-gradient’ introduces a ‘hyper-stepsize’
which still needs tuning (but tends to be easier). Also, a theoretical convergence guarantee is not yet
available. A follow-up work by Chandra et al. (2022) addresses the tuning issue by computing an
additional ‘hyper-gradient’ on the original ‘hyper-stepsize’. This would introduce another ‘hyper-
stepsize’, and they apply the same procedure again, and so on, ad infinitum. The good news is that
each additionally introduced ‘hyper-gradient’ reduces the stepsize sensitivity, and eventually they can
easily pick an initial hyper-stepsize.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In view of these methods, we note that there is always an initial stepsize tuning issue, also referred to
as ‘the global learning rate’ selection. This issue is avoided in our approach, since all of our choices,
including the initial one, are mathematically computed.

1.2 KEY RESULTS

Below, we summarize 3 versions of our adaptive stepsize choices.

• (i) Theoretically, the k-th optimal choice

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, k = 0, 1, . . . , (1.1)

where ηk = arccos ⟨x⋆−xk,−∇f(xk)⟩
∥x⋆−xk∥∥∇f(xk)∥ . It admits an exact linear rate, with or without convexity:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 sin
2 ηt
)
∥x0 − x⋆∥2. (1.2)

• (ii) The k-th practical-use choice (general version)

α†
k = γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

, (1.3)

which admits the following exact linear rate, with or without convexity:
∥xk+1 − x⋆∥2 =

(
Πk

t=0 δt
)
∥x0 − x⋆∥2, k = 0, 1, . . . , (1.4)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f̄0

. (1.5)

• (iii) The simplest practical-use choice (tune-free)

α̃k =
f(xk)

∥∇f(xk)∥2
, (1.6)

which guarantees convergence if f is convex and f(x⋆) = 0. Empirically, it also works nicely for the
non-convex MNIST problem in some settings.

2 ADAPTIVE STEPSIZE THEORY

Consider the following problem:
minimize

x∈Rn
f(x), (2.1)

where function f : Rn → R is assumed to be everywhere differentiable. The associated gradient
descent (GD) iterates are

xk+1 = xk − αk∇f(xk), k = 0, 1, (2.2)
Throughout the rest of the paper, we assume∇f(xk) ̸= 0, unless GD already converged xk = x⋆.
This assumption is necessary, since otherwise GD yields xk+1 = xk − αk · 0 = xk, and the stepsize
selection issue becomes trivial.

2.1 SELECTION RANGE

First, we show a feasible selection range for stepsize α to guarantee convergence.
Proposition 2.1 (range). Consider GD in equation 2.2. While iterates not converged, let stepsize

αk ∈
(
2⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
, 0

)⋃(
0,

2⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2

)
, k = 0, 1, . . . (2.3)

If such αk exists ∀k. Then, convergence to the global optimal point is guaranteed.
Corollary 2.1. αk as in equation 2.3 does not exist if and only if

⟨x⋆ − xk,−∇f(xk)⟩ = 0. (2.4)
Remarks 2.1 (interpretation). In view of Corollary 2.1, it says that a feasible stepsize does not exist,
if vectors x⋆ − xk and −∇f(xk) are orthogonal (zero vector case omitted by assumption). This
is not surprising, since when orthogonality arises, by changing stepsize αk alone, the future iterate
xk+1 = xk − αk∇f(xk) cannot be any closer to x⋆ than that of xk.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 OPTIMAL CHOICE

Here, we present the optimal stepsize choice from the above feasible range. It turns out to be its
central point.
Theorem 2.1 (optimal choice). Consider GD in equation 2.2. The optimal k-th choice is given by

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, (2.5)

where ηk
def
= arccos ⟨x⋆−xk,−∇f(xk)⟩

∥x⋆−xk∥∥∇f(xk)∥ . It admits the following exact adaptive linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 sin
2 ηt
)
∥x0 − x⋆∥2, k = 0, 1, (2.6)

Remarks 2.2 (scaling invariance). GD equipped with α⋆
k in equation 2.5 is invariant under a linearly

transformed function, g(·) = ρf(·),∀ρ ̸= 0, since

xk+1 = xk − ⟨x
⋆ − xk,−ρ∇f(xk)⟩
∥ρ∇f(xk)∥2

ρ∇f(xk) = xk − α⋆
k∇f(xk). (2.7)

2.3 CONVEXITY

Suppose function f is convex. Then, much stronger guarantees and simplifications are available.
Corollary 2.2. Consider GD in equation 2.2. Suppose function f is convex. While iterates not
converged, let stepsize

αk ∈
(
0,

2⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2

)
= (0, 2α⋆

k), k = 0, 1, (2.8)

Then, the GD iterations are guaranteed to converge to the optimal point.
Remarks 2.3. Given a convex function f , relation ⟨x⋆ − xk,−∇f(xk)⟩ > 0 always holds, unless
xk = x⋆.

2.3.1 L-SMOOTH

Here, we provide some characterizations via the L-smoothness assumption.
Definition 2.1. A differentiable convex function f : Rn → R is said to be L-smooth if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rn. (2.9)
Proposition 2.2. Suppose function f : Rn → R is L-smooth. Then,

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
≥ 1

L
, k = 0, 1.... (2.10)

Corollary 2.3. The fixed stepsize selection range is a subset of our adaptive one, i.e.,(
0,

2

L

)
⊆ (0, 2α⋆

k) , k = 0, 1.... (2.11)

3 PRACTICAL USE

The above theory involves optimal point x⋆, hence not instantly useful in practice. Here, we address
it via approximation.
Theorem 3.1. Consider GD in equation 2.2. While iterates not converged, we propose stepsize

α†
k = γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

, (3.1)

where γ0 is a tunable parameter; f̄0 is a guessed smallest objective value. It admits the following
exact linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 δt
)
∥x0 − x⋆∥2, (3.2)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f̄0

, (3.3)

and where ηt = arccos ⟨x⋆−xt,−∇f(xt)⟩
∥x⋆−xt∥∥∇f(xt)∥ .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Corollary 3.1 (convergence). While GD iterates not converged, let
γ0 ∈ (2σk, 0) ∪ (0, 2σk) , k = 0, 1, (3.4)

If such γ0 exists ∀k, then

δk = 1− γ0
σk

(
2− γ0

σk

)
cos2 ηk ∈ (0, 1), ∀k, (3.5)

which guarantees convergence to the global optimal point.
Corollary 3.2. The optimal k-th choice of the tunable parameter γ0 is

γ⋆
0 = argmax

γ0

γ0
σk

(
2− γ0

σk

)
= σk. (3.6)

In this case, the rate factor

δ⋆k = 1− γ⋆
0

σk

(
2− γ⋆

0

σk

)
cos2 ηk = sin2 ηk, (3.7)

implying optimality attained (recall Theorem 2.1), i.e., exact approximation.
Remarks 3.1. In view of Corollary 3.2, the approximation is exact if one can adaptively select
γ0 = σk, ∀k. There does exist a special case where σk is a known constant, see Section 3.1.3.
However, in general, we do not know σk in advance, and our approximation hence not exact. Also,
for ease of use, we typically fix γ0 to be a constant, which is theoretically sub-optimal.

3.1 CONVEXITY

Suppose function f is convex. Then, we have stronger guarantees and a tune-free stepsize selection
scheme.
Corollary 3.3 (convergence). Suppose function f is convex. While GD iterates not converged, let

γ0 ∈ (0, 2σk) , ∀k, (3.8)

where σk =
⟨x⋆−xk,−∇f(xk)⟩

f(xk)−f̄0
. Then, the rate factor satisfies

δk = 1− γ0
σk

(
2− γ0

σk

)
cos2 ηk ∈ (0, 1), ∀k, (3.9)

which guarantees convergence.

3.1.1 TUNE-FREE CASE

Here, we require full knowledge of f(x⋆).
Proposition 3.1. Consider GD in equation 2.2. Suppose function f is convex, with optimal objective
value f(x⋆) known in advance. Then, stepsize

α̃k = γ0 ·
f(xk)− f(x⋆)

∥∇f(xk)∥2
, γ0 ∈ (0, 2], (3.10)

guarantees convergence, with an exact linear rate:
∥xk+1 − x⋆∥2 =

(
Πk

t=0 δt
)
∥x0 − x⋆∥2, (3.11)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f(x⋆)

, (3.12)

where ηt = arccos ⟨x⋆−xt,−∇f(xt)⟩
∥x⋆−xt∥∥∇f(xt)∥ .

Remarks 3.2. The above tune-free case can happen in practice. A typical example is when f(x⋆) = 0,
arising in (i) solving a huge-scale linear system Ax = b, where A−1 is too expensive to calculate
directly; (ii) f is a loss function with zero-loss at the optimal point, as in many classification problems.
Corollary 3.4. Suppose f is a non-linear convex function. Then, when xk ̸= x⋆, we have

γ⋆
0 = σk =

〈
x⋆ − xk,−∇f(xk)

〉
f(xk)− f(x⋆)

> 1, ∀k. (3.13)

Remarks 3.3. equation 3.13 follows instantly from Taylor expansion. It implies that we should choose
γ0 > 1 in our convex tune-free case. However, it does not tell exactly how much larger than 1, our
default choice is therefore conservatively set to γ0 = 1. Additionally, we assume f being non-linear,
since minimizing a linear or affine function is trivial (unbounded below).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1.2 L-SMOOTH

Here, we provide some characterizations via the L-smooth assumption.
Proposition 3.2. Suppose function f : Rn → R is L-smooth. Then,

f(xk)− f(x⋆)

∥∇f(xk)∥2
≥ 1

2L
, (3.14)

Proposition 3.3 (optimality gap). Let function f : Rn → R be L-smooth. Then,

⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2︸ ︷︷ ︸

optimal

− f(xk)− f(x⋆)

∥∇f(xk)∥2︸ ︷︷ ︸
estimated (γ0=1)

≥ 1

2L
. (3.15)

Remarks 3.4. The positive gap from Proposition 3.3 with γ0 = 1 is not surprising, since we already
seen from Corollary 3.4 that the optimal parameter γ⋆

0 is strictly larger than 1 (and γ⋆
0 attains optimality

by Corollary 3.2). The result here is strengthened, with the gap characterized by L, instead of only
being positive.

3.1.3 PRACTICAL EXACT APPROXIMATION

Here, we show special cases that our practical-use stepsize choice attains the theoretical optimum, by
simply selecting γ0 = 2. Consider

minimize
x∈Rn

1

2
∥Ax− b∥2. (3.16)

where x ∈ Rn, b ∈ Rm, A ∈ Rm×n.

(i) Suppose A is a full-rank square matrix. We have x⋆ = A−1b. It follows that,

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
⟨A−1b− xk,−AT (Axk − b)⟩

∥∇f(xk)∥2
=
∥Axk − b∥2

∥∇f(xk)∥2
=

2 · f(xk)

∥∇f(xk)∥2
,

(3.17)
corresponding to our practical-use stepsize with γ0 = 2 and f(x⋆) = 0, recall equation 3.10.

(ii) Suppose b = 0. We have x⋆ = 0. It follows that,

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
⟨0− xk,−AT (Axk − 0)⟩

∥∇f(xk)∥2
=
∥Axk∥2

∥∇f(xk)∥2
=

2 · f(xk)

∥∇f(xk)∥2
,

(3.18)
which is similar to the above case.

3.2 GENERAL PRACTICAL USE ALGORITHM

Here, we consider f̄0 being an inaccurate guess. It will be updated if certain criteria violated.

Algorithm 1 Linear-rate gradient decent (auto correction version)

Input: initialization x0; iteration number counter k = 0;
Input: guessed f̄0, tunable parameter γ0;
Input: shrinking factors τ1, τ2 ∈ (0, 1), threshold T .

1: while iterates not converged do
2: k ← k + 1

3: αk ← γ0 · f(xk)−f̄0
∥∇f(xk)∥2 ,

4: xk+1 ← xk − αk∇f(xk)
5: Correction:

If f(xk+1) > T · f(xk), set γ0 ← τ1 · γ0 and xk+1 ← xk.
If αk ≤ 0, set f̄0 ← τ2 · f̄0.

6: end while
Output: xk+1

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXAMPLES

In this section, through some specific examples, we demonstrate the power of our adaptive stepsize.

4.1 R2 QUADRATIC PROGRAM

Here, we consider a simple example from (Boyd & Vandenberghe, 2004, Sec. 9.3.2):

minimize
x1,x2

1

2

(
x2
1 + γx2

2

)
, (4.1)

where γ > 0, x = [x1, x2]
T . We employ initialization x0 = [γ, 1]T . For this problem, the Lipschitz

constant L and the condition number both equal to γ, and the conditioning state is fully tractable.

Below, we compare our approach with the exact line search method, which finds a stepsize choice via

αk = argmin
αk>0

f(xk − αk∇f(xk)). (4.2)

• Following from (Boyd & Vandenberghe, 2004, Sec. 9.3.2), the k-th iterate with an exact line search
stepsize is given by

xk
1 = γ

(
γ − 1

γ + 1

)k

, xk
2 =

(
−γ − 1

γ + 1

)k

, (4.3)

with an exact convergence rate

∥xk − x⋆∥2

∥x0 − x⋆∥2
=

(
γ − 1

γ + 1

)2k

. (4.4)

If γ is large (ill-conditioning), the above factor is close to 1, i.e., ∥xk−x⋆∥2 is similar to ∥x0−x⋆∥2.
That said, the ground-truth error has little changes after k iterations.

• Our optimal choice α⋆
k yields

xk
1 = γk2−k1+1

(
γ − 1

2

)k1
(

γ − 1

γ2 + 1

)k2

,

xk
2 = (−1)k1+k2

(
γ − 1

2

)k1
(

γ − 1

γ2 + 1

)k2

, (4.5)

where k1
def
= ⌊k+1

2 ⌋, k2
def
= ⌊k2 ⌋, and where ⌊·⌋ denotes the floor operation (the closest smaller integer).

Ours admits the following convergence rate factor:

∥xk − x⋆∥2

∥x0 − x⋆∥2
=

γ2(k2−k1+1) + 1

γ2 + 1

(
γ − 1

2

)2k1
(

γ − 1

γ2 + 1

)2k2

=

(
1

2

)k
(

γ − 1√
γ2 + 1

)2k

. (4.6)

Since γ > 0, we have (γ − 1)/
√
γ2 + 1 < 1. Our factor is therefore strictly smaller than 1/2k.

-10 -5 0 5 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

exact line search

ours

x
(2)x

(2)
x

(0)

x
(1)

x
(1)

(a) trajectory, γ = 10.

10 20 30 40 50 60 70 80 90 100

Iteration number k

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

exact line search

ours

(b) convergence rate, γ = 10.

10 20 30 40 50 60 70 80 90 100

Iteration number k

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

exact line search

ours

(c) convergence rate, γ = 100.

Figure 1: exact line search vs. our stepsize, with conditioning controlled by γ.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1.1 STRICT BETTER PERFORMANCE

Here, we show that our rate is strictly better than the one for exact line search, except when γ = 1
both methods converge in exactly one iteration.

To this end, suppose γ ̸= 1. Divide our rate factor by that of the exact line search, we arrive at

δ
(k)
ours

δ
(k)
line-search

=

(
1

2

)k
(

γ − 1√
γ2 + 1

)2k (
γ + 1

γ − 1

)2k

=

(
γ2 + 2γ + 1

2γ2 + 2

)k

< 1, (4.7)

where the last inequality follows from the denominator being larger when γ ̸= 1, since
2γ2 + 2− (γ2 + 2γ + 1) = γ2 − 2γ + 1 = (γ − 1)2 > 0. (4.8)

4.1.2 INSTANT CONVERGENCE

Here, we perform an additional test on our rate factor sin2 ηk. An observation is that if sin ηk = 0, GD
must converge instantly. In the current example, we can easily verify it using a sparse initialization,
say (x0

1, x
0
2) = (50, 0). Indeed, 1-step instant convergence is observed.

0 5 10 15 20 25 30 35 40 45 50
-5

-4

-3

-2

-1

0

1

2

3

4

5

ours, 1 step

(a) 1-step convergence.

0 5 10 15 20 25 30 35 40 45 50
-5

-4

-3

-2

-1

0

1

2

3

4

5

stepsize 1/L

(b) many-steps convergence.

Figure 2: zero angle case, γ = 10.

4.2 GEOMETRIC PROGRAM

Here, we consider an unconstrained geometric program from (Boyd & Vandenberghe, 2004, Sec.
9.3), and our Algorithm 1 will apply. Consider

minimize
x

log

(
m∑
i=1

exp
(
aT
i Tx+ bi

))
, (4.9)

where x ∈ Rn, ai ∈ Rn, bi ∈ R, and T = diag
([

1, γ
1
n , γ

2
n , ..., γ

n−1
n

])
is a diagonal matrix that

promotes ill-conditioning.

Below, we compare our Algorithm 1 with (i) a fine-tuned fixed stepsize; (ii) a fine-tuned Nesterov’s
accelerated gradient descent (N-AGD) Nesterov (1983). The tuning is performed on a fine grid with
a fixed random number generator, hence shows roughly their best performances. Our parameters are
very roughly picked as γ0 = 1, τ1 = τ2 = 0.5, T = 1, f̄0 = 0.1 · f(x0) and no further tuning.

50 100 150 200 250 300 350 400 450 500

Iteration number k

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

(a) ill-conditioning, γ = 10.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration number k

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

(b) ill-conditioning, γ = 100.

Figure 3: Convergence rate comparison, data size m = 50, n = 10.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Remarks 4.1 (worst-case acceleration). We observe that N-AGD provides almost no acceleration in
the ill-conditioning setting here. Let us note that its well-known O(1/k2) rate is only guaranteed in
a worst-case sense and does not necessarily accelerate in practice, see a discussion in (Ryu & Yin,
2022, Sec. 12.3).
Remarks 4.2. Due to rough choice of parameters, our guessed f̄0 = 0.1 · f(x0) admits a significant
performance gap compared to an ideal tune-free case f̄0 = f(x⋆) (not a priori knowledge). How to
improve such a gap is left for future work.

4.3 NON-CONVEX MNIST

Here, we consider the MNIST classification problem via a 2-layer neural network, with ReLu
activation, 200 hidden units, and softmax loss function. Following the literature, we consider a
mini-batch setting. We compare ours with the state-of-the-art algorithms, Nesterov’s accelerated
gradient descent (N-AGD) Nesterov (1983) and Adaptive moment estimation (Adam) Kingma & Ba
(2015).

4.3.1 TUNE-FREE CASE

We start with a special case that stepsize αk = f(xk)/∥∇f(xk)∥2 alone works nicely. We consider
minimizing the softmax loss only (no regularization) under a relatively large mini-batch size.

2 4 6 8 10 12 14

0.7

0.75

0.8

0.85

0.9

0.95

ours

Adam

N-AGD

(a) Training accuracy.

2 4 6 8 10 12 14

0.75

0.8

0.85

0.9

0.95

ours

Adam

N-AGD

(b) Validation accuracy.

Figure 4: Our tune-free case, with mini-batch size 1024.

Remarks 4.3. Fig 4a and Fig 4b record the training and validation accuracies, respectively. We
observe that they share a highly similar trend (but not the same). Ours exhibits consistent advantages
over the others.
Remarks 4.4 (parameter details). N-AGD’s stepsize is fined-tuned to 1.5 × 10−5. Adam has too
many hyper-parameters, and is only roughly tuned, with α = 10−3, β1 = 0.8, β2 = 0.899, ϵ = 10−8

(the suggested default has a worse performance in our setting).

4.3.2 GENERAL CASE

Here, we consider a general case, minimizing softmax loss function with l2-norm regularization (on
the weights). We adopt a commonly used mini-batch size of 128. Our Algorithm 1 is applied, with
roughly picked parameters f̄0 = 0, γ0 = 1, T = 5, τ1 = 0.25 (τ2 omitted).

2 4 6 8 10 12 14

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ours

Adam

N-AGD

(a) Training accuracy.

2 4 6 8 10 12 14

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

ours

Adam

N-AGD

(b) Validation accuracy.

Figure 5: General case with l2-norm regularization; mini-batch size 128.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Remarks 4.5. Ours only has advantage in the validation stage, where consistently higher accuracy
is observed. Luckily, the validation accuracy is all we need, hence ours remains a better choice.
Additionally, we suspect our advantage can be enlarged if more careful parameter choices are
employed, which is left for future research.

5 CONCLUSION

In this work, we established a general theory on the adaptive stepsize selection issue, including
feasible selection range, convergence rate, and optimal choice. Specifically, in the convex case, we
show an adaptive range (0, 2α⋆

k) that guarantees convergence, which enlarges the classical fixed
one (0, 2/L). Its centre α⋆

k is the optimal choice, admitting an exact linear rate with factor sin2 ηk.
Our theory also applies to a non-convex function, except the situation is much more challenging.
The optimal stepsize can now be negative, and the feasible range set could be empty when some
orthogonality arises. On the other hand, if a feasible stepsize choice always exists, then convergence
to the global optimal point is guaranteed.

Despite the great power of our theory, it involves some optimal point information. To enable its
practical use, we propose an approximation strategy. Such an approximation can be exact in a special
practical scenario but in general sub-optimal. It also admits an exact linear convergence rate, and we
numerically test its power through several examples. Outstandingly, a tune-free version works nicely
for the non-convex MNIST problem via neural networks.

6 REPRODUCIBILITY STATEMENT

All figures in this manuscript can be reproduced via the MATLAB codes submitted as supplementary
material.

REFERENCES

Luís B. Almeida, Thibault Langlois, José D. Amaral, and Alexander Plakhov. Parameter adaptation in
stochastic optimization, pp. 111–134. Cambridge University Press, USA, 1999. ISBN 0521652634.

Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In
Proceedings of the 36th International Conference on Machine Learning, pp. 291–301, 2019.

Atilim Gunes Baydin, Robert Cornish, David Martínez Rubio, Mark Schmidt, and Frank D. Wood.
Online learning rate adaptation with hypergradient descent. In Sixth International Conference on
Learning Representations, ICLR, 2018.

Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural Networks: Tricks of the Trade: Second Edition, pp. 437–478. Springer, 2012.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and ERIK MEIJER. Gradient descent: The
ultimate optimizer. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 8214–8225. Curran
Associates, Inc., 2022.

Patrick L. Combettes and Jean-Christophe Pesquet. Lipschitz certificates for layered network
structures driven by averaged activation operators, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 2015.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
6083–6093. PMLR, 13–18 Jul 2020.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

Yurii Nesterov. Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2nd
edition, 2018. ISBN 3319915770.

Sebastian Ruder. An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747,
2016.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. In Nature, 1986.

Ernest K Ryu and Wotao Yin. Large-scale convex optimization: algorithms & analyses via monotone
operators. Cambridge University Press, 2022.

T. Tieleman and G. Hinton. Lecture 6.5 – RMSProp: Divide the gradient by a running average of its
recent magnitude. In COURSERA: Neural Networks for Machine Learning, 2012.

Taoli Zheng, Linglingzhi Zhu, Anthony Man-Cho So, José Blanchet, and Jiajin Li. Universal gradient
descent ascent method for nonconvex-nonconcave minimax optimization. In Proceedings of the
37th International Conference on Neural Information Processing Systems, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

The gradient descent (GD) iterates are

xk+1 = xk − αk∇f(xk), k = 0, 1, (A.1)

We assume ∇f(xk) ̸= 0, unless xk = x⋆. This assumption is necessary, since otherwise stepsize
selection becomes trivial.

A.1 PROOF OF PROPOSITION 2.1

Our Proposition 2.1, restated here as
Proposition A.1 (range). Consider GD in equation A.1. While iterates not converged, let stepsize

αk ∈
(
2⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
, 0

)⋃(
0,

2⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2

)
, k = 0, 1, . . . (A.2)

If such αk exists ∀k. Then, convergence to the global optimal point is guaranteed.

Proof. Let us note that

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 = −
∥∥xk+1 − xk

∥∥2 − 2⟨x⋆ − xk+1,xk+1 − xk⟩,
= − (αk)

2∥∇f(xk)∥2 − 2
〈
x⋆ − xk + αk∇f(xk),−αk∇f(xk)

〉
,

= α2
k

∥∥∇f(xk)
∥∥2 − 2

〈
x⋆ − xk,−αk∇f(xk)

〉
,

= αk

(
αk

∥∥∇f(xk)
∥∥2 + 2

〈
x⋆ − xk,−∇f(xk)

〉)
. (A.3)

All we need is the above right-hand side being negative, implying the ground-truth error is strictly
decreasing, hence guarantees convergence. This yields equation A.2, which involves one empty set,
depends on the sign of the term ⟨x⋆ − xk,−∇f(xk)⟩. The proof is now concluded.

A.2 PROOF OF THEOREM 2.1

Our Theorem 2.1, restated here as
Theorem A.1 (optimal choice). Consider GD in equation A.1. The optimal k-th choice is given by

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, (A.4)

where ηk = arccos ⟨x⋆−xk,−∇f(xk)⟩
∥x⋆−xk∥∥∇f(xk)∥ . It admits the following exact adaptive linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 sin
2 ηt
)
∥x0 − x⋆∥2, k = 0, 1, (A.5)

Proof. Following from equation A.3, we would like its right-hand side term as negative as possible,
which leads to

minimize
αk

(αk)
2
∥∥∇f(xk)

∥∥2 − 2αk

〈
x⋆ − xk,−∇f(xk)

〉
. (A.6)

Its solution is

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
=
∥x⋆ − xk∥
∥∇f(xk)∥

cos ηk, (A.7)

where ηk = arccos ⟨x⋆−xk,−∇f(xk)⟩
∥x⋆−xk∥∥∇f(xk)∥ . Substituting it back to equation A.6, we obtain the minimal

objective value being

(α⋆
k)

2
∥∥∇f(xk)

∥∥2 − 2α⋆
k

〈
x⋆ − xk,−∇f(xk)

〉
= −∥x⋆ − xk∥2 cos2 ηk. (A.8)

At last, by equation A.3, we obtain

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 = −∥x⋆ − xk∥2 cos2 ηk,
⇐⇒ ∥xk+1 − x⋆∥2 = sin2 ηk∥x⋆ − xk∥2. (A.9)

The proof is concluded by considering all iterations, from 0 to the current k-th one.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.3 PROOF OF PROPOSITION 2.2

Lemma A.1 (Baillon-Haddad Theorem). Let function f : Rn → R be L-smooth. The following
holds:

1

L
∥∇f(x)−∇f(y)∥2 ≤ ⟨x− y,∇f(x)−∇f(y)⟩, ∀x,y ∈ Rn. (A.10)

Our Proposition 2.2, restated here as

Proposition A.2. Suppose function f : Rn → R is L-smooth. Then,

α⋆
k =
⟨x⋆ − xk,−∇f(xk)⟩

∥∇f(xk)∥2
≥ 1

L
, k = 0, 1.... (A.11)

Proof. By Lemma A.1, we have

1

L
∥∇f(x⋆)−∇f(xk)∥2 ≤ ⟨x⋆ − xk,∇f(x⋆)−∇f(xk)⟩. (A.12)

Rearranging the terms concludes the proof.

A.4 PROOF OF THEOREM 3.1

Our Theorem 3.1, restated here as

Theorem A.2. Consider GD in equation A.1. While iterates not converged, we propose stepsize

α†
k = γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

, (A.13)

where γ0 is a tunable parameter; f̄0 is a guessed smallest objective value. It admits the following
exact linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 δt
)
∥x0 − x⋆∥2, (A.14)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f̄0

, (A.15)

and where ηt = arccos ⟨x⋆−xt,−∇f(xt)⟩
∥x⋆−xt∥∥∇f(xt)∥ .

Proof. Recall error characterization from equation A.3

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 = (αk)
2
∥∥∇f(xk)

∥∥2 − 2αk

〈
x⋆ − xk,−∇f(xk)

〉
. (A.16)

Substituting α†
k in equation A.13 to the right-hand side above, yields

r.h.s. =

(
γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

)2 ∥∥∇f(xk)
∥∥2 − 2γ0 ·

f(xk)− f̄0
∥∇f(xk)∥2

〈
x⋆ − xk,−∇f(xk)

〉
,

=

(
γ0 ·

f(xk)− f̄0
∥∇f(xk)∥

)2

− 2γ0 ·
f(xk)− f̄0
∥∇f(xk)∥2

〈
x⋆ − xk,−∇f(xk)

〉
,

=

(〈
x⋆ − xk,−∇f(xk)

〉
∥∇f(xk)∥

)2((
γ0 ·

f(xk)− f̄0
⟨x⋆ − xk,−∇f(xk)⟩

)2

−

2γ0 ·
f(xk)− f̄0

⟨x⋆ − xk,−∇f(xk)⟩

)
, (A.17)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Let σk =
⟨x⋆−xk,−∇f(xk)⟩

f(xk)−f̄0
. Invoke the l.h.s. of equation A.16, we arrive at

∥xk+1 − x⋆∥2 − ∥xk − x⋆∥2 =

(〈
x⋆ − xk,−∇f(xk)

〉
∥∇f(xk)∥

)2((
γ0
σk

)2

− 2 · γ0
σk

)
,

=

(〈
x⋆ − xk,−∇f(xk)

〉
∥∇f(xk)∥∥xk − x⋆∥

)2((
γ0
σk

)2

− 2 · γ0
σk

)
∥xk − x⋆∥2,

= cos2 ηk ·
((

γ0
σk

)2

− 2 · γ0
σk

)
∥xk − x⋆∥2, (A.18)

where ηk = arccos ⟨x⋆−xk,−∇f(xk)⟩
∥x⋆−xk∥∥∇f(xk)∥ . It follows that

∥xk+1 − x⋆∥2 =

(
1− γ0

σk

(
2− γ0

σk

)
cos2 ηk

)
∥xk − x⋆∥2. (A.19)

Considering all iterations t = 0, 1, 2...k gives equation A.14. The proof is now concluded.

A.5 PROOF OF PROPOSITION 3.1

Our Proposition 3.1, restated here as
Proposition A.3 (tune-free stepsize). Consider GD in equation 2.2. Suppose function f is convex,
with optimal objective value f(x⋆) known in advance. Then, any choice from below

α̃k = γ0 ·
f(xk)− f(x⋆)

∥∇f(xk)∥2
, γ0 ∈ (0, 2]. (A.20)

guarantees convergence, with an exact linear rate:

∥xk+1 − x⋆∥2 =
(
Πk

t=0 δt
)
∥x0 − x⋆∥2, (A.21)

where

δt = 1− γ0
σt

(
2− γ0

σt

)
cos2 ηt, σt =

⟨x⋆ − xt,−∇f(xt)⟩
f(xt)− f(x⋆)

, (A.22)

where ηt = arccos ⟨x⋆−xt,−∇f(xt)⟩
∥x⋆−xt∥∥∇f(xt)∥ .

Proof. Given xk ̸= x⋆, the following holds:

f(x⋆) > f(xk) + ⟨x⋆ − xk,∇f(xk)⟩, (A.23)

where we exclude the case of a linear function, since it is unbounded below and is therefore trivial to
minimize. Rearranging the terms, yields

f(xk)− f(x⋆) <
〈
x⋆ − xk,−∇f(xk)

〉
(A.24)

Suppose γ0 ∈ (0, 2]. Then,

γ0 ·
f(xk)− f(x⋆)

∥∇f(xk)∥2
<

2⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2

. (A.25)

It says that the left-hand side above always lies within the feasible range, recall equation A.2. Its
convergence rate follows directly from Theorem A.2. The proof is now concluded.

A.6 PROOF OF PROPOSITION 3.2

Our Proposition 3.2, restated here as
Proposition A.4. Suppose function f : Rn → R is L-smooth. Then,

f(xk)− f(x⋆)

∥∇f(xk)∥2
≥ 1

2L
, (A.26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. The L-smoothness assumption implies

f(y) ≤ f(x) + ⟨y − x,∇f(x)⟩+ L

2
∥y − x∥2, ∀x,y ∈ Rn. (A.27)

We may perform the following minimization:

minimize
y

f(x) + ⟨y − x,∇f(x)⟩+ L

2
∥y − x∥2, (A.28)

and obtain a minimizer
ŷ = x− 1

L
∇f(x) (A.29)

Substituting it back, yields

f(ŷ) ≤ f(x)− 1

2L
∥∇f(x)∥2, ∀x ∈ Rn. (A.30)

It follows that
f(x⋆) ≤ f(ŷ) ≤ f(xk)− 1

2L
∥∇f(xk)∥2. (A.31)

Rearranging the terms concludes the proof.

A.7 PROOF OF PROPOSITION 3.3

Our Proposition 3.3, restated here as
Proposition A.5 (optimality gap). Let function f : Rn → R be L-smooth. Then,

⟨x⋆ − xk,−∇f(xk)⟩
∥∇f(xk)∥2︸ ︷︷ ︸

optimal

− f(xk)− f(x⋆)

∥∇f(xk)∥2︸ ︷︷ ︸
estimated (γ0=1)

≥ 1

2L
. (A.32)

Proof. The proof follows instantly from (Nesterov, 2018, Theorem 2.1.5)

f(x⋆) ≥ f(xk) + ⟨x⋆ − xk,∇f(xk)⟩+ 1

2L
∥∇f(x⋆)−∇f(xk)∥2. (A.33)

Dividing both sides with ∥∇f(xk)∥2 (non-zero by assumption) concludes the proof.

15

	Introduction
	literature: adaptive stepsize
	key results

	Adaptive stepsize theory
	selection range
	optimal choice
	convexity
	L-smooth

	Practical use
	convexity
	tune-free case
	 L -smooth
	practical exact approximation

	general practical use algorithm

	Examples
	 R2 quadratic program
	strict better performance
	instant convergence

	geometric program
	Non-convex MNIST
	tune-free case
	general case

	Conclusion
	Reproducibility Statement
	Appendix
	proof of Proposition 2.1
	proof of Theorem 2.1
	proof of Proposition 2.2
	proof of Theorem 3.1
	proof of Proposition 3.1
	proof of Proposition 3.2
	proof of Proposition 3.3

