EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Yuhui Li'? Fangyun Wei® Chao Zhang' Hongyang Zhang >*

HEN EAGLE HEE Medusa HEl |ookahead 7 Speculative sampling DistillSpec Vanilla
3.5
3.07x 3.03x 3.01x
3.0
2.5
s
320
®
215
[%2]

N/A 1.00x N/A 1.00x

1.0
0.5
0.0 -] *) 3 -} \°) \>3
1 3) 1 3 10
qieor? Jeur? » Jieur? K M—‘d\a‘ ’L’C“a‘ > 7:013‘
\,\}N\ L\,a‘“|x L\,a"\h

Models

Figure 1: Speedup ratio of Vicuna and LLaMA2-Chat inference latency on the MT-bench for greedy (temperature=0)
settings. Speedup ratio of Medusa and Lookahead are copied from their original technical reports. With speculative sampling,
there is a lack of suitable draft models to accelerate the 7B model. Employing a 7B model as the draft model for a 13B
model results in slow speeds due to the high overhead of the 7B model, rendering it less efficient than vanilla autoregressive
decoding. These scenarios are marked as N/A. In this paper, we only compare with speculative sampling based methods that
do not need to finetune the original LLMs, ensuring the output text distribution remains constant.

Abstract

Autoregressive decoding makes the inference of
Large Language Models (LLMs) time-consuming.
In this paper, we reconsider speculative sampling
and derive two key observations. Firstly, au-
toregression at the feature (second-to-top-layer)
level is more straightforward than at the token
level. Secondly, the inherent uncertainty in fea-
ture (second-to-top-layer) level autoregression
constrains its performance. Based on these in-
sights, we introduce EAGLE (Extrapolation Algo-
rithm for Greater Language-model Efficiency),
a simple yet highly efficient speculative sam-
pling framework. By incorporating a token se-
quence advanced by one time step, EAGLE ef-
fectively resolves the uncertainty, enabling pre-
cise second-to-top-layer feature prediction with

minimal overhead. We conducted comprehensive
evaluations of EAGLE, including all models from
the Vicuna and LLaMA2-Chat series, the MoE
model Mixtral 8x7B Instruct, and tasks in dia-
logue, code generation, mathematical reasoning,
and instruction following. For LLaMA?2-Chat
70B, EAGLE achieved a latency speedup ratio of
2.7x-3.5x, doubled throughput, while maintain-
ing the distribution of the generated text. The
code is available at https://github.com/
SafeAILab/EAGLE.

1. Introduction

Autoregressive decoding, the de facto standard for large
language models (LLMs), generates tokens sequentially,
leading to slow and costly generation. Speculative sampling

"Peking University University of Waterloo *Microsoft Re- (Leviathan et al., 2023; Chen et al., 2023a) based methods

search “Vector Institute. Correspondence to: Hongyang Zhang address this by dividing the process into a low-cost drafting
<hongyang.zhang @uwaterloo.ca>.

stage and a parallelized verification stage over the drafted

Proceedings of the 41°' International Conference on Machine t(')kens, allowing for multiple tokens to be validated lp a
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by ~ single LLM pass. These approaches accelerate generation
the author(s). by producing multiple tokens per pass. More importantly,

https://github.com/SafeAILab/EAGLE
https://github.com/SafeAILab/EAGLE

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

EEm EAGLE Vanilla

mEm Speculative sampling

DistillSpec
2.68x

2.67x
+

2.32x 2.40x 2.22x

1° 439 339 1 439 109
G e T eun® p2-C° g Cre g et
\,\—a\‘\ \,\,3\'\ i \,\,3"\ R
Models

Figure 2: Speedup ratio on the MT-bench for non-greedy
(temperature=1) settings. Lookahead is confined to greedy
decoding, and the non-greedy generation of Medusa does
not guarantee lossless performance. Therefore, EAGLE is
not compared with these methods.

the verification stage ensures that the text distribution aligns
precisely with the decoding results of the original LLM,
maintaining the integrity of the generated content.

Applying speculative sampling hinges on finding a draft
model that mirrors the original LLM’s functionality but with
reduced latency, often involving a lower-parameter version
from the same LLM series. For instance, in the LLaMA?2
(Touvron et al., 2023) series which includes models with
7B, 13B, and 70B parameters, using the 7B model as a draft
model of the 70B model is valid, while finding a suitable
draft model for the smallest 7B variant is tricky. An alterna-
tive could be to use TinyLLaMA (Zhang et al., 2024), but it
is not feasible for instruct-tuned models due to the inconsis-
tency in instruction templates between LLaMA2-Chat and
TinyLLaMA-Chat. Despite the 7B model’s potential as a
draft model, its high overhead diminishes acceleration gains.
Training a new, appropriately sized draft model specifically
for speculative sampling is not an ideal solution either due
to the high cost: TinyLLaMA is trained on 3,000B tokens,
whereas EAGLE is trained on 2-4B tokens.

The key to enhancing acceleration in speculative sampling
lies in reducing the time overhead and improving the ac-
ceptance rate of the draft by the original LLM (Chen et al.,
2023b; Xia et al., 2023; Santilli et al., 2023). Numerous
approaches focus on reducing the overhead of the drafting
phase. Lookahead (Fu et al., 2023) employs n-gram and
Jacobi iteration, while Medusa (Cai et al., 2023) utilizes
a set of MLPs that predict tokens based on the second-
to-top-layer feature of the original LLM. These strategies
significantly decrease the latency in generating drafts, lead-
ing to improved acceleration. However, their effectiveness
is limited by the lower accuracy of the resulting drafts, with
Medusa achieving an accuracy of about 0.6, and Lookahead
even lower. In contrast, our method attains an accuracy of
approximately 0.8.

To overcome these limitations, we introduce EAGLE (Ex-
trapolation Algorithm for Greater Language-model Effi-
ciency), an efficient speculative sampling method, grounded
in the following two observations.

Firstly, autoregression at the feature level is simpler
than at the token level. In this paper, “features” refer to
the second-to-top-layer features of the original LLM, lo-
cated before the LM head. Compared to token sequences,
which are simple transformations of natural language, fea-
ture sequences exhibit more regularity. Autoregressively
processing at the feature level and then deriving tokens using
the LM head of the original LLM yields better results than
directly autoregressively predicting tokens. As illustrated in
Figure 3, autoregressively predicting features yields better
performance, demonstrated by a higher speedup ratio of
1.9x compared to 1.5x.

Secondly, the uncertainty inherent in the sampling pro-
cess significantly constrains the performance of predict-
ing the next feature. In text generation, the target LLM
predicts the distribution of tokens and samples accordingly,
introducing randomness. Features, being high-dimensional
and continuous, cannot be treated similarly. As depicted in
Figure 4, sampling different tokens like “am” or “always”
leads to distinct feature sequences, introducing ambiguity
into the feature-level autoregression. Medusa faces a simi-
lar issue in predicting spaced tokens, where it is uncertain
whether the true target for the input f; should be p,,, or
Dalways- 10 address this issue, EAGLE inputs the token
sequence from one time step ahead, which includes the
sampling outcomes, into the draft model. In the example il-
lustrated in Figure 4, this involves predicting fgjways based
on fr and t4jways, and predicting f,,, based on fr and t,,.
As illustrated in Figure 3, by addressing the uncertainty, the
speedup ratio further increases from 1.9x to 2.8x.

—— feature&shifted-token token —— feature

4
Epoch Epoch

Figure 3: Accuracy and speedup ratio of draft models based
on tokens, features and feature&shifted-token at tempera-
ture=0, tested on MT-bench with Vicuna 7B as the original
LLM. Feature&shifted-token refers to using a feature se-
quence and a token sequence advanced by one time step as
inputs.

We conducted experiments across dialogue, code gener-
ation, mathematical reasoning, and instruction following
tasks using the MT-bench, HumanEval, GSMS8K, and Al-
paca datasets, respectively. Tested LLMs included all mod-
els from the Vicuna and LLaMA2-Chat series, along with

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Palways p1 Pam
jmmm p(begin)=0.8 mm p(am)=0.6 m plexcited)=0.3
B p(look)=0.2 B p(always)=0.4 jmm p(ready)=0.7
4 . 4 N 4
falw4ays szywrp’ling fi sarﬁpli\ng fa;“
o C 3 b

Figure 4: Uncertainty in feature sequences. The next fea-
ture following f; is contingent on the sampling outcome
and cannot be determined solely based on f;, where both
“always” and “am” are possible to follow the token “I”” and
lead to two branches.

Mixtral 8x7B Instruct. For LLaMA2-Chat 70B, EAGLE
achieved a speedup ratio of 2.7x-3.5x, doubled through-
put, and theoretically guaranteed the preservation of the
generated text’s distribution. Figure 1 and 2 illustrates the
performance of EAGLE on the MT-bench (Zheng et al.,
2023), a highly realistic benchmark simulating actual ap-
plications and real-world scenarios, including multi-turn
instructions akin to dialogues with ChatGPT. We have cho-
sen to utilize this benchmark as it has been employed by the
current state-of-the-art, including Lookahead and Medusa,
to demonstrate their speedup ratios. This choice facilitates
a fair and direct comparison between our approach and
these methods. Compared to the recently proposed specula-
tive sampling-based frameworks, Lookahead and Medusa,
EAGLE achieves 1.7x-2.1x and 1.5x-1.6x speedups, respec-
tively. EAGLE operates in parallel with other acceleration
or throughput-improving methods, such as quantization,
compilation, etc. Combining EAGLE with these techniques
could further reduce the operational costs of LLM systems.
For example, with gpt-fast (PyTorch Labs, 2023), EAGLE
accelerates LLaMA2-Chat 7B decoding to 160.4 tokens/s
on a single RTX 3090 GPU.

EAGLE boasts low training costs. For the LLaMA2-Chat
70B model, EAGLE trains a decoder layer with fewer than
1B parameters using no more than 70k dialogues from the
ShareGPT dataset. The training is completed in 1-2 days on
4x A100 (40G) GPUs. The training of EAGLE on 7B, 13B
and 33B models can even be conducted on a RTX 3090 node
in 1-2 days. In practical applications, EAGLE requires only
a single training session to provide acceleration for each
query. As the number of queries increases, the amortized
training cost of EAGLE becomes negligible.

Beyond performance, EAGLE offers additional advantages:

¢ Generality: EAGLE is applicable to any autoregres-
sive LLMs (at least in principle). We have applied
EAGLE to LLaMA2-Chat (7B, 13B, 70B), Vicuna
(7B, 13B, 33B) and Mixtral 8x7B Instruct in a zero-
shot way on the MT-bench, GSM8K, HumanEval and
alpaca datasets. EAGLE adheres to the commonly

used zero-shot/few-shot settings within the LLM com-
munity. All experiments employ the same weights,
trained exclusively on the ShareGPT dataset, without
any additional training on the evaluation datasets. The
method adds only a lightweight plug-in (a single trans-
former decoder layer) to the LLM, which can be easily
deployed in a production environment.

* Reliability: EAGLE does not involve any fine-tuning
of the original LLM, and the preservation of the output
distribution by EAGLE is theoretically guaranteed for
both the greedy and non-greedy settings. This is in
sharp contrast to Lookahead and Medusa which either
focus solely on greedy settings or do not guarantee the
preservation of distribution in these settings.

2. Preliminaries

Notations. In this paper, “target LLM” denotes the LLM
intended for acceleration, while “draft model” refers to the
model used for draft generation. “Feature” generally signi-
fies the second-to-top-layer feature of a LLM, the hidden
state before the Lm head. Tokens are denoted by lowercase
t, their embeddings by e, features by f, and distributions by
p. Sequences are represented in uppercase, for example, 7T;. ;
for (t;,tiy1,...,t;). InaLLM, input T}.; is transformed
into embeddings E.; through the embedding layer, then
to features F.;, and the LM Head maps f; to a distribu-
tion p; 11 = LM_Head(f;), sampling the next token ¢;.1.
Vanilla autoregression at the token level is described by
T.; — Ev.j — fj = pj4+1 — tj41 for any integer j > 1.

Speculative sampling. Speculative sampling operates
through draft and verification phases, with the drafting
phase using a smaller model to generate tokens Tj.l,_l;j.l,_»y
and their distributions PjH, j+~- In the verification phase,
a single forward pass of the target LLM yields the prob-
abilities Pjy1.j4,. Tokens are then sequentially evalu-
ated, with a token fj+,; having an acceptance probability
min(1, pj4i(£j4:)/Pj+i(t;+:)). Upon the rejection of a to-
ken £ j+i» all subsequent tokens are discarded, and this token
is resampled based on a distribution norm(max(0, pj4,; —
Pj+i)). As proven in Appendix A.1 of speculative sampling
(Leviathan et al., 2023), this method equates to sampling
directly from the target LLM. EAGLE adopts this method,
ensuring that the distribution of the generated text re-
mains unchanged for both the greedy and non-greedy
settings. We provide a more detailed introduction to specu-
lative sampling in Appendix A.

3. EAGLE

EAGLE, aligning with other speculative sampling-based
methods, incorporates both a drafting phase and a verifica-
tion phase.

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Lookahead

ty [2:Gram, i]]

Speculative Sampling

ty tp ty —[Smaller LtV |-, |
t tp ty [ty |~ Smaller i]+ ¢s] [,]+[2-Gram, Jacobi | - |

Medusa EAGLE
Viedusa Aeadl |—» t; t3 Embedding layer & | _,
i 4 i £ Auto-regression Head 2 4

s Head? | ts] t; ¢t Embedding layer &
P, |-

Figure 5: A comparison of the methods for drafting the
fourth and fifth tokens, ¢4 and ¢5. t (represented by blue
blocks) denotes tokens, and f (blocks) signifies the
features, with subscripts indicating their positions in the se-
quence. The red border indicates the predictions of the draft
model. For simplicity, the n in the n-gram for Lookahead,
as shown in the figure, has been set to 2.

3.1. Drafting phase

The primary distinction between EAGLE and other methods
lies predominantly in the drafting phase. Figure 5 illustrates
a schematic of the drafting phase for different methods.
Speculative sampling (Leviathan et al., 2023; Chen et al.,
2023a) and Lookahead (Fu et al., 2023) predict tokens based
on tokens. Medusa (Cai et al., 2023) independently predicts
t4 and t5 using the feature f5 from the target LLM. EAGLE
predicts f3 using the feature sequence (f1, f2) and the token
sequence (t2,t3), advanced by one time step. From p, =
LM Head(f3), t4 is sampled. Subsequently, f3 and t4 are
concatenated into the input sequence to predict the next
feature f, and sample the subsequent token ¢5.

Figure 6 illustrates the structure of EAGLE’s draft model.
The Embedding layer and LM Head employ the parameters
of the target LLM and do not necessitate additional train-
ing. Figure 7 presents EAGLE’s pipeline. The draft model
takes as input a feature sequence of shape (bs, seq_len, hid-
den_dim) and an advanced token sequence of shape (bs,
seq_len). It then converts the token sequence into a token
embedding sequence of shape (bs, seq_len, hidden_dim),
and concatenates it to form a fused sequence of shape (bs,
seq_len, 2 xhidden_dim). The Autoregression Head consist-
ing of an FC layer and a decoder layer. The FC layer reduces
the dimensionality of the fused sequence to (bs, seq-len, hid-
den_dim) and then we utilize the decoder layer to predict
the next feature. The LM Head calculates the distribution
based on the feature, from which the next token is sampled.
Finally, the predicted feature and the sampled token are
concatenated into the input, facilitating the continuation of
the autoregressive process. EAGLE creates a tree-structured
draft using tree attention, generating a draft tree with depth
m and more than m tokens through m forward passes. For
instance, as shown in Figure 7, EAGLE drafts a 10-token
tree with just 3 forward passes. The actual tree structure
employed by EAGLE is detailed in Appendix B.1.

f2 fs ~(IMHead J»> ¢,
t t

Decoder Layer
D D

efy efs
t t

D D
concat e2 fi es fp

) €3
drop Embedding Layer
T) t t
! ty ! t, [fi f2

Figure 6: The network architecture of EAGLE’s draft model.
t represents token, f represents feature, and e represents
token embedding. f and e are k-dimensional vectors. The
input to the draft model is the token sequence from one step
ahead, so the first token ¢; is dropped. t5 and t3 are input
into the embedding layer to obtain embeddings e; and es,
which are then concatenated with f; and fo, resulting in
two 2k-dimensional vectors. The FC layer reduces their
dimensionality back to k, and then they are input into the
decoder layer, finally yielding f> and fs. Feature f3 is fed
into the LM head to obtain the draft token t4.

3.2. Training of the draft models

Predicting the next feature constitutes a regression task, for
which we employ Smooth L1 loss (see Figure 6):

fi+1 = Draft,Model(ngiJrh Fl:i)7

Lreg = Smooth L1 (fi+17 fi+1).

Predicting features is an intermediary objective of the draft
model, with the ultimate goal being the prediction of tokens
to generate a sequence of tokens. Consequently, we also
employ classification loss to directly optimize towards this
final objective:

Di+2 = Softmax(LM_Head(f;+1)),
Pito = Softmax(LM_Head(f;1)),
Leis = Cross_Entropy (pi+2, Di+2)-

By integrating regression loss and classification loss, we
train the Autoregression Head using the combined loss func-
tion L = Lycq + wes Lers. Typically, the classification loss
is an order of magnitude larger than the regression loss in
numerical terms. Consequently, we set w5 to 0.1.

EAGLE’s Autoregression Head is ideally trained with au-
toregressively generated text from the target LLM, yet this
approach is costly. Fortunately, EAGLE exhibits low sen-
sitivity to training data (ablation study in Section 4.3.3).

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

make/ | a/ with/ | the/ to/
help our you your feel

Can) (T3
t t t t t 1 t
[Sampling] [Sampling multiple times]
1t 1 1 1 t 1
1 I 1 I ™
(¥ MHead] (LM Head)
+ + + t + t +
frow fean LAl [nae (fuin]
. Transformer [One Auto-regression Heagd
N R L RSt B St
T T frow fean
Chow Ccan Ccan o bae]] | lowin] [evou]
—1t 4 4 t t t
% Embedding] [Embedding
—— —— T i
How can J------ ----» [|] [make] [with][you]
[y Yy ry Yy
[Forward1 | [Forward 1 [Forward 2 I Forward 3 |
target LLM Draft model
Sampling using Original LLM n
Drafting using ' .} "
FeatExtrapolator '
it

Figure 7: Pipeline of EAGLE. The upper section illustrates
the computational process, while the lower section displays
the corresponding generation results for each step. In the
upper section, blocks represent token embeddings,

blocks represent features, red boxes indicate the predic-
tions of the draft model, and blue modules with snowflake
icons represent the use of target LLM parameters, which are
not subject to training.

Instead of employing text generated by the target LLM, we
utilize a fixed dataset, substantially reducing the overhead.
During the drafting phase, EAGLE autoregressively pro-
cesses features. Inaccuracies in features can lead to error
accumulation. To mitigate this issue, we employ data aug-
mentation by adding random noise sampled from a uniform
distribution ¢/(—0.1, 0.1) to features of the target LLM dur-
ing training (Jain et al., 2023).

3.3. Verification phase

Employing tree attention, the target LLM computes the
probability of each token in the tree-structured draft through
a single forward pass. At every node of the draft tree, we
recursively apply speculative sampling algorithms to sample
or adjust the distribution (details in Appendix B.2), consis-
tent with SpecInfer (Miao et al., 2023), ensuring that the
distribution of the output text aligns with that of the target
LLM. Concurrently, we document accepted tokens and their
features for use in the next drafting phase.

4. Experiments

Models and tasks. We conducted experiments on Vicuna
models (7B, 13B, 33B), LLaMA2-chat models (7B, 13B,
70B), and Mixtral 8x7B Instruct, encompassing the com-
mon sizes of current mainstream LLMs. We evaluated EA-
GLE across multiple tasks including multi-turn dialogue,
code generation, mathematical reasoning, and instruction
following, employing the MT-bench (Zheng et al., 2023),
HumanEval (Chen et al., 2021), GSM8K (Cobbe et al.,
2021), and Alpaca (Taori et al., 2023) datasets, respectively.
Speculative sampling (Leviathan et al., 2023) conducted
experiments with a batch size of 1, a setting subsequently
adopted by other works such as DistillSpec (Zhou et al.,
2023) and BiLLD (Kim et al., 2023). Similarly, the majority
of our experiments also adopted this setting. Experiments
with a batch size greater than 1 are presented in Section 4.4.

Metrics. Like other speculative sampling-based methods,
EAGLE primarily focuses on latency rather than throughput.
We assess acceleration effects using the following metrics:

* Walltime speedup ratio: The actual test speedup ratio
relative to vanilla autoregressive decoding.

* Average acceptance length 7: The average number of
tokens accepted per forward pass of the target LLM.

* Acceptance rate o: The ratio of accepted to generated
tokens during drafting, gauges draft accuracy. It’s less
applicable for tree drafts due to multiple tokens sam-
pled per location with only one accepted. Hence, when
measuring this metric, we utilize chain drafts without
tree attention, aligning with speculative sampling and
DistillSpec. EAGLE’s draft model inputs feature and
token sequences. Autoregressive feature processing
can propagate errors, so we measure the acceptance
rate as n-a, considering n features predicted by the
draft model, potentially with inaccuracies.

Acceleration of EAGLE theoretically guarantees the preser-
vation of the target LLMs’ output distribution. Conse-
quently, evaluating the quality of EAGLE’s generated results
is both unnecessary and meaningless.

Training. We fixed the target LLMs. EAGLE was trained on
the ShareGPT dataset, utilizing 68,000 dialogue iterations
with a learning rate set at 3e-5. We employed the AdamW
optimizer with beta values (31, 52) set to (0.9, 0.95) and
implemented gradient clipping of 0.5. The trainable parame-
ters of EAGLE corresponding to the 7B, 13B, 33B, and 70B
models are 0.24B, 0.37B, 0.56B, and 0.99B, respectively.
The trainable parameters of EAGLE for MoE model Mixtral
8x7B is 0.28B. EAGLE is characterized by its low training
cost; the Autoregression Head is trainable within 1-2 days
on an A100 40G server for the 70B models.

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

4.1. Effectiveness

Figures 1 and 2, along with Table 1, display the speedup
ratios of EAGLE. EAGLE demonstrates better acceleration
at temperature=0 compared to temperature=1. For instance,
for LLaMA2-Chat 13B at temperature=0, the speedup ra-
tios range from 3.01x to 3.76x, while at temperature=1,
they range from 2.66x to 2.89x. In code generation tasks
(HumanEval), EAGLE achieves its best acceleration per-
formance. This is attributed to the prevalence of fixed tem-
plates in code, making it easier to generate drafts for these
templates. Compared to recently introduced speculative
sampling-based methods, Lookahead and Medusa, EAGLE
is faster by 1.70x-2.08x and 1.47x-1.60x, respectively. Em-
ploying speculative sampling in the Vicuna and LLaMA?2-
Chat series is challenging. For the 7B model, there is no
suitable draft model. For other sizes, using the 7B model
as the draft model, we iterated through draft lengths from 2
to 10 and reported the highest speedup ratio. For the 13B
model, we observed no improvement in speed. For the 33B
and 70B models, the speedup ratios were 1.12x and 1.88x,
respectively. For DistillSpec, to ensure fairness, we used the
same training data as EAGLE. Additionally, the divergence
function employed follows the FKL as detailed in Appendix
A.1 of the DistillSpec paper. While distillation slightly
improved the speedup ratio, the limited enhancement is
because distillation aims to increase the draft model’s ac-
ceptance rate, while the bottleneck for speculative sampling
performance lies in the high overhead of the draft model.

Tables 1 and 2 indicate that in EAGLE, the target LLM gen-
erates 3.2-4.5 tokens per forward pass, surpassing vanilla
decoding which produces only one token per forward pass,
thereby significantly increasing generation speed. As shown
in Figure 2 and Appendix C, the acceptance rate for com-
pletely accurate feature sequences, 0-a, significantly ex-
ceeds that for sequences with a single erroneous feature,
1-a, indicating the impact of feature errors on draft model
performance. Yet, the slight variation between 1-a to 4-a
underscores EAGLE’s robustness to feature errors and its
adept handling of error accumulation.

Table 3 reveals that EAGLE achieved a 1.5x speedup with
the Mixtral 8x7B Instruct model. This modest acceleration,
compared to models like LLaMA, is due to a shorter average
acceptance length and the complexity of accelerating MoE
models via speculative sampling. MoE models typically
require reading the weights of only two experts per token
during vanilla autoregressive decoding. However, during
the verification phase of speculative sampling, processing
multiple tokens may necessitate accessing the weights of
more than two experts, contrasting with dense decoder-only
models where all weights are read regardless of the number
of tokens forwarded.

Table 1: Speedup ratio and average acceptance length 7 on
HumanEval, GSMS8K, and Alpaca. T denotes temperature,
V represents Vicuna, and LC stands for LLaMA2-Chat.

HumanEval GSM8K Alpaca

Model Speedup T Speedup T Speedup T
V7B 333x 429 3.0l1x 400 279x 3.86
V13B 358x 439 308 397 3.03x 395
V 33B 3.67x 428 325x 394 297x 3.6l
T=0 pc7B 3.17x 424 291x 38 278 371
LC13B 376x 452 320x 4.03 3.01x 3.83
LC70B 3.52x 442 303 393 297x 377
V7B 239x 343 234x 329 221x 330
V13B 2.65x 3.63 257x 360 245x 3.57
V 33B 276x 3.62 277x 360 252x 332
T=1 pc7B 261x 379 240x 352 229x 333
LC13B 2.89x 378 2.82x 3.67 2.66x 355
LC70B 292x 376 2.74x 3.58 2.65x 347

Table 2: Average acceptance length 7 and acceptance rate o
on MT-bench. T denotes temperature.

Model T 0-a l-a 2-a 3a 4«
Vicuna 7B 394 079 0.74 0.72 0.73 0.67
Vicuna 13B 398 079 0.74 0.72 0.74 0.70
Vicuna 33B 3.68 074 0.69 0.67 0.67 0.66

T=0 LLaMA2-Chat7B 3.62 076 0.69 067 0.68 0.68
LLaMA2-Chat 13B 3.90 0.77 0.69 0.69 0.70 0.71
LLaMA2-Chat 70B 3.81 0.75 0.69 0.65 0.64 0.64

Vicuna 7B 317 071 0.68 0.66 0.66 0.65
Vicuna 13B 320 073 0.68 0.68 0.67 0.69
Vicuna 33B 322 071 0.67 0.64 064 0.64

T=1 LLaMA2-Chat7B 330 071 066 066 0.66 0.64
LLaMA2-Chat 13B 345 0.73 0.69 0.66 0.67 0.67
LLaMA2-Chat 70B 346 0.73 0.67 0.64 0.66 0.65

4.2. Case study: EAGLE + gpt-fast

EAGLE is compatible with other acceleration technologies.
We conducted experiments combining EAGLE with gpt-fast,
which employs quantization and compilation for accelera-
tion. As shown in Table 4, by integrating EAGLE with
gpt-fast, we increased the generation speed of LLaMA2-
Chat 7B on a single RTX 3090 to 160.4 tokens/s.

4.3. Ablation study
4.3.1. TREE ATTENTION

EAGLE, similar to SpecInfer and Medusa, employs tree
attention, where both the generation and validation of
drafts are tree-structured. In contrast, methods like specula-
tive sampling do not use tree attention, resulting in chain-
structured draft generation and validation. Figure 8 and
Table 5 present comparative results indicating the impact of
using tree attention. The implementation of tree draft and
verification in EAGLE results in an approximate increase of
0.6-0.8 in the average acceptance length and about 0.3-0.5

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Table 3: Speedup ratio, average acceptance length 7, and
acceptance rate « on MT-bench at temperature=0. The
target LLM is Mixtral 8x7B Instruct-v0.1.

Table 5: Average acceptance length 7 of EAGLE with and
without the use of tree attention. The evaluation dataset is
MT-bench, with the temperature parameter set to 0.

Speedup T O-a l-aa 2-a 3a 4«
1.50x 325 0.67 0.62 061 0.64 0.63

Table 4: Generation speed of EAGLE combined with gpt-
fast, evaluated on MT-bench with LLaMA2-Chat 7B at
temperature=0.

Precision FP16 int4

Vanilla (Huggingface) 24.5 tokens/s N/A
gpt-fast 55.1 tokens/s 106.9 tokens/s
EAGLE + gpt-fast 100.2 tokens/s 160.4 tokens/s

in the speedup ratio. Compared to chain draft and verifica-
tion, tree draft and verification do not increase the number
of forward passes in the model (both the target LLM and
the draft model), but they do increase the number of tokens
processed per forward pass. Consequently, the improvement
in the speedup ratio is less pronounced than the increase
in average acceptance length. Notably, even without em-
ploying tree draft and verification, EAGLE demonstrates a
significant acceleration effect, approximately in the range
of 2.3x-2.7x.

Vanilla

EEl EAGLE w/ tree attention

BN EAGLE w/o tree attention

1.00x

\4

38 38
wie® e 2 s O

\icun? 7

18 138 108

cnat cnat
LLaMAZ ¢ LLaMA2 c
Models

Figure 8: Speedup ratios of EAGLE with and without the
use of tree attention. The evaluation dataset is MT-bench,
with the temperature parameter set to 0.

4.3.2. INPUTS OF DRAFT MODELS

Compared to other speculative sampling-based methods,
the key innovation of EAGLE lies in its utilization of fea-
tures computed by the target LLM and the incorporation
of sampling outcomes into the input of the draft model
to address randomness. We conducted an ablation study
on Vicuna 7B, assessing draft models with varying inputs.
We tested four types of inputs: feature&shifted-token (EA-
GLE), feature&unshifted-token, token, and feature. Both
feature&shifted-token (EAGLE) and feature&unshifted-

Vicuna LLaMA2-Chat
Size Chain Tree Size Chain Tree
7B 320 3.94(+0.74) 7B 3.00 3.62(+0.62)
13B 323 398(+0.75) 13B 3.18 3.90 (+0.68)
33B 297 3.68(+0.71) 70B 3.12 3.81 (+0.69)

token integrate semantic information at different levels. The
distinction lies in the fact that feature&shifted-token (EA-
GLE) inputs tokens advanced by one time step, equipping
it to address randomness effectively. Apart from the use of
a FC layer to reduce dimensionality for the feature&token
input, the structure of the draft model remains entirely con-
sistent. Figure 9 presents the experimental outcomes on
the MT-bench with Vicuna 7B as the target LLM. Three
observations can be drawn.

e First, when the number of parameters of the draft
model is limited, utilizing features yields slightly better
results than tokens.

¢ Second, merging features and tokens modestly boosts
performance, mainly as discrete, error-free tokens mit-
igate feature error accumulation, evident from the sim-
ilar O-a of feature&unshifted-token and feature-only
draft models, with a significantly improved 1-a.

* Third, addressing the randomness inherent in the sam-
pling process results in the most significant improve-
ment. The feature&shifted-token scheme, compared
to feature&unshifted-token, adds no complexity yet
markedly enhances the draft model’s capability by sim-
ply advancing the token by one time step, allowing the
draft model to account for the randomness in sampling.

4.3.3. TRAINING DATA

EAGLE uses a fixed dataset for training, avoiding increased
overhead from using the target LLM for generating training
data. Ablation study (see Table 6) shows that data from the
target LLM marginally improves performance, indicating
EAGLE’s low sensitivity to training data and justifying the
fixed dataset approach for cost reduction.

4.4. Batch size and throughput

Inference in LLMs is memory-bound (Patterson, 2004;
Shazeer, 2019), leaving GPU computational resources un-
derutilized. The principle behind the speculative sampling-
based approach in enhancing generation speed lies in more
effectively utilizing GPU computational resources. As the

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

—— feature&shifted-token feature&unshifted-token —— token —— feature
Speedup T 0.8 0—-a l-a
2.5 // 0.6
o 3 0.6 //-"—"
Il
 2:0 0.4
L o s e I
0.2
2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0
Epoch Epoch Epoch Epoch
2.0 3.0 0.6
0.6 /—/‘
2.5
T //\/—‘ 0.4
1.5 4
~ 2.0 0
1.0 e e " 15}, 0.2
' 2.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0
Epoch Epoch Epoch Epoch

Figure 9: Performance of draft models with varying inputs. The target LLM is Vicuna 7B, and the test dataset is MT-bench.
Speed refers to the walltime speedup ratio, 7 denotes the average acceptance length, 0-« represents the acceptance rate with
entirely precise inputs, 1-« indicates the acceptance rate when the input includes one imprecise feature, and 7" refers to the

temperature.

Table 6: The speedup ratios and average acceptance length 7
using different training datasets evaluated on the MT-bench,
with the target LLM being LLaMA2-Chat 7B and the tem-
perature set to 0. “Fixed dataset” refers to both questions
and answers originating from the ShareGPT dataset. “Data
generated by target LLM” denotes that while questions are
sourced from the ShareGPT dataset, the answers are gener-
ated by the target LLM.

Training data Speedup T
Fixed dataset 2.78x 3.62
Data generated by target LLM 2.88x 3.75

batch size increases, the available computational capacity
of the GPU decreases, leading to a reduction in the ac-
celeration effect. In this section, we present experimental
results for scenarios where the batch size exceeds 1. As
demonstrated in Table 7, the speedup ratio diminishes with
increasing batch size. When using Vicuna 7B as the target
LLM, the speedup ratio at bs=4 is higher than at bs=3. This
is attributed to the fact that, during the verification phase
of EAGLE, the target LLM processes multiple tokens in a
single forward pass, and the processing at bs=4 is faster than
at bs=3. In contrast, with vanilla autoregressive decoding
where the target LLM processes one token per forward pass,

the speeds at bs=3 and bs=4 are nearly identical.

Although speculative sampling-based methods predomi-
nantly focus on latency, we also investigated EAGLE’s
throughput for batch size > 1, another key metric for LLM
systems. Compared to vanilla autoregressive decoding, EA-
GLE requires slightly more CUDA memory. For Vicuna
7B as the target LLM, operating under a memory constraint
of a single RTX 3090 with 24G of CUDA memory, the
maximum batch size (bs) for vanilla autoregressive decod-
ing and EAGLE are 8 and 7, respectively. In the case of
LLaMA2-Chat 70B, constrained by 4 A100 (40G) GPUs to-
taling 160G of CUDA memory, the maximum bs for vanilla
autoregressive decoding and EAGLE are 5 and 4, respec-
tively. All evaluations were conducted at FP16 precision.
We calculated the throughput for different bs and selected
the maximum value. Both vanilla autoregressive decoding
and EAGLE achieve maximum throughput at their respec-
tive maximum bs. Tree attention consumes more computa-
tional resources. At bs=7, the computational resources are
less abundant, making the non-use of tree attention more
advantageous. As illustrated in Table 7, EAGLE achieves a
2x increase in throughput.

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Table 7: Speedup ratios at different batch sizes and through-
put of EAGLE. The evaluation dataset is MT-bench, with
the temperature parameter set to 0.

Batch size 1 2 3 4 Throughput
Vicuna 7B 2.90x 2.87x 2.65x 2.76x 1.97x
LLaMA2-Chat 70B 3.01x 2.81x 2.50x 2.40x 1.99x
5. Related Work

There has been considerable research into accelerating lan-
guage models, involving techniques such as distillation (Hin-
ton et al., 2015), quantization (Hubara et al., 2018; Shen
et al., 2020; Kim et al., 2021; Zadeh et al., 2020; Zafrir et al.,
2019), pruning (Gale et al., 2019; Sanh et al., 2020), and
efficient operator design (Dao et al., 2022). These methods
aim to reduce the latency per forward pass.

Similar to our approach are frameworks based on specula-
tive sampling. Early works (Stern et al., 2018; Sun et al.,
2021) accelerated greedy decoding, while speculative sam-
pling (Leviathan et al., 2023; Chen et al., 2023a) extended it
to non-greedy sampling, provably maintaining the original
output distribution. Ensuring unchanged output distribution
makes acceleration more challenging; many studies have
explored lossy acceleration as a trade-off. For instance,
DistillSpec (Zhou et al., 2023) modifies acceptance proba-
bilities using a lenience function, BiLD (Kim et al., 2023)
accepts drafts if the distance metric from the target LLM
distribution is below a certain threshold, and Medusa (Cai
et al., 2023) uses a minimum of a hard threshold and an
entropy-dependent threshold for truncation. In contrast, EA-
GLE does not employ any relaxations and maintains the
output distribution of the LLM unchanged.

The primary differences among speculative sampling-based
methods manifest predominantly in the drafting phase. Spec-
ulative sampling (Leviathan et al., 2023; Chen et al., 2023a)
utilizes a lower-parameter version of the target LLM as the
draft model. Self-Speculative Decoding (Zhang et al., 2023)
skips some layers of the target LLM during draft genera-
tion. Speclnfer (Miao et al., 2023) employs a set of small
models to generate drafts in parallel. Cascade Speculative
Drafting (Chen et al., 2023b) and Staged Speculative Decod-
ing (Spector & Re, 2023) cascade different overhead draft
models. Online Speculative Decoding (Liu et al., 2023)
trains the draft model on a distribution of queries. Methods
(Hooper et al., 2023; Fu et al., 2023; Yang et al., 2023b;
Liu et al., 2024; Ankner et al., 2024) such as Medusa (Cai
et al., 2023) do not employ a separate target LLM; instead,
they generate drafts by utilizing features or weights from the
target LLM. REST (He et al., 2023) generates drafts based
on retrieval methods. LLMA (Yang et al., 2023a), used for
tasks like grammatical correction where input and output

overlap, retrieves drafts directly from the input.

6. Conclusion

In this paper, we introduce EAGLE, an efficient framework
for speculative sampling. EAGLE conducts the drafting
process autoregressively at the more structured (second-to-
top-layer) feature level and mitigates sampling uncertainty
in predicting the next feature by incorporating tokens from
one time step ahead. EAGLE is guaranteed to preserve the
output distribution of the LLM while significantly enhancing
generation speed. On MT-bench, EAGLE is 2.1x-3.8x faster
than vanilla autoregressive decoding, 1.7x-2.1x faster than
Lookahead, and 1.5x-1.6x faster than Medusa.

Acknowledgements

Yuhui Li and Chao Zhang are supported by the National
Nature Science Foundation of China under Grant 62071013
and National Key R&D Program of China under Grant
2018AAA0100300. Hongyang Zhang is supported by the
NSERC Discovery Grant RGPIN-2022-03215, DGECR-
2022-00357.

Impact Statement

EAGLE preserves the output distribution of the original
LLM, and hence, inherently carries no risk by itself. While
the original LLM may generate inaccurate or harmful con-
tent, such issues are independent of EAGLE’s functionality.

References

Ankner, Z., Parthasarathy, R., Nrusimha, A., Rinard, C.,
Ragan-Kelley, J., and Brandon, W. Hydra: Sequentially-
dependent draft heads for medusa decoding. arXiv
preprint arXiv:2402.05109, 2024.

Cai, T., Li, Y., Geng, Z., Peng, H., and Dao, T. Medusa:
Simple framework for accelerating LLM generation with
multiple decoding heads. https://github.com/
FasterDecoding/Medusa, 2023.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, Z., Yang, X., Lin, J., Sun, C., Huang, J., and Chang, K.
C.-C. Cascade speculative drafting for even faster LLM
inference. arXiv preprint arXiv:2312.11462, 2023b.

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344—-16359, 2022.

Fu, Y., Bailis, P, Stoica, 1., and Zhang, H. Break-
ing the sequential dependency of LLM infer-
ence using lookahead decoding, = November
2023. URL https://lmsys.org/blog/
2023-11-21-1ookahead-decoding/.

Gale, T., Elsen, E., and Hooker, S. The state of spar-
sity in deep neural networks.(2019). arXiv preprint
¢s.LG/1902.09574, 2019.

He, Z., Zhong, Z., Cai, T., Lee, J. D., and He, D. Rest:
Retrieval-based speculative decoding. arXiv preprint
arXiv:2311.08252, 2023.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hooper, C., Kim, S., Mohammadzadeh, H., Genc, H.,
Keutzer, K., Gholami, A., and Shao, S. SPEED: Specu-
lative pipelined execution for efficient decoding. arXiv
preprint arXiv:2310.12072, 2023.

Hubara, 1., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neural
networks with low precision weights and activations. jour-
nal of machine learning research, 18(187):1-30, 2018.

Jain, N., Chiang, P.-y., Wen, Y., Kirchenbauer, J., Chu,
H.-M., Somepalli, G., Bartoldson, B. R., Kailkhura, B.,
Schwarzschild, A., Saha, A., et al. NEFTune: Noisy em-
beddings improve instruction finetuning. arXiv preprint
arXiv:2310.05914, 2023.

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W., and
Keutzer, K. I-bert: Integer-only bert quantization. In
International conference on machine learning, pp. 5506—
5518. PMLR, 2021.

Kim, S., Mangalam, K., Moon, S., Malik, J., Mahoney,
M. W., Gholami, A., and Keutzer, K. Speculative decod-
ing with big little decoder. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Infer-
national Conference on Machine Learning, pp. 19274—
19286. PMLR, 2023.

10

Liu, F, Tang, Y., Liu, Z., Ni, Y., Han, K., and Wang, Y.
Kangaroo: Lossless self-speculative decoding via double
early exiting. arXiv preprint arXiv:2404.18911, 2024.

Liu, X., Hu, L., Bailis, P.,, Stoica, 1., Deng, Z., Cheung,
A., and Zhang, H. Online speculative decoding. arXiv
preprint arXiv:2310.07177, 2023.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Wong,
R. Y. Y., Chen, Z., Arfeen, D., Abhyankar, R., and Jia,
Z. Speclnfer: Accelerating generative LLM serving with

speculative inference and token tree verification. arXiv
preprint arXiv:2305.09781, 2023.

Patterson, D. A. Latency lags bandwith. Communications
of the ACM, 47(10):71-75, 2004.

PyTorch Labs. gpt-fast. https://github.com/
pytorch-labs/gpt-fast/, 2023.

Sanh, V., Wolf, T., and Rush, A. Movement pruning: Adap-
tive sparsity by fine-tuning. Advances in Neural Informa-
tion Processing Systems, 33:20378-20389, 2020.

Santilli, A., Severino, S., Postolache, E., Maiorca, V.,
Mancusi, M., Marin, R., and Rodola, E. Accelerat-
ing transformer inference for translation via parallel de-
coding. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 12336-12355, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.689. URL https:
//aclanthology.org/2023.acl-1long.689.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-bert: Hessian based
ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 34, pp. 8815-8821, 2020.

Spector, B. and Re, C. Accelerating LLM inference
with staged speculative decoding. arXiv preprint
arXiv:2308.04623, 2023.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. Advances in
Neural Information Processing Systems, 31, 2018.

Sun, X., Ge, T., Wei, F,, and Wang, H. Instantaneous gram-
matical error correction with shallow aggressive decoding.
arXiv preprint arXiv:2106.04970, 2021.

Taori, R., Gulrajani, 1., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.

https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://github.com/pytorch-labs/gpt-fast/
https://github.com/pytorch-labs/gpt-fast/
https://aclanthology.org/2023.acl-long.689
https://aclanthology.org/2023.acl-long.689

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Stanford alpaca: An instruction-following Illama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. LIAMA 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Xia, H., Ge, T., Wang, P., Chen, S.-Q., Wei, F., and Sui,
Z. Speculative decoding: Exploiting speculative execu-
tion for accelerating seq2seq generation. In Findings of
the Association for Computational Linguistics: EMNLP
2023, pp. 3909-3925, 2023.

Yang, N., Ge, T., Wang, L., Jiao, B., Jiang, D., Yang, L.,
Majumder, R., and Wei, F. Inference with reference:
Lossless acceleration of large language models. arXiv
preprint arXiv:2304.04487, 2023a.

Yang, S., Lee, G., Cho, J., Papailiopoulos, D., and
Lee, K. Predictive pipelined decoding: A compute-
latency trade-off for exact llm decoding. arXiv preprint
arXiv:2307.05908, 2023b.

Zadeh, A. H., Edo, 1., Awad, O. M., and Moshovos, A.
Gobo: Quantizing attention-based nlp models for low la-
tency and energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 811-824. IEEE, 2020.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
Q8bert: Quantized 8bit bert. In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive
Computing-NeurlPS Edition (EMC2-NIPS), pp. 36-39.
IEEE, 2019.

Zhang, J., Wang, J., Li, H., Shou, L., Chen, K., Chen, G.,
and Mehrotra, S. Draft & verify: Lossless large language
model acceleration via self-speculative decoding. arXiv
preprint arXiv:2309.08168, 2023.

Zhang, P., Zeng, G., Wang, T., and Lu, W. TinyLlama:
An open-source small language model. arXiv preprint
arXiv:2401.02385, 2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al. Judging
llm-as-a-judge with mt-bench and chatbot arena. arXiv
preprint arXiv:2306.05685, 2023.

Zhou, Y., Lyu, K., Rawat, A. S., Menon, A. K., Ros-
tamizadeh, A., Kumar, S., Kagy, J.-F., and Agarwal, R.
DistillSpec: Improving speculative decoding via knowl-
edge distillation. arXiv preprint arXiv:2310.08461, 2023.

11

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

A. Background: Speculative Sampling

In this section, we introduce standard speculative sampling (Leviathan et al., 2023; Chen et al., 2023a) to help readers
unfamiliar with this field better understand EAGLE. We use ¢; to denote the i-th token and 7j,.; to represent the token
sequence tq,tq+1, - - ,tp. We use M, to denote the original LLM and M to represent the draft model.

Modern LLMs generate text autoregressively, requiring the full model weights to be transferred from memory to cores for
each token generation. The time cost of accessing weights far exceeds the computation cost. Therefore, LLM inference
is memory-bound. In text generation tasks, the difficulty of generating different tokens varies, and a smaller model can
generate some simple tokens. This observation has inspired a class of methods, represented by speculative sampling, which
generate multiple tokens in one forward pass to accelerate LLM inference. The core idea of speculative sampling methods is
to first draft and then verify: quickly generate a potentially correct draft and then check which tokens in the draft can be
accepted.

Consider a prefix T7.;, speculative sampling alternates between drafting and verification stages. In the drafting stage,
speculative sampling invokes a draft model M, (a smaller LLM than M,) to generate a draft Tj_H: j+k with T7.; as the prefix.
In the verification stage, speculative sampling calls the original LLM M, to check the draft Tj.ﬂ,.l;j.l,.k and concatenates the
correct parts into the prefix.

Drafting Stage. We use the draft model M, to autoregressively generate k tokens while recording the corresponding
distributions p:

tiv1 ~ Pjy1 = My(T15),
tji ~ Pjyi = Ma(concat(Ty.j, Tjjpio1)),i =2, .k,
where concat(+, -) denotes the concatenation of two sequences. The draft TjH: j+k generated by Mg has a lower computa-
tional cost while having a certain probability of being consistent with the generation results of M,,.

Verification Stage. The verification stage checks the draft TjH: j+% and keeps the parts consistent with M,,. We leverage
the parallelism of LLMs. Given the input sequence concat(7.;, TjH: j+k), one forward pass of the LLM can compute & + 1
distributions:
pi+1 = Mo(T1;5),
pjvi = Mo(concat(Thj, Tjjrio1))yi =2, k+1.

Then, we decide whether to accept each token in the draft from front to back. For token fj+,», the probability of it being
accepted is min(1, pj1i(fj4+:)/Dj+i(tj1+i)). If £j4 is accepted, we continue checking the next token; otherwise, we sample
a token from the distribution norm(max(0, p,+; — p;+)) to replace #;; and discard the remaining tokens in the draft. The
result of this sampling method is exactly consistent with directly sampling from the distribution p computed by M,. The
proof can be found in Appendix A.1 of (Leviathan et al., 2023).

We concatenate the accepted draft to 77.; to form a new prefix, and then start the next round of drafting and verification.

B. Implementation Details
B.1. Tree Structure

Utilizing tree attention, EAGLE generates a tree-structured draft. The left side of Figure 10 illustrates the tree structure of
the draft, while the right side depicts the corresponding chain-structured draft when tree attention is not used (as utilized in
the ablation study detailed in Section 4.3.1). In a greedy setting, we select the top k tokens with the highest probabilities as
child nodes. In a non-greedy setting, we sample % tokens. The number of child nodes, k, can be inferred from Figure 9;
for instance, k = 4 at the root node. Regardless of employing a tree-structured or chain-structured draft, the draft model
undergoes 5 forward passes during the draft phase. During the verification phase, each token’s probability is obtained
through a single forward pass by the target LLM.

Why do we use such a tree structure? The choice of the tree structure, as depicted in Figure 9, was not rigorously
optimized but rather based on intuition: branches of higher-probability tokens should be deeper and wider. For this paper, all
models across all experiments utilized the draft structure shown in Figure 9. However, the optimal tree structure is likely
context-dependent. For instance, as batch size increases and redundant computational resources decrease, a smaller tree
might be preferable. Tuning the draft structure could potentially lead to improved performance.

12

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Figure 10: Structure of EAGLE’s draft. The left side shows the draft structure when tree attention is employed, while the
right side depicts the draft structure without the use of tree attention.

B.2. Multi-Round Speculative Sampling

Unlike the chain-structured draft of speculative sampling, EAGLE employs a tree-structured draft, necessitating modifications
to the sampling algorithm. Single-round speculative sampling of standard speculative sampling takes as input a draft token ¢,
the draft distribution p, and the original LLM’s distribution p. It accepts the draft token ¢ with probability min(1, p(f) /p(%)).
If not accepted, it performs naive sampling from the distribution norm(max(0, p — p)). Multi-round speculative sampling
simply modifies the naive sampling in the case of non-acceptance to recursively call single-round speculative sampling. The
pseudocode for Multi-round speculative sampling is provided in Algorithm 1.

Algorithm 1 Multi-round speculative sampling

Input: Target distribution p, draft tokens #; and distributions p; for each i from 1 to k, where #; is sampled from p;,
QOutput: a sample x ~ p;
141
for: < kdo
r+ U(0,1)
if - < p(i;)/pi(l;) then
Return i;
end if
p + norm(max(0,p — p;))
14 1+1
end for
Sample t ~ p
Return ¢

C. Detailed experimental results

Table 8 displays the speedup ratio, average acceptance length 7 and acceptance rate o of EAGLE on HumanEval, GSM8K,
and Alpaca datasets.

13

EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

Table 8: Speedup ratio, average acceptance length 7 and acceptance rate o« on HumanEval, GSM8K, and Alpaca at
temperature = 0.

Dataset Model Speedup T 0O-a l-a 2a 3a 4o
Vicuna 7B 333 429 0.82 077 072 0.69 0.71
Vicunal3B 358 439 085 078 074 072 0.73
Vicuna 33B 3.67x 428 0.83 0.77 0.74 0.70 0.70

HumanEval] aMA2-Chat 7B 3.17x 424 081 076 0.73 074 0.72
LLaMA2-Chat 13B 3.76x 452 085 080 0.78 0.76 0.75
LLaMAZ2-Chat 70B 3.52x 442 084 079 075 073 0.74

Vicuna 7B 3.01x 4.00 0.79 071 0.70 0.71 0.70
Vicunal3B 3.08x 397 079 0.71 0.67 0.68 0.64
Vicuna 33B 3.25x 394 079 0.71 0.67 0.67 0.67

GSMSBK [LaMA2-Chat7B 291x 3.82 0.75 069 0.64 0.65 0.63
LLaMA2-Chat 13B 320x 4.03 0.80 0.70 0.70 0.68 0.66
LLaMA2-Chat 70B 3.03x 393 0.77 0.71 066 0.64 0.60

Vicuna 7B 279x 386 074 0.68 0.66 0.66 0.67
Vicunal3B 3.03x 395 072 0.67 0.64 0.63 0.64
Vicuna 33B 2.97x 361 070 0.64 0.64 0.63 0.64

Alpaca LLaMA2-Chat 7B 2.78x 371 073 0.66 0.62 064 0.62
LLaMA2-Chat 13B 3.01x 383 075 0.67 064 0.63 0.63
LLaMA2-Chat 70B 2.97x 377 076 0.68 0.65 0.61 0.62

14

